
VolksForth Renovation:
State Aug 2023

Philip Zembrod <pzembrod@gmail.com>
https://github.com/forth-ev/VolksForth

mailto:pzembrod@gmail.com

Overview

● Motivation & planned changes
● Fowler & the art of refactoring

○ Tests
○ Automation

● Sequence of change steps
● Platforms

○ C64/C16, MSDOS, CP/M, AtariST
● Merging forks
● Further plans

Motivation and planned changes

● Improved build platform for cc64
○ capable of stream sources
○ kernel as small as possible

● ANS

Planned changes:

● Implement stream source handling
● Make block words optional
● Merge again the forked code bases of C64/C16, AtariST, CP/M, MSDOS
● Migrate unified code base towards ANS

Safety net for changes

● Hayes tester + ANS test suite
○ Hacky ANS adaptation via

100 lines of shim code
○ Comment out tests where needed
○ Relevant tests: Core, CorePlus,

CoreExt, Double, Block
● Log file output

○ Diff against golden files

: cells 2* ;
: s" [compile] " compile count ;
 immediate restrict
: c" [compile] " ;
 immediate restrict
: [char] [compile] ascii ;
 immediate
: char [compile] ascii ;
: 2>r r> -rot swap >r >r >r ;
: 2r> r> r> r> swap rot >r ;
: 2r@ r> r> r> 2dup
 >r >r swap rot >r ;
: again [compile] repeat ;
 immediate restrict
: compile, , ;
: defer! >body ! ;
: defer@ >body @ ;

Automation makes code malleable

● Gnu-Make
○ + powerful flexible rules
○ - cryptic syntax

● emulators …
○ VICE, x16emu, dosbox, RunCPM (, Hatari)

● … made scriptable with tricks
○ If guest code deletes file NOTDONE, then host code terminates VICE &. x16emu
○ Added options -i and -o to RunCPM

● ascii2petscii, petscii2ascii, unix2dos, dos2unix
● target compile make rules

○ with log file to check build success

Boundary conditions

● tests as safety net for all changes
● Hayes & ANS tests are stream sources
● stream INCLUDE uses TIB.
● original TIB length: 80 char
● tests beyond Preliminary and Core are longer than 80 char
● automatic verification of test and target compile runs

Order of steps per platform (all tests & compiles via make)

● .(Hello World) in emulator
● log file output
● implement INCLUDE.fb

○ with helloworld test
● tests: preliminary.fth & core.fth
● target compile from kernel.fb

○ tests: preliminary & core
● convert kernel.fb -> kernel.fs

○ initially one file
○ split into smaller files later

● migrate target compile .fb -> .fs
○ stepwise starting with loadscreen
○ tests: preliminary & core

● enlarge TIB to 126 char
● remaining tests

○ coreplus, coreext, double, block
● integrate INCLUDE in kernel.fs

○ tests: all
● extract block words from kernel

○ some words become deferred
○ tests: all respectively all except block

C64/C16

● first platform
○ first INCLUDE
○ “steps per platform” sequence is established
○ ans-shim.fth
○ 314 of 3431 lines of test code commented out via \vf

● emulator VICE
○ input via --keybuf
○ terminated by host, when guest signals by deleting a certain file
○ ASCII-PETSCII

● all target compiles on C64 (x64 is the fastest VICE)
○ self-hosted C16 target compile exists as proof-of-concept

Detour Commander X16

● low-hanging fruit due to similarity to C64
○ shared code base - hence 6502, not 65C02

● emulator x16emu
○ input via -bas (“type in Basic program”)
○ terminated by host, like VICE

● no block words
● cc64 is first self-hosted C compiler on X16

MSDOS

● emulator dosbox
○ input via -c <command1> -c <command2> ...
○ terminated via -c exit

● INCLUDE exists for .fb files
○ file type detection for block and stream files

● second pass through “steps per platform” sequence
○ more code reshuffling needed to extract block words than for C64

CP/M

● emulator RunCPM
○ enhanced: flags for piping console I/O to/from files
○ terminated via exit-command

● done:
○ INCLUDE.fb
○ preliminary and core test via make

● next:
○ enable nested INCLUDE
○ target compile

AtariST

● next in line
● emulator Hatari

○ good press re scriptability :-)

Merging of platform forks (planned)

● extract Forth code to common/
● keep code words out of common/

○ too many (6502 (8080 (8086 (68k) would be messy

● open question: how to avoid collisions like
code dup … end-code

and
: dup … ;

● ideas:
(?ifndef dup : dup … ; ?)
?: dup … ;

x86-Linux

● planned after merging of code
● great as target compiler platform
● great as learning tool
● writing of ELF binary already researched

Thank you!

Any questions?

