Program
Debugging

SVFIG
Aug. 28, 2021
Bill Ragsdale

The Need

Here are fourteen tools to use for testing. | certainly
don't use them all every time. Just pick and choose.

Built on Win32Forth.
Draws on ‘see’, ‘view’ and ‘debug’.

Onward . .

Fourteen Tools To Success

. Use command line input.

. Write as a definition; test compilation.

. Test from the command line.

. Rewrite the code showing parameters.

. Forth ‘see’.

Forth ‘view.

. Create a data test set.

. Add breakpoints using ‘exit’.

. Add .s internally.

10. Active test reporting [IF] [ELSE] [THEH].
11. Add error trapping using ‘abort™’.

12. Integrate testing with a wrapper word.

13. Use ‘debuq?, directly or internally.

14. Selective compilation: [IF] [ELSE] [THEH].

1. Quick Command Line Test

et us say | have a new Forth system or have made significant
low level changes.

I want to test: + - = [

Quick Command Line Test

et us say | have a new Forth system or have made significant
low level changes.

I want to test: + - = [

Upon any problems, I’ll have to review my low level code

and debug.

Quick Command Line Test

I want to test: + - = [

Use five integer values and expect to see ‘40°.

DOT
ok /
12000 3 200 70 20 + — = 7 40 ok
||
<

Base: decimal Stack: empty | Floating point stack: empty

2. Form A Definition

Write In the accepted source code format and

check it compiles without error.
Input --- Output

- math {(n1 n2 n3 n4 n5 —-—— nb6)
n1f{n2*{n3 {nll+n5}}}

- \ Comments
Code —

For repeated testing ‘math’ does the testing of
the four math operators.

3. Less Typing; Fewer Errors

For repeated testing ‘math’ does the testing of the
four math operators.

12888 3 288 78 398 math . <enter:

10 ok
ok

ok
12000 3 200 70 20 math . 40 ok
ol

£

Base: decimal Stack: empty | Floating point stack: empty

—r

And expect to see: 40

4. Rewrite Showing Stack Values

Still trouble? Add in the stack actions as comments.
Helps when you return much later.

- math { n1 n2 n3d n4 n5 —— nbd)
Y n1/{nZ2={n3-{n4+n%)))

 n1 n2 nd n4 nS
n1 n2 n3d n4+ns
n1l n? nd-{n4+nk)
n1 nZ2*{n3-{n4+nk))
n1/{n2*{n3-{n4+5})))

T

! .

This well may correct for mental errors on the
parameter execution order.

5. See The Compiled Code

Enter: ‘see math’ and see the definition decompiled
from its object code in memory.

cee math <enter:

See The Compiled Code

Enter: ‘see math’ and see the definition decompiled
from its object code in memory.

cee math <enter:

Is this what we Intended?

ok

=ee math

- MATH + — = ~ - ok
ok

i

Base: decimal Stack: empty | Floating point stack: empty

6. View The Source Code

Enter: ‘view math’ and see the source code in its file.

view math <enter>

34
a5
36

6. View The Source Code

Enter: ‘view math’ and see the source code 1n its file.

view math <enter>

Y on1/(n2¥(n3-(n4+n5)))

/. Using A Data Test Set

Create words to support testing.
: input 1208680 3 2608 70 380 ;

: output - and see ™

/. Using A Data Test Set

Create words to support testing.
> input 128088 3 268 70 38 ;

: output - and see ™ - ;

ok
input math output

and === 40 ak

Base: decimal Stack: empty | Floating poir

—r

8. A Simple Breakpoint

Use ‘exit’ to halt execution and .5 * to see the
stack contents at the point.

- math

e —

cr ." after "'"-" " .5 exit

8. A Simple Breakpoint

- math

.I. —
cr ." after "'"-'" " .5 exit
* ‘.I" :

data math

data math
after '=" [3] 12000 3 100

9. Creative Use of .s

Add ‘.s’to show the stack contents during
execution. This Is a substitute for a tracing word
like ‘debug’.

- math CH .5
+ CF .5
- CF .5
CF .5
! cCr .5

Creative Use of .s

= math cCr .S
+ CF .S

- cCr .5
cCr .5
£ cr .5
LI
15 ok
input math
[5] 12000 3 200 70 30
[4] 12000 3 200 100
[3] 12000 3 100
[2] 12000 300
[1] 40 ok.

Base: decimal Stack: {1} 40 | Floating point stack:

Creative Use of .s

- math CH .5
+ CF .5
- CF .5
CF .5
£ cr .5

ok .

=ee math
- MATH CR S +CR S -CR S=CR S ~CR .S : ok.

e 32 of Base: decimal Stack: {1}40 | Floating point stack: empty

10. Active use of [IF] [THEN]

Make an error report itself with conditional text.

input math dup . 48 = [IF] .{ is correct)
[ELSE] -{ is incorrect) [THEH]

48 = [IF] cays “is correct’
[ELSE] says “is incorrect’

10. Active use of [IF] [THEN]

input math dup . 48 = [IF] .{ is correct)
[ELSE] -{ 1s incorrect) [THEH]

48 = [IF] says “1is correct’
[ELSE] says “is incorrect’

10 1= correct

ok

Base: decimal Stack empty |

11. Add abort” As Error Test

299

Insert ‘abort” with a preceding test. Another
form of breakpoint.

: math + - x f dup 48 <>
cr abort™ Expected 48 ™
cr ." Did get 48" ;

11. Add abort” As Error Test

: math + - ® f dup 48 <>
cr abort™ Expected 48 "
cr ." Did get 4@ ;

ol .
input math

Did get 40 ok . .

€
Base: decimal Stack: {2}4040| |

12. Integrate With A Wrapper

Combine ‘input’ ‘math’ ‘output’ into a
‘wrapper' word.
For repeated testing It IS easer to type one word.

> ¥xx input math output ;

12. Integrate With A Wrapper

Combine ‘input’ ‘math’ ‘output’ into a
‘wrapper' word.
For repeated testing It IS easer to type one word.

> ¥xx input math output ;

ol
HEE

and ses 40 ok

Base: decimal Stack: empty | F

w

13. Debug Internally

WIn32F 'debuq’ is powerful. It can trace from
direct console input or upon a lower level word
used within other words.

> inner1 input math output ;
: inner? inneri ;
: innerd inner? ;

debug math 1inner3

13. Debug Internally

: inner1 input math output ;

: inner? inneri ;
: innerd inner? ;
debug math 1nner3

debug math cr i1nner3
[E] 12000 3 200 70 30

code + —
code — —_
code * ——3

: # —_—
code ; -

and see 40 ok

e Lo Do [o |
=t P Ll s

Rl Bl B]

12000 3 200 100
12000 3 100
12000 300

40

13. Debug Internally

File Edit Display Tools Macros Help
ok

Base: decimal Stack: empty | Floating point stack: empty

14. [IF] [ELSE] [THEN]

You can use [IF] [ELSE] [THEH] to selectively
Include tests within a compiled word.

test? IS an immediate word controlling the
following [IF] . . . [THEH] toinclude a

'cr .s' print stack command in the compiled
output.

: math test? [1f] cr .5 [then]
+ test? [if] cr .s [then]
- test? [if] cr .s [then]
test? [1f] cr .5 [then]
;/ test? [if] cr .5 [then] ;

14. [IF] [ELSE] [THEN]

true value

do-tests
no-tests

do-tests
- math

test? immediate

true to test?
false to test?

test? [if]
test? [if]
test? [if]
test? [if]
test? [if]

CFr
CFr
CFr
CFr
Cr

-5

-5
-5

[then]
[then]
[then]
[then]
[then]

14. [IF] [ELSE] [THEN]

With no-tests, math only

=== math
- MATH + - % 7 : ok.

ke
input math

Did get 40 ok. .

€
Base: decimal Stack: {2}4040| |

14. [IF] [ELSE] [THEN]

With do-tests, showing “cr .5? diagnostic.

ol .

see math
I:HATH CR S+CR 5S-CR S#=CR S~ CR .5 : ok
e 32 of Base: decimal Stack: {1}40 | Floating point stack: empty
L
15 ok

input math

[5] 12000 3 200 70 30
[4] 12000 3 200 100
[3] 12000 3 100

[2] 12000 200

[1] 40 ok.

Base: decimal Stack: {1} 40 | Floating point stack:

Benefits

Keep a variety of testing and debugging
methods in your Forth repertoire.

| used to insert stack dumps and exits at
suspected problem points. Now, | mostly use
‘debuq’ for a full word trace.

’

| took me a couple of years to discover ‘debug
as Win32Forth is huge and has limited
documentation.

So, see my Win32Forth Guide on Github.

References

* https://github.com/BillRagsdale/
Forth Projects

* https://github.com/BillRagsdale/
WIN32Forth-Guide

