
1
CHAPTER 25. META-COMPILER

The source code discussed in this chapter is in the file META86.BLK and KERNEL86.BLK, screens 1
to 10.

Meta-compilation is a special feature of Forth to generate a new Forth system by an existing Forth
system. It is impossible in other operating systems and languages because of the complexity in the
conventional operating systems and language compilers. The most a user can do in those environments
is to do a 'sysgen', which allows a user to delete unnecessary or unused features in the full system and
build a simpler system tailored to his equipment. The simplicity and conciseness of a Forth system give
the user much more freedom in selecting and eliminating features to suit his application. Meta-
compilation enables him to create a new system precisely customized to his needs and the new system
can be moved to a different computer even with different CPU's.

25.1. CONCEPT OF META-COMPILATION

The theory behind Forth meta-compilation is rather straightforward. Definitions in the Forth dictionary
can be compiled or assembled according to the specifications of the target machine. A new dictionary
can be created for the target machine containing all the definitions which are necessary for execution on
the target machine. This new dictionary can then be transferred to the target machine and executed on
the target machine. The new dictionary will, of course, contain the required nucleus to operate on the
new host CPU with necessary interpreter, compiler, and applications. A special initialization routine
must also be included to power up the new target system. The meta-compilation is the process to
generate the new dictionary for the target computer.

Currently F83 has been implemented on 8080, 8086/88, and 68000 microprocessors running under
CP/M and MS-DOS operating systems. Meta-compilation was used extensively to transport the F83
model to different CPU's and to different operating systems. The meta-compiler used to create a F83
system is included in the F83 system so that the user can use it to rebuild the system or to generate new
systems suitable for his applications. The authors of F83 intended that the users will modify their F83
systems to explore new uses of Forth and to develop commercial products for public utilization.

Meta-compilation is considered to be the highest level of extensibility in Forth. The first level of
extensibility is to use predefined defining words like : and CODE to add new functions to the existing
system. The second level of extensibility is to create new defining words which can be used to compile
specialized words or data structures to the dictionary and to interpret them according to user
specifications. The third level of extensibility, meta-compilation, is to regenerate the entire Forth system
with whatever extensions the user might attach to it. This activity has been the privilege of large
corporations and large teams or systems programmers at the expenses of billions of dollars, to build
computer operating systems. In Forth, this privilege is accorded to us ordinary souls in the form of a
metacompiler.

The most fundamental issue in metacompilation is that the target Forth system occupies an addressing
space entirely different from the regular memory space the host Forth system addresses. The virtual
address space of the target Forth system must be mapped to the real memory in the host Forth system.

2
The meta-compiler must be able to build the new system in the virtual memory space and resolve all the
addresses and linkages accordingly. For one thing, the words in the new system cannot be executed and
the new dictionary cannot be searched like normal Forth words. Searching must be done through one or
more symbol tables, and compiler directives must be defined in a special vocabulary to help building
structures in the words belonging to the target system. These are non-trivial tasks.

Forth system generated from meta-compilation seems to be very mysterious to people unfamiliar with
the art, because the kernel is written in terms of the meta-compiler. If you do not understand the Forth
meta-compiler, it is very difficult to read and comprehend the source code in the kernel. The great
puzzle is that if you do not understand the Forth kernel, how can you understand the Forth meta-
compiler? Does the chicken come before the egg, or the other way around? This puzzle is depicted in
Fig. 25.1. The solution to this puzzle is that you pick one point to enter the circle. It does not matter
where you enter. You must go around the circle many times, each time picking up something you didn't
understand before. When you close the loop around the circle leaving no gap on the trace, you have
attained the 'Tao' of Forth.

Figure 25.1 The Tao of Forth

Metacompiler Forth Kernel

Interpreter

Compiler
Editor

Assembler Starting Forth

Learning ForthProgramming Forth

Optimizing Forth

Targeting Forth Understanding Forth

3
25.2. VOCABULARIES FOR META-COMPILATION

The main purpose of meta-compilation is to build new definitions in the new target system using the
same Forth words. It is thus necessary that a Forth word should execute differently depending upon
when and where it is invoked. Multiple definitions of the same word is a bad practice in normal Forth
programming, but necessary in meta-compilation. It is accomplished by using many vocabularies to
house different definitions of the same words. Any of these definitions can be invoked by selecting a
specific vocabulary searching order.

ONLY FORTH ALSO Start with the normal FORTH and ROOT vocabularies.
VOCABULARY META Define META vocabulary which will contain all the words to
 effect meta-compilation. Many of them are re-definitions.
META ALSO META vocabulary will be searched before FORTH

vocabulary and ONLY vocabulary.
META DEFINITIONS Let META also be the current vocabulary so that new words
 will be added to META.

: [FORTH] An immediate version of FORTH.
FORTH
; IMMEDIATE Declare [FORTH] as immediate so that it will be executed

 during compiling.

: [META] An immediate version of META.
META ; IMMEDIATE

: SWITCH (---) Exchange the saved values of CONTEXT and CURRENT
 with themselves. It should always be used in pair to save
 and restore the CONTEXT and CURRENT vocabularies.

Between the pair one can change vocabulary and select new
 vocabulary definitions.

NOOP NOOP Two cells to save the current CONTEXT and CURRENT
vocabularies.

DOES> (---)
DUP @ Contents of the first cell of NOOP.
CONTEXT @ Context vocabulary.
SWAP CONTEXT ! Copy save context to CONTEXT.
OVER ! Save CONTEXT to NOOP cell.
2+ Address of second NOOP cell.
DUP @ Fetch saved current vocabulary.
CURRENT @ Current CURRENT vocabulary.
SWAP CURRENT ! Save it in second NOOP cell.
SWAP ! Restore CURRENT.
;

VOCABULARY TARGET A vocabulary to hold the symbol table for all definitions in
the target system.

VOCABULARY TRANSITION A vocabulary holding special case compiling words like ." and [.
VOCABULARY FORWARD A vocabulary holding all forward references as deferred words.

4
VOCABULARY USER A vocabulary holding the USER version of defining words.
ONLY DEFINITIONS Add all the vocabulary names to the ONLY vocabulary so

hat they are always accessible and that all words in every
vocabulary are accessible.

FORTH ALSO META ALSO Collect vocabulary names from both FORTH and META vocabularies.

: META META ; META in ONLY calls META in FORTH.
: TARGET TARGET ; And so forth.
: TRANSITION TRANSITION ;
: ASSEMBLER ASSEMBLER ;
: FORWARD FORWARD ;
: USER USER ;

Figure 25.2 Supporting vocabularies for meta-compilation

METAASSEMBLER TARGETTRANSITIONFORWARD

Target Forth System

Host Forth System

5
ONLY FORTH ALSO META ALSO DEFINITIONS Restore the search order as META,
 FORTH and ONLY.

A few words are defined to re-order the vocabularies in the searching sequence to locate specific words
in a specific vocabulary.

: IN-TARGET Search only the symbol table.
ONLY TARGET DEFINITIONS
;

: IN-TRANSITION Search TRANSITION, TARGET, and FORWARD in that order.
ONLY FORWARD ALSO
TARGET DEFINITIONS ALSO
TRANSITION ;

: IN-META The normal environment in doing meta-compilation.
ONLY FORTH ALSO
META DEFINITIONS ALSO
;

: IN-FORWARD Used when a word is undefined and must be compiled on the fly.
FORWARD DEFINITIONS ;

25.3. ACCESSING MEMORY IN THE TARGET SYSTEM

During meta-compilation, the dictionary of the target system is in a virtual memory space to which new
definitions can be added but are not accessible for other purposes. These new definitions can never be
executed because the target system will only be useful in the target computer which may be a totally
different machine from the host computer performing the meta-compilation. The target virtual memory
is mapped onto the host memory space by a constant offset and a variable dictionary pointer:

0 CONSTANT TARGET-ORIGIN The offset address in the host memory where the target
dictionary begins. The value of TARGET ORIGIN Must
be assigned before meta-compiling.

VARIABLE DP-T (--- addr) The dictionary pointer for the target system during
meta-compilation.

All memory accessing words in FORTH must be redefined for meta- compilation to access the memory
of the target system.

: THERE (taddr --- addr) Map a target address to a host address.
TARGET-ORIGIN + Add offset.
;

: C@-T (taddr --- char) Fetch a byte from given target address.
THERE C@ ;

6

: @-T (taddr --- n) Fetch a word from given target address.
THERE @ ;

: C!-T (char taddr ---) Store a byte at the target address.
THERE C! ;

: !-T (n taddr ---) Store a word at the target address.
THERE ! ;

: HERE-T (--- taddr) Return target address of the next available dictionary byte.
DP-T @ ;

: ALLOT-T (n ---) Allocate more space in the target dictionary.
DP-T +! ;

: C,-T (char ---) Add a byte to the target dictionary.
HERE-T C!-T Compile one byte.
1 ALLOT-T Move target dictionary pointer.
;

: ,-T (n ---) Add a word to the target dictionary.
HERE-T !-T Store one word.
2 ALLOT-T Move pointer.
;

: S,-T (addr n ---) Add a string to the target dictionary.
0 ?DO Scan the length of string.

DUP C@ Fetch one character.
C,-T Compile one byte.
1+ Increment addr.

LOOP DROP Discard addr still on stack.
;

25.4. BRANCHING CONSTRUCTS

Two sets of words setting up and resolving branches are needed in the meta-compiler: one for high level
definitions and one for code definitions.

: ?>MARK (--- f addr) Set up a forward branch in colon definition.
TRUE Flag.
HERE-T Address for the forward branch.
0 ,-T Reserved for forward branch address.
;

: ?>RESOLVE(f addr ---) Resolve a forward branch.
HERE-T Address to branch to.

7
SWAP ! Store at the from address.
?CONDITION Error checking.
;

: ?<MARK (--- f addr) Set up a backward branch.
TRUE Put the flag on the stack,
HERE-T with the current dictionary address.
;

: ?<RESOLVE(f addr ---) Resolve a backward branch.
,-T Store the address to be branched to.
?CONDITION Error checking.
;

The following branching words are to be used in the assembler to set up branches in code definitions.

: M?>MARK (f addr ---) Set up a forward branch in code definition.
TRUE HERE-T Leave current address.
0 C,-T Reserve one byte for branching offset.
;

: M?>RESOLVE (f addr ---) Resolve a forward branch in code definition.
HERE-T Current address.
OVER 1+ - Offset to the mark.
SWAP C!-T Store into the reserved space.
?CONDITION Error checking.
;

: M?<MARK (--- f addr) Set up a backward branch in code definition.
TRUE Push flag on the stack,
HERE-T with the dictionary address.
;

: M?<RESOLVE (f --- addr) Resolve a backward branch in code definition.
HERE-T 1+ - Offset from addr.
C,-T Assemble offset after the branching instruction.
?CONDITION Error checking.
;

These assembler branching words are to be used to build code definitions in the target system. The
regular FORTH assembler can be used for target meta-compilation if the branching words are smart
enough to assemble structures in the virtual memory space of the target system. They are made smart by
patching the executing addresses of the above definitions into the corresponding deferred words in the
regular assembler:

' C,-T ASSEMBLER IS C,
' ,-T ASSEMBLER IS ,
' HERE-T ASSEMBLER IS HERE

8
' M?>MARK ASSEMBLER IS ?>MARK
' M?>RESOLVE ASSEMBLER IS ?>RESOLVE
' M?<MARK ASSEMBLER IS ?<MARK
' M?<RESOLVE ASSEMBLER IS ?<RESOLVE

All the tools provided in the assembler are now available for the meta-compiler to build the nucleus
portion of the target system.

25.5. FORWARD REFERENCE

FORTH normally does not allow forward referencing to a word that is not defined in its dictionary. This
is a good practice to ensure that any defined word is immediately available for execution, testing and
compiling. However, it presents a problem in meta-compilation because we have to have defining
words to compile new definitions into the target system, while these defining words can only be defined
much later in the meta-compiling process. The defining words must be made available at the very
beginning of compiling the target system. F83 allows forward referencing to words not yet defined by
creating deferred words which will be resolved and made executable at a later stage when the tools are
available. The deferred words will be linked together in a list stored in the FORWARD vocabulary. At
the end of meta-compilation, the list of forward references will be examined and vectored to executable
words.

: MAKE-CODE (pfa ---) Take the code field address pointed to by pfa and compile it
 in the target system.

@ Fetch cfa from pfa.
,-T Compile to target dictionary.
;

: LINK-BACKWARDS (pfa ---) Extend the linked list of unresolved forward references.
HERE-T Current dictionary address.
OVER @ ,-T Store the address pointed to by pfa into current dictionary.
SWAP ! Store current dictionary address into pfa, thus extending the

 linked list.
;

: RESOLVED? (pfa --- f) Return a true flag if the word whose pfa is on the stack is
already resolve.

2+ Flag indicating that the word is resolved.
C@ Get it on stack as the flag.
;

: FORWARD-CODE (pfa ---) If a forward reference is resolved, compile the code.
Otherwise link it to the forward reference list.

DUP RESOLVED? A resolved forward reference?
IF MAKE-CODE If so, compile.
ELSE LINK-FORWARD Else link.
THEN ;

9
: FORWARD: (---) Define a forward reference word and initialize it to be unresolved.

SWITCH Save the current vocabularies.
FORWARD DEFINITIONS Make FORWARD the current and context vocabulary to

build the forward reference word.
CREATE Make the header.
SWITCH Revert back to the original environment.
0 , Dummy execution address.
0 C, Unresolved flag.
DOES> (---)
FORWARD-CODE When a forward reference word is executed, either compile it

 to dictionary or link to the list of unresolved references.
;

25.6. COMPILING NEW WORDS TO TARGET SYSTEM

VARIABLE WIDTH The maximum length of the names in target definitions.
31 WIDTH ! It is initialized to allow 31 characters in names.
VARIABLE LAST-T A variable pointing to the name field of the most recently

defined word in target.
VARIABLE CONTEXT-T Pointer to the array of context and resident vocabularies in
 the target.
VARIABLE CURRENT-T Pointer to the vocabulary where new definitions are to be

linked.

: HASH (str-addr voc-addr --- thread) From the name of a definition and the
 address of the current vocabulary, return the thread address
 to link the new definition.

SWAP 1+ C@ Get the first character in the name.
3 AND Only four threads are implemented.
2* + Return the address of the thread in the body of the vocabulary.
;

: HEADER (---) Create a header in the target dictionary. It makes a header
 out of the next word in the input stream and fixes up all the

appropriate pointers to link it into the target dictionary.
BL WORD Get the name.
C@ 1+ WIDTH @ MIN The length of the name field.
?DUP IF If length is not zero, make the header.

ALIGN Align new header to word boundary.
BLK @ Current block number.
4096 + The view field with the block number and the file number,

 assumed to be 1.
,-T Compile the view field.
HERE CURRENT-T @ HASH Find the thread to link the new word.
DUP @-T ,-T Compile the link field.
HERE-T 2- The link field address of the new word in the target dictionary.
SWAP !-T Update the top of linking thread in the current vocabulary.

10
HERE-T Save a copy of the name field address.

HERE ROT S,-T Move the name from host to target.
ALIGN Make sure the code field fall on even word boundary.

DUP LAST-T ! Update the LAST-T with new name field address.
128 SWAP THERE CSET Set the delimiting bit in the first (count) byte of the

 name field.
128 HERE-T 1- THERE CST Set the delimiting bit in the last byte of name field.

THEN
; No header will be created if WIDTH is set to zero.

: TARGET-CREATE (---) Create a header in target and an entry in the symbol table.
 The new word is initialized as resolved so that it will be
 compiled to the target when invoked.

>IN @ Save the input stream pointer.
HEADER Create the target header.
>IN ! Restore the input pointer to reuse the name of the new definition.
IN-TARGET CREATE Create an entry in the symbol table, TARGET vocabulary.
IN-META Return to meta-compiler.
HERE-T , Compile the execution address of the new target word to pfa

 of the symbol table entry.
1 C, Compile the resolved flag.
DOES> (---) When the entry in the symbol table is executed, the execution

 address of the target word will be compiled to the target dictionary.
MAKE-CODE Compile the contents of the pfa to target dictionary.
;

: RECREATE (---) Same as TARGET-CREATE, but don't advance the input
stream pointer so that the name of word can be used again.

>IN @ Save the input stream pointer.
TARGET-CREATE Create headers in target and symbol table.
>IN ! Restore input stream pointer.
;

: CODE (---) Set up to assemble a new code definition to the target
dictionary. The target cfa is set to target pfa.

TARGET-CREATE Make the headers.
HERE-T 2+ Parameter field address of the new code word.
,-T Compile code field in the target code word.
ASSEMBLER !CSP Set trap for error checking.
;

: LABEL (---) Remember the current target dictionary address and assign it a
name so that a subroutine can be called from a code definition.

ASSEMBLER DEFINITIONS
HERE-T CONSTANT Assign a name to the target address.
;

ASSEMBLER DEFINITIONS Go back to the FORTH assembler.

11

: END-CODE Redefine the code word terminator for the target compiler.
IN-META Specify meta-compiling environment.
?CSP Do error checking by comparing stack depth at the beginning

and end of a code definition.
;

META Return to meta-compiler.
IN-META And reorder the vocabularies as needed by the

meta-compilation.

25.7. TRANSITION COMPILER DIRECTIVES

Compiler directives, which build structures in the target words or performing special actions other than
compiling execution addresses, cannot be executed immediately within the target compilation
environment. The compiler directives in the normal FORTH cannot be used either, because structures
and special conditions must be built in the target system. These meta-compiler directives are all put in
the TRANSITION vocabulary and are executed from there. When these compiler words are
encountered in the definitions of words to be put into the target dictionary, the corresponding words in
the TRANSITION vocabulary are executed so that the special condition in the target definition can be
dealt with immediately.

: 'T (--- cfa) Look up the next word in the input stream only in the target
 vocabulary. Preserve original context.

CONTEXT @ Save context vocabulary.
TARGET DEFINED Look up next word in the TARGET vocabulary.

(context cfa f ---)
ROT CONTEXT ! Restore context.
0= ?MISSING Abort if the word cannot be found.
;

: [TARGET] (---) Force the compilation of a TARGET word regardless of the
 current CONTEXT vocabulary.

'T Find the word in TARGET vocabulary.
, Compile its execution address.
;

: 'F (--- cfa) Look up the next word in the input stream only in the
FORWARD vocabulary. Preserve current context.

CONTEXT @ Save context on stack.
FORWARD DEFINED Search FORWARD vocabulary for the next input word.
ROT CONTEXT ! Restore context.
0= ?MISSING Abort if word cannot be found in the FORWARD vocabulary.
;

: T: (---) Define a new compiler directive word in the TRANSITION
 vocabulary. It is otherwise the same as : .

12
SWITCH Save the current CONTEXT and CURRENT vocabularies

. TRANSITION DEFINITIONS Make TRANSITION the current vocabulary.
CREATE Define the following word in the TRANSITION vocabulary.
SWITCH Restore original context.
] Compile the body of the new word.
DOES> This is how the new word defined by T: should be executed:
>R Push the parameter address of the new word on the return

stack. The list of execution addresses compiled in the
 parameter field will be executed in sequence. Similar to what
 NEST might have done.

;

: T; (---) Terminate a word defined by T:.
SWITCH Save context.
TRANSITION DEFINITIONS Change context to TRANSITION.
[COMPILE] ; Compile end of word definition.
SWITCH Restore context.
; IMMEDIATE

Following are the string operators for in-line comments and documentation:

T: ((---)
[COMPILE] (Inherit (from host to TRANSITION.
T;

T: (S (---)
[COMPILE] (S Inherit (S from host.
T;

T: \ (---)
[COMPILE] \ Inherit \ from host.
T;

Special words are needed to compile string literals into the target dictionary:

: STRING,-T (---) Scan the input stream for a " as the string delimiter and
compile the string into target dictionary.

ASCII " PARSE Parse input text to ".
DUP C@ 1+ Length of string just parsed.
S,-T Move the string and compile into the target dictionary.
ALIGN Align to cell boundary.
;

FORWARD: <(.")> Runtime forward reference for the code compiled by ." .

T: ." Compile the runtime code <(.")> and a string literal in the
arget dictionary.

[FORWARD] <(.")> Compile the forward reference.

13
STRING,-T Compile the string literal.
;

FORWARD: <(")> Runtime forward reference for the code compiled by " .

T: " Compile the unknown runtime code <(")> with a string
literal.

[FORWARD] <(")> Compile the forward reference word <(")>.
STRING,-T Compile string literal from input stream.
;

FORWARD: <(ABORT")> Runtime forward reference for ABORT".

T: ABORT" Compile the unknown runtime code for abort, followed by a
string.

[FORWARD] <(ABORT")> Compile the abort code.
STRING,-T With the string literal.
;

FORWARD: <(;USES)> Forward reference for code routine compiled by ;USES.

FORTH VARIABLE STATE-T True if in the compiling state inside a colon definition. False
if outside or in the interpreting state.

T: ;USES (---) Compile a code field whose runtime routine already exists.
It is similar to ;CODE otherwise.

[FORWARD] <(;USES)> Compile the code field using the address of <(;USES)>.
IN-META Force the context of meta-compiler.
ASSEMBLER Invoke assembler to start assembling code routine.
!CSP Install error checking.
STATE-T OFF Assembler words are interpreted, not compiled.
T;

T: [COMPILE] (---) Compile a TARGET word rather than execute its TRANSITION
 counterpart.

'T Find the next word and return its execution address.
EXECUTE Execute the word in the symbol table vocabulary TARGET.

 The effect is to compile the word into the target dictionary.
;

FORWARD: <(IS)> Forward reference to the runtime routine of IS.

T: IS (---) Compile the unknown address of <(IS)>.
[FORWARD] <(IS)> T;

: IS (cfa ---) This is the version of IS in the meta-compiler which actually
 matches the forward reference.

'T Find the cfa of the next word to be patched.

14
>BODY @ The execution address pointing to execution routine.
>BODY !-T Patch in with the cfa on stack. Thus resolve the forward reference.
;

T: ALIGN Align the dictionary pointer to word boundary.
T; This is not needed in 8086, which is a true byte machine.

T: EVEN (n --- n') Make the number n even.
T; Noop in 8086 or 8080.

25.8. DEFINING WORDS IN META-COMPILER

FORWARD: <VARIABLE> Forward reference for runtime routine of CREATE and
 VARIABLE.

: CREATE Create a target word using the runtime routine for
VARIABLE and a host word to return the HERE address in

 target.
RECREATE Create target word and an entry in the symbol table

vocabulary TARGET. The input pointer is not advance.
[FORWARD] <VARIABLE> Compile code field in target.
HERE-T CONSTANT Define the pfa as a constant in the host.
;

: VARIABLE Define a variable in the target.
CREATE Use the above CREATE.
0 ,-T initialize the parameter field.
;

FORWARD: <DEFER> Forward reference for the runtime routine of DEFER.

: DEFER Define a deferred word or an execution vector in the target.
TARGET-CREATE Create a target word and a symbol table entry.
[FORWARD] <DEFER> Compile code field.
0 ,-T Compile a dummy parameter to hold execution address.
;

: DIGIT? (char --- f) Return true if the character is a digit in current base.
BASE @ DIGIT Convert the char using current BASE.
NIP Only the flag is needed. Discard the result of conversion.
;

: PUNCT? (char --- f) Return true if the character is a valid punctuation character
 for numbers such as leading - or decimal point.

ASCII . OVER = SWAP A period?
ASCII - OVER = SWAP Or a minus sign?
ASCII / OVER = SWAP Or a / ?
DROP OR OR Return the flag.

15
;

: NUMERIC? (addr len --- f) Return true if the string is a valid number in the
current base. At least one valid digit should be present in the

 string.
DUP 1 = Only one character?
IF Yes.

DROP Discard len .
C@ DIGIT? Is it a valid digit?
EXIT No other action needed.

THEN
1 -ROT Initial flag.
0 ?DO Scan the length of the string.

DUP C@ Get one character.
DUP DIGIT? Is it a digit?
SWAP PUNCT? Or a punctuation?
OR ROT AND AND the test results to flag.
SWAP 1+ Increment addr.

LOOP DROP Discard addr.
;

25.9. USER VARIABLES

User variables are collected in a table called user area for multitasking context switching. All the
variables pertinent to the independent operation of a task have to be preserved for each user or task when
it relinquishes control of CPU to other tasks so that when it regains the control of CPU the task can
continue from where was left off. The managing of the user area requires redefining many dictionary
accessing words. These redefinitions are collected in a separated vocabulary USER. The target
compiler must have its own versions of these words to compile user variables in the target system.

FORTH VARIABLE #USER-T A variable in FORTH to count the number of user variables
defined in the target system.

META ALSO Revert to meta-compiler.
USER DEFINITIONS Following words are added to the USER vocabulary.

: ALLOT (n ---) Allocate space in the user area.
#USER-T +! Add n to the user area counter.
;

FORWARD: <USER-VARIABLE> Forward reference for the runtime routine of USER-VARIABLE.

: VARIABLE (---) Create a user variable in the user area.
SWITCH Save context.
RECREATE Create headers in target and symbol table.
[FORWARD] <USER-VARIABLE> Compile code field pointing to <USER-VARIABLE>.
#USER-T @ Current user area pointer.
DUP ,-T Compile the pointer in parameter field.

16
2 ALLOT Move user area pointer.
META DEFINITIONS Change current vocabulary to META.
CONSTANT Create a constant in META holding the user area pointer.
SWITCH Restore context.
;

FORWARD: <USER-DEFER> Forward reference for runtime routine of user deferred
words.

: DEFER (---) Create a user deferred word or a task local execution vector.
SWITCH Save context.
TARGET-CREATE Create target and symbol table entries.
[FORWARD] <USER-DEFER> Compile code field pointing to <USER-DEFER>.
SWITCH Restore context.
#USER-T @ ,-T Compile the user area pointer.
2 ALLOT Move user area pointer.
;

ONLY FORTH ALSO META ALSO DEFINITIONS Restore the meta-compiling environment.

25.10. VOCABULARY

The defining word VOCABULARY creates new vocabularies when the target system is brought up and
running. In the parameter field of the vocabulary definition, four cells are used to store the addresses of
the ends of four dictionary threads for the hashing algorithm. The last cell stores the VOC-LINK
address, which points to the vocabulary defined immediately before the currently defined vocabulary.
This way, all the vocabularies defined in the running system are linked together themselves. This
vocabulary linkage is necessary when vocabularies have to be eliminated by FORGET.

FORTH VARIABLE VOC-LINK-T A variable linking all defined vocabularies together.

FORWARD: <VOCABULARY> The forward reference for the runtime routine of VOCABULARY.

: VOCABULARY (---) Create a vocabulary in the target system.
RECREATE Create headers.
[FORWARD] <VOCABULARY> Compile code field.
HERE-T Save the parameter field address of the defined vocabulary.
#THREADS 0 DO 0 ,-T LOOP Initialize four threads in the vocabulary.
HERE-T VOC-LINK-T @ ,-T Store previous vocabulary pfa after the thread field.
VOC-LINK-T ! Store pfa of this vocabulary into VOC-LINK-T and extend

the vocabulary linkage.
CONSTANT Define a constant in the host.
DOES> (---)
@ Fetch the starting address of the thread field in the vocabulary.
CONTEXT-T ! Store it in the context variable to make it the context vocabulary.
;

17
: IMMEDIATE (---) If heads are compiled in target, set the precedent or

immediate bit in the name field.
WIDTH @ IF If heads are compiled,

64 Precedent bit.
LAST-T @ THERE Address of the name field.
CTOGGLE Flip the precedent bit.

THEN ;

25.11. RESOLVING FORWARD REFERENCES

: FIND-UNRESOLVED (--- cfa f) Search for a word in the FORWARD vocabulary and
 return the status.

'F Find the next word in the input stream in the FORWARD
vocabulary.

DUP >BODY Get the parameter field address.
RESOLVED? Return the a true flag if the word is resolved.
;

: RESOLVE (taddr cfa ---) Run through the linked list of forward reference and resolve
 each of them with the given address.

>BODY The parameter field address from cfa.
2DUP TRUE OVER 2+ C! Store the 'resolved' flag in the third byte of the forward

reference word in FORWARD.
@ Address of the last member in the linked list of unresolved

reference.
BEGIN Run down the list.

DUP If address is not 0, go do the resolving.
WHILE

2DUP @-T Get the next unresolved reference.
-ROT Replace the old one.
SWAP !-T Resolve the old reference.

REPEAT
2DROP Clear stack.
;

: RESOLVES (taddr ---) The command used by user to resolve forward reference
. FIND-RESOLVED Search the next word in the FORWARD vocabulary and
 determine if it is resolved.

IF Yes. Resolved.
>NAME .ID Print its name.
." Already resolved." And a message.
DROP No need of taddr.

ELSE Not resolved.
RESOLVE Then resolve the references.

THEN ;

At the end of meta-compilation, all the forward references must be resolved before the target system is

18
saved. Otherwise, the target system will surely crash when it is executed. There is a long list of
reference to be resolved. Following is a short list of examples for illustration. You should consult the
source listing for the complete list.

' (.") RESOLVES <(.")> ' (") RESOLVES <(")>
' (;CODE) RESOLVES <(;CODE)> ' (;USES) RESOLVES <(;USES)>
[FORTH] ASSEMBLER DOCREATE META RESOLVES <VARIABLE>
[FORTH] ASSEMBLER DOUSER-DEFER META RESOLVES <USER-DEFER>
etc., etc.

Deferred words and many system variables need also be initialized:

' (LOAD) IS LOAD ' CRLF IS CR ' (KEY?) IS KEY?
etc., etc.

' FORTH >BODY CURRENT !-T ' FORTH >BODY CONTEXT !-T
HERE-T DP UP @-T + !-T
etc., etc.

25.12. REDEFINING HOST WORDS

Many important words in the host or FORTH vocabulary are redefined to be used in meta-compilation.
To use the host versions of them explicitly, they are redefined as host words prefixed with an 'H'
character before the regular name.

: H: [COMPILE] : ;

H: ' 'T >BODY @ ;

H: , ,-T ;

H: C, C,-T ;

H: HERE HERE-T ;

H: ALLOT ALLOT-T ;

H: DEFINITIONS DEFINITIONS CONTEXT-T @ CURRENT-T ! ;

:]]] ; Alias of], which will be used by the target compiler.

: [[[COMPILE] [; FORTH IMMEDIATE META]] has to be stopped by the FORTH [, which takes
an alias of [[.

FORWARD: DEFINITIONS Making both [and DEFINITIONS forward references so
 that the target compiler can assign compiler functions to them.

19
FORWARD: [

25.13. RUNNING THE META-COMPILER

Meta-compilation is a complicated process and should be used only when you have to tailor the Forth
system to a very specific application. Since F83 systems were generated using meta-compilation and the
authors were kind enough to provide us with the complete source of the meta-compiler and the actual
loading commands to generate the F83 system, we have an excellent guide and example to follow. It is
worthwhile to review the loading sequence in generating the F83 system. When you do meta-compiling
of your own system, you probably should follow this sequence as closely as possible, making minimal
changes and modifications in the kernel and adding your applications on top of the kernel. After you
have gone through this process several times and obtain working systems, then you can start re-working
the kernel.

To fire up the meta-compiler, you must first prepare a disk with F83.COM, META86.BLK, and
KERNEL86.BLK files on it. Type

F83 META86.BLK
and 1 LOAD

to bring up the F83 system, which in turn will load the first screen in the META86.BLK, the load screen
of the meta-compiler. The loading command in screen 1:

3 21 THRU

loads the meta-compiler, containing all the words discussed in this chapter. After the meta-compiler is
loaded, we are ready to generate the kernel Forth or the minimal Forth operating system. The following
command in screen 1 of META86.BLK opens the KERNEL86.BLK file and compiles the F83 kernel:

ONLY FORTH DEFINITIONS ALSO
FROM KERNEL86.BLK 1 LOAD

Since it will need the KERNEL86.BLK file, this file must also be on the disk. If your disk is not big
enough to hold all these files, you should delete the FROM ... line from the screen 1 in META86.BLK.
After the meta-compiler is loaded, you can change disk and type it in on the keyboard to load the kernel.

Screen 1 of the KERNEL86.BLK file is the loading screen of the kernel. The commands:

ONLY FORTH META ALSO FORTH

include the META vocabulary in the search order and we are ready to compile the kernel. However, we
have to first allocate memory space to store the target kernel Forth system. This is done by:

256 DP-T ! Initialize the dictionary pointer and leave 256 bytes at the
bottom of the dictionary for interrupt vectors.

HERE 12000 + The physical address of the target dictionary.
' TARGET-ORIGIN >BODY ! Store it in the constant, the address offset into the target dictionary.

20
IN-META Establish the meta-compiling environment.
2 92 THRU Load the entire kernel Forth system.

We should pay special attention to the last screens in the KERNEL86.BLK file, where all the forward
references are resolved, all the deferred words are vectored to proper executable words, and all the
system variables are initialized. To make a target system run properly, these things have to be done
correctly.

After the kernel Forth is meta-compiled, it must be saved on the disk as an executable object file. It is
saved and given the name KERNEL.COM:

META 256 THERE The physical address where the target dictionary starts.
HERE-T The logical address of the end of the target dictionary, which
 is the length of the target dictionary in bytes.
ONLY FORTH ALSO DOS Switch to DOS vocabulary to access the SAVE command.
SAVE A:KERNEL.COM Copy the target dictionary into KERNEL.COM, which is

executable.
FORTH

At this point, we have generated a minimal Forth system and put it in an object file KERNEL.COM.
This is a usable Forth system containing the text interpreter and colon compiler. However, its function is
limited and not quite usable as a system to do programming and development work. If you wanted to
develop a Forth application, this kernel serves well as the foundation to support your application. You
can load the application program on top of the kernel and it will become a product you can sell. As a
product, F83 system has lots of bells and whistles to add to the kernel. The sequence to add applications
to the kernel Forth is as following.

BYE Exit F83 and return to the DOS environment.

Copy the KERNEL.COM file to a disk which contains a file with all the application programs. In this
file, screen 1 must be a load screen which will load all the application programs. In the case of F83
system, this file is EXTEND86.BLK. Moreover, EXTEND86.BLK will load programs in
UTILITY.BLK and CPU8086.BLK. Therefore, you will have to copy these two files to the disk. If your
disk does not have enough room for all these files, you can delete the loading commands in screen 1 of
the EXTEND86.BLK file and type them on the keyboard after switching disks.

To load the application on top of the kernel, type:

KERNEL EXTEND86.BLK
and 1 LOAD

The object file KERNEL will be loaded into the memory and the kernel Forth will be booted. It then
loads the first screen in EXTEND86.BLK which loads in all the utility making up the entire F83 system.
In this screen you will find the following loading commands:

3 LOAD Load basic utility words and the ONLY-ALSO vocabulary
 mechanism.

21
6 LOAD Load DOS file management words.
FROM CPU8086.BLK 1 LOAD Load the 8086 assembler, and some CPU specific words to

support I/O, debugger, and multitasker.
FROM UTILITY.BLK 1 LOAD Load all the utility we discussed in Part III.

The F83 system is now complete and it is also saved on the disk in a file named F83.COM

SAVE A:F83.COM

This process is what was needed to build the F83 system. You have to follow it closely in building your
own Forth system.

If you get this far, please take a moment congratulating yourself. If at this point you are still not quite
comfortable with the meta-compilation, do not despair. Remember the circle of Tao? There is no end in
that circle. Go back to the kernel and retrace the Forth thoughts again. Or better yet, find your favorite
Forth code, add it to F83 and try to recompile the whole system. Change the boot-up code so that when
the new system is loaded it will start executing your code directly. You can easily succeed in
recompilation, if you only added new code without modifying the F83 system. Doing the meta-
compilation a few times will greatly enhance your confident in yourself and in F83. Consequently, you
will understand the whole system much sooner than what you have allowed yourself.

