

MyForth

REFERENCE MANUAL

Revision 3.7
November 17, 2006

Prepared By: Bob Nash (Bob.Nash1@Gmail.com)

Document: MyForth Reference Manual.doc

 MyForth iii

Contents

INTRODUCTION1

PURPOSE... 1

VIEWPOINT... 2

DEVELOPMENT ENVIRONMENT 3

SCOPE... 4

CONVENTIONS.. 4

TERMINOLOGY ... 5
Host and Target...5
Tethering..6
Words...7
Code Words...7
Macros ...7
In Line Assembly ..7

INSTALLATION....................................9

OVERVIEW ... 9

WINDOWS DEVELOPMENT... 10

APPLICATION DEVELOPMENT.................................... 11

EDITING ... 12
Vim ...12
Usage ...12
Tags ...13
Navigation..13
Colors ..14

 Contents

iv MyForth

PROJECTS...15

OVERVIEW ... 15

INITIALIZATION ... 16
Project Directory ...16
Examples Directory ..17

CONFIGURATION .. 18
Overview..18
Interpreter ..18
Reset Vector ..19
ROM Start ..19
Target Size...19
Baud Rate ..20

LOADER AND JOB FILES... 21

COMPILING .. 24

DECOMPILING .. 26
see..26
decode ...27

DOWNLOADING .. 28

TETHERED OPERATION... 29
Passing Parameters..29
Stack Display...29
Defined Words...29
Exiting Forth..29

TURNKEYING.. 30

DUMPS .. 31

SCRIPTS .. 31

COMPILER...33

OVERVIEW ... 33

MAPPING ... 34
Memory ..34
Boot Loader...34
Programs ...34
Stacks ..34

 Contents

 MyForth v

IMPLEMENTATION ... 35
Threading...35
Vocabularies..35

WORDS.. 36

MACROS.. 37

REGISTERS .. 39

DATA STACK.. 41
Implementation ...41
~# and ## ..41
#@, (#@), #! and (#!) ...41
stacks...42

RETURN STACK ... 42
Implementation ...42
push and pop ..42

ADDRESS REGISTER .. 43
a and a! ..43
@, @+, ! and !+ ..43

DATA POINTER... 44
|p, |@p, and |@p+..44
p+, p! and ##p! ..44

VARIABLES AND CONSTANTS.................................... 45

NUMBERS AND LABELS .. 46

INTERRUPTS... 48

CONDITIONALS... 49
Overview..49
if and 0=if ...50
if. and 0=if. ...51
if’ and 0=if’ ...52
-if and +if..53

LOOPS... 54
Overview..54
Counted ...54
Nested..55
Conditional ..56
until and 0=until ..57
=until ..58
<until ..58
until. and 0=until. ..59
-until ...60

 Contents

vi MyForth

ARITHMETIC AND LOGIC ... 61
ior, xor, ior! and xor!...62
and and and!..62
+ and +’ ..63
1+ and 1- ..63
1u+ and 1u-..63
negate and invert ..64
2*, 2*’, 2/ and 2/’...65
|* ...65
|um* ..66
|u/mod ..67

ASSEMBLER69

OVERVIEW ... 69

ASSEMBLY DEFINITIONS ... 70

IN LINE ASSEMBLY... 71

PUSH AND POP ... 72

SET AND CLR.. 72

PINS AND BITS ... 73

MOV... 76

MOVBC AND MOVCB.. 77

[SWAP] .. 77

NOP ... 77

INC AND DEC .. 78

BOOT LOADER79

OVERVIEW ... 79
Purpose ...79
Advantages..79
Installation...80
Location...81

OPERATION.. 81

OVERHEAD .. 83

 Contents

 MyForth vii

TETHERED TARGET.........................85

OVERVIEW ... 85

BASIC OPERATION ... 86

EXECUTE.. 86

QUIT .. 87

STANDALONE TARGET89

OVERVIEW ... 89

INSTALLATION.. 89

OPERATION.. 90
Dumb Terminal..90
Stack ..90
Words...90

INTERPRETER... 91
Basic Definitions...91
Quit...93
Interpret ...94
find ...95

EXAMPLES ..97

OVERVIEW ... 97

LCD.. 98
Project Description ...98
Hardware..98
Navigation..100
Inclusion ..101
I/O Configuration...102
Delays ..104
LCD Words ..105
Strings ...106

 Contents

viii MyForth

RANDOM SEQUENCE GENERATOR 107
Project Description ...107
Hardware..107
Inclusion ..107
I/O ...108
Target Byte Allocation..108
Seeding..109
Shifting ..110
Monitoring ...111
Initialization ...112
Execution...112

LISTINGS ...113

COMMANDS & FILES......................125

VIM BASICS.....................................129

 MyForth 1

1

Introduction

Purpose

This manual provides general and technical information for MyForth, an 8-bit
Forth for 8051 family processors. MyForth is hosted by GForth and thus can run
in both Windows and Linux environments.

MyForth was written by Charles Shattuck and is based on his many years
experience in programming in Forth on 8051 processors, primarily while working
at AM Research. Although the amrForth system provides a very robust and full-
featured 16-bit Forth system for 8051 development, Charley designed MyForth to
explore and apply several of his ideas about 8051development in Forth. This
exploration was not possible within the context of a mature Forth system like
amrForth. One of the reasons for departing from the 16-bit Forth model used by
AMR Forth is Charley’s conviction that an 8-bit model is appropriate for an 8-bit
machine. Although 16, 32 and larger operations are need for tasks such as
scaling, these can be considered as special cases to be coded as needed.
Mostly, 8051 programming deals with 8-bit operations.

Another reason that MyForth has been developed as a separate system is that
many of its features are implemented in a “non-standard” way. This may be of
concern to some, but the purpose of MyForth is explore new territory with the
objective of improving the performance of the 8051 code it generates while also
greatly simplifying the Forth development environment.

Charley has been greatly influenced by Chuck Moore and, many of the ideas in
MyForth are based on Color Forth. MyForth is a very small and simple Forth
implementation, also reflecting Chuck Moore’s philosophy.

The result is a Forth system in a very small package that has high performance
and all of the tools you need for professional 8051 development.

 Introduction

2 MyForth

Viewpoint

This manual instructs the new user in the structure, use and practical application
of MyForth. The manual also provides some insight into the rationale and
methodology behind various implementation features.

To use this manual effectively, you should be familiar with Forth and the 8051
instruction set. The manual is written from the viewpoint of someone who wants
to use MyForth to develop applications, but needs to know how to get started. It
also provides reference information for experienced users and for those who
want to understand more about how the system works.

This manual was written by a new user of MyForth with the help and
encouragement of Charley Shattuck. Although Charley has reviewed the text for
accuracy, the organization and content are entirely those of the author, Bob
Nash.

The reader is hereby cautioned: this manual is written primarily to meet the
author’s need to understand and use MyForth and may not meet the needs of a
broad audience. It is not intended as a commercial product.

Although the author is enthusiastic about the capabilities of this system, his
viewpoint is independent enough to caution users about unusual and non-
standard usages that he encountered while learning about MyForth.

Throughout the manual, the user is encouraged to try coding examples and
“learn by doing” -- this soon reveals the power and simplicity of the tools.

Although Charley uses MyForth in a Linux environment, the author works in
Windows. Thus, this manual was prepared primarily for readers working in a
Windows environment.

 Introduction

 MyForth 3

Development Environment

Although MyForth can be used with many different 8051 compatible processors,
this manual describes its use with Silicon Laboratories processors.

A convenient platform for starting out with MyForth is one of the Silicon
Laboratories development systems. These all provide the EC2 serial adapter
and software needed to load the MyForth bootloader.

After the bootloader is installed, the EC2 and its software are no longer needed:
all MyForth programming is thereafter performed via the serial port. If you
already have an EC2 (or know a friend that has one), you can simply buy a
Silicon Laboratories Target Board and use it.

Of course, the AM Research Gadget Development System is also a good choice
for MyForth development, especially because the Target Boards are less
expensive and are small enough to deploy in limited-space embedded projects.
Another advantage is that MyForth is compatible with the AM Research Boot
Loader.

 Introduction

4 MyForth

Scope

It is assumed that the user is already familiar with the 8051 instruction set,
assembly language programming and the basics of the Forth. With this
background, this manual provides a guide to the coding and interactive testing of
both assembly language and Forth routines.

The manual provides:

1. An overview of the initial installation process that primarily is intended for
Windows users

2. The basic use of the development tools
3. An overview of the system architecture
4. A description of basic coding techniques, including Forth, assembler,

macros, interrupts and in-line assembly
5. Reference material, such as command summaries

The following are outside the scope of this manual:

1. Descriptions of the Forth computer language or the GForth

implementation used to host MyForth
2. Operations that apply primarily to a Linux environment

Conventions

File names, directories, command sequences and Forth Words generally appear
in boldface type instead of being enclosed within quotation marks. The intent is to
make it easier to identify useful file and command information in the text. Where
the intent is simply to refer to sequences within a code example, the sequences
are enclosed in parentheses.

Because directories, file names, command sequences and Forth Words are
already emphasized in boldface type, they generally appear in lower case.

The terms “directory” and “folder” are used interchangeably.

The terms “directory”, “folder”, “file”, “path”, “Word”, “command”, “character”,
“byte” and “number” are omitted when the context is clear. Command
parameters are denoted by the “< ... >” sequence, similar to that used in Unix
documentation.

 Introduction

 MyForth 5

Terminology

Host and Target

Throughout this manual, the term “Target” denote the Target processor. For
example, the Target processor for a C8051F120-TB Target Board from Silicon
Laboratories would be the Silicon Laboratories C8051F120 chip or other chips in
its family for which the target board is intended: the Target is the chip that will
ultimately run your application.

The Host is the PC “Hosting” MyForth and consists of the PC hardware and
various programs and facilities working together to provide a development
environment, especially GForth. Most references to the Host can be assumed to
be references to GForth.

The Host compiles Target code into a Target image and downloads it to the
Target. The Host runs a Target interpreter, providing a standard Forth
interpretive command line, complete with an ok prompt. The programs and
facilities residing on the Host include the MyForth system files, GForth, an editor
and the operating system.

 Introduction

6 MyForth

Tethering

The Host interactively communicates with the Target via a simple mechanism
called a “tether.” This term is used because the Target is connected to the Host
facilities by a serial communications link and a simple tethering protocol.

The Target contains a minimal amount of code overhead; it remains closely tied
to the Host, which provides most of the user interaction via the Target interpreter.

To maintain the tether, the Target runs a simple program, consisting of a simple
program that can execute a single command and provide feedback to the Host.
The tethering program running on the Target primarily allows the Host to
command the Target to jump to a specific address and execute the instructions
there. The Target interpreter manages the interaction between the Target and
user.

Because the Target only knows how to execute code located at addresses
specified by the Host, the Host must maintain the Target’s context, such as the
names of the Words to be executed on the Target and their addresses.

Tethering provides convenient user interaction while minimizing Target code
overhead. Tethering is explained in more detail in a later section.

Note that MyForth can also be configured to produce a standalone Forth system
that resides on the Target.

 Introduction

 MyForth 7

Words

For those somewhat unfamiliar with Forth, the word “Word” is used in the
conventional Forth sense to designate what in other languages is called a
subroutine, procedure or function.

Because Forth Words are preceded by a colon, they are also called “Colon”
definitions.

Forth Words execute when they are entered at a Forth interpretive command
prompt. Although Words can be executed interactively via an interpreter, they
can also execute independent of an interpreter. In most applications, you will
test Words interactively with the Target tethered to the Host. Later, when your
application is ready to be deployed, you can define a startup Word that will run
your application automatically when the chip is powered up or reset.

Code Words

Code Words function the same as Words and can be executed from the Forth
command prompt. But, unlike Colon definitions, Code Words are coded entirely
with assembly language mnemonics or macros.

In more conventional Forth systems, Code Words are often defined by preceding
definitions with the Word “code.” MyForth handles this differently. Code Words
or in-line assembly definitions are determined by changing vocabulary search
orders. This is explained in later sections.

Macros

Macros are assembly language sequences that compile instructions in the Target
processor’s code image when they are executed. MyForth handles macros by
changing search orders. Macros are defined using the :m <name> … m;
sequence, as explained in later sections.

The important thing to know about macros is that they just assemble instruction
sequences that cannot be executed standalone and must be included inside a
MyForth Colon definition to be executed.

In Line Assembly

MyForth also handles in-line assembly language sequences by changing
vocabulary search orders with special Words to encapsulate assembler
instructions. This process and the special Words are explained later.

 Introduction

8 MyForth

 MyForth 9

2

Installation

Overview

To use MyForth you must first install GForth. It is commonly available on the
Internet and installation is straightforward. MyForth assumes that Gforth is
installed to the default directories.

You should also install the Vim editor, also widely available on the Internet, as
described below in the Editor section.

Install MyForth by unzipping the distribution file in the root directory. This will
make a directory named MyForth with several subdirectories. You are then
ready to go.

The installation of GForth and Vim should be smooth as long as you install to the
default directories. When you are finished installing on a Windows machine,
GForth and Vim will both be installed in the normal C:\Program Files directory.

After installing MyForth, it will be in the C:\MyForth directory.

You can get a copy of MyForth at home.surewest.net/cshattuck .

If you are reading this manual, you probably have a copy of MyForth because it
is presently distributed only with the MyForth system files.

 Installation

10 MyForth

Windows Development

Because MyForth was developed in a Linux environment, it is designed to
execute from a command line. Thus, Windows compatibility is provided with the
Windows “Command Prompt.” This is probably not an environment most
Windows programmers prefer or are familiar with.

We encourage you to give command line development a chance: there are only a
few commands that must be entered at the Command Prompt and the typical
development session will mostly occur within an editor or at the Forth
interpreter's command prompt.

Operating in a simple environment using a few commands makes development
easier and more productive than the more traditional use of a GUI and a custom
Integrated Development Environment (IDE). For one thing, your fingers will
mostly stay at the keyboard and your focus will be the task at hand.

Windows development can be reasonably convenient with a few simple changes.
This section describes these changes and provides an overview of the Windows
development process.

Before leaving this topic, we should mention that the default black background of
the Command Window can be changed. We highly recommend changing it to
white. Because MyForth uses colors to improve readability, they look better on a
white background.

To change the background, first right click on the Command Prompt icon (a black
window with “C:\” on it). Next, select the “Properties” option. When the
Properties dialog opens, select the Colors tab and change the background to
white and the text to black.

 Installation

 MyForth 11

Application Development

As mentioned earlier, application development is performed from a Windows
Command Prompt.

Development commands consist of a small number of batch files, contained in
the local development directory, that are executed to compile, download, test and
disassemble your code.

For Windows users, these commands invoke Gforth with command line options
to load MyForth files. For Linux users, the same functionality is performed by
command files with the same name as the Windows batch files, but without “.bat”
extensions. The system is extremely simple and there are only four commands:
c, d, run and sees.

MyForth uses the command line approach because the added complexity of a
GUI and a custom IDE is entirely unnecessary for such a simple and direct
development environment. Using a command line also makes development in
Windows and in Linux almost identical.

We think you will find that a command driven system is much simpler to both use
and understand than a custom Windows application. It is also much easier to
support under both Windows and Linux.

 Installation

12 MyForth

Editing

Vim

MyForth is best used with the Vim editor. Vim is a free Vi compatible editor that
allows you to execute operations from a command line. Besides being free, Vim
also works the same in Windows and Linux.

MyForth can be used with other editors. But, if you use another editor, some of
the editing operations described in this manual will be unavailable or accessed
differently: you must handle these differences yourself. Also, syntax coloring, an
important part of MyForth, is easily added with Vim and may be much more
difficult with other editors.

Vim is widely available on the Internet. In Windows, install it in the default
directory (C:\Program Files) and replace a few configuration files with new ones,
as described below. The new configuration files are supplied with MyForth.

Usage

If you have never used Vim or a Vi style editor, do not be intimidated by the
prospect of learning “yet another editor.” Although Vim is designed and
optimized for those familiar with Vi, it can be used like a conventional Windows
editor with highlighted cut and paste operations and mouse navigation.

Vim also has pull-down menus for most functions that are normally performed
from the editor's command line in a Vi environment. The new user can function
quite well by simply remembering to use the i command to insert text and to use
the escape key to exit the text insertion mode; this takes a little getting used to,
but the adjustment is not particularly difficult.

Vim has a number of features that facilitate using MyForth. One of these is the
ability to easily navigate between files by placing the cursor on the file name and
executing the gf (go file) command.

Another indispensable feature is the ability to view and edit the source code for
your definitions by putting the cursor on them and pressing Ctrl-].

 Installation

 MyForth 13

Tags

An important feature of Vim when used with MyForth is that it can use the tags
file that GForth automatically updates whenever a Word is defined. Using this
feature, you can switch to the file defining a Word of interest as described above.

To use tags with Vim, you do not need to change any settings. However, if you
do need to change the tag file reference, just set tags=./<name> in the _gvimrc
file. A modified version of this file is furnished with MyForth in the \MyForth\vim
directory. Put this file in the Vim installation directory (e.g., C:\Program
Files\Vim\Vim64\).

Navigation

Vim allows you to navigate easily around a set of files and the definitions in them.
We suggest starting your editing sessions with gvim job.fs even if you know the
file you want to edit. From the JOB file, you can easily navigate to just about any
file in your application by putting the GVim cursor on the name of the file and
pressing gf (go file). If you are in a file and want to go to the file that defines a
particular Word, put the cursor on the Word and press Ctrl-]. If you have
navigated to a particular location and want to back out, press Ctrl-6.

Another useful Vim operation that uses the tags file is the ability to edit a
particular definition without having to know where it is defined. To do this,
execute: gvim –t <word> , where <word> is the name of the definition you want
to edit. For example, to edit the definition for emit, execute: gvim –t emit.

Vim will search the tags file for the name of the file containing the definition and
open the file with the cursor just below the Word you specified. Of course you
must have compiled your application earlier so that the Word appears in the tags
list.

 Installation

14 MyForth

Colors

To use MyForth’s color highlighting conventions (highly recommended), move
the custom version of forth.vim from the MyForth\vim directory to the syntax
directory in the Vim installation directory. The tag and color features can be used
with other editors, but that is not covered in this manual.

The use of color highlighting greatly improves the readability of MyForth source
code and can be considered a “poor man’s” version of Color Forth’s use of
colors.

If you want to use the MyForth syntax coloring with other Forth systems, such as
SwiftForth, you may have to add a file that tells Vim about the extension used for
Forth source code files. In the case of SwiftForth, the source extension is “.f” and
it can be specified by copying SwiftForth.vim in MyForth’s vim directory to the
C:\Program Files\vim\vimfiles\ftdetect directory.

 MyForth 15

3

Projects

Overview

The following describes how to start and develop a new MyForth project. The
process is mostly manual, but there is very little to it. Essentially, you will be
establishing a project directory, copying files to it and editing a configuration file.

 Projects

16 MyForth

Initialization

Project Directory

MyForth projects are contained in project directories. These directories are
created under myforth in the projects directory. For example:

C:\myforth\projects\myproject

Here are the steps needed to create a new project:

1. Create a new project directory under the \MyForth\projects directory and
copy all of the files contained in the MyForth directory to it. This will give
you all of the MyForth system files, but it does not customize your
project for use with a particular processor.

2. To complete your project template, you must select a processor. To do

this, copy the files from one of the processor template files to you project
directory. For example, if you want to create a project for the Silicon
Laboratories C8051F300 chip, copy the files from the 300 template
directory to your project directory:

 copy c:\myforth\300* c:\myforth\projects\myproject

A command sequence such as the one given in Step 2 above will copy a few
processor-specific configuration files to your project directory from the 300
directory. These include config.fs, job.fs, load.fs and, possibly, a special
function register definition file such as SFR300.fs.

Another project configuration option is to copy your files from an existing project
with a configuration that is similar to the one you will be using for your current
project. This is a bit more straightforward than copying from two separate
directories, but does not guarantee that you will be using the distribution versions
of the system and configuration files.

Caution is advised when copying files from a previous project directory
because they may not be current.

 Projects

 MyForth 17

After copying files from the appropriate directories, you can develop your project
using just the files in your project directory: development will proceed
independent of the system and processor configuration directories.

This ensures that when changes are made to the system and configuration
files, your old code will still work. Because every project directory
contains all of the files needed to generate and download a working
application, your application will always work, regardless of any later
changes to MyForth.

Note: because of the small size of a complete development image (about 200K),
you can copy both Linux and Windows files to your new project directory. This
also allows you to easily change environments later.

Examples Directory

To make it easier for you to compile and disassemble examples given in this
manual, MyForth is distributed with an examples project directory (e.g.,
\myforth\projects\examples). In this directory, various example definitions are
contained in examples.fs.

The examples project directory is configured for a SL C8051F300 Target and
illustrates a project directory that has been configured for a specific processor as
described above.

If you are connected to a 300 Target such as an AMR 300 Gadget processor,
then you can also interactively test the examples in this manual. Because the
examples.fs file does not contain any processor-specific code, it can be used
with other processors by creating and configuring a project directory, as
described above, and copying examples.fs to it.

To make it easier to change to the examples directory, the MyForth system files
include a batch file, examples.bat, that changes to this directory. You can put
this in your root directory or, if the myforth directory is in the command path, you
can execute it from any command prompt window. You may want to provide
other similar batch files for your projects to allow you to quickly navigate from
project to project.

 Projects

18 MyForth

Configuration

Overview

Before starting to develop your project you should examine and perhaps change
the configuration of your system by editing the config.fs file (Appendix A
provides a typical listing).

To make changing the configuration file easier, it is useful to understand the
location and operation of the Boot Loader, interrupt vectors and your application
code. The Boot Loader chapter discusses these topics.

However, if you copy the configuration files from the appropriate processor
configuration directory, such as 300 or 120, your configuration should be close to
being correct. Mostly, you will have to decide what kind of interpreter you want to
use and edit the configuration file, config.fs, accordingly.

Interpreter

MyForth allows you to interact with the Target processor via a tether or with a
standalone interpreter that resides on the Target. With a Target-resident
interpreter, the names of executable Words and their execution vectors are
stored on the Target to form a simple dictionary.

When headers are compiled on the Target, the Target image is larger, but the
Target can operate standalone with its own interpreter. This allows you to
exercise Target functions with a dumb terminal without a connection to a Host
PC running MyForth (i.e., without a tether).

Normally, you will develop using a tether. In this case, the first line of config.fs
that reads: true constant tethered should be left alone. If you want to compile
heads on the Target and install a Target interpreter, change “true” to “false.”

 Projects

 MyForth 19

Reset Vector

MyForth’s Boot Loader resides at the processor’s normal reset vector at $0000.
It normally checks for download requests and, if there are none, it times out and
jumps to the tethering code or to your application.

Code that executes after bootup can reside at several different locations,
depending on the Target processor. For most Silicon Laboratories chips, the
reset vector will be location $200. Because of the larger page size for the
C8051F12x series processors, the location is $400. Other targets may have
different reset vectors.

ROM Start

You may also want to specify the start of ROM, the location where MyForth and
your application program will start. As provided, only the first three bytes of the
start of ROM are used for interrupts: application code starts after the Cold Start
vector.

If you will have interrupts vectors other than the Cold Start vector, you
must change the ROM start location to allow for them. This re-allocation
could be automated, but the price would be added complexity.

The MyForth rationale for manually changing the start of your code is that the
application programmer will certainly be aware of the addition of an interrupt
vector. Consequently, the requirement to change system files to match is not
particularly onerous.

Not reserving a block of memory for all possible interrupt vectors also saves
some memory. Most programmers wouldn’t bother, but MyForth programmers
have the choice to either waste memory or tighten their code.

Target Size

The target size specification is normally set correctly for the amount of Flash
available in your processor. This is used when allocating the Target memory
image (at target-image) and in writing the Target image files (chip.bin and
chip.hex). For example, if your processor has 64K of memory, $10000 is the
correct target size.

MyForth does not check for compilation past the end of ROM. It does
display the total ROM used at the end of each compilation and the Host
stack. You can use these indicators to determine if there is a compilation
error needing your attention, such as exceeding available ROM.

 Projects

20 MyForth

Baud Rate

The baud rate for MyForth is set in serial-windows.fs or serial-linux.fs.
Normally, the baud rate is set to 9600 for compatibility with the AM Research
boot loader.

However, when using the C8051F120 chip, the Boot Loader is a custom MyForth
Boot Loader. It sets the chip to run at 98 MHz (4 X 24.5 MHz) and the serial rate
is set to 38.4K baud. If you have copied the configuration files from the 120
configuration directory, the baud rate should be set correctly.

 Projects

 MyForth 21

Loader and Job Files

When you compile an application with the c or d commands, they run GForth and
include loader.fs. This file sets up terminal color options and includes all of the
files needed to build MyForth. The following is a list of the files included by the
Loader file with some comments telling what they do:

include vtags.fs use-tags \ set up tags file for GVim
include config.fs \ configure the application
include compiler.fs \ load the MyForth compiler
include saver.fs \ code for chip.bin and chip.hex write
include dis5x.fs \ disassembler
include download-cygnal .fs \ downloader definitions
include dumb.fs \ command line dumb terminal

\ Forth primitives.
include misc8051.fs
rom-start org

\ This is the application.
include job.fs

report \ report compile results
save \ save chip.bin and chip.hex
[.(Host stack=) .s cr \ display the Host’s stack

These files will be discussed more in later sections. For now we want to focus on
the job.fs file (Job file). It is loaded as a convenient way to modularly load your
application.

Typically, to build a complex application, you will include several files, using an
include <filename.fs> command sequence in the Job file. This will load your
application’s source code files. Thus, the Job file will include library files, device
drivers, utilities and application source to build your application from functional
modules.

Using the Job file to include major functional components is a convenient way to
load your application in the proper sequence and to organize it. We suggest that
you start your editing sessions by executing gvim job.fs. By doing this, you can
easily navigate to your application’s source code files by placing the cursor on
the source code file name and typing gf (go file). You can nest this command as
deeply as you wish to access other files defined in the target file. You can back
out by executing the “Ctl-6” key combination when you compile your application.
For small projects, you can include all of your source code in the Job file.

 Projects

22 MyForth

Here is the content of a basic Job file:
\ job
\ this is a comment line
include sfr300.fs
include io.fs
include myproject-utilities.fs
include myproject.fs
: go init begin doit again

Note that the first and second lines are comments. Comments are formed by a
backslash character followed by a blank character.

The next two lines load the Special Function Registers (SFRs) that are required
for a particular processor. In this case, SFRs for the Silicon Laboratories
C8051F300 chip are loaded. The io.fs file is optional, but typically contains
definitions that map processor pins to peripherals or otherwise configure the I/O
for an application.

The two lines that follow the I/O configuration will load other source code files
that make up most of the application.

The last line illustrates a definition appearing in the Job file. In this case, one
could assume that the definitions for init and doit are contained in either
myproject-utilities.fs or myproject.fs.

The last definition in the Job file is go. For applications that will automatically
start up (i.e., turnkeyed applications) this is the Startup Word. The naming of the
Startup Word is just a MyForth convention. You can change it by editing the
definitions that establish the interrupt definition for turnkeying the Job file:

\ --- Finally patch the reset vector --- /

\ Turnkey or interactive.
\ start interrupt : cold stacks init-serial go ;
start interrupt : cold stacks init-serial quit ;

The above code illustrates another function of the Job file: it contains options that
you may want to change for your application. These are best done where there
is more visibility to the programmer than in the configuration file.

 Projects

 MyForth 23

Usually, the definition of go will include application startup initialization (e.g., init)
followed by the main application Word, such as doit, that executes an endless
processing loop (the begin … again loop).

Some programmers prefer to put the go definition in myproject.fs where all of
the Words in its definition are defined.

The main application file in this example is named myproject.fs to make it clear
that this file contains the main application. In many MyForth projects this file is
named main.fs, but this is a convention, not a requirement. Appendix A lists a
Job file from an actual application.

Please note that the Job file is one of the configuration files loaded from a
configuration directory (e.g., 120). Primarily, the job.fs file is processor specific
because of the inclusion of the SFR definition file. For some chips such as the
AduC816, the serial port code must also be changed.

Note: although the Job template file includes the SFR and serial definitions that
are appropriate for a selected processor, it must be edited to include your
application files.

 Projects

24 MyForth

Compiling

To compile an application, first ensure that all of your source code is contained in
the Job file or in application files that are “included” in the Job file. To compile
the Job file, execute the c command from the PC’s Command Prompt.

The following shows the results for a typical compile from the command window.

C:\MyForth\test>c
C:\MyForth\test>”\Program Files\gforth\gforth.exe” serial-windows.fs
loader.fs –e ‘open-comm target talking’
HERE=2180
Host stack= <0>
Talk to the target

The most important information, other than possible error messages, is the
amount of flash program memory that will be used by your application. For this
example, the application ends at hex location $2180 (HERE refers to the Target).

The location of HERE on the Target is measured from address 0 and includes
the boot loader, interrupt vector tables, debug utilities (if loaded) and your
application code.

Note that the first lines echo the contents of the c.bat file. You can see that it
invokes Gforth, loading the appropriate serial communications file and loader.fs.
The sequence beginning with –e tells GForth to execute the following quoted
command sequence. The commands in the sequence open the serial port and
start up target communications.

You will know that the interpreter is active when you see the traditional Forth ok
prompt when you enter a carriage return.

After downloading you can verify communication with the Target by entering .s
(print stack) to request the Target to display its stack contents (e.g., <0>). Note
that responses from the Target will appear in red.

You may also want to execute words to display the words that were just
compiled. These commands can be entered at the command line for execution
by the Target.

 Projects

 MyForth 25

After downloading your application, you can immediately start testing it. You can
also test your application immediately after you power up a Target with a
downloaded project in it: your project code is stored in Flash along with the
tethering code needed to talk to the Host PC.

Thus, you may just want to use the c command to establish the tether and test
existing code in the Target. If you want to use c to recompile the application and
disassemble some code, the Target does not have to be active.

The tethering routine is active whenever the Target is active. If your program
“hangs up” while executing some errant code, you can press the reset button or
cycle power to the Target board to restore control at the Target interpreter. In
some cases, you may have to kill and restart the Command Prompt window.

Remember that the interpreter is talking to your application via a simple tether
routine executing on the Target.

If you edit the Job file so that the compiled program executes the your
turnkey Word, your processor will automatically start up executing the
turnkey Word (e.g., go). Generally, you will not be able to interactively test
with a turnkeyed program because it is executing your project code within
an infinite loop and it will not respond to the tethered interpreter. However,
you can interact with a turnkeyed program over the serial port if you
configure your application to run standalone with an interpreter and
dictionary resident on the Target. A later section explains this process in
more detail.

Here are some compiling facts:

1. The c.bat file calls gforth.exe, which includes loader.fs. This file (see
Appendix A) loads a number of system files, such as the compiler and
disassembler, and then loads job.fs, which includes SFR definitions, your
I/O configuration and your application.

2. The compiler always produces two auxiliary files, chip.bin and chip.hex.

The chip.bin file is a binary load image and chip.hex is an Intel Hex
representation of the image that is suitable for use with a programmer
(e.g., the EC2 from Silicon Laboratories). Note that Vim can display files
in hex so you can examine chip.bin with it. The chip.hex file is text file in
Intel hex format and can be examined directly with Vim.

3. The 2180 bytes used in the example includes the entire MyForth system

residing on the Target. Normally, applications will grow very slowly past
this point because many of the Forth routines in the target image can be
re-used by calling them from your application.

 Projects

26 MyForth

Decompiling

see

After compiling, you can view the assembly code for a definition by entering see
<word>, where <word> is the name of the definition in your application. To test
this, try disassembling one of the words listed in the words dump.

For example, try decompiling the definition for emit by entering see emit . The
following shows the output of the see decompiler:

---------- emit
0403 30 99 FD jnb SCON.1,0403 emit if.
0406 C2 99 clr SCON.1
0408 F5 99 mov SBUF,A #!
040A E6 mov A,@R0 (drop
040B 08 inc R0 drop)
040C 22 ret ;

The disassembly of the definition is displayed one line at a time, as you press
any key but “q” or escape. It is generally convenient to press the space bar or
enter n (next) to advance the decompiler display. The display will continue until
you reach the end of the processor memory (whew!) or until you enter q (quit) or
press the escape (Esc) key. You can also (less gracefully) exit the decompiler by
entering Ctrl-c.

Observe that the definition starts at Hex location $0403 and ends at $040C.
Most of the definition consists of macros, many of which are designed to perform
operations needed to build MyForth. But, note the absence of calls. This is
because macros are executed when named within a definition to lay down code;
thus they appear in your Target code when needed: they are not defined
elsewhere in the Target image and then called from within the definition like a
subroutine.

This is one significant difference between MyForth’s approach and that of more
conventional Forth systems. Of course you can define routines and call them. If
a routine is used often and the overhead of a call does not reduce your
application’s performance, this may be desirable. However, with increasing
amounts of flash memory available in modern 8051 processors, this is less
important than in the past.

 Projects

 MyForth 27

Also note how little memory is consumed in this definition (10 bytes).

Last, please note the use of color to visually aid the interpretation of the
disassembly. The name of the disassembled word is listed in red after some
dashes. This helps identify the location of entry points.

Addresses are listed in black and the compiled bytes are listed in blue. The
actual decompiler output is in green, followed by the compiler’s attempt to identify
the name of the macro that produced the code (in black).

decode

To decompile starting at a specific address, use <address> decode, where
<address> is the address of the start of the disassembly. The default mode is
Decimal; to specify a Hex address, prefix the address with “$.”

For example, assume you want to decompile your application starting at Hex
location $400. Entering $400 decode would display the results given in Figure 2
above, but with the following additional line at the beginning:

0400 02 08 7B ljmp 087B cold ;

Now you can see that emit is the first definition after the Cold Start vector. In this
example, the processor is a C8051F120 and its startup code is at $400 because
of its larger flash page size.

This example was chosen to start at a known entry point. The decompiler is
somewhat smart, aligning decode operations at sensible start points, but entering
an arbitrary address or starting at an address containing data may yield raw code
without reference to named code entry points.

As with the see command, each line appears as you enter keys such as the
space bar or n (next). Terminate the decode display by entering q (quit), escape
(Esc) or Ctrl-c.

 Projects

28 MyForth

Downloading

To download your compiled application to the Target, connect your PC's serial
port to the Target development board (e.g., a Silicon Labs Target Board) and
enter the d command from the PC’s Command Prompt.

If this does not work, check that the Target board is plugged in and that the PC’s
serial baud rate is set to the same as that of your Target. The standard baud
rate for MyForth is 9600, except for a C8051F120 Target board running at 98
MHz. In this case, the baud rate is four times normal (38.4k baud).

As the d command executes and the download proceeds, you will be prompted
for actions at each stage (e.g., press the reset button). As your project code
downloads, the downloader will display the number of pages of flash memory
that have been downloaded to the Target.

When the download has finished, you will be talking to the Target.

Note that the compilation and interactions of c command and the d command are
identical, except that the d command first downloads your compiled application
before starting to talk to the Target.

 Projects

 MyForth 29

Tethered Operation

Passing Parameters

You can pass parameters to the program residing in the Target by putting
numbers on the Target's stack. To do this, just enter the numbers on the Target
interpreter’s command line, followed by a # sign. The Word # is a GForth Word
that executes to compile code in the Target’s image that will put a byte on the
Target’s stack when it is executed. to put a byte on its stack.

To enter a 16-bit value (e.g., an address), follow the number with ## (also a
Word). Using these Words following a number is a bit different from most Forth
systems that put numbers on the stack without a # or ##.

The reason for using these Words after numbers is that it greatly simplifies the
compiler and tethered interpreter.

Stack Display

As with most Forth systems, you can display the stack contents with .s. It is
often a useful check to see if the Target is responding by entering .s at MyForth’s
ok prompt.

Defined Words

As mentioned earlier, you can display the Words defined on the Target by
entering words at the ok prompt.

Exiting Forth

To exit the Target interpreter invoked by the c or d commands, simply type bye
at the ok prompt.

Note that, if your application appears to “hang up”, you are probably no longer
communicating with the Target (reset it or cycle power to it). However, you may
be able to execute some commands from the Target interpreter’s command line,
including bye.

In some cases, you must restart the Command Window (e.g., if the serial port
hangs up). This is an unfortunate side effect of running the serial port in the
Command Window. This is normally not required when running under Linux.

 Projects

30 MyForth

Turnkeying

To turnkey a compiled and tested application, edit the job.fs file so that the
application starts up executing the turnkey Word (normally named go). Here is
the pertinent code:

\ --- Finally patch the reset vector --- /

\ Turnkey or interactive.
start interrupt : cold stacks init-serial go ;
\ start interrupt : cold stacks init-serial quit ;

The Word to start and run your turnkeyed application, typically named go, is
usually defined near the end of your Job file or as the last definition in your main
application file (e.g., main.fs).

 Projects

 MyForth 31

Dumps

You can request the Target to send you a line at a time dump by putting a Target
address (a double number) on the Target’s stack and executing the d command
from a MyForth command prompt. The d command works in much the same
way as see, outputting a line whenever an “n” key (or any key but Esc) is
pressed. The dump is terminated by pressing “Esc” or “Ctrl-c.”

The next section shows how you can use a script file to perform a dump from the
Windows Command Prompt and save it to a file.

Scripts

You can execute commands that you would normally enter on the MyForth
command line by including them in a text file and executing them with the run
command from a Windows Command Prompt (see run.bat).

Here is an example taken from script.fs in the MyForth distribution:

\ script.fs
\ An example script which dumps the first 256 bytes of memory.
\ Use redirection to capture in a file.
0 ## d
[: lines] 0 do cr n loop [;]
15 lines cr

This example may not be clear just yet – you may have to read ahead to
understand the usage of the left and right bracket, the function of ##, etc.

The line containing “0 ## d” puts a double (16 bit) number (0) on the Target’s
stack and performs a dump with the d command. In response to the d
command, the Target outputs one dump line and waits for another command.
The code arranges for the next command to be a “cr.” After this, it executes an
“n” to progress to the next line.

Because this code is being executed in a script file, there is no user to press “n”
to request more than one line. Thus, lines is defined (in GForth) to execute “cr
n” 15 times.

 Projects

32 MyForth

You may wonder why the sequence “0 do cr n loop” appears just after the right
bracket. As you will soon be shown, the right bracket establishes the Target
vocabulary: Words following the right bracket are searched for in the Target
vocabulary first, followed by the Forth vocabulary.

As you will soon find out, do … loop is not a MyForth looping construct so it
may seem a bit strange to have it follow a right bracket. In this example, most of
the “0 do cr n loop” will be defined on and executed by the Host, GForth. This is
because most of the Words such as do and loop will not be found in the Target
vocabulary: they will be found and compiled when they “fall through” to the Forth
vocabulary.

However, n and cr are defined as Target Words: they send characters to the
Target to signal “send a carriage return character” and “deliver the next line of a
dump.” When lines executes, GForth loops, requesting the Target execute “n.”
Note that the “cr” in “15 lines cr” is executed on the Host, but has the same effect
as executing on the Target (if you can wrap your mind around that).

Normally, of course, you would execute d from a MyForth command prompt and
not a script. The above shows how a dump can be performed from a Command
Prompt window so that its output can be redirected to a file for printing or
documentation (e.g., run script.fs >mydump.txt).

 MyForth 33

4

Compiler

Overview

This chapter describes how to develop a program using a few simple commands
entered from a Command Prompt. Normally, you will develop your program and
compile it with the c command. If you want to compile and download your
program to the Target, you can use the d command.

Although there are a few other utility commands that you can execute from the
Command Prompt, you will mostly be using either c or d.

The following sections also describe the usage, implementation and mapping of
processor resources. Topics covered include:

1. Memory and stack mapping

2. Forth implementation

3. MyForth programming

Although assembly language statements can easily be incorporated into your
Forth or macro definitions, this topic is covered in the Assembler chapter.

 Compiler

34 MyForth

Mapping

Memory

MyForth uses processor RAM for registers, variables and the Forth data and
return stacks. The following sections describe where these are located and how
they are used.

The memory map for each processor is a bit different, depending on the amount
of RAM available. All of the Silicon Laboratories processors have at least 256
bytes of RAM, but MyForth supports processors with as little as 128 bytes of
RAM.

Boot Loader

The MyForth Boot Loader is located at location $0000. Because the Boot Loader
occupies memory that is normally used by the processor interrupt vectors, the
Boot Loader re-maps the interrupt vectors to start at $200 (or $400 for the
C8051F120). The Boot Loader is explained in more detail in a later chapter.

Programs

Your programs are stored starting just after any re-mapped interrupt vectors.
This will be just past location 512 in most Silicon Laboratories chips or just past
location 1024 on the C8051F120.

You can find the exact location of your program code using the see, sees,
decode or d (dump) commands on one of your definitions. Note that your
programs will start just after MyForth system definitions (e.g., emit).

Stacks

The location of the data and return stacks varies, depending on the number of
direct cells available.

For chips with just 128 bytes of RAM, the return stack starts at $21, to leave
room for variables and bit variables, and grows upward (increasing addresses)
toward the data stack. The data stack for these chips starts at $80 and grows
downward toward the return stack.

For chips with 256 bytes of RAM, the return stack starts at $7f and grows upward
toward the data stack. For these chips, the data stack starts $fe and grows
downward toward the return stack.

 Compiler

 MyForth 35

Implementation

Threading

MyForth is a subroutine (call) threaded Forth. Note that many named sequences
are defined as macros and used very much like you would normally use Forth
Words. Macros are compiled directly into the Target image without a call and
thus cannot be executed standalone like a Word.

When a call is immediately followed by a return (ret instruction), the call is
changed to a jump and the return is not compiled: the called routine will perform
the return. This optimization saves memory and increases speed. This is
efficient tail recursion, but also works as a goto.

Vocabularies

Don’t skip over this section.

MyForth has only two vocabularies, Forth and Target. When Forth is searched,
Words found are executed by Gforth; when Target is searched, the MyForth
Target compiler executes the Words (or macros).

Vocabulary search order is controlled by two Words, [and] . The secret to
MyForth’s simplicity and power is largely due to the judicious use of these two
Words.

For Forth aficionados, here are their definitions, taken from the file compiler.fs
listed in Appendix A:

:] only forth also target also definitions ; immediate
: [only target also forth also definitions ; immediate

From these you can see that] establishes the Target vocabulary first in the
search order, followed by Forth. Of course, [does just the opposite: Forth is
searched first, followed by Target.

If you examine the source for MyForth, you will see these two Words used in a
variety of ways to flexibly reference either the GForth compiler or the MyForth
Target compiler. These can be invoked both inside and outside definitions to
control what is compiled or executed and to select the compiler that performs the
operations. If you understand these two Words, you will understand most
MyForth definitions.

 Compiler

36 MyForth

In MyForth source code you will mostly encounter these two vocabulary
switching Words and the “:” and “:m” defining Words. Almost everything else is
defined using thes four Words. As you use MyForth, you will learn how they can
be used to efficiently and flexibly control the generation of 8051 code.

Words

Forth definitions (Words) can be coded as you would code them with most other
8-bit Forth implementations. To define a new MyForth Word, use the :
<name>… ; defining sequence.

The body of Colon Words defined in MyForth consists of a combination of
previously defined MyForth Words or macros. With the judicious use of the [and
], you can also access the assembler and the GForth compiler.

Remember, that Colon Words execute on the Target. Normally, the Target
interpreter exercises these Words, but MyForth also allows you to put the name
headers on the Target and build a Target that has its own standalone interpreter.

 Compiler

 MyForth 37

Macros

Often, in-line assembler sequences are not the best way to code for readability or
efficiency. If there is a sequence of assembly instructions that performs a
specific operation or that is used repeatedly, it is often better to code the
sequence as a macro.

Macros, although they have a name, cannot be executed except within the
context of another definition.

A macro is just a sequence of instructions that are given a name. When this
name appears in a definition, the macro executes immediately to compile
instructions or data in the Target image.

The Target image is a block of memory residing on the Host starting at target-
image. It is an image of the bytes that compiled by the c and d commands. This
image will also be downloaded to the Target when you execute the d command.
The image is also written to chip.bin and chip.hex whenever you compile using
c or d.

Similar to the sequence used for defining Colon Words, macros are defined with
the :m <name> … m; sequence.

We suggest looking at misc8051.fs in Appendix A to see examples of how
macros are defined and used. Note that a large part of MyForth is built with
macros.

Here are some simple macro definitions listed under “Stack Operations” in
misc8051.fs:

:m dup s dec $f6 , m;
:m swap $c6 , m;

In the definition of dup, the code for decrementing s, the stack pointer, is laid
down in the Target image, followed by a one byte instruction, $f6, that is also put
in the Target image with a “,” (comma). Decrementing s changes the stack
pointer to point at the next (added) stack item. The $f6 instruction code
decompiles to mov @R0, A. This moves the top of stack into the new cell that s
now points to; this cell is now the second item on the stack. Thus, to duplicate
the top of stack (contained in t), the stack pointer is decremented and the byte
contained in t is moved into the cell pointed to by s.

 Compiler

38 MyForth

You may have observed that the instruction byte for the indirect move was put
directly in the Target image without resort to an assembler sequence. This is in
keeping with MyForth’s theme of simplicity: it is a one-time look-up for the
programmer and should not require an assembler. In MyForth, most of the effort
is put into the disassembler, which you can use to verify your coding.

Moving to the definition of swap, you can see that it too consists of an instruction
byte that is laid down in the Target image. The instruction is xch A, @R0. This
exchanges the contents of t (top of stack, the accumulator) with the contents of
the cell pointed to by s (R0, the stack pointer).

Looking at other macro definitions near the definitions of these two macros, you
will notice a number of things that you undoubtedly don’t understand right now.
These will be explained later.

But, before leaving the macro definitions, it may be instructive to examine the
definition of nip near the definitions for dup and swap. You can see that code
within a macro can contain assembly instructions: not all system macros are built
by directly writing bytes into the Target image. The assembler definitions
available to you are covered in the Assembler chapter.

You may be wondering how definitions like dup can be executed from the
interpreter if they are defined as macros. They can’t. Typically, when your
application is compiled, a file named interactive.fs will be loaded after your
application is compiled. It contains normal colon definitions for common macros
such as dup, swap and drop so that you can execute them from the command
line.

If you compile an application containing interactive.fs, you will see that
definitions like dup are in the list produced by words and thus can be executed
at the Target interpreter’s ok prompt.

If you decompile one of the definitions for dup, drop or swap, you will see that
the definitions contain the exact code given above for the macro versions but the
code for each is terminated with a ret (return) instruction. This makes the
definitions callable routines. If your application is complete and you no longer
intend to exercise it from the tethered interpreter, you can comment out the line
that loads interactive.fs.

 Compiler

 MyForth 39

Registers

Here are the definitions for registers and Special Function Registers (SFRs) as
they are defined in misc8051.fs :

\ ----- Virtual Machine ----- /
\ Subroutine threaded.
 0 constant S \ R0 = Stack pointer.
 1 constant A \ R1 = Internal address pointer.
$e0 constant T : .T T + ; \ Acc = Top of stack.
\ DPTR = Code memory address pointer, aka P.
\ B is used by um*, u/mod, and over, not preserved.

\ ----- 8051 Registers ----- /
$82 constant DPL $83 constant DPH
$98 constant SCON : .SCON SCON + ;
$99 constant SBUF
$80 constant P0 : .P0 P0 + ;
$90 constant P1 : .P1 P1 + ;
$a0 constant P2 : .P2 P2 + ;
$b0 constant P3 : .P3 P3 + ;
$81 constant SP
$d0 constant PSW : .PSW PSW + ;
$88 constant TCON : .TCON TCON + ;
$89 constant TMOD
$8a constant TL0 $8b constant TL1
$8c constant TH0 $8d constant TH1
$8f constant PCON
$a8 constant IE : .IE IE + ;
$b8 constant IP : .IP IP + ;
$f0 constant B : .B B + ;
\ $fd constant SP0 $80 constant RP0
$100 constant SP0 $80 constant RP0

Note that definitions starting with a “dot” allow you to specify individual bits within
ports and cells.

 Compiler

40 MyForth

Here is a summary of MyForth register and pointer usage:

0 R0 (s) 8 bit stack pointer.
1 R1 (a) addressing index register – naming is from Color Forth
2 R2 Scratch register
3 R3 Scratch register
4 R4 Scratch register
5 R5 Scratch register
6 R6 Scratch register
7 R7 Scratch register

Acc (t) Top of stack
b Can be used as a scratch register, but it is used by

um*, u/mod and over (it is not preserved)
DPTR (p) Data Pointer – can be used as a scratch register

Assembly definitions or macros must preserve or knowingly and carefully change
the virtual machine registers t (accumulator) and s (stack pointer, R0).
Generally, the a (address) register, R1, is used as an indirect address pointer
and does not need to be preserved between definitions. However, you should be
aware that it may contain a pointer that want to preserve within your definition.

Note: The naming of a was taken from Color Forth – it should not be confused
with the Accumulator, which is named t (for top of stack).

All other registers may be changed freely and need not be restored, but these
registers should not contain static data: any register may be used and modified
by any other Forth or assembler definition. Static data should be kept in direct
cells.

Here is a list of other processor resources that have been defined for use by your
definitions:

 DPL and DPH
 SCON, SBUF, TCON, TMOD, PCON
 IE, IP
 TH0, TL0 and TH1, TL1
 SP, PSW, SP0, RP0

Refer to the listing for misc8051.fs in Appendix A for more detail on the definition
of the above resources. They are defined in the sections near the top of the file
named “\ ----- Virtual Machine ----- /” and “/ ----- 8051 Registers ----- \.”

 Compiler

 MyForth 41

Data Stack

Implementation

The top of the Forth data stack is held in the accumulator. In MyForth, the
designation of the top of stack is t (for top). The following sections describe
some Data Stack operations.

#, ~# and ##

If you want to put a number on the Target’s data stack at run time, follow the
number with #. The action of # is to use a number from the Host’s data stack to
create code that will put it on the Target’s stack when the definition is executed
(i.e., to compile a literal). To put a bit inverted version of your constant on the
stack, use ~#; this is often used to perform logical operations on Special Function
Registers, setting and clearing individual bits.

The Word ## will put a 16 bit number (usually an address) on the Target’s stack
as two bytes, with the MSB in t (i.e., on the top of the stack). Here is an
example:

 : tadr $0123 ## ;

This will put $01 in t and $23 under it.

#@, (#@), #! and (#!)

To fetch data from a direct cell, use #@; to store data to a direct cell, use #!.
Here are some examples:

 : set5 $23 # 5 #! ; \ store $23 in direct cell 5
 : get5 (- n) 5 #@ ; \ fetch contents of direct cell 5

Executing set5 will store $23 in direct cell 5; get5 will fetch $23 from direct cell 5
and put it on the Target’s stack.

You can use (#@) to move data directly into t from a direct cell without first doing
a dup. This is equivalent to performing a move of direct data with the assembler.
Similarly, you can use (#!) to move data to a direct cell without affecting t: it does
not perform a drop after moving data from t.

 Compiler

42 MyForth

stacks

To reset both the data and return stacks, include the stacks macro in your
definition. Note that this is a macro and is not directly executable from the
MyForth command line.

Return Stack

Implementation

The return stack is contained in internal RAM and uses the 8051’s Register 0 as
the stack pointer. This is also named s.

push and pop

The Target Words push and pop move values between the data stack and the
return stack and may be considered synonymous with the Forth Words >R and
R>, respectively. Although Chuck Moore has used push and pop for the past 20
years or so, these are not ANSI Forth Words.

Note: push and pop are also 8051 assembly language instructions that are
defined in the assembler. These act on the 8051 processor’s stack pointer, SP,
and do not involve the Target’s stack. To choose between these two versions in
an application, you can use [and] to set up the appropriate vocabulary.

For example, here are the definitions for push and pop for the assembler:

[\ These are 'assembler', not 'target forth'.
: push $c0] , , [; : pop $d0] , , [;

And, here are the definitions for push and pop for the Target:

:m push [t push] drop m; :m pop ?dup [t pop] m;

The assembler definitions put the 8051 instruction bytes for push and pop on the
Host’s stack and then change to the Target vocabulary to place them in the
Target image. These instructions can act on any direct cell, moving it according
to the 8051’s stack pointer.

The Target versions of push and pop act only on t (the accumulator).

 Compiler

 MyForth 43

Address Register

a and a!

MyForth uses Register 1 (R1) as the “address register”, a. When a is used in a
definition, the byte contained in the direct cell address in a (R1) is moved to the
data stack. Usually, the contents of a will be a direct cell address used to
indirectly access data.

You can use a! to load a with a value, as shown in the example below.

@, @+, ! and !+

If you have a direct cell address in a, you can fetch data from that cell and put it
on the data stack using @. Similarly, you can store data from the data stack
indirectly to a cell using !. Accessing data this way is very useful, especially if
you are manipulating data in sequential cells.

To make this process of sequential access even easier, @+ and !+ are provided
to fetch and store while auto incrementing the contents of a. Here is an example
of how to store and fetch three sequential bytes, starting at direct cell 5:

 : put3 5 # a! $aa # $bb # $cc # !+ !+ !+ ;

: get3 (-- n1 n2 n3) 5 # a! @+ @+ @+ ;

 Compiler

44 MyForth

Data Pointer

|p, |@p, and |@p+

MyForth uses p to designate the 8051 data pointer and provides several macros
and Words for managing it. The macros for managing p are preceded by a
vertical bar to indicate they are “inline” or “macro” definitions. Normally this is
how you will use them, but you can make them callable by making them colon
definitions (e.g., to save memory if they are referenced several times in your
code). Refer to the source code listing in the chapter on the Standalone Target
for examples.

The |p macro puts the 16-bit contents of the data pointer on the Target’s stack.
Often this will be used to save contents of the data pointer prior to changing it so
that it can be restored later (e.g., with “|p push push”). This is illustrated in the
definition of interpret in the code for the Standalone Interpreter in a later chapter.
In interpret, the contents of p are changed in the process of searching the
dictionary; when the operation is complete, p is restored.

To get data from the location contained in p, use |@p or |@p+. These will both
put a data byte on the stack from the location in p, but |@p+ increments the data
pointer after the fetch. Examples of how these are used are contained in the
definitions of match, find and interpret in the Standalone Interpreter.

p+, p! and ##p!

To increment p, use p+. To store a new pointer in p, use p!. Caution: both of
these definitions are macros: they can be used within definitions but
cannot be executed directly from the command line.

If it is your intent to compile code that will directly set p to a particular value, use
##p!. This is commonly used when you do not intend to manipulate p using the
Target’s stack, just ensure that the data pointer is set to a particular value. An
example of this is contained in the chapter on the Standalone Interpreter in the
definition of dict.

 Compiler

 MyForth 45

Variables and Constants

MyForth does not have any dedicated Target Words for defining variables or
constants.

There is no “constant” because you can define a Word on the Target that
behaves like a constant using existing MyForth components. For example:

: five 5 # ; or :m five 5 # m;

The above definition is not very useful, however, and you would not typically use
it in your code when you just want the convenience of using a named constant.

Note that constant is available on the Host (GForth) and can be useful in
defining Target Words when your intent is just to have the convenience a named
constant or variable (direct cell).

Although not all of the Words below have been discussed yet, here is a simple
example you can use the Host word constant to define some Words. We
suggest that you download, disassemble and test these definitions, which are
contained in the examples.fs source file:

 \ examples.fs

 $0a constant con1
 $0b constant con2
 5 constant cell5

 : test1 cell5 # a! con1 # ! ; \ indirectly load cell5 through a
 : test2 con2 # cell5 #! ; \ directly load cell5 with con2
 : .cell5 cell5 #@ h. ; \ display contents of cell5 in hex

In reading the above, it is helpful to know the following:

1. Numbers to be stored in the Target’s top of stack, t, stack must be
followed by # – it compiles the code needed to put the number on the
Target’s stack when the definition is executed.

2. The Word ! stores a number that is on the Target’s stack into a cell,
indirectly through a.

3. The Word #! stores a byte from t into the specified cell address and #@
fetches a byte from the specified cell address and puts it on the Target’s
stack.

 Compiler

46 MyForth

Numbers and Labels

There is no special construct, such as “label”, to define a named memory location
in MyForth. However, MyForth allows you to do this if it is needed. You can
attach a name to a sequence of bytes, for example, by doing this:

cpuHERE constant mycells 8 cpuALLOT

In this example, cpuHERE returns the current pointer to the next available direct
cell. The constant mycells is defined on the Host and acts as a label for the start
of mycells. The “8 cpuALLOT” allots 8 cells after mycells by moving the
cpuHERE pointer. Of course, you must use mycells within a Target definition if
you want to use it on the Target (e.g., using ##).

If you want to define a Target Word that will put a direct cell address on the
Target’s stack, you can simply do this:

: cell7 7 # ;

It is important to remember that numbers in MyForth put a number on the Host’s
data stack; if you want to put a number on the Target’s stack when the definition
is executed, you must use #, ##, or ~#.

If you want to label a location, here is an example, taken from misc8051.fs that
assigns a label to the reset code at location zero:

 0 org : reset

 Compiler

 MyForth 47

Here is an example of a Target definition that, when executed, will put the
address of the current Target compilation address on the stack. This is normally
how a “label” is employed:

: iamhere here [dup $ff00 and 8 rshift] # # ;

In the above, here puts the Target’s compilation address on the Host’s stack.
The left bracket ensures that the following operations occur on the Host: they put
the upper and lower address bytes on the Host’s stack in the proper order (MSB
on the top of stack). The right bracket ensures that the following operations
occur on the Target: the # # sequence puts the two bytes on the Target’s stack
when iamhere executes. Of course you would normally use ## to put the double
number on the Target’s stack in the correct order, but this example illustrates
how you can minipulate data on the Host before using it for a Target definition.

Definitons like iamhere are seldom necessary. One reason for presenting it here
is to illustrate that here refers to the Target’s compilation address, not the Host’s.
To get the location of here on the Host, use [here]. The above also illustrates
how you can use left and right brackets to change between Host and Target
operations.

 Compiler

48 MyForth

Interrupts

The most important thing to remember about interrupts in MyForth is that
you may have to edit the configuration file, config.fs, when you define a
new interrupt. This ensures that the Target compiler will start your application
code after the last interrupt in the remapped interrupt area. For most Silicon
Laboratories chips, the remapped interrupts will start at $200; for the C8051F12x
family of chips, they will start at $400.

To define an interrupt, use interrupt. Here is an example and some explanation:

 start interrupt : cold stacks init-serial quit ;

To explain how interrupt works, the components of the above code and the
definition of interrupt will be explained individually. Here is the definition of
interrupt:

: interrupt (a -)] here swap org dup call ; org [;

The start before interrupt in the example is the address of the start of the
remapped interrupt vectors (e.g., $200 or $400). The Word interrupt first saves
the current pointer to the Target compiler’s image. This address is on put on the
Host’s stack before interrupt is executed, as indicated by the blue stack picture
comment in the definition of interrupt.

The] turns on the Target compiler. The here puts the Target image pointer on
the Host’s stack (its not defined on the Target so it falls through to the Host’s
Forth vocabulary). The Target image pointer is the location at which any new
definition will be compiled.

The “swap org” sets the Target image compilation pointer to start.

The dup saves a copy of the previous Target image pointer and then compiles a
call to it. Thus, a call to the previous compilation address is compiled at start.

The copy of the previous compilation pointer is now used to reset the Target
compilation address back to where it was before interrupt started to execute.

Finally, the cold start definition, cold, is compiled into the Target image; thus, the
interrupt vector at start will point to it.

 Compiler

 MyForth 49

Conditionals

Overview

The following sections describe the MyForth conditionals. There are not many.

In MyForth, the if … then construct uses t, as you would normally expect, to
conditionally execute code. Like the loop termination conditionals discussed in
the next chapter, MyForth provides special conditionals such as if’, if., and –if.

These do things such as conditionally execute code based on the condition of a
bit. The following sections describe each of these, and the code they produce, in
more detail.

MyForth does not provide an “else” conditional. By examining some MyForth
system code and application examples, you will see that it is not necessary. In
fact, you will be hard pressed to find many “if” statements used in the system
code or examples. This follows Chuck Moore’s practice. It is surprising how
seldom “if” is needed.

 Compiler

50 MyForth

if and 0=if

Here is an example of how you might use if to conditionally execute code:

: iffy1 if drop $0a # ; then drop $0b # ;

This will put $0a on the Target’s stack if t is not zero and a $0b otherwise. Here
is how it decompiles:

---------- iffy1
06FA 60 03 jz 06FF if
06FC 74 0A mov A,#0A #
06FE 22 ret ;
06FF 74 0B mov A,#0B #
0701 22 ret ;

This example illustrates a few important points about MyForth. First, you have
probably noticed the semicolon in the middle of the definition. In MyForth it is the
equivalent of “exit” and just compiles a ret instruction. Now perhaps you can see
why “else” is not part of MyForth: there are ways to code so that it isn’t needed.

Next, you probably wondered why there is a drop in front of $0a and $0b. Like
the examples with until (next chapter), t is not automatically dropped. Another
way to look at this is that if does not consume its argument.

One reason for leaving the top of stack alone is the same as noted for until:
often you will need to preserve t; if not, then the penalty for coding a drop is no
more inefficient than always coding it. Along these same lines, including an
“else” conditional would make most definitions less efficient by having to include
code to jump around the “else” condition.

One other reason for not consuming the argument is that it is very cumbersome
to consume it and then make the jump. It can more than double the number of
cycles and the code looks very bad when you decompile it. Also, you have
removed the cause of the jump, the state of t, so you may also need to save that
somewhere (e.g., the carry bit) if you need to use it in later processing. It is
much simpler and clearer to jump on the state of t and clean things up later, if
needed.

Enough of that. What about 0=if? Most of the “if” type conditionals have a
counterpart that acts in the opposite sense. In the case of 0=if, it executes if t is
zero.

 Compiler

 MyForth 51

if. and 0=if.

The if. conditional is actually somewhat useful. It executes code based on a bit
being set. Here is a reworked version of iffy1 based on checking a bit.

: iffy2 1 .t if. drop $0a # ; then drop $0b # ;

This will put $0a on the Target’s stack if bit one of t is set and a $0b otherwise.

Here is how it decompiles:

---------- iffy2
06B3 30 E1 03 jnb ACC.1,06B9 if.
06B6 74 0A mov A,#0A #
06B8 22 ret ;
06B9 74 0B mov A,#0B #
06BB 22 ret ;

The above is a contrived example. Usually you would be checking on something
like a bit on an I/O port. Here is an example:

: iffy3 1 .P0 if. $0a # ; then $0b # ;

Here is how it decompiles:

---------- iffy3
06BC 30 81 05 jnb 80.1,06C4 if.
06BF 18 dec R0 (dup
06C0 F6 mov @R0,A dup)
06C1 74 0A mov A,#0A #
06C3 22 ret ;
06C4 18 dec R0 (dup
06C5 F6 mov @R0,A dup)
06C6 74 0B mov A,#0B #
06C8 22 ret ;

From the above, you can see that a more efficient (but less clear) definition
would be:

: iffy3 1 .P0 dup if. drop $0a # ; then drop $0b # ;

If you decompile this, you will see that the dup makes room for $0a or $0b on the
stack and the drops eliminate the redundant dup that # compiles.

 Compiler

52 MyForth

The operation of 0=if. is the same as if. except that it executes code based on its
bit argument being clear. To see how it works, try defining iffy3 using 0=if.
instead of if. and compare the resulting code with that shown above.

if’ and 0=if’

The if’ (if carry set) conditional conditionally executes code if the carry bit is set.
Here is a simple example that always puts $0a on the stack:

: iffy4 $80 # 2* drop if’ $0a # ; then $0b # ;

This would decompile as follows:

---------- iffy4
06D4 18 dec R0 (dup
06D5 F6 mov @R0,A dup)
06D6 74 80 mov A,#80 #
06D8 C3 clr C
06D9 33 rlc A 2*
06DA E6 mov A,@R0 (drop
06DB 08 inc R0 drop)
06DC 50 05 jnc 06E3 if'
06DE 18 dec R0 (dup
06DF F6 mov @R0,A dup)
06E0 74 0A mov A,#0A #
06E2 22 ret ;
06E3 18 dec R0 (dup
06E4 F6 mov @R0,A dup)
06E5 74 0B mov A,#0B #
06E7 22 ret ;

From the above you can see that it would have been more efficient to use 2*’
instead of 2*. Because the state of carry before multiplying by two (rlc) is not
important, the carry does not need to be cleared.

As you would expect by now, 0=if’ (if carry equals zero) conditionally executes
code if carry is clear. Here is an example that always puts $0B on the stack:

: iffy5 $80 # 2*’ drop 0=if’ $0a # ; then $0b # ;

 Compiler

 MyForth 53

The code compiled by iffy5 is similar to that shown above, but a jc (jump if carry)
instruction is compiled instead of a jnc (jump if not carry). As you can see, the
conditional jump instruction that is compiled is just the opposite of what you might
expect based on the name of the MyForth conditional.

-if and +if

The –if and +if conditionals execute code based on the state of bit 7 of t. In
other words, they execute based on t being a negative or positive 8-bit integer.

Here is a simple example of how to use –if in a definition:

 : iffy6 (n – n’) -if drop $0a # ; then drop $0b # ;

If you compile and interactively exercise iffy7, you will see that putting a positive
number such as $7F on the stack and executing iffy7 will result in a $0b being
put on the stack. Try entering the following at the MyForth prompt:

 $f7 # iffy7 .s

This will put $0a on the stack.

The +if conditional acts just the opposite of –f and will execute code if the value
on the stack is positive.

 Compiler

54 MyForth

Loops

Overview

The following sections describe how to code loops in MyForth. As you will learn,
there are only a few constructs to do this, but they are powerful enough to be all
you will need.

Counted

MyForth provides a simple way to implement loops with counts up to 255. The
loop counter is held in a cell that must be specified as part of the loop definition.
Counted loop definitions start with <cell> #for and terminate with <cell> #next,
where <cell> can be a register or direct cell that will be used as a loop counter.
The loop count is assumed to be on the stack when the loop starts. The count is
put on the stack with #, like any other MyForth number.

Of course <cell> cannot be R0, the data stack pointer (unless preserved). But it
can be any other register, direct cell, special function register or even an 8-bit
port. The range of the loop is limited to $FF. Here is an example to loop 5 times
using Register 7:

: init 5 # 7 #for 0 .P2 toggle 7 #next ;

This decompiles as follows:

---------- init
0691 7F 05 mov R7,#5 #!
0693 B2 A0 cpl A0.0
0695 DF FC djnz R7,0694 #next
0696 22 ret

 Compiler

 MyForth 55

You can also pre-load t with a number and execute this definition of init:

: init 7 #for 0 .P2 toggle 7 #next ;

It will perform the same function as the first init, but it will load R7 from t; this
definition is slightly less efficient because the top of stack pointer must be
adjusted after R7 is loaded from t.

If you examine the definition for #for and #next, you will see that #for compiles a
mov to a direct address or a register and #next compiles a djnz instruction to a
direct cell or register, as illustrated in the decompilation above.

Nested

To executes longer loops, you can nest #for … #next loops. Here is an
example:

: delay 0 # 7 #for 0 # 6 #for 50 # 5 #for 5 #next 6 #next 7 #next ;

Here is how this decompiles:

0700 7F 00 mov R7,#00 #!
0702 7E 00 mov R6,#00 #!
0704 7D 32 mov R5,#20 #!
0706 DD FE djnz R5,0706 #next
0708 DE FA djnz R5,0704 #next
070A DF F6 djnz R5,0702 #next
070C 22 ret ;

 Compiler

56 MyForth

Conditional

In MyForth, conditional loops are formed with a begin … again type conditional
looping construct. Loops can use t, as you would expect, to test for loop
termination. However, unlike most other Forth implementations, t is left
untouched when the loop terminates. If you want to leave the stack clean, you
must specifically code a drop following until.

You may ask why MyForth does not just drop the top of stack after ending a loop.
Although it isn’t obvious from the simple examples given below, there are many
cases when you need t for subsequent calculations. For example, when a loop
terminates because t is non-zero, you may want to use the value of t that
stopped the loop for subsequent calculations.

By explicitly coding a drop, you are only making the loop perform the same as it
would if the drop was automatically compiled for you. However, if you need t
after the loop terminates, you do not need to do anything special within the loop
to preserve it and, after exiting, you don’t have to do anything to restore it.

MyForth provides the following loop termination conditionals: until, 0=until,
again, <literal> =until, <literal> <until and until..

Using again as the loop conditional will form a loop that does not terminate. This
is particularly useful in defining the startup Word (e.g., a Word named go) for an
application that will be turnkeyed.

Note that most of these can operate on resources other than t.

Also note that again can operate over a range that exceeds an sjmp: it compiles
ajmp or ljmp, as appropriate. The range of conditional jumps is shorter: they
abort if out of range.

The following sections describe each of the remaining conditionals in more detail.

 Compiler

 MyForth 57

until and 0=until

A begin … until loop operates as you might expect, looping until t is non-zero.
This construct codes a jz instruction. Note that you may need to do a drop
before exiting your definition, depending on what you want to do with the
conditional value that terminated the loop.

If you want a loop that terminates when t is equal to zero, you can use a begin
… 0=until construct. Here is an example:

 : bloop $10 # begin dup . 1- 0=until drop ;

This decompiles to:

 ---------- bloop
 06A1 18 dec R0 (dup
 06A1 F6 mov @R0,A dup)
 06A3 74 0A mov A,#0A #
 06A5 18 dec R0 (dup
 06A6 F6 mov @R0,A dup)
 06A7 91 BD acall 048D .
 06A9 14 dec A 1-
 06AA 70 F9 jnz 06A5 0=if
 06AC E6 mov A,@R0 (drop
 06AD 08 inc R0 drop)
 06AE 22 ret

From the above you can see that the loop termination value is kept in t. On
entry, MyForth executes its usual dup to preserve t. Next, t is loaded with $0A
by the sequence $10 # (mov A,#0A). Next a dup is executed so that t is not
lost when . (dot) executes to emit the ASCII value of t back to the Host over the
serial port.

The 1- decrements t and the 0=until checks to see if t is zero. The loop
terminates when t is zero, leaving a 0 (the depleted loop counter) on the data
stack. Finally, the drop removes the loop counter so that t will contain whatever
was on the stack before bloop was executed.

 Compiler

58 MyForth

=until

Here is an example of how =until might be used to count up in a loop:

 : bloop1 0 # begin dup . 1+ $0A # =until drop ;

This will display 0 1 2 3 4 5 6 7 8 9 when it executes. We suggest that you
define, download, execute and decompile this definition to become more familiar
with the kind of code that will be compiled. You will see that it compiles code that
is similar to that of the previous example, but it takes one more byte and it
compiles a cjne instruction instead of jnz.

Please note the use of the # after the $0A; this is required for literals as well as
stack items.

<until

If you code the above example using <until instead of =until as shown in the
definition of bloop2 below, the loop will terminate based on the value of t being
less than minus 10. If you decompile bloop2, you will see that MyForth compiles
code that is similar to that produced by the definition of bloop1 above but two
more bytes are required for the definition. Here is a definition using <until:

 : bloop2 0 # begin dup . 1- -10 # <until drop ;

When executed it will display 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 .

 Compiler

 MyForth 59

until. and 0=until.

The until. loop terminator operates on a bit being set. The bit can be in any
8051 register, direct cell or port pin, including t. Here is an example:

: bloop4 1 # begin dup . 2*' 5 .t until. drop ;

Note that the bit number, 5 in this example, does not need a # after it. This is
because until. compiles the appropriate looping instruction using the data on the
Host’s stack; the number is not used by the Target at run time, only by the Host
when it compiles the code into the Target’s image. Executing bloop4 will display
the following: 1 2 4 8 16.

Here is a more useful example:

#F8 constant SPI0CN
[: .SPI0CN SPI0CN + ;]

:m wait-SPI begin 7 .SPI0CN until. m;

The above example shows how you can loop until a bit is set in a special function
register. It also illustrates that until. does not need to be used to check bits in t
but can be used with other 8051 resources. Note how the bracketing in the
definition of SPI0CN is used to access the Host to define the address to be used
with until..

Of course, 0=until. operates in the opposite sense from until., terminating when
the specified bit is clear.

 Compiler

60 MyForth

-until

The –until conditional terminates a loop when a cell goes negative (i.e., the most
significant bit of the byte is set). Here is an example:

 : bloop6 1 # begin dup . 2* -until drop ;

This decompiles to:

 ---------- bloop6
 0682 18 dec R0 (dup
 0683 F6 mov @R0,A dup)
 0684 74 01 mov A,#01 #
 0686 18 dec R0 (dup
 0687 F6 mov @R0,A dup)
 0688 91 8D acall 048D .
 068A C3 clr C
 068B 33 rlc A 2*
 068C 30 E7 F7 jnb ACC.7,0686 if.
 068F E6 mov A,@R0 (drop

0690 08 inc R0 drop)
 0691 22 ret

From the above will display 1 2 4 8 16 32 64. Notice that this example uses
2* instead of 2*’ used in bloop4 above. If you compare the disassembly of the
two definitions, you will see that the difference is that 2* clears the carry bit
before shifting. This was done in the example to ensure that you would get the
same results as given here; if the carry had been set in a previous operation, the
number sequence would be different.

Now, for the action of –until. Notice that the loop is formed by performing a jump
based on whether or not bit 7 of t (the accumulator) is set. The intent of the
minus in front of the “until” is to indicate ‘negative’ and should be thought of as
“negative until.”

 Compiler

 MyForth 61

Arithmetic and Logic

MyForth provides various operands to perform logical operations on stack items,
direct cells and special function registers.

The following sections provide more detail, but key points to remember are:

• Operations on Special Function Registers, I/O ports and direct cells
use logical Words ending with a “!” and do not require the “#” after
them.

• Conversely, operations on the stack are performed by Words that do
not end in a “!” -- these do require the used of “#” to put their
arguments on the Target’s stack.

This difference is because direct cell or port addresses are typically defined on
the Host as constants (e.g., “$a4 constant PRT0CF”). Thus, when they are
named in a definition their value is put on the Host’s stack, not the Target’s stack.
The value on the Host’s stack is then used by following Word to compile the
appropriate instruction.

If this seems a bit confusing, read on. Hopefully the examples given in the
following sections will make things clearer for you.

 Compiler

62 MyForth

ior, xor, ior! and xor!

The ior Word performs a logical or operation. The “i” in the Word’s name stands
for “inclusive” to distinguish it from xor, the “exclusive or” Word. Here is a simple
example of “oring” two constants:

: ior1 $aa # $55 # ior ;

The xor Word is used in the same way as ior, but performs an “exclusive or”
operation.

The use of ior! and xor! is similar to that of ior and xor, but the operand
immediately preceding the instruction does not require a # after it. These Words
are typically used with Special Function Registers (SFRs), direct cell addresses
or port addresses. For example:

 $a4 constant P0MDOUT

:m push-pull $ff # P0MDOUT ior! m;

This example perhaps makes it clearer why SFRs are special cases: they are
defined as ordinary constants in GForth and thus do not need to be put on the
Target’s stack with #.

This example uses ior! in a macro that sets the outputs of a C8051F300 chip to
push-pull. This macro would typically be used within an initialization Word.

and and and!

The and and and! Words perform a logical “and” operation and are used in the
same way as the “or” Words.

 Compiler

 MyForth 63

+ and +’

Use + to add two numbers. If you need to add with carry, you can use +’. For
example:

: addem (n1 n2 – n3) 4 # 5 # + ;

1+ and 1-

Use 1+ and 1- to add or subtract one from t. These operations assume that t
contains an 8-bit signed integer.

1u+ and 1u-

Use 1u+ and 1u- to add or subtract one from the second item on the stack.
These two Words should be thought of as “one under plus” and “one under
minus.”

Here are two Words defined in examples.fs that you can try:

 : incunder (n1 n2 – n3 n2) 1u+;
 : decunder (n1 n2 – n3 n2) 1u- ;

 22 # 33 # .s 2> 33 22
 incunder .s 2> 33 23
 decunder .s 2> 33 22

Note that 1u+ and 1u- are equivalent to INC @R0 and DEC @R0.

 Compiler

64 MyForth

negate and invert

Use negate to change t to a negative number. Here is an example:

: negate-example (– n) 44 # 5 # negate + ;

Use invert to invert all of the bits in t.

Because inverting all of the bits in a constant is a common operation for logical
manipulation of port or SFR bits, MyForth also provides ~#, as described
elsewhere in this manual. You can use either invert or ~#, depending on what
you are doing.

You would typically use invert to manipulate a value that is already on the stack
while ~# is more useful (and efficient) if you just want to invert the bits in a
constant prior to performing a logical operation.

As shown below, the two operators have the same stack effects but compile
different code.

Here is an example

: invert-example (– n1 n2) 5 ~# 5 # invert ;

invert-example .s 2> -6 -6

This decompiles to:

 ---------- invert-example
 076B 18 dec R0 (dup
 076C F6 mov @R0,A dup)
 076D 74 FA mov A,#FA #
 076F 18 dec R0 (dup
 0770 F6 mov @R0,A dup)
 0771 74 05 mov A, #05 #
 0773 C3 cpl A invert
 0774 22 ret ;

 Compiler

 MyForth 65

2*, 2*’, 2/ and 2/’

You can multiply or divide an item in t by two (left or right shift by one bit) using
2*and 2/, respectively. If you need to use the carry bit, use 2*’ or 2/’.

Here is an example using the carry bit:

: leftwith (- n) [setc] $c0 2*’ ;

In this example, the assembler is first used to set the carry bit, then the value $c0
is put in t and multiplied by two with carry (left shifted one bit with carry). The
number $81 is left in t after the definition is executed.

|*

Use |* to multiply two 8-bit integers. The bar indicates that this definition is an
inline macro that can be used within a colon definition or macro, but is not a
callable Word. Here is an example:

: * (n1 n2 – n3) 3 # 5 # |* ;

After executing *, 15 will be in t.

 Compiler

66 MyForth

|um*

The inline definition |um* multiplies the two unsigned bytes on the stack, leaving
the double precision (16 bit) result on stack with most significant byte in t and the
least significant byte in the second stack cell.

As usual, the bar in the name indicates that |um* is a macro definition which can
be compiled in a definition but is not callable. Of course, you can make |um* a
callable definition by including it in a MyForth colon definition.

For example, this following is defined in examples.fs to make |um* a callable
definition:

: um* (n1 n2 – n3 n4) |um* ;

Executing 33 # 2 # um* from the MyForth command line would put 0 in t and 66
under it in the second stack cell. The MyForth stack display would be: 2> 0 66.
Executing ud. after this operation would display 00066.

 Compiler

 MyForth 67

|u/mod

The inline definition |u/mod divides the two unsigned bytes on the stack, leaving
the quotient in t and the remainder in the second stack cell.

It is defined as an inline definition (indicated by the “bar”) because you may just
want to use it to compile the code for u/mod within a definition without calling it.
Of course, you can make it a callable definition by defining it as a colon definition
as described in the previous example for |um*.

The debug.fs file contains an example of how |u/mod can be defined as a
callable definition and how it is used to define u. for interactive testing of Target
definitions:

: space 32 # emit ;
: digit -10 # + -if -39 # + then 97 # + emit ;
: u/mod |u/mod ;
\ Avoid leading zeroes in (u.)
: three digit
: two digit digit ;
: (u.) 10 # u/mod 10 # u/mod if three ; then drop if two ; then drop

 digit ;
: u. (u.) space ;

The above shows how |u/mod can be made callable, for example, to save
memory when used multiple times in a definition. In (u.), u/mod is used two
times with a divisor of 10 to put three numbers on the stack.

Depending on the number to be converted, some of the values on the stack may
be zero. Because it is not necessary to display these one or two leading zeroes,
(u.) has logic to suppress them. The first “if” checks t to see if it is non-zero,
indicating that there are three non-zero digits on the stack. In this case, it calls
three which converts the number in t to an ASCII digit and emits it back to the
Host. Because three is not terminated with a semicolon, a call to it falls through
to two which converts two more digits.

If the first “if” finds that t is zero, then t is dropped and the second “if” checks the
next stack item for zero. If it isn’t zero, then two is called to convert the
remaining two digits. If the second number is zero, t is dropped and digit is
called once to convert the single valid digit.

One final note: three and two in the definition of (u.) are followed by semicolons
which normally compiles a ret. Disassembling (u.) reveals that these are
optimized to jumps to eliminate redundant returns.

 Compiler

68 MyForth

 MyForth 69

5

Assembler

Overview

This chapter describes how to use the assembler. Be forewarned, there isn’t
much to it. But, it provides most of what you need. And, if you require more, you
can extend it.

The assembler is defined in the files named misc8051.fs listed in Appendix A.
The assembler definitions are in the section starting with “---------- assembler.”
We suggest that you refer to this listing when reading this chapter.

Like the rest of MyForth, the assembler is simple. Instead of providing a full-
blown RPN assembler, MyForth provides some basic assembler definitions that
are sufficient to accomplish MyForth’s mission: the efficient generation of 8051
code without the need to learn a complex system.

The assembler provides the essential tools you need; these are flexible enough,
once thoroughly understood, to allow you to code transparently and efficiently.

Note that there is no “special” assembler file that must be loaded: the assembler
definitions are included when you load misc8051.fs.

 Assembler

70 MyForth

Assembly Definitions

In a typical Forth system, Code definitions consist of a named set of assembly
language statements and/or macros that define a Forth Word. Code Words are
normally preceded by a defining Word such as “code” and are often terminated
with another special Word or sequence such as “end-code.”

Forget all that. In MyForth, there is no special defining sequence for Code
definitions: Words defined in the Target vocabulary with a colon (Colon
Words) are actually Code Words. MyForth Colon definitions can contain
macros, bracketed assembly language sequences or references to other
Colon Words.

The secret is now out: MyForth is essentially an 8051 macro assembler in
disguise. MyForth definitions read like Forth but their secret mission is to
efficiently compile 8051 assembly language definitions.

You may think that an RPN assembler and Code definitions are needed to
efficiently compile 8051 assembly language. Although some useful assembler
definitions are available in MyForth, efficient coding is provided as a natural
feature of MyForth’s Colon and macro definitions. If this sounds strange, read
on. Hopefully it will become clearer as the operation of the assembly definitions
are explained.

For those attached to an assembler, this chapter explains how to use the
MyForth assembler definitions. It also describes how to translate some standard
8051 syntax statements into assembly language statements.

 Assembler

 MyForth 71

In Line Assembly

Like using Code Words, most Forth programmers are accustomed to executing
in-line assembly within their Colon definitions to improve efficiency or to directly
access processor resources.

In MyForth, you normally code assembler definitions using the […] sequence
within a Colon definition in much the same way you would using special “in-line”
encapsulation with a conventional Forth system.

However, because of MyForth’s ability to code definitions as macros, this is less
necessary than in more conventional Forth implementations. As mentioned
earlier, MyForth is primarily a macro assembler implemented within a Forth
conceptual framework.

When you use the […] sequence to include assembly language definitions, you
are actually changing to the Host vocabulary and executing ordinary GForth
Words that lay down assembly instructions in the Target’s image.

This is also what macro definitions do. In fact, it is often unnecessary to use
assembler definitions within brackets, but this is commonly done to clarify the
programmer’s intent and to avoid confusion.

Speaking confusion, there are several assembler definitions that have the same
names as MyForth Words. These include push, pop and swap which are 8051
assembly language instructions and are also MyForth Words that manipulate the
stack.

 Assembler

72 MyForth

push and pop

In the context of the assembler, push and pop act on a register or direct cell.

Do not confuse the assembler versions with the Target versions: the Target
versions act on the contents of the accumulator, t.

The section describing the return stack in the Compiler chapter shows how the
assembler versions of push and pop are used to define the MyForth definitions
of push and pop that apply to the data stack. As shown, the assembler versions
of push and pop are applied specifically to t to push and pop the top of stack.

In the assembler, push and pop can be used with any direct cell.

set and clr

Use set and clr to set and clear bits within a register, port or direct cell. MyForth
provides a number of operators beginning with “dot” to help specify bits within
ports and registers such as t. For example, to set or clear bits in t, use .t. Here
are two examples:

: set-example1 (- n) 5 # [1 .t set] ;
: set-example2 (- n) 5 # 1 .t set ;

In both cases, the result left in t is 7 (the bits are zero referenced). In the second
example the “1 .t set” sequence does not need to be bracketed because .t and
set do not exist in the Target vocabulary and are thus found in the Host
vocabulary. The format shown in set-example1 is perhaps preferable because it
shows the intent of the coding somewhat better. Also, it is safer form to use
when you are not sure whether or not a Word is defined in both vocabularies.

One final note: the “1” in the above just puts a 1 on the Host’s stack which is
used by the following definitions to assemble the correct instructions; the 5 also
goes on the Host stack, but the # following it assembles code that puts a literal in
t when the definition is executed.

 Assembler

 MyForth 73

Pins and Bits

The following assembler Words are available to set, clear and toggle bits in ports:

 setc, clrc (set and clear the carry bit)

set, clr (set and clear bits and port pins)
 toggle, .P0, .P1, .P2, .P3 (port pins)

A previous section illustrated the use of set and clr with t. The syntax for setting
and clearing port bits is similar to that shown in the previous example.

Here are examples showing how to use a port designation with set and clr:

:m enable [3 .P2 clr] m;
:m disable [3 .P2 set] m;

Note that the assembly sequence is bracketed within the macro definition. This
is because the macro compiling Word, :m establishes the Target vocabulary first
in the search order so that macro definitions are compiled directly into the Target
image.

The [before the assembler definitions establishes Forth first in the search order.
This is because assembler definitions are GForth definitions that execute
to do lay down code in the Target image. In the enable example, “3” puts a
number on the Host’s stack and the “.P2 clr”, executed by the Host, assembles
instructions in the Target image that set bit 3 in port 2. Here is a more detailed
description of how the bracketed instruction sequence operates:

1. The left bracket establishes Forth as the first vocabulary in the search
order,

2. “3 .P2” puts a bit address on the Host’s stack,
3. either $C2 (clrb) or $D2 (setb) is put on the Host’s stack,
4. the Target compiler is turned on and either $C2 or $D2 is placed in the

Target image,
5. the byte compiled by “3 .P2” that was placed on the Host’s stack is written

to the Target image,
6. the Target vocabulary is set as first vocabulary in the search order

To see what is compiled, use the decompiler (see command) to examine the
definition.

 Assembler

74 MyForth

Note that the brackets in the definitions of enable and disable are not really
necessary and are coded more as comments than directives. This is because
the bracketed items are not defined in the Target vocabulary. When the Host’s
dictionary is searched, they will be found and executed.

In the case of enable, a 3 will first be put on the Host’s stack; all numbers not
followed by a # will be put on the Host’s stack. As previously noted, the .P2 will
convert the number on the Host’s stack to a bit address appropriate for use by clr
and then put it on the Host’s stack. The clr instruction, defined on the Host, will
execute to compile an instruction into the Target image.

All of this will be a bit bewildering at first, but the secret to MyForth’s simplicity
and efficiency is that you can use a few well-understood tools to achieve the
results you want.

You should be prepared for some initial frustration and the frequent use of the
decompiler to see what strange things you have asked the compiler to do.

However, the adjustment period is shorter than the one needed to understand a
complex “kitchen sink” environment that provides a bewildering array of options
that you are forced to wade through each time you try to do something.

Digging yet a little deeper, here are the definitions of set and clr contained in
misc8051.fs:

[\ these are assembler, not Target Forth
: set $d2] , , [;
: clr $c2] , , [;

The [ensures that the Host’s compiler is used to define set and clr. The $d2]
and $c2] sequences put bytes on the Host’s stack and turn on the Target
compiler by establishing it first in the vocabulary search order.

The first comma writes either a $d2 or $c2 byte in the Target image; the second
comma writes the byte assembled by 3 .P2 from the Host’s stack to the Target
image.

The [ensures that Forth is established first in the vocabulary search order before
exiting. Often this is not strictly necessary because the definitions will be
executed within a sequence starting with [.

The above illustrates how MyForth manipulates the two vocabularies, Forth and
Target, to control how things are compiled.

 Assembler

 MyForth 75

Finally, here is another example of how you might use set and clr in a definition:

:m SCLK 0 .P2 m;
:m (+P2.0) SCLK set m;

or

: ~P2.0 [SCLK toggle] ;

Of course, you will not be able to see the decompiled code for (+P2.0) unless you
put it in a definition. Remember that macros are not executable – they compile
Target code when executed. Again, the brackets in the definition of ~P2.0 are
not strictly necessary and serve mostly to indicate that they are assembler
definitions.

 Assembler

76 MyForth

mov

The most general of the MyForth assembler definitions is the mov instruction. It
can be used in most of the ways that the mov instruction is used in an 8051
assembler. The following sections provide specific usage examples.

As mentioned previously, MyForth designates registers by their numbers, 0
through 7. Numbers above 7 are assumed to be direct cell addresses.

The following illustrate how to use the mov instruction to move data between
registers and direct cells.

\ Move data in a direct cell to a register

:m direct-to-register [$15 3 mov] m;
: testdr (- n)
 $15 # a! 22 # ! \ move 22 into direct cell $15
 direct-to-register \ move contents of $15 to R3
 3 # a! @ ; \ put contents of R3 on the stack

\ Move data in a register to a direct cell

:m register-to-direct [3 $15 mov] m;
: testrd (- n)
 3 # a! 33 # ! \ move 33 into R3
 register-to-direct \ move contents of R3 to direct cell $15
 $15 # a! @ ; \ put contents of $15 on the stack

\ Move data in a direct cell to another direct cell

:m direct-to-direct [$15 $16 mov] m;
: testdd (- n)
 $15 # a! $a5 # ! \ move $a5 into direct cell $15
 direct-to-direct \ move contents of $15 to direct cell $16
 $16 # a! @ ; \ put contents of $16 on the stack

Note that there is no assembler sequence shown for moving a literal into a direct
cell. You can perform this operation using #! or (#!), as described in the
Compiler chapter. The Words #@ and (#@) are special cases that move data
from a direct cell to t. If you decompile definitions using these Words, you will
see that they compile mov instructions.

 Assembler

 MyForth 77

movbc and movcb

Use movbc to move a bit into the carry bit; use movcb to move a bit from carry
into a bit address.

Here is an example:

:m @P2.3 3 .P2 movbc m; \ move bit 3 of port 2 into carry

Note that, although the definition is a macro defined using the assembler, it is not
bracketed. This is because movbc and movcb are not MyForth Words and thus
are found in the Host vocabulary. When executed by the Host, like all assembler
definitions, they compile assembly language statements into the Target image.

You could put the “3 .P2 movbc” sequence within brackets to emphasize that this
is an assembly language definition.

[swap]

Use [swap] to swap nibbles in t: it is equivalent to the “swap A” assembly
language statement. Because [swap] is not a Target Word, there is no need to
include it within brackets unless your intent is to clarify your coding.

nop

Use nop to compile a “no operation” instruction in the Target’s image. Here is a
simple example to pulse a port pin:

:m pulse-P2.3 [3 .P2 set nop nop nop nop nop 3 .P2 clr] m;

Note that the brackets are optional.

 Assembler

78 MyForth

inc and dec

Use inc and dec to increment or decrement the contents of a direct cell or
register. For example:

: bump-R7 (- n) $aa # 7 #! 7 inc 7 #@ ;

Executing bump-R7 will leave $ab on the stack. Note that it is not necessary to
bracket “7 inc” because inc is not a Target definition. Of course, you could code
the definition as follows to emphasize the in-line assembly sequence:

: bump-R7 (- n) $aa # 7 #! [7 inc] 7 #@ ;

 MyForth 79

6

Boot Loader

Overview

The information in this chapter is primarily provided as a reference and for those
wanting to understand more about the operation of MyForth. In normal operation
you seldom need to concern yourself with the Boot Loader and its operation.

Purpose

The Boot Loader's sole purpose is to download the MyForth system definitions
and your application code into the processor’s flash memory. After it does that, it
is no longer used.

Note that the Boot Loader does not execute commands interactively with the
user. This function is performed by the combination of the tethering code on the
Target and the Forth routines on the Host. The Boot Loader is invoked with the d
command to download a compiled program.

Advantages

The primary advantage of using a Boot Loader is that it allows you to program
the Target via the serial port instead of programming the Target using the Silicon
Laboratories EC2 Serial Adapter and the Silicon Laboratories IDE. This
simplifies the hardware needed for normal programming operations and also
reduces the number of operations needed to program your chip.

 Boot Loader

80 MyForth

Installation

Presently, for all chips except the C8051F12x chips, MyForth uses the AM
Research Boot Loader and assumes it is located at $0000. In the future,
MyForth will have its own Boot Loader that will be compatible with the AM
Research Boot Loader and will also write a Boot Loader in each of its chip.hex
(and chip.bin) program image files. The following describes this future
configuration.

Installation of the MyForth Boot Loader for Silicon Laboratories chips requires the
JTAG download hardware and software furnished with a development system
from Silicon Laboratories or AM Research.

The AM Research Gadget modules support various Silicon Laboratories chips
such as the C8051F300 and C8051F310. The chips on Gadget boards are
furnished the Boot Loader already installed and you can use one of these with
MyForth without any additional programming.

The AMR Development System also has a JTAG loader facility that will write a
Boot Loader in any of the Gadget chips or any Silicon Laboratories chip
connected to a 10-pin program adapter. How to do this is explained in the AM
Research 8051 Reference Manual distributed with the AMR Development
System.

Installation of a Boot Loader via the JTAG interface is adequately covered in the
AM Research Development Manual and is not covered here.

Installation of the Boot Loader using a Silicon Laboratories Development System
requires the following:

1. An EC-2 Serial Adapter connected to a 10-pin JTAG interface connector
on a Silicon Laboratories Target Board (or wired to the JTAG pins of your
own Target processor)

2. Use of the Intel HEX download function of the Silicon Laboratories
Integrated Development Environment (IDE).

The EC-2 and IDE are furnished with Silicon Laboratories development systems.
The use of the IDE’s Intel HEX download function is straightforward: just bring up
the IDE and select the appropriate menu options.

 Boot Loader

 MyForth 81

The MyForth program compiler (executed with the c command), always produces
two files: a binary image file and an Intel HEX file. The Intel HEX file, chip.hex,
contains a complete program image, including the MyForth Boot Loader. To
install the MyForth Boot Loader, is only necessary to download any MyForth
program to your Target using the EC-2 and the IDE.

Once a program is downloaded to the chip via the JTAG interface, the Silicon
Laboratories EC-2 and IDE are no longer needed. Thereafter, the Boot Loader
will download your MyForth programs to the chip via the serial port.

Location

The Boot Loader resides in the first page of flash RAM starting at $0000 and is
only used to load the compiled Target image via the serial port; it is not used
thereafter.

Operation

As mentioned above, the Boot Loader is installed at location $0000. It consists
of a very small amount of code that performs the following:

1. Sets up the serial port and communications rate
2. Re-maps the interrupt vectors
3. Checks to see if there is an active download request from the Host and, if

so, it downloads code from the host over the serial port
4. After downloading or after a timeout period, it jumps to the MyForth

system code and your application

The Boot Loader re-maps the interrupt vectors to Page 1. For most Silicon
Laboratories chips, these will now start at location $200; for the C8051F12x chips
this will be at $400 because of their larger page size.

If you disassemble your code starting at location $200 or $400, you will see a
jump to Cold (the Cold Start vector). Other interrupt vectors may or may not
follow this, depending on which ones your application needs. The MyForth
system code starts immediately after the last interrupt vector. In some cases, if
there are no other interrupts used, this will be immediately after the Cold Start
vector.

 Boot Loader

82 MyForth

Normally, the MyForth system code consists of definitions needed to implement
the tether and a few definitions useful for interactive development (these are
contained in debug.fs and interactive.fs – see the JOB file). Your application
starts after the MyForth system code. For turnkeyed systems, the Cold Start
vector points to the “go” definition for your application. For tethered application
code, the Cold Start vector points to the tethering code (i.e., quit).

You can see all of the above by starting MyForth with the c command and then
disassembling starting at Cold (i.e., see cold). Alternatively, you can use the
decode command to disassemble at location $200 or $400 (e.g., decode
$0200).

Because MyForth uses the AMR Boot Loader, examining the system image
starting at location $0000 will show only $FF in all locations up to location $200
or $400. When MyForth has its own Boot Loader compiled in its binary or hex
download files, you can examine the Boot Loader code by entering decode
$0000.

As mentioned above, your application starts immediately after the MyForth
system definitions. You can see where this is by defining a small test Word and
then disassembling the resulting code with see. If you have compiled a
turnkeyed application, you can examine your application code by entering see
go.

The disassembler will show where your program starts. If your test program
includes calls to routines such emit, you can see where these are located too.

 Boot Loader

 MyForth 83

Overhead

To some, the overhead of the Boot Loader and the debug definitions that
MyForth may optionally load seems wasteful of processor resources. We feel
that the small overhead is worthwhile, considering the following:

1. Interactive Test and Verification - The Forth system Words allow you to
interactively exercise your code. Thus, you can interactively examine the
operation of your new code without relying on a simulator. There is no
substitute for the real machine, especially if you need to examine outputs
at various pins or the behavior of connected hardware. Remember that
you are seldom just verifying the operation of the chip; you are often
verifying its interaction with connected hardware.

2. Code Reliability and Re-Use - All of the routines defined in the MyForth

system are available for use by the programmer, either as Forth Words or
as assembly code.

3. Reduced Program Size - You will notice that your programs do not grow

very fast after a certain point because you are mostly re-using code that is
already written and functioning reliably. This is especially true if you have
factored your application properly so that useful functions are available for
re-use. Thus, the MyForth code is not simply overhead you tolerate to get
the benefits of interactivity; it is a reservoir of powerful routines that can
make your programming much simpler. For non-trivial applications re-use
of code can significantly reduce the size of your application; for small
programs, program size is not an issue.

 Boot Loader

84 MyForth

 MyForth 85

7

Tethered Target

Overview

This chapter describes the communications tether between the Host and Target
processors. Because the tether provides MyForth’s interactive Forth
environment, the following is provided for those who wish to know more about it.

However, it is not necessary to know how the Tether works to perform normal
programming operations.

The source code for the Target interpreter (tethered interpreter) is contained in
tether.fs. The required definitions are few and deceptively simple; here is the
entire listing:

] \ Target Forth
: emit begin 1 .SCON until. 1 .SCON clr SBUF #! ;
: key begin 0 .SCON until. 0 .SCON clr SBUF #@ ;
: ok 7 # emit ;
: number ok key ;
: execute swap push push ;
: quit key emit key key execute ok quit ;

Before examining the above, there is some basic information about tethering that
may help you understand it.

 Tether

86 MyForth

Basic Operation

The Host connects to the Target via a serial port and interacts with it using a
simple protocol that tells the Target what code to execute. Such a system is
usually called a "Tethered" Forth because the Target is tethered to the Host via a
communications link.

With a Tethered Forth, the Host PC performs most of the Target interpreter’s
work. Although it appears to the user that the Forth system is executing on the
Target, most commands are executing on the Host which tells the Target what to
execute. Thus, the Host only communicates to the Target when it needs it to
execute some code.

To implement a tethered Forth, the Target only needs to be able to execute
code at a specified address. Because of the simplicity of this requirement,
the code overhead on the Target is minimal.

execute

The number and function of the commands in a tethered Forth can vary. The
MyForth Target uses only one command, execute, to do the Tether’s heavy
lifting. This command takes two bytes on the Target’s data stack and pushes
them on the Targets return stack in the proper order.

In the code given at the start of the chapter, the semicolon at the end of execute
compiles a ret instruction, as usual. Thus, execute, when it completes, “returns”
to the address just pushed on the return stack. This performs the equivalent of a
jump (not a call) to the specified address. After the code at the address is
executed, it executes a ret, thereby returning to the code following execute.

In the above example, where execute is contained in the definition of quit, the
ok that follows execute will be called. This may seem a bit confusing or weird,
but is worth understanding.

 Implementation 87

 MyForth 87

quit

To get the two execution bytes on the stack, the Target sits in an endless loop,
defined by quit, that looks for execution addresses transmitted from the Host
over the serial link. When these are received, execute jumps to the specified
address.

Examining the code for quit, the sequence “key emit” simply waits for a byte to
arrive from the Host on the serial link and then echos it back. This signals the
Host that the Target is listening for the next address to execute.

When the Host receives the echo, it sends the two address bytes. The sequence
“key key execute” gets the two bytes sent by the Host and jumps to them, as
described above.

The “ok” signals the Host that the Target has executed the code by sending it a
“7.” The quit at the end of quit is a tail recursive call, returning execution back to
the beginning of the quit code (i.e., it is an endless loop).

The definitions of key and emit use the standard 8051 serial port flags and
registers to wait for a character (key) or send a character (emit).

 Tether

88 MyForth

 MyForth 89

8

Standalone Target

Overview

MyForth allows you to install a Forth system on the Target and interact with it
with a dumb terminal. This Standalone Target has the basic features of a Forth
system including an interpreter, a dictionary and stacks. With a Standalone
Target, you can communicate with your application without having a MyForth
system installed on a Host PC.

Thus, a Standalone Target is useful for interacting with a system over a serial
port when a tethered interaction is not practical. These applications would
include control, monitoring and testing of a deployed target.

Installation

To install a Standalone Target, edit config.fs in your project directory so that the
tethered constant is false (zero):

false constant tethered \ Standalone Target

After making the above change, compile and download your application using d,
as you would normally do for a tethered application. Afterward, you can interact
with your application using a dumb terminal at the same baud rate that you used
to download your application (e.g., 9600 or 38.4K baud).

90 Standalone Target

90 MyForth

Operation

Dumb Terminal

To make interactive testing of a Standalone application easier, MyForth provides
a dumb terminal that can be executed from a MyForth command line. This
terminal is optional and is loaded in loader.fs. Of course, you can use another
terminal program, such as Hyperterm, to exercise the Target.

To use MyForth’s dumb terminal, simply type dumb at the MyForth prompt. You
can escape from the dumb terminal with Ctl-C.

Stack

Entering numbers on the Standalone’s stack does not require them to be
followed by a #. This is because there is no need to distinguish between Host
and Target stack operations.

Because of the limited size of the Standalone’s terminal input buffer (tib),
numbers and Words are immediately interpreted after you enter a space or
carriage return. Also, remember that Standalone numbers are only 8 bits wide.
All numbers are assumed to be in decimal; you cannot enter Hex numbers by
prefacing them with a “$.”

To display the Target’s stack, type .s. The Word depth is available to check the
current stack depth.

Words

Forth Words that you have defined in MyForth can be executed by entering them
on the dumb terminal. However, because of the limited size of the Target’s
terminal input buffer, Words must be entered one at a time (you cannot have
multiple entries on a line). Target dictionary entries are stored as the first three
characters of the Word and a count. Thus, it is possible to have name conflicts.
This is usually not a problem, but duplicate names are not flagged as errors: you
must avoid this on your own.

When entering a Word to be executed, pressing the backspace key will abort the
current entry and require you to re-enter the entire Word (or number).

 Standalone Target 91

 MyForth 91

Interpreter

The following provides a very basic description of how the Standalone interpreter
operates, including the structure of the Target’s dictionary.

The Standalone Target’s code is contained in standalone.fs and is also given on
the following page. The descriptions in this chapter are based on this listing.

Basic Definitions

The listing starts off by defining some basic building blocks for character I/O such
as key, emit, echo, space, cr and ok. If you are familiar with Forth, these
Words are no great mystery.

Similarly 2dup, clip, min and max manipulate and clip stack items. These will
not be discussed in detail either, but note that they are all defined in terms of the
MyForth constructs covered in other parts of this manual. In particular, note the
use of the until. and –if in the definition of key, emit and clip.

The three Words to manipulate that data pointer are worthy of note only in that
they are defined with versions beginning with a “bar.” For example, p, which puts
the low and high bytes of the data pointer on the stack, is defined with |p.

In MyForth, whenever a Word begins with a “bar”, it indicates that this is an
“inline” or macro definition. These “barred” definitions just lay down instructions
and are often used within a normal Forth Word to make them callable.

The depth, huh? and ?stack Words perform basic stack checking and abort
functions and do not need much explanation. Note, however, that the stack
pointer is s.

The start of tib, the terminal input buffer, is defined with a constant. It starts just
after the stack and address pointers, S and A.

You may have observed that some Words are defined with”-:” instead of
“:”. These Words are callable by other Words, but their headers are not
compiled on the Target and thus they cannot be executed interactively
from a terminal. Of course, these Words have the advantage of not taking
up any dictionary space on the Target.

92 Standalone Target

92 MyForth

] \ Target Forth
: emit begin 1 .SCON until. 1 .SCON clr SBUF #! ;
: key begin 0 .SCON until. 0 .SCON clr SBUF #@ ;
-: echo dup emit ;
: space BL # emit ;
: cr 13 # emit 10 # emit ;
-: ok space [char o] # emit [char k] # emit cr ;
: 2dup (over) (over) ;
: min 2dup swap
-: clip negate + -if push swap pop then 2drop ;
: max 2dup clip ;
: p |p ;
: @p |@p ;
: @p+ |@p+ ;
\ : depth [SP0 -2 +] # S #@ negate + ;
: depth S #@ invert ;
-: huh? [char ?] # emit cr reset ;
-: ?stack depth -if huh? ; then drop ;
2 constant tib \ begins after S, and A.
-: match (? - ?) @+ @p+ xor ior ; \ 0 if still a match.
-: word 0 # tib # a! match match match match ;
-: ?digit

[char 0 negate] # + -if huh? then -10 # + +if huh? then 10 # + ;
-: number

tib # a! 0 # @+ 3 # min begin swap 10 # (*) @+ ?digit + swap 1-
0=until drop ;

-: find
@p if drop word if drop p+ p+ find ; then invert ; then drop 0 #
here constant dict \ Patch this later with real dictionary.

-: dictionary 0 ##p! ;
-: interpret

p push push a push dictionary find if drop @p+ @p pop a! pop
pop p! push push ; then drop number pop a! pop pop p! ;

-: tib! (c) a push tib #@ 1+ tib #! tib # dup a! @ + 6 # min a! ! pop a! ;
-: 0tib tib # dup a! 0 # dup !+ dup !+ dup !+ dup !+ ! a! ;
-: query 0tib
-: back

key 8 # =if drop cr query ; then BL # max echo BL # xor if
 BL # xor tib! back ; then drop ;

-: quit query interpret ?stack ok quit ;

 Standalone Target 93

 MyForth 93

Quit

The definition of quit is somewhat similar to that of more conventional Forths in
that it is an infinite loop, querying for user input, interpreting or aborting as
appropriate and then returning for more.

The first thing to note about quit is that it is defined using efficient tail recursion
instead of as a begin … again loop. This illustrates another way that MyForth
allows you to loop.

The first thing that quit does may seem a bit strange: it calls query, which simply
clears the tib and falls through to the next definition (i.e., there is no semicolon to
compile a return).

The mystery of query is solved by examining the following definition, back. One
function of back is to restart tib when it encounters a backspace. If back sees a
backspace, it just jumps back to query to start over. Note: pressing backspace
does not remove characters from the tib; it aborts the current entry and requires
the user to re-enter the entire Word. This is much simpler than keeping track of
backspaces.

Assuming that back gets a valid character, it next checks to see if a blank has
been entered. It does this by performing an xor with the entry. If a blank is
entered, then back returns; its job is done and some characters are in the tib,
ready to be interpreted. If the user has not entered a blank to signal the end of
an entry, blank performs another xor to recover the entered character, stores it in
tib and returns for more characters.

Following sections describe the processing of the characters captured at tib.

After the input characters are processed, the result is one of the following: 1. A
jump to the Word at tib, 2. A number put on the Target’s stack resulting from the
execution of number, or 3. A stack error. The “found” and “number” actions are
discussed below.

If there is a stack error (e.g., as a result of processing by number), the stack
pointer will be positive. The execution of depth fetches the stack pointer and
inverts it to form a flag for –if. Thus, a stack error will result in the execution of
huh?. This Word simply emits a question mark and jumps to the reset vector.
The reset vector is defined as location zero at the end of misc8051.fs.

If there are no stack errors (i.e., a Word was executed or a number was put on
the Target’s stack), then an “ok” is sent to the Host to signal successful execution
and tail recursive quit is executed to continue the indefinite quit loop.

94 Standalone Target

94 MyForth

Interpret

Interpret looks a little intimidating, but is really quite simple. The first few Words
just save the data pointer (p) and address register (a) prior to loading the data
pointer with the address of the start of the Target’s dictionary.

Note that the data pointer is apparently zeroed. But, the address of the start of
the dictionary is patched after your application is compiled. To see how this is
done, refer to the job.fs file. At the end of it you will see the following:

tethered [if] \ For interactive testing, entering numbers.
 :m # number emit-s m;
 :m ## [dup 8 rshift $ff and swap $ff and] # # m;
[else] headers] here [dict org heads ##p! org]
[then]

The part we are interested is the [else] condition that is executed if the
application is standalone (i.e., not tethered). The “headers” copies the dictionary
from its separate address space over to the end of the dictionary, setting the
value of heads to point to the beginning of the dictionary. Then “here” is invoked
put the Target’s dictionary pointer on the stack for later restoration. The “dict org”
phrase sets the Target image compilation address to the address at which we
previously compiled the “0 ##p!” instruction. The “heads ##p!” recompiles (and
over writes) the instruction at that address using the correct address of the start
of the dictionary. Finally, “org” restores the Target’s compilation pointer to the
address that it had before performing the dictionary patch.

The interpret Word next uses find to find a potential dictionary entry. The
operation of find is explained below. Assuming that a dictionary entry is found,
DPTR (p) points to the byte immediately following the found header. When
interpret executes @p+, it fetches the first byte at the address pointed to by
DPTR (p) and also increments the data pointer to the following byte. This byte is
the second byte of the execution address for the definition just found. The @p
instruction gets this byte and puts it on the stack together with the previous byte;
at this point the execution address of the found Word is on the Target’s stack.

Next, the phrase “pop a! pop pop p!” restores the address and data pointers that
were saved at the start of the definition. Last, interpret pushes the execution
address of the found Word on the return stack and executes ;. This compiles a
ret instruction that will result in a jump to the execution code for the found
definition.

 Standalone Target 95

 MyForth 95

If a match is not found in the dictionary for the characters at tib, then number is
executed to try to convert the characters to a number. Following this attempt, the
address and data pointers are restored.

find

The find Word searches through the Target code until it finds a non-zero value.
During the search, the data pointer is incremented. When it finds a potential
dictionary entry, it drops the value and proceeds to word. First, word puts a
zero on the stack to act as a “found” flag and loads the address of tib into the
address (a) register; this will be used to fetch characters from tib that will be
used by match.

To see if the dictionary candidate matches the contents of tib, match performs
an xor; if the items match, the value will be zero. This value is “ored” into the top
of stack to maintain the “found” flag. The match is performed four times to
coincide with the four-cell size of a dictionary entry. When all four matches are
complete, the “found” flag (top of stack) will be zero if a match was found or non-
zero if there was no match.

96 Standalone Target

96 MyForth

 MyForth 97

9

Examples

Overview

The examples described in the following sections are included with the MyForth
distribution. They show typical MyForth applications and show how various
Words and macros are used.

The following also explains how the various Words, macros and constructs in the
application work. The explanations can be a bit long-winded for more
experienced users but are primarily intended for neophytes taking their first look
at MyForth application code.

The first application, an LCD driver for the C8051F300 chip, provides more detail
than the second, a random sequence generator for the C8051F120 chip.

Thus, if you are trying to learn about MyForth, read the first example and then
proceed to the second. If, however, you are just reviewing typical applications,
you can start with either example or with the source code itself.

If you elect to start with the source code, the detailed coverage in the examples
may be able to explain coding that you don’t understand.

98 Examples

98 MyForth

LCD

Project Description

The LCD application is contained in the ..\myforth\projects\lcd directory and is
coded for a Silicon Laboratories (SL) C8051F300 chip. The code is very basic
and you will undoubtedly want to expand it for LCD display with your application.

The code assumes you will use the nibble mode interface to the chip. The code
was converted from a working application in AMR Forth. The AMR application
file, amrlcd.fs, is included in the LCD project directory.

Hardware

The application hardware was prototyped on an AM Research Development
Board with a 300 Gadget plugged into the processor slot.

The connections to the Gadget were made to a 16-position single row IDC pin
header, using wire wrap wire. The LCD module is a standard assembly with a
16-pin in line connector at one edge. An IDC socket header was soldered to the
pads at the edge of the LCD assembly so that it mates with the header on the
AMR development board.

An alternate approach to prototyping the hardware would be to use an SL Target
Board for the processor and its serial interface to the Host. The IDC header
interface to the LCD module can be wired on an AB1 Applications Prototyping
board that mates with the Target Board via a standard 41612 DIN connector.

If you use this approach, you will have to download a Boot Loader to the Target
Board using the EC2 Serial Adapter and the SL IDE. Alternatively, you can use
the AMR Development board to download to the SL Target Board, as described
in the AMR Manual. Yes, this is a bit like carrying coals to Newcastle, but you
may want to use a processor not supported by AMR to drive your LCD.

To establish a Boot Loader, you can download the chip.hex file from the LCD
project directory. This image file not only contains the Boot Loader, but also the
working LCD application.

Note that all MyForth image files contain not only your application code,
but also a Boot Loader image.

 Examples

 MyForth 99

The source code for the LCD application is contained in lcd.fs in the LCD project
directory. The LCD pin assignments are given in the comments at the beginning
of the file, as follows:

\ lcd.fs

\ Nibble mode LCD driver for C8051F300 -- 22Aug06 cws/rjn
\ based on working driver written in AMR Forth, amrlcd.fs

0 [if]

LCD PORT 300 FUNCTION

PIN PIN
--- ------- ----- -------------------------------------
 1 ---- 11 GND
 2 ---- +5 Volts (used 78L05 on Gadget MB)
 3 ---- Contrast Voltage 0-5 Volts (10K pot)
 4 P0.7 10 RS - Instruction Register Select
 5 GND 11 R/W - H=READ L=WRITE Registers (GND)
 6 P0.6 9 E - Enable P0.6
 7 GND 11 byte DB0
 8 GND 11 byte DB1
 9 GND 11 byte DB2
10 GND 11 byte DB3
11 P0.0 1 byte DB4 - nibble DB0
12 P0.1 2 byte DB5 - nibble DB1
13 P0.2 4 byte DB6 - nibble DB2
14 P0.3 5 byte DB7 - nibble DB3

[then]

100 Examples

100 MyForth

Navigation

Although the following sections explain each part of the LCD application using
actual code from the application source, you may want to examine the code
directly. If you haven’t used Vim to navigate source code files before, this will
help you become more proficient in doing it.

To examine the application code, we suggest you start by bringing up a
Command Window, and changing to the ..\MyForth\projects\lcd directory and
entering: e job.fs. This will bring up Gvim and display the job.fs file. The “e”
command is not covered elsewhere in the manual because it is just a batch file
shortcut to typing “gvim <filename>” when editing a file.

Another way to start up Vim editing job.fs, is to enter: e –t job.fs. This brings up
Vim with the “-t” option. This option specifies that the following Word should be
looked up in the tags file and the editor started up with the file that contains it.

In this case, the definition of the cold start vector is used because it is contained
in the job.fs file. Although in this example it is just as easy to start up without
using the “-t” option, you will often want to start up this way because you will be
interested in changing or examining a particular Word or macro.

Once you have started up in the Job file, place the cursor over the first character
in “lcd.fs” and type “gf” (go file). This will bring up the lcd.fs file that you will be
examining. To go back to the Job file, just enter “Ctrl-6” (we like to think of it as
Ctrl-^ for ‘go up to the previous file’). We recommend starting up in the job.fs file
and navigating to the file you want to edit or starting up with the “–t” option if you
just want to change or examine a particular definition or code grouping.

 Examples

 MyForth 101

Inclusion

Nobody wants to be left out. Even relatively minor coding players such as files
defining Special Function Registers need to be included.

Before progressing from the Job file, note that, in addition to including the LCD
application, the Job file also “includes” a file that specifies the Special Function
Registers.

This is typically how you might want to build your application, with minor players
being included in the Job file along with your main application file (e.g., lcd.fs or
main.fs). There is a comment in the lcd.fs source that notes that the SFRs are
included elsewhere. You may recall that the SFR definitions are copied to your
project director when you configure it for a specific processor (i.e., by copying the
contents of the 300 directory to the LCD directory). In fact, you can easily tell
what processor is being used for a project by looking for the SFR file. In the case
of the LCD project, the SFR file is SFR300.fs.

Here is the comment about the inclusion of the SFR file as it appears in the LCD
source:

\ SFR definitions are included in job.fs

Observe that comments appear in blue.

102 Examples

102 MyForth

I/O Configuration

The output pins that will drive the LCD must be set for push-pull operation.

Examining the source below, the first step in doing this is to execute the “left
bracket” Word so the Target’s vocabulary is searched first. This is a bit of “belt
and suspenders” programming because the following definitions are macros and
the “:m” defining Word executes a “]” itself. To see how [, :m and] are defined,
look at the top of compile.fs.

Here is the code to define the I/O:

] \ Target Forth

\ ---------- I/O
\ set all outputs as push-pull
:m push-pull $FF # P0MDOUT ior! m;

:m pins P0 m;
:m dirs P0MDOUT m;

:m .E 6 .P0 m;
:m .RS 7 .P0 m;
: instruction [.RS clr] ;
: data [.RS set] ;

The first thing to observe about the I/O configuration is how the SFR constant,
P0MDOUT, is used with ior!. The # following $FF compiles code in the Target
image that will put $FF on the Target’s stack when push-pull is executed.

The action of P0MDOUT is just that of an ordinary GForth constant: when it
appears in the source, the appropriate constant is put on GForth’s stack. The
ior! consumes this constant from the GForth stack and lays down code in the
Target’s image that will use the $FF on the Target’s stack at run time to
“inclusively or” bits into P0MDOUT. Whew! Got that?

You may wonder why P0MDOUT does not need to be treated specially (i.e., with
a “[…]” pair). After all, it is included within a macro that always sets the default
action to compile into the Target image. Special treatment is not required
because P0MDOUT is not defined in the Target’s dictionary, so the vocabulary
search “falls through” to GForth, where P0MDOUT is found as a constant and put
on the GForth stack.

 Examples

 MyForth 103

This illustrates an important point about examining GForth applications,
particularly those written by Charley Shattuck. The use of brackets may not be
as you would expect. This is because, once thoroughly understood, you can
eliminate some of the unnecessary or explicit context switching.

The use of P0MDOUT is one case: it is understood (by Charley, at least) that any
constant that is not followed by a # will just be put on the GForth stack. Similarly,
any Word not defined in MyForth will “fall through” MyForth’s vocabulary search
and be executed by GForth.

This is the case for almost all assembler Words, with the notable exception of
push and pop: assembler Words are normally GForth definitions that execute to
compile code in the Target’s image. The ior! Word is another example of this
type of Word that GForth executes to compile code in the Target image.

Now that you think you just might understand push-pull, look at the macro
definition for dirs. More confusion: here is a macro with the sole purpose of
putting something on the GForth stack. This illustrates how you can use the
macro’s naming capability to make your code more readable. Remember, if you
are targeting the LCD code for another processor, dirs may refer to a different
SFR.

The definitions of .E and .RS are reasonably straightforward: they use the “dot
port” Words to create macros that refer to specific pins on Port 0.

Finally, we come to some good ol’ MyForth colon definitions! The instruction and
data Words use the left and right bracket to contain assembly language
statements. As mentioned earlier in the manual, you will sometimes see
assembly language statements that are not enclosed within brackets because
the assembly language Words are not defined in MyForth and will “fall through”
to GForth for execution.

You may now wonder how it is possible to know which Words are defined where.
Often, you will “just know” from experience. But, the best way to determine how
to code is to examine the instructions assembled by your definition.

This is the MyForth way: a few simple constructs and lots of code examination.
At first, be prepared to look at a lot of code: it will soon become clear what does
what, how it does it and when. After some experience examining code, you too
will “just know.”

104 Examples

104 MyForth

Delays

Thankfully, there isn’t as much to say about delays as there was about I/O.

The us and ms delay Words are pretty straightforward, using the #for … #next
looping construct to perform nested loops.

Note that the register to be used for looping must be specified before both #for
and its matching #next. Also note that, in us, there is a “6 #” just preceding the
“6 #for” specification. This is just a coincidence: the first 6 is just the number of
times to loop and the 6 before #for is the register we are using for the loop.

The strobe Word uses the assembler to set and clear bits with appropriate delays
in between. The delays were checked out on a scope but are valid only for a 300
chip. A separate project directory, delays, is included with MyForth that allows
you to check the timing of the delay loops. The delays.fs file is also included in
the LCD project directory for reference.

\ ---------- delays
: us (n -)

7 #for
6 # 6 #for 6 #next

7 #next ;

: ms (n -)
7 #for

 100 # 6 #for
81 # 5 #for 5 #next

6 #next
7 #next ;

\ 160 us may be ok at half the value given
: strobe [.E set] 100 # us [.E clr] 160 # us 160 # us ;

 Examples

 MyForth 105

LCD Words

There is not much new to discuss in the definition of the Words that actually
control the LCD. But, it is worth noting the “[$c4] ,” sequence on second line of
the lcd definition. This is an example of how you can just “comma in” an 8051
instruction that is needed, but not used frequently enough to justify inclusion in
MyForth.

In this case, the instruction, $c4, swaps nibbles in t (the accumulator). This is
handy for a nibble-mode LCD driver, but not frequently used otherwise. Actually,
MyForth now provides the [swap] assembly language instruction to do this
(popular demand, no doubt). The application code has been left as originally
coded to illustrate how instructions can be added to your code.

\ ---------- lcd words
\ $c4 swaps nibbles in the accumulator in one cycle
: lcd (c -)

$b0 # pins and! \ output high nibble first
dup $f0 # and [$c4] , pins ior!
strobe
$b0 # pins and! \ now output the low nibble
$0f # and pins ior!
strobe ;

: clear-lcd instruction 1 # lcd data 100 # ms ;

: init-lcd
\ instruction

$30 # pins #! \ RS=0, instruction mode
$cf # dirs ior! \ configure pins as outputs
30 # ms \ power on delay
$03 # pins #! \ initialization pattern
strobe 10 # ms
strobe
strobe
$02 # pins #!
strobe 10 # ms
$28 # lcd 10 # ms
$0e # lcd
$01 # lcd 10 # ms
$02 # lcd
data 10 # ms ;

: init push-pull init-lcd ;

106 Examples

106 MyForth

Strings

The following describes how to output a string to the LCD using the LCD Words
just discussed. The definitions are a bit tricky, but not all that bad.

First, lcd-type takes an address that contains a counted string and outputs it to
the LCD using lcd. The p! stores the address into DPTR and the @p+ gets the
count byte, putting it into t, and increments DPTR.

The “begin … 1 - 0=until drop” loop fetches a byte, increments DPTR (p), outputs
the byte to the LCD (using lcd), subtracts one from the count on the stack and
checks for loop termination (when it decrements to zero). After loop termination,
the loop counter is dropped (this is a peculiarity feature of MyForth).

The macro definition for “ appears a bit frightening, but isn’t all that bad. First, “
parses the text that follows it until it comes to a double quote. When finished
parsing, the location of the string is at here. That address is put on the GForth
stack and then there, the current compilation address in the Target’s image, is
put on GForth’s stack. Then the two addresses are used to place the string in
the Target’s image.

Next, here is executed to put the address of the just-parsed string on the Gforth
stack – for now, just remember that it is on the stack. Next, there is executed to
put the address of the string in the Target image on the GForth stack. This is
then used to advance the Target image pointer past the string so that following
definitions don’t overwrite it. Thus, when “ finishes executing, it leaves a pointer
to the string (in GForth’s space) on the stack.

Now on to string: it executes on the Target, putting the current execution
address on the Target’s stack, adjusting the bytes for correct byte order and
passing the baton to lcd-type for string output.

\ ---------- Strings.
: lcd-type (da) p! @p+ begin @p+ lcd 1- 0=until drop ;

:m " 34 parse here there place here there [c@ 1 +] allot m;

: string pop pop swap lcd-type ;

: greet string " It's MyForth!"

\ Example: init greet

 Examples

 MyForth 107

Random Sequence Generator

Project Description

The PSR project directory contains an application for the SL C8051F120 chip to
simulate a 32-bit shift register with exclusive or feedback to generate a pseudo-
random sequence. The bits are selected to produce a maximum length cycle
(i.e., using bits 18 and 31 will produce a repeating cycle 232-1 long). This code
can run on just about any of the SL chips (or other 8051 processors), with
appropriate changes to the SFR and I/O assignments. However, the 120 chip
was selected for this application because of its high speed.

A Microsoft Word document, PSR.doc, is included in the PSR project directory.
It provides greater detail about the application and oscilloscope photos of the
output that is generated from the 120 chip.

Hardware

The application hardware simply consists of a SL Target Board for the 120 chip
with an oscilloscope attached to pin 6 of Port 1. This can be easily accessed via
the IDC pin headers on the SL Target Board.

As noted above for the LCD project, you may have to download a Boot Loader to
the Target Board using the EC2 Serial Adapter and Silicon Laboratories IDE.

The file to download to the 120 is the chip.hex file contained in the PSR project
directory. As with the LCD application, this file not only contains the Boot
Loader, but also the working PSR application.

Note that all MyForth image files contain not only your application code,
but also a Boot Loader image.

Inclusion

As noted in the LCD description, the Job file “includes” some auxiliary files,
preamble.fs and io.fs. The preamble.fs file defines 120 SFRs and includes
code to start the chip running at 98 MHz. The io.fs file initializes the 120’s
crossbar. The remainder of the application is discussed below.

108 Examples

108 MyForth

I/O

Pin 6 of Port 1 is used to flash an LED. This assignment was chosen because
the SL Target Board provides an indicator LED that can be driven from this pin
and it is readily available for observation on a scope. Pin 7 of Port 1 is a
monitoring output for the sequence generator – when turned on, it toggles once
every time through the psr routine, thus providing a measurement of how fast the
register is being shifted. The macros outbit and clue provide names for these
two bits. The macros +clue and –clue turn the clue bit on and off.

You can see that these definitions do not need to use brackets to set up
compilation for assembly definitions set and clr – they are defined in GForth and
fall through the Target vocabulary search. Refer to the section on set and clr in
the Assembler chapter for more detail.

\ psr.fs

:m outbit 6 .P1 m; \ LED
:m clue 7 .P1 m; \ For timing

:m +clue clue set m; :m -clue clue clr m;
\ :m +clue m; :m -clue m; \ disappear.

Target Byte Allocation

The four bytes used to form the 32-bit shift register are allocated with cpuHERE,
which contains the address of the current pointer to the Target’s RAM. Thus,
sequence points to the four cells to be used as a 32-bit shift register. The
cpuALLOT Word just moves the allocation pointer past the four bytes: they are
initialized elsewhere.

The comments that follow the allocation show the organization of the register,
including the address of the four bytes and the location of the feedback bits.

cpuHERE constant sequence 4 cpuALLOT
\ XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
\ ^ bit 31 ^ bit 18
\ ^ sequence ^ sequence+2

 Examples

 MyForth 109

Seeding

The ?seed Word checks to see of all of the bits in the register are clear and, if
not, re-seeds it with a non-zero constant. The prevents shift register “lock-up.”

In ?seed, the direct cell address of the MSB of the register, sequence, is put on
the stack with # in the usual way and then stored in the address register (NOT
the accumulator!) with a!.

Next, $aa is put in t. The following repeated sequence of “dup !+” stores $aa into
the four sequence bytes indirectly through a. The !+ Word not only stores the
top of stack into the next sequence cell but also increments a so that it points to
the next sequence byte. Perhaps you can now appreciate the use of a and its
auto-incrementing operators to fetch and store data from or to sequential bytes.

As you can see (by executing see ?seed), the operation of ?seed is very
efficient.

\ If all bits are clear, reseed with $aaaaaaaa.
: ?seed

 sequence # a! $aa #
 dup !+ dup !+ dup !+ ! ;

110 Examples

110 MyForth

Shifting

The routine that does the “heavy lifting” for the PSR algorithm is psr. Per the
comment, it shifts the register one bit and handles the “exclusive or” operation on
the two feedback bits. The comments explains most of the code adequately.
You may have noticed the liberal use of brackets in the definition of this macro.
They are primarily used to allow the calculation of addresses in GForth that are
subsequently used to compile Target code that performs operations on these
addresses (e.g., to compile Target code that fetch or store data relative to these
addresses).

The first example of this is the phrase “[sequence 1 +] #@” that calculates the
address of the second byte and puts its contents in t. The “#” in “#@” indicates
that the byte address of sequence+1 on the GForth stack is treated as if it were
followed by a #. The code in #@, when it executes, takes a value off of GForth’s
stack and compiles the appropriate Target code to put the contents of
sequence+1 on the Target’s stack (in t, actually).

The next bracketed sequence contains assembly instructions to move bit 2 of t,
which now contains the contents of sequence+1, into carry. Then, carry is
moved into bit 7 of t. Now everything is set up to “xor” bit 7 of t with bit 31 of the
MSB and shift the result into carry. Note that 2*’ is used to left shift because
carry must be preserved. The “xored” result is output to outbit for observation
on the scope.

The following code shifts the “xored” bit into the beginning of the register and
shifts all of the existing register bits toward the MSB. Again, note the use of 2*’
to ensure the carry is preserved so that it can be used to shift a bit into the LSB
of the next byte in the sequence. The “parened” versions of #@ and #! are used
so that execution isn’t slowed down with unnecessary stack manipulation, as
noted below.

\ Shift once with feedback from bits 18 and 31.
:m psr +clue

 [sequence 1 +] #@ \ Get bit 18.
 [2 .T movbc 7 .T movcb] \ Move it to bit 7 of TOS.
 sequence #@ xor \ xor bits 31 and 18.
 2*' \ Move xored bit into carry.
 outbit movcb
 \ Shift xored bit into sequence.
 [sequence 3 +] (#@) 2*' [sequence 3 +] (#!)
 [sequence 2 +] (#@) 2*' [sequence 2 +] (#!)
 [sequence 1 +] (#@) 2*' [sequence 1 +] (#!)
 [sequence 0 +] (#@) 2*' [sequence 0 +] (#!)
 drop -clue m;

 Examples

 MyForth 111

Monitoring

In addition to hardware monitoring, you can observe the operation of psr with
.psr.

The .psr code uses h., u. and d. to display the contents of the bytes forming the
32-bit register. These display Words are very handy in displaying the results of
your coding.

\ View current shift register
: .psr cr

 [sequence 0 +] #@ h.
 [sequence 1 +] #@ h.
 [sequence 2 +] #@ h.
 [sequence 3 +] #@ h.
 space
 [sequence 0 +] #@ u.
 [sequence 1 +] #@ u.
 [sequence 2 +] #@ u.
 [sequence 3 +] #@ u.
 space
 [sequence 1 +] #@
 [sequence 2 +] #@ d.
 ;

\ Note that #@ and #! push and pop the data stack, but
\ (#@) and (#!) assume the top of stack is already free to be used, so you
\ don't need to push or pop.

112 Examples

112 MyForth

Initialization

The psr! Word allows you to store a specific value in the register. Again, the use
of a and the auto-incrementing indirect store operator simplifies the task.

\ Load a seed value in the shift register.
: psr! (n1 n2 n3 n4 -) sequence # a! !+ !+ !+ ! ;

The 0psr Word just puts four zeroes on the stack, loads them into the register
bytes using psr! and uses ?psr to load $aa into all bytes.

: 0psr 0 # dup dup dup psr! ?seed ;

The register is initialized for application startup with init. It uses 0psr to load $aa
into the register bytes and then shifts the register 256 times to get a good starting
value. Note that Register 7 is used for the #for … #next loop.

: init 0psr 0 # 7 #for psr 7 #next ;

The Word t has been coded to test the operation of the algorithm interactively
from the Host. It uses .psr to display the result of shifting the register 13 times.

: t 13 # 7 #for psr 7 #next .psr ;

Execution

The “go” Word starts the execution of the application, initializing it and then
executing psr in an endless loop. For a Turnkey application go is the default
startup Word. To configure the application for Turnkey operation, change the
definition of startup in job.fs so that the version ending in “go” is used (it is
normally commented out).

: go init-xbr 0psr begin psr again

Finally, there are two definitions to toggle the application’s port pins so that you
can verify that the hardware is working. You should be able to toggle the status
LED with ~P1.6 (toggle P1.6).

: ~P1.6 6 .P1 toggle ;
: ~P1.7 7 .P1 toggle ;

 MyForth 113

Appendix A

Listings

 Appendix A: Program Listings

114 MyForth

 Appendix A: Program Listings

 MyForth 115

\ config.fs

true constant tethered \ Type of interpreter

\ $200 constant start \ Reset vector. Bootloader at $0000.
$400 constant start \ Reset vector. Bootloader at $0000.
\ 0 constant start \ Reset vector.
\ $8000 constant start \ Reset vector. RAM at $8000.

\ $203 constant rom-start \ Start of code, no interrupts reserved.
$403 constant rom-start \ Start of code, no interrupts reserved.
\ $03 constant rom-start \ Start of code, no interrupts reserved.
\ $8003 constant rom-start \ Start of code, no interrupts reserved.

$10000 constant target-size

\ Pick downloader for your microcontroller.
: downloader (-)
\ s" download-ADuC.fs"
 s" download-cygnal.fs"
\ s" download-oldamr.fs"
 ;

 Appendix A: Program Listings

116 MyForth

\ job.fs (typical example)

\ --- Customize first --- /

\ ADuC841
\ 220 constant default-TH1
\ target-image rom-start 0 fill \ nop
\ :m init-serial
\ $52 # SCON #! default-TH1 # TH1 #! $80 # PCON ior!
\ $20 # TMOD #! 6 .TCON set m;

\ amrGadget
:m init-serial m; \ Done by the bootloader.

\ Choose an interpreter.
true value tethered
tethered [if]
 include tether.fs
[else] include standalone.fs
[then]

\ --- Then load the application --- /
include debug.fs \ Comes before the application, useful tools.

include preamble.fs \ 120 Boot Loader
include io.fs \ 120 xbar
include spi120.fs \ fast hardware SPI
include dac120.fs \ 12-bit DAC
include main.fs \ main application

include interactive.fs \ Should come _after_ application for efficiency.

\ --- Finally patch the reset vector --- /

\ Turnkey or interactive.
\ start interrupt : cold stacks init-serial go ; \ Turnkey
start interrupt : cold stacks init-serial quit ; \ Interactive

tethered [if] \ For interactive testing, entering numbers.
 :m # number emit-s m;
 :m ## [dup 8 rshift $ff and swap $ff and] # # m;
[else] headers] here [dict org heads ##p! org]
[then]

 Appendix A: Program Listings

 MyForth 117

\ loader.fs

0 [if]
Copyright (C) 2004-2006 by Charles Shattuck.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For LGPL information: http://www.gnu.org/copyleft/lesser.txt

[then]

only forth also definitions
: nowarn warnings off ; : warn warnings on ; : not 0= ;
nowarn

include ansi.fs \ Part of Gforth.
warn
variable colors
: in-color true colors ! ;
in-color
: b/w false colors ! ;
: color (n -) create , does> colors @ if @ >fg attr! exit then drop ;
red color >red
black color >black
blue color >blue
green color >green
cyan color >cyan

 Appendix A: Program Listings

118 MyForth

\ include vtags.fs use-tags
include tags.fs \ part of GForth
include config.fs
include compiler.fs
include saver.fs
include dis5x.fs
downloader included

\ Forth primitives.
include misc8051.fs
rom-start org

\ This is the application.
include job.fs

report
save
[.(Host stack=) .s cr

 Appendix A: Program Listings

 MyForth 119

\ misc8051.fs

0 [if]
Copyright (C) 2004-2006 by Charles Shattuck.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For LGPL information: http://www.gnu.org/copyleft/lesser.txt
[then]

nowarn

: hello ." Talk to the target " ;
' hello is bootmessage

variable talks 0 talks !
: talking true talks ! ;

\ ----- Virtual Machine ----- /
\ Subroutine threaded.
 0 constant S \ R0 = Stack pointer.
 1 constant A \ R1 = Internal address pointer.
$e0 constant T : .T T + ; \ Acc = Top of stack.
\ DPTR = Code memory address pointer, aka P.
\ B is used by um*, u/mod, and over, not preserved.

 Appendix A: Program Listings

120 MyForth

\ misc8051.fs

\ ----- 8051 Registers ----- /
$82 constant DPL $83 constant DPH
$98 constant SCON : .SCON SCON + ;
$99 constant SBUF
$80 constant P0 : .P0 P0 + ;
$90 constant P1 : .P1 P1 + ;
$a0 constant P2 : .P2 P2 + ;
$b0 constant P3 : .P3 P3 + ;
$81 constant SP
$d0 constant PSW : .PSW PSW + ;
$88 constant TCON : .TCON TCON + ;
$89 constant TMOD
$8a constant TL0 $8b constant TL1
$8c constant TH0 $8d constant TH1
$8f constant PCON
$a8 constant IE : .IE IE + ;
$b8 constant IP : .IP IP + ;
$f0 constant B : .B B + ;
\ $fd constant SP0 $80 constant RP0
$100 constant SP0 $80 constant RP0

\ ----- Subroutines ----- /
\ : clean begin key?-s while key-s drop repeat ;
: listen begin key-s dup 7 - while emit repeat drop ;
: (talk) (a -) (clean) 0 emit-s key-s
 drop dup $ff and emit-s 8 rshift $ff and emit-s ;
\ Enabling the '[char] | emit' tags results coming from target.
\ Words executed only for the host won't do that. A debugging aid.
: talk (a -) >red ([char] | emit) (talk) listen >black ;

:m call (a -)
 hint
 [dup $f800 and] here [2 + $f800 and = if
 dup 8 rshift 32 * $11 +] , , [exit
 then $12] , [dup 8 rshift] , , m;

:m -: (-)
 [>in @ label >in !
 create] here [, hide
 does> @ talks @ if talk exit then] call m;

:m : (-) -: header m;

 Appendix A: Program Listings

 MyForth 121

\ misc8051.fs

:m ;a (-)
 edge c@-t $1f and $11 = if
] here [2 - dup c@-t $ef and swap c!-t exit
 then] $22 , m;

:m ;l (-)
 edge c@-t $12 = if
 $02] here [3 - c!-t exit
 then] $22 , m;

:m ; (-)
 edge here [2 - = if ;a exit then]
 edge here [3 - = if ;l exit then]
 $22 , m;

\ ----- Assembler ----- /
[\ These are 'assembler', not 'target forth'.
: interrupt (a -)] here swap org dup call ; org [;
: push $c0] , , [; : pop $d0] , , [;
: set $d2] , , [; : clr $c2] , , [; \ bit
: setc $d3] , [; : clrc $c3] , [; \ carry
: toggle $b2] , , [; : reti $32] , [;
: nop 0] , [;
: inc dup 8 < if $08 +] , [exit then $05] , , [; \ Rn or direct
: dec dup 8 < if $18 +] , [exit then $15] , , [;
: add dup 8 < if $28 +] , [exit then $25] , , [;
: addc dup 8 < if $38 +] , [exit then $35] , , [;
: xch dup 8 < if $c8 +] , [exit then $c5] , , [;
: ##p! $90] , [dup 8 rshift] , , [;
\ : mov $85] , swap , , [;
: mov dup 8 < if $a8 +] , , [exit then
 over 8 < if swap $88 +] , , [exit then
 $85] , [swap] , , [;
: movbc $a2] , , [; \ Move bit to carry.
: movcb $92] , , [; \ Move carry to bit.
: [swap] $c4] , [; \ swap nibbles

 Appendix A: Program Listings

122 MyForth

\ misc8051.fs

\ ----- Conditionals ----- /
:m then hide here [over - 1 - swap] c!-t m;
:m cond hide , here 0 , m;
:m if $60 cond m; :m 0=if $70 cond m;
:m if' $50 cond m; :m 0=if' $40 cond m;
:m if. $30 , cond m; :m 0=if. $20 , cond m;
:m -if 7 .T if. m; :m +if 7 .T 0=if. m;
:m begin here hide m;
:m end [dup >r 1 + - r> c!-t] hide m;
:m until if end m;
:m 0=until 0=if end m;
:m until. if. end m;
:m 0=until. 0=if. end m;
:m -until -if end m;
:m again call ; m;

\ ----- Stack operations ----- /
:m nip [S inc] m;
:m drop hint $e6 , nip m;
:m dup S dec $f6 , m;
:m swap $c6 , m;
:m (over) $86 , B , dup $e5 , B , m;
:m 2drop nip drop m;

\ ----- Optimizing ----- /
\ The hint helps #, doesn't hurt anything else?
:m ?dup (- ?)
 edge here [2 - - if] hint dup [exit then
 edge @-t $e608 = if
 -2] allot here [there 2 erase exit
 then] hint dup m;

:m ?lit (- ?)
 edge here [4 - - if 0 exit then
 edge @-t $18f6 =] edge [2 + c@-t $74 = and if
] here [1 - c@-t -4] allot here
 [there 4 erase -1 exit
 then 0] m;

:m =if ?lit [0= if abort then] $b4 , cond m; \ Does literal = T?.
:m <if =if then if' m; \ Is T <= literal?.
:m =until =if end m;
:m <until <if end m;

 Appendix A: Program Listings

 MyForth 123

\ misc805

\ ----- More stack operations ----- /
:m (#) $74 , , m; :m # ?dup $74 , , m;
:m ## [dup] # [8 rshift] # m;
:m ~# [invert] # m;
:m push [T push] drop m; :m pop ?dup [T pop] m;
:m SP! $75 , S , , m; :m RP! $75 , SP , , m;
:m stacks SP0 SP! RP0 RP! m;

\ ----- Arithmetic and logic ----- /
:m 1+ $04 , m; :m 1- $14 , m;
:m 1u+ $06 , m; :m 1u- $16 , m;
:m invert $f4 , m; :m negate invert 1+ m;

:m logic (opcode) [>r] ?lit [if r>] , , exit [then r>] 2 + , nip m;
:m + $24 logic m;
:m +' $34 logic m;
:m ior $44 logic m;
:m and $54 logic m;
:m xor $64 logic m;

\ Don't use # after the SFR, a special case.
:m logic! (opcode) [>r] ?lit [if]
 [r>] , [swap] , , [exit then r> 1 -] , , drop m;
:m ior! $43 logic! m;
:m and! $53 logic! m;
:m xor! $63 logic! m;

:m (u/mod) swap $86 , B , $84 , $a6 , B , m;
:m (um*) $86 , B , $a4 , swap $e5 , B , m;
:m (*) ?lit [if] $75 , B , , $a4 , [exit then]
 $86 , B , nip $a4 , m;
:m 2*' $33 , m; :m 2* clrc 2*' m;
:m 2/' $13 , m; :m 2/ [7 .T movbc] 2/' m;

 Appendix A: Program Listings

124 MyForth

\ misc8051.fs

\ ----- Memory access ----- /
:m (#!) [dup 8 < if $f8 +] , [exit then] $f5 , , m; \ No drop.
:m #! ?lit [if
 over 8 < if swap $78 +] , , [exit then]
 $75 , [swap] , , [exit
 then] (#!) drop m;

:m (#@) [dup 8 < if $e8 +] , [exit then] $e5 , , m; \ No dup.
:m #@ ?dup (#@) m;

:m a ?dup $e9 , m;
\ Use of A is not reentrant, push and pop where needed.
:m a! ?lit [if] $79 , , exit [then] $f9 , drop m;
:m @ ?dup $e7 , m;
:m @+ @ $09 , m;
:m ! $f7 , drop m;
:m !+ ! $09 , m;

:m #for (direct -) #! begin m;
:m #next (direct -) [dup 8 < if] $d8 or cond end exit [then]
 $d5 , cond end m;

:m |p ?dup $e5 , DPL , dup $e5 , DPH , m;
:m |@p dup $e4 , $93 , m;
:m p! $f5 , DPH , drop $f5 , DPL , drop m;
:m p+ $a3 , m;
:m |@p+ |@p p+ m;
:m (!x) $f0 , m;
:m !x (!x) drop m;
:m !x+ !x p+ m;
:m @x ?dup $e0 , m;
:m @x+ @x p+ m;

0 org : reset

:m see ' >body [@] decode m;

 MyForth 125

Appendix B

Commands & Files

 Appendix B: Commands and Files

126 MyForth

 Appendix B: Commands and Files

 MyForth 127

Command Description

c Execute from a Command Prompt -- Compiles an application

contained in job.fs. Produces chip.bin and chip.hex image
files

d Execute from a Command Prompt -- Downloads a compiled
application to the Target processor.

decode <addr> Execute from a MyForth prompt -- Decompiles starting at the
specified address. Hex numbers must start with a “$” (or “\$”
for Linux users).

see <word> Execute from a MyForth prompt – Decompiles the specified
Word, line by line. Use the space bar or any key but escape
to display the next line. Use q or Esc to stop the listing.

sees <n> <word> Execute from a Command Prompt after compiling your
application with c or d – Decompile n lines of specified
Word.

n This is an alias for next. When used in the context of the
see or decode decompilers, it will display the next line of
decompilation. Any key except q and Esc will also display
the next line.

 MyForth 128

File Name Description

config.fs Contains configuration information for your application. You

must manually edit this.
job.fs Contains the definitions and files to be included to make up

your application. This is the file compiled when you execute
the c or d commands.

main.fs By convention, this is the main application file included by
job.fs. This file is optional. It is commonly used to contain
the bulk of your application. You can load your application
using job.fs without a reference to main.fs.

chip.bin Contains the compiled image of your application
chip.hex Contains an Intel Hex representation of chip.bin
tags.log Contains tag names for Forth definitions and their defining

files that can be used with editors such as Vim or EMACS to
go to definitions from the text editor (e.g., placing the cursor
on the word and pressing “CTL-]” in Vim). For use with VIM
(highly recommended), a reference to this file must be put in
the Vim program directory, as described in the Editor
section.

ansi.fs ANSI terminal Word definitions for GForth (used for coloring,
etc.)

 MyForth 129

Appendix C

Vim Basics

 Appendix C: Vim Basics

130 MyForth

 Appendix C: Vim Basics

 MyForth 131

1. For Windows users, the normal cut, copy and paste shortcuts apply:
 Ctrl-C Copy highlighted text
 Ctrl-V Paste copied or deleted text
 Ctrl-X Cut copied text
 Ctrl-A Highlight entire document
 Shift-End Highlight text from cursor to end of line

 The Page Up, Page Down, Delete, Insert, Home and End work the

same as in Windows.

2. You can use the GVim pulldown menus to perform editing or to see the
 equivalent GVim commands for various menu options
 (e.g., :w for save on the File menu)

3. There are three GVim modes (takes some getting used to):
 INSERT use this to insert text. It is invoked with the "i" or "a"
 commands. It is also invoked automatically -- check to see
 if you are in insert mode by looking for "-- INSERT --" at
 the bottom left of the display. TO GET OUT OF THE INSERT
 MODE, PRESS ESCAPE!
 EDIT This is the mode when the cursor is not at the bottom of the
 display or when "-- INSERT --" is not displayed at the bottom
 left of the display. In the edit mode, you can use editing
 and navigation commands such as "10gg" to go to line 10.
 COMMAND You invoke command mode by typing ":" in the EDIT mode.
 When you are in the command mode, the cursor will be at the
 bottom left of the screen and the line will begin with a
 colon. TO GET OUT OF THE COMMAND MODE, PRESS

ESCAPE.

================ SPECIAL CHARACTERS, ETC. ===================
$ last line in file, end of current line
1,$ range from first line to last line
% all lines in file (same as 1,$)

====================== DISPLAY ==============================
:split <file> split window, specified file in new window
:split . split window, show file/directory tree
:split split window, Windows file selector

 Appendix C: Vim Basics

132 MyForth

========================= EDITING ============================
dd delete [count] lines into register x (dd - del. current line)
ESC return to normal mode
gf goto file under cursor
a insert text after cursor (starts insert mode)
i insert text before cursor (starts insert mode)
p insert (place) text from buffer (use with y to cut/paste)
. repeat last command, show file/directory list
u undo last change
x delete character under cursor
yy (yank) copy current line to buffer (use with p to cut/paste)

======================= COMMANDS ===========================
:e open file
:w save current file
:wqa save and exit
:qa! quit without saving
:sav save as
:s substitute (e.g., :1,200s/hello/goodbye or :%s/hi/bye)
:! <cmd> execute the specified shell command (e.g., ":! dir")
ZZ write current file to disk and exit (caps are important)

====================== NAVIGATION ===========================
<line>gg goto line
w move forword word

/<str> search forward for specified string
?<str> search backward for specified string
Note: use "\" before special characters in the search string.

======================= OPTIONS =============================
:set <option>

nu -OR- number show line numbers
nonu no line numbers
autoindent indent to match previous line
ignorecase ignore case on searches
shiftwidth=width width of columns when using autoindent
tabstop=spaces tab stop size
wrapscan search from beginnig of file when end is reached

 Appendix C: Vim Basics

 MyForth 133

===================== EXAMPLES =============================
:1,$s/x/y/g substitute y for every first instance of x in lines 1 to last
:s/x/y substitute y for first instance of x in current line
:%s/x/y/gc substitute y for x global, with confirm

 Appendix C: Vim Basics

134 MyForth

