
Program
Debugging

SVFIG
Aug. 28, 2021
Bill Ragsdale

The Need

Here are fourteen tools to use for testing. I certainly

don't use them all every time. Just pick and choose.

Built on Win32Forth.

Draws on ‘see’, ‘view’ and ‘debug’.

Onward . . .

Fourteen Tools To Success

1. Use command line input.
2. Write as a definition; test compilation.
3. Test from the command line.
4. Rewrite the code showing parameters.
5. Forth ‘see’.
6. Forth ‘view’.
7. Create a data test set.
8. Add breakpoints using ‘exit’.

9. Add .s internally.
10. Active test reporting [IF] [ELSE] [THEN].
11. Add error trapping using ‘abort”’.
12. Integrate testing with a wrapper word.
13. Use ‘debug’, directly or internally.
14. Selective compilation: [IF] [ELSE] [THEN].

1. Quick Command Line Test
Let us say I have a new Forth system or have made significant

low level changes.

I want to test: + - * /

Quick Command Line Test
Let us say I have a new Forth system or have made significant

low level changes.

I want to test: + - * /

Upon any problems, I’ll have to review my low level code

and debug.

Quick Command Line Test
I want to test: + - * /

Use five integer values and expect to see ‘40’.

DOT

2. Form A Definition

Write in the accepted source code format and

check it compiles without error.

: math (n1 n2 n3 n4 n5 --- n6)
\ n1/(n2*(n3-(n4+n5)))

+ - * / ;

For repeated testing ‘math’ does the testing of

the four math operators.

Input --- Output

Comments

Code

3. Less Typing; Fewer Errors

For repeated testing ‘math’ does the testing of the

four math operators.

12000 3 200 70 30 math . <enter>

And expect to see: 40

4. Rewrite Showing Stack Values
Still trouble? Add in the stack actions as comments.

Helps when you return much later.

: math (n1 n2 n3 n4 n5 --- n6)
\ n1/(n2*(n3-(n4+n5)))

\ n1 n2 n3 n4 n5
+ \ n1 n2 n3 n4+n5
- \ n1 n2 n3-(n4+n5)
* \ n1 n2*(n3-(n4+n5))
/ ; \ n1/(n2*(n3-(n4+5)))

This well may correct for mental errors on the

parameter execution order.

5. See The Compiled Code

Enter: ‘see math’ and see the definition decompiled

from its object code in memory.

see math <enter>

See The Compiled Code

Enter: ‘see math’ and see the definition decompiled

from its object code in memory.

see math <enter>

Is this what we intended?

6. View The Source Code

Enter: ‘view math’ and see the source code in its file.

view math <enter>

6. View The Source Code

Enter: ‘view math’ and see the source code in its file.

view math <enter>

7. Using A Data Test Set

Create words to support testing.

: input 12000 3 200 70 30 ;

: output ." and see " . ;

7. Using A Data Test Set

Create words to support testing.

: input 12000 3 200 70 30 ;

: output ." and see " . ;

8. A Simple Breakpoint

Use ‘exit’ to halt execution and ‘.s’ to see the

stack contents at the point.

: math
+ -
cr ." after '-' " .s exit
* / ;

8. A Simple Breakpoint

: math
+ -
cr ." after '-' " .s exit
* / ;

data math

9. Creative Use of .s

Add ‘.s’ to show the stack contents during

execution. This is a substitute for a tracing word

like ‘debug’.

: math cr .s
+ cr .s
- cr .s
* cr .s
/ cr .s ;

Creative Use of .s

: math cr .s
+ cr .s
- cr .s
* cr .s
/ cr .s ;

Creative Use of .s

: math cr .s
+ cr .s
- cr .s
* cr .s
/ cr .s ;

10. Active use of [IF] [THEN]

Make an error report itself with conditional text.

input math dup . 40 = [IF] .(is correct)
[ELSE] .(is incorrect) [THEN]

40 = [IF] says ‘is correct’
[ELSE] says ‘is incorrect’

10. Active use of [IF] [THEN]

input math dup . 40 = [IF] .(is correct)
[ELSE] .(is incorrect) [THEN]

40 = [IF] says ‘is correct’
[ELSE] says ‘is incorrect’

11. Add abort” As Error Test

Insert ‘abort”’ with a preceding test. Another

form of breakpoint.

: math + - * / dup 40 <>
cr abort" Expected 40 "
cr ." Did get 40" ;

11. Add abort” As Error Test

: math + - * / dup 40 <>
cr abort" Expected 40 "
cr ." Did get 40" ;

12. Integrate With A Wrapper

Combine ‘input’ ‘math’ ‘output’ into a

'wrapper' word.

For repeated testing it is easer to type one word.

: xxx input math output ;

12. Integrate With A Wrapper

Combine ‘input’ ‘math’ ‘output’ into a

'wrapper' word.

For repeated testing it is easer to type one word.

: xxx input math output ;

13. Debug Internally

Win32F 'debug' is powerful. It can trace from

direct console input or upon a lower level word

used within other words.

: inner1 input math output ;
: inner2 inner1 ;
: inner3 inner2 ;

debug math inner3

13. Debug Internally

: inner1 input math output ;
: inner2 inner1 ;
: inner3 inner2 ;
debug math inner3

13. Debug Internally

14. [IF] [ELSE] [THEN]

You can use [IF] [ELSE] [THEN] to selectively

include tests within a compiled word.

test? is an immediate word controlling the

following [IF] . . . [THEN] to include a

'cr .s' print stack command in the compiled

output.

: math test? [if] cr .s [then]
+ test? [if] cr .s [then]
- test? [if] cr .s [then]
* test? [if] cr .s [then]
/ test? [if] cr .s [then] ;

14. [IF] [ELSE] [THEN]

true value test? immediate

: do-tests true to test? ;
: no-tests false to test? ;

do-tests
: math test? [if] cr .s [then]

+ test? [if] cr .s [then]
- test? [if] cr .s [then]
* test? [if] cr .s [then]
/ test? [if] cr .s [then] ;

14. [IF] [ELSE] [THEN]

With no-tests, math only

14. [IF] [ELSE] [THEN]

With do-tests, showing ‘cr .s’ diagnostic.

Benefits

Keep a variety of testing and debugging
methods in your Forth repertoire.

I used to insert stack dumps and exits at
suspected problem points. Now, I mostly use
‘debug’ for a full word trace.

I took me a couple of years to discover ‘debug’
as Win32Forth is huge and has limited
documentation.

So, see my Win32Forth Guide on Github.

•https://github.com/BillRagsdale/
Forth_Projects

•https://github.com/BillRagsdale/
WIN32Forth-Guide

References

