
1
CHAPTER 24. 8086 ASSEMBLER

The source code of the assembler is in CPU8086.BLK, screens 3 to 17, and KERNEL86.BLK, screen
80.

The assembler in FORTH allows the user to define words which will be executed at the raw machine
speed and make use of all the resource in the host computer hardware system. It is often used to
optimize a system or application program by recoding the critical or most often executed words to
improve the performance of the program. A high level word can be substituted by a machine code word
if the interface to the system, most notably the stack effect is kept the same.

The assembler is invoked by the defining word CODE which creates a header in the dictionary and
makes the code field point to the parameter field. Machine instructions can then be compiled into the
parameter field by a set of machine code words with mnemonic names similar to those used in regular
assembler of the host processor. These machine code words are executed by the text interpreter and the
net effect is to add new machine instructions to the parameter field so that when the new CODE word is
executed, these machine instructions are executed in sequence. A CODE word must be terminated by the
inner interpreter NEXT or its derivative to return control to the calling word, and the code ending word
END-CODE or C;, which makes the new word available for execution or compilation.

24.1. ASSEMBLY TOOLS

A set of tool words is needed to assemble a machine code word in its most primitive form. If the user
knows the host processor well enough, he can hand code a routine and generate a Forth CODE word
without using the assembler.

VARIABLE AVOC A variable holding the old context vocabulary during assembling.

: CODE (---) The defining word that starts the assembling process to build
 a machine code word.

CREATE Create the name field, link field, and code field for a new
 entry in the dictionary.

HIDE Smudge the header to hide the new word before it is completed.
HERE DUP 2- ! Store the pfa into code field. This is required for indirectly

threaded code.
CONTEXT @ AVOC ! Save the old context vocabulary.
ASSEMBLER Use the ASSEMBLER as the context vocabulary to assemble

machine code.
;

: LABEL (---) Mark the start of a subroutine. Return its address when the
label is invoked.

CREATE Create the header.
ASSEMBLER Select context vocabulary.
;

2
232 CONSTANT DOES-OP Op-code for CALL instruction used in DOES>.
3 CONSTANT DOES-SIZE A CALL instruction consumes 3 bytes.

: DOES? (ip --- ip+3 f) Return a true flag with the IP moved over the CALLinstruction.
DUP DOES-SIZE + IP incremented by DOES-SIZE.
SWAP C@ Code at IP.
DOES-OP = True if the opcode is CALL.
;

ASSEMBLER DEFINITIONS All the assembler tool words are to be collected in this vocabulary.

: END-CODE (---) Terminate a code definition, make it available and also
restore context vocabulary.

AVOC @ CONTEXT ! Restore the old context vocabulary.
REVEAL Un-smudge the header, making the word available to the text

interpreter.
;

: C; (---)
END-CODE Synonym for END-CODE.
;

The following set of deferred words are used in assembling machine instructions or constructing
structures in the code definitions. They are defined as deferred words so that they can be shared by the
assembler and the meta-compiler.

DEFER C, (byte ---) Assemble a machine code byte to the dictionary.

FORTH ' C, ASSEMBLER IS C, Vector it to the C, in FORTH vocabulary.

DEFER , (n ---) Assemble a cell to the dictionary.

FORTH ' , ASSEMBLER IS , Vector to the , (comma) in FORTH vocabulary.

C, and , are the primitive words used in the Forth assembler. Using them one can even generate code
definitions without using an assembler. However, the machine code and operands have to be hand coded
and stored into the dictionary by , and C, .

DEFER HERE (--- addr) Return a pointer to the top of dictionary, the address of the
 next code to be assembled.

FORTH ' HERE ASSEMBLER IS HERE Allow us to assembler code anywhere in memory.

DEFER ?>MARK Set up forward branch with error checking.
DEFER ?>RESOLVE Resolve a forward branch with error checking.
DEFER ?<MARK Set up a backward branch with error checking.
DEFER ?<RESOLVE Resolve a backward branch with error checking.

3
24.2. 8086 REGISTER DEFINITIONS

Registers are used as operands, which are inserted into the register field in a machine instruction. They
are thus defined as constants. The register constants are defined in the following format to facilitate the
building of machine instructions which uses the corresponding register, as shown in Fig. 24.1. The lower
byte may become a byte instruction or the second instruction byte to specify addressing mode. The
upper byte with the mode field is used only during assembly.

OCTAL 8086 codes are best represented in octal due to the 3 bit fields.

: REG (mode reg# ---) Use the addressing mode and the register number to generate
 the proper register field to be defined as register constants.

11 * SWAP Fill both reg and r/m fields.
1000 * OR The addressing mode field.
CONSTANT Defined as a constant to be inserted into register accessing code.
;

: REGS (n mode ---) Define a set of register words which differ only in the
register number.

SWAP 0 DO Scan through n registers.
DUP I REG Define each register as a constant.

LOOP DROP Discard mode.
;

Using the powerful REGS, we can define all the registers with all possible addressing modes as distinct
Forth words returning the appropriate register constants to be used by machine code assembler words to
construct machine instructions.

10 0 REGS Define operands addressing only bytes in the registers.
AL CL DL BL AH CH DH BH

10 1 REGS Define operands addressing word registers.
AX CX DX BX SP BP SI DI

10 2 REGS Define indexed addressing operands.
[BX+SI] [BX+DI] [BP+SI] [BP+DI] [SI] [DI] [BP] [BX]

4 2 REGS Duplicated definitions.
[SI+BX] [DI+BX] [SI+BP] [DI+BP]

4 3 REGS Segment register addressing operands.
ES CS SS DS

3 4 REGS Immediate addressing operands.
#) S#)

Four registers are of special interests to the Forth system because they are used as registers in the virtual
Forth machine. They are assigned generic names more appropriate in the manipulation of the Forth

4
machine:

BP CONSTANT RP The return stack pointer.
[BP] CONSTANT [RP] Indirect addressing mode.
SI CONSTANT IP The interpretive pointer.
[SI] CONSTANT [IP]
BX CONSTANT W The current word pointer.
[BX] CONSTANT [W]

The data stack pointer uses the SP register which already has the correct name; therefore, it does not
need a new name.

Figure 24.1 Register addressing mode constant.

Addressing Mode Byte

7 6 5 4 3 2 1 0

mod reg r/m

Register Modes and Mnemonics

Register Mode

0 1 2 3 4

0 AL AX [BX+SI] ES # Immediate
1 CL CX [BX+DI] CS #) Indirect
2 DL DX [BP+SI] SS S#) Inter-
3 BL BX [BP+DI] DS segment
4 AH SP [SI]
5 CH BP [DI]
6 DH SI [BP]
7 BH DI [BX]

5
24.3. ADDRESSING MODE OPERATORS

: MD (mode ---) Define words which will test various addressing modes.
CREATE Make header.
1000 * , Compile a template of addressing mode.
DOES> (mode-field --- f)
@ Get the template.
SWAP 7000 AND Mask over the mode field.
= 0<> Return true if the mode matches.
;

0 MD R8? (operand --- f) Is it in byte register mode?
1 MD R16? (operand --- f) Is it in word register mode?
2 MD MEM? (operand --- f) Is it in memory addressing mode?
3 MD SEG? (operand --- f) Is it in segment addressing mode?
4 MD #? (operand --- f) Is it in immediate addressing mode?

: REG?(operand --- f) Test for either byte or word addressing mode.
7000 AND Mask the mode field.
2000 < Byte or cell.
< 0<> Return the flag.
;

: BIG? (n --- f) Test the size of address offset. Return true if n>255.
ABS Absolute offset.
-200 AND Examine upper byte.
0<> True if not zero.
;

: RLOW (n1 --- n2) Retain only the low r/m field.
7 AND ;

: RMID (n1 --- n2) Retain only the middle register field.
70 AND ;

VARIABLE SIZE A flag. True for 16 bit and false for 8 bit number.

: BYTE (---) Reset SIZE to indicate byte operations.
SIZE OFF ;

: OP, (n opcode ---) OR the operand and the opcode and assemble the machine code.
OR C, ;

: W, (opcode operand ---) Assemble opcode with the W field set if operand indicates a
word register.

R16? 1 AND Set W field according to word mode.
OP, Assemble.
;

6

: SIZE, (opcode ---) Assemble the opcode with W field determined by SIZE.
SIZE @ 1 AND Set W field using SIZE.
OP, Assemble.
;

: ,/C, (n f ---) Assemble a cell if f is true. Otherwise assemble a byte.
IF , f is true. Assemble a cell.
ELSE C, f is false. Assemble a byte.
THEN ;

: RR, (operand1 oprand2 ---) Assemble a register to register instruction.
RMID Operand1 to r/m field.
SWAP RLOW Operand2 to reg field.
OR Register to register operand.
300 Register to register mode.
OP, Assemble the reg-reg second instruction byte for addressing.
;

VARIABLE LOGICAL True while assembling logical instructions.

: B/L? (n --- f) BIG? of LOGICAL.
BIG? LOGICAL @ OR
;

: MEM, (disp mr rmid ---) Assemble a memory reference instruction. It takes a
 displacement, and memory/ register, and a register as
 arguments and encode them into an instruction.

OVER #) = Is it in immediate indirect mode?
IF Yes.

RMID 6 OP, Assemble immediate indirect instruction.
DROP No need of mr now.
, Assemble disp, which is the immediate value.

ELSE Not immediate indirect.
RMID OVER RLOW OR OR together the registers.
-ROT Save it.
[BP] = mr=[BP]?
OVER 0= AND AND disp=0?
IF
SWAP Get the register field to top.
100 OP, Byte displacement mode instruction. Mode 1.
C, With the byte displacement.
ELSE
SWAP Examine disp.
OVER BIG? More than 8 bits?
IF Yes.

200 OP, Mode 2 instruction.

7
, With cell displacement.

ELSE
OVER 0= Is disp=0?
IF Yes.

C, Assemble byte instruction.
DROP No displacement.

ELSE All tests failed to reach here.
100 OP, Assemble mode 1 instruction anyway.
C, Append a byte displacement.

THEN
THEN
THEN

THEN ;

: WMEM, (disp mem reg op ---) Assemble a word memory reference instruction.
OVER W, Pack the word referencing bit into reg and assemble opcode.
MEM, Use MEM, to assemble the right mode instruction.
;

: R/M (mr reg ---) Assemble either a register to register or register to memory
instruction.

OVER REG? Is it in a register mode?
IF RR, Yes. Assemble a register to register instruction.
ELSE MEM, Else assemble a memory referencing instruction.
THEN ;

: WR/SM (rm reg op ---) Assemble either a register mode instruction with size field,
or a memory mode instruction with size from SIZE.

2 PICK Get the mode.
DUP REG? Is it register mode?
IF Yes.

W, Squeeze in the word bit.
RR, Assemble a register-register instruction.

ELSE Not register mode.
DROP Discard mode.
SIZE, Use SIZE for word bit.
MEM, Assemble memory instruction.

THEN
SIZE ON Set default size to 16 bits.
;

VARIABLE INTER True if doing inter-segment jump, call, or return.

: FAR (---) Set INTER true.
FAR ON ;

: ?FAR (n1 --- n2) If INTER is true, set the far bit in the instruction.
INTER @ If INTER is true,

8
IF 10 OR THEN set bit 3 in the instruction.
INTER OFF Reset far flag.
;

9

Figure 24.2 8086 instruction types.

ascii Mode

disp

mod r/m

w

w

w r/mmod

disp

w

w r/mmod

reg

w r/mmod

disp

disp

mod r/m

reg

reg

mod r/m

1MI

2MI

3MI

4MI

5MI

6MI

7MI

8MI

9MI

10MI

11MI

12MI

10

Figure 24.2 8086 instruction types (continued).

w data

w data

w r/mmod datas

w r/mmod datas

w r/mmod reg

w r/mmod reg

w r/mmod reg

w addr

w data

w data

w r/mmod data

w r/mmod data

reg

reg

d

13MI

14MI

MOV

11
24.4. DEFINING WORDS TO GENERATE OPCODES

8086 is a rather complicated microprocessor. It was designed to be 8080 downward compatible so that it
must be able to execute all the 8080 instructions. With lots of 16 bit machine instructions and operators
for the extra registers and different mode of operation, the instruction set becomes very involved.
Consequently, the assembler also becomes complicated in order to take care of these diverse types of
instructions. There are 14 identifiable classes of instructions in 8086. A defining word is used to
generate opcodes for each class of instructions. .new .56 Fig. 24.2. 8086 instruction types.

: 1MI (opcode ---) Define one byte constant instructions.
CREATE C, Create header and compile the opcode.
DOES> (---)
C@ Fetch opcode from the parameter field of the assembler word.
C, Assemble it.
;

HEX
37 1MI AAA 3F 1MI AAS 98 1MI CBW F8 1MI CLC
FC 1MI CLD FA 1MI CLI F5 1MI CMC 99 1MI CWD
27 1MI DAA 2F 1MI DAS F4 1MI HLT CE 1MI INTO
CF 1MI IRET 9F 1MI LAHF F0 1MI LOCK 90 1MI NOP
9D 1MI POPF 9C 1MI PUSHF F2 1MI REP F2 1MI REPZ
9E 1MI SAHF F9 1MI STC FD 1MI STD FB 1MI STI
9B 1MI WAIT D7 1MI XLAT
OCTAL

: 2MI (opcode ---) Define ASCII instructions.
CREATE C, Header and parameter field.
DOES> (---)
C@ C, Assemble the opcode.
12 C, Assemble the ASCII mode byte.
;

HEX D5 2MI AAD D4 2MI AAM OCTAL

: 3MI (opcode ---) Define branch instructions with one byte offset.
CREATE C,
DOES> (addr ---)
C@ C, Assemble opcode.
HERE - 1- Offset from current address.
C, Assemble the offset.
;

HEX
77 3MI JA 73 3MI JAE 72 3MI JB 76 3MI JBE
E3 3MI JCXZ 74 3MI JE 7F 3MI JG 7D 3MI JGE
7C 3MI JL 7E 3MI JLE 75 3MI JNE 71 3MI JNO
79 3MI JNS 70 3MI JO 7A 3MI JPE 7B 3MI JPO

12
78 3MI JS E2 3MI LOOP E1 3MI LOOPE E0 3MI LOOPNE
OCTAL

: 4MI (opcode ---) Define LDS, LEA, LES instructions.
CREATE C,
DOES> (disp mr rmid ---)
C@ C, Assemble opcode.
MEM, Memory reference.
;

HEX C5 4MI LDS 8D 4MI LEA C4 4MI LES OCTAL

: 5MI (opcode ---) Define string instructions.
CREATE C, Store opcode.
DOES> (---)
C@ SIZE, Assemble opcode with size bit.
SIZE ON Enable word addressing.
;

HEX A6 5MI CMPS A4 5MI MOVS AE 5MI SCAS OCTAL

: 6MI (opcode ---) Define string instructions where byte/word mode is
 determined at assembly time.

CREATE C, Store opcode.
DOES> (mr ---)
C@ Opcode.
SWAP W, Use mr to decide the word bit and assemble accordingly.
;

HEX AD 6MI LODS AA 6MI STOS OCTAL

: 7MI (opcode ---) Define multiply and divide instructions.
CREATE C, Store opcode.
DOES> (r/m ---)
C@ The opcode will be put in the reg field of the second byte.
366 The real first byte opcode.
WR/SM, Assemble the whole mess.
;

HEX 30 7MI DIV 38 7MI IDIV 28 7MI IMUL 20 7MI MUL
10 7MI NOT OCTAL

: 8MI (opcode ---) Define input/output instructions.
CREATE C, Opcode.
DOES> (port ---)
C@ Opcode.
OVER R16? Is the port# a 16 bit number?
1 AND OR OR the word bit to opcode.

13
OVER # = Is there an immediate operator?
IF Yes, a port# is given.

C, Assemble opcode.
C, Assemble port number.

ELSE Implied port.
10 OR Set the implied port bit in opcode.
C, Assemble one byte i/o instruction.

THEN ;

HEX E4 8MI IN E6 8MI OUT OCTAL

: 9MI (opcode ---) Define increment/decrement instructions.
CREATE C, Store opcode.
DOES> (reg ---)
C@ Get opcode first.
OVER R16? Mode 1 operation?
IF Yes.

100 OR Opcode for one byte inc/dcr instruction.
SWAP RLOW Retain only r/m field.
OP, Assemble one byte instruction.

ELSE Other modes.
376 First byte opcode.
WR/SM, Use stored opcode as second byte instruction.

THEN ;

HEX 08 9MI DEC 00 9MI INC OCTAL

: 10MI (opcode ---) Define Shift/rotate instructions.
CREATE C, Store opcode.
DOES> (reg --- , or reg CL ---)
C@ Stored opcode.
OVER CL = Top register is CL?
IF Multiple bit shift.

NIP Discard CL because it is implied.
322 Number of bits shifted in CL.

ELSE Single bit shift.
320

THEN
WR/SM, Assemble the two-byte instruction.
;

HEX 10 10MI RCL 18 10MI RCR 00 10MI ROL 8 10MI ROR
38 10MI SAR 20 10MI SHL 28 10MI SHR OCTAL

: 11MI (opcode1 opcode2 ---) Define call/jump instructions.
CREATE Header.
C, Indirect call/jmp opcode.

14
C, Direct call/jmp opcode.
DOES> (addr ---)
OVER #) = Immediate address?
IF Yes.

NIP Discard #) mode operator.
C@ Get the opcode.
INTER @ IF If it is intersegment addressing,

1 AND and a jump?
IF 352 Yes. Jump opcode.
ELSE 232 THEN No. Call opcode.
C, Compile jmp/call opcode.
SWAP , , Compile offset and segment.

ELSE Not intersegment addressing.
SWAP Target address addr.
HERE - 2- Displacement.
SWAP (disp opcode ---)
2DUP 1 AND Is it JMP?
SWAP BIG? NOT AND And disp<256?
IF If so, assemble short jump.

2 OP, Short jump opcode.
C, Byte displacement.

ELSE Long jump or call.
C, Opcode.
1- Offset for three-byte instruction.
, Long displacement.

THEN
THEN

ELSE Not immediate addressing.
DUP S#) = Is it intrasegment addressing?
IF DROP #) THEN Yes. Restore the immediate address code.
377 C, Assemble opcode.
1+ C@ Get the initial r/m mode code.
?FAR Add the intersegment far bit if necessary.
R/M Append it to the opcode.

THEN ;

HEX 10 EB 11MI CALL 20 E9 11MI JMP OCTAL

: 12MI (reg-op seg-op r/m-op ---) Define push and pop instructions.
CREATE Header.
C, C, C, Store three different opcodes for push or pop.
DOES> (reg ---)
OVER REG? Register mode?
IF Yes.

C@ Register mode opcode.
SWAP RLOW OP, Assemble it.

ELSE
1+ Point to the second opcode.

15
OVER SEG? Segment register mode?
IF Yes.

C@ Get segment opcode.
RLOW Save only r/m field.
SWAP RMID Put in the reg field.
OP, Assemble.

ELSE
COUNT Get second opcode and point to the third opcode.
SWAP C@ Get the third opcode.
C, Assemble the third opcode as the first byte of instruction.
MEM, Assemble the addressing mode, second byte of instruction.

THEN
THEN ;

HEX 8F 07 58 12MI POP FF 36 50 12MI PUSH OCTAL

: 13MI (op1 op2 ---) Define arithmetic and logic instructions.
CREATE Make header.
C, C, Store opcodes.
DOES> (operand1 operand2 ---)
COUNT >R Fetch and store opcode1.
C@ LOGICAL ! Save opcode2 in LOGICAL.
DUP REG? Is operand2 a register?
IF Yes.

OVER REG? Is operand1 also a register?
IF Yes. A reg-reg math/logic operation.

R> Get opcode1.
OVER W, Assemble opcode1 with w field.
SWAP RR, Assemble addressing byte.

ELSE Operand1 is not a register.
OVER DUP MEM? Memory reference?
SWAP #) = OR Or memory indirect?
IF Yes.

R> 2 OR Assemble opcode1 with direction field.
WMEM, Memory reference.

ELSE Not memory referencing.
NIP Discard operand1.
DUP RLOW 0= Is operand2 the accumulator?
IF Yes.

R> 4 OR One byte math instruction. Fill the math field
(bit 2).

OVER W, Fill in the w field.
R16? ,/C, Assemble the byte or word immediate value.

ELSE Operand2 is not the accumulator.
OVER B/L? Big and long?
OVER R16? Operand2 a 16 bit register?
2DUP AND True for 16 bit logic instruction.
-ROT Save the flag.

16
1 AND W field.
SWAP 16 bit-logic flag.
NOT 2 AND Sign extension field.
OR Combine s and w fields.
200 OP, Assemble first byte opcode.
SWAP RLOW r/m field.
300 OR Mode 3.
R> OP, Second byte mode instruction.
,/C, Third byte or word value.

THEN
THEN

THEN
ELSE Operand2 is not a register.

ROT DUP REG? Is operand1 a register?
IF R> WMEM, Yes. Assemble memory referencing math instruction.
ELSE Not memory referencing. Must be immediate value.

DROP It is not a register. Discard it because it is a memory code.
2 PICK Pick the displacement.
B/L? Larger than 255?
DUP NOT 2 AND Fill in the s field.
200 OR SIZE, Assemble first instruction with w field.
-ROT Save the BIG? flag.
R> MEM, Assemble the mode byte.
SIZE†@ Must be BIG and word size.
AND ,/C, Assemble the immediate value.
SIZE ON Reinitialize SIZE to 16 bit.
THEN

THEN ;

HEX 0 10 13MI ADC 0 00 13MI ADD 2 20 13MI AND
0 38 13MI CMP 2 08 13MI OR 0 18 13MI SBB
0 28 13MI SUB 2 30 13MI XOR OCTAL

: 14MI (---) Returns.
CREATE C, Compile the opcode.
DOES>
C@ Get opcode.
DUP ?FAR Add the intersegment bit if necessary.
C, Assembler opcode.
1 AND 0= If it has immediate offset,
IF , THEN Assemble the address offset.
;

HEX C3 14MI RET C2 14MI +RET OCTAL

24.5. SPECIAL OPCODES

17
A small number of instructions do not belong to any of the above types. They are defined individually
as colon definitions which have to do special assembly work to assemble their respective machine
instructions.

HEX

: ESC (source opcode ---) Escape to external device.
RLOW Retain only the low register field.
0DB OP, Assemble the ESC opcode.
R/M, With the r/m code.
;

: INT (n ---) Assemble an interrupt instruction.
0CD C, INT, interrupt instruction.
C, n, the interrupt vector number.
;

: SEG (seg ---) Assemble a segment instruction.
RMID Mask over the segment field.
26 OP, Opcode for segment instruction.
;

: XCHG (mr1 mr2 ---) Assemble register exchange instruction.
DUP REG? mr2 a register?
IF DUP AX = And the AX register?

IF mr2=AX.
DROP AX is implied.
RLOW 90 OP, Assemble opcode 90 with mr1.

ELSE m2 is not AX.
OVER AX = Is m1 AX?
IF m1=AX.

NIP No need of m1 anymore.
RLOW 90 OP, Assemble XCHG with m2.

ELSE Neither is AX.
86 WR/SM, Assemble XCHG with a mode byte.

THEN
THEN

ELSE mr2 is not a register.
ROT 86 WR/SM, Assemble XCHG with mode byte.

THEN ;

: CS: CS SEG ; Code segment override.
: DS: DS SEG : Data segment override.
: ES: ES SEG ; Extra segment override.
: SS: SS SEG ; Stack segment override.

: MOV (source dest ---) Assemble a MOV instruction, the most complicated
instruction in 8086.

18
DUP SEG? Is dest a segment register?
IF 8E C, Assemble segment MOV,

R/M, and the mode byte with source.
ELSE DIP REG? Is dest a register?

IF Dest is a register.
OVER #) = Source is from memory?
OVER RLOW 0= AND And dest is AX?
IF A0 SWAP W, Yes. Assemble mem to AX MOV,

DROP discard dest, and assemble memory address.
ELSE OVER SEG? Is source a segment register?

IF Yes.
SWAP 8C C, Assemble segment to r/m MOV,
RR, with the mode byte.

ELSE Source and dest are not segment register.
OVER # = Immediate source?
IF NIP Yes. Discard # code.

DUP
R16? Is dest 16 bit?
SWAP
RLOW reg field of dest.
OVER 8 AND OR Combine reg field and w field.
B0 OP, Assemble immediate to reg MOV,
,/C, with the immediate value.

ELSE Not immediate source.
8AOVER W, Assemble segment to r/m MOV,

R/M, with a mode byte.
THEN

THEN
THEN

ELSE Dest is not a register. Treat it as memory reference.
ROT DUP SEG? Is source a segment register?
IF 8C C, Yes. Assemble segment to memory MOV,

MEM, with memory reference mode byte.
ELSE DUP # = Immediate source?

IF DROP Yes. Discard immediate code.
C6 SIZE, Assemble immediate to reg/mem MOV,
0 MEM, with a mode byte having 0 reg field,
SIZE @ ,/C, and the immediate value.

ELSE OVER #) = s dest a memory reference?
OVER RLOW 0= AND And the source is AX?
IF A2 SWAP W, Assemble AX to memory MOV.

DROP Memory code #).
, Memory address.

ELSE Non of above. Must be register to re/m MOV.
88 OVER W, Assemble reg-r/m MOV instruction,
R/M, with the mode byte.

THEN
THEN

19
THEN
THEN

THEN
SIZE ON Default size is 16 bit words.
;

: TEST(source dest ---) Assemble TEST instruction which AND source with dest
and set the status register.

DUP REG? Is destination a register?
IF OVER REG? And is source also a register?

IF Both operands are registers.
204 OVER W, Assemble opcode.
SWAP RR, Assemble reg to reg mode byte.

ELSE Source is not a register.
OVER DUP MEM? Is source a memory reference
SWAP #) = OR or an immediate address?
IF 204 WMEM, Assemble memory to register code and mode byte.

ELSE Immediate data.
NIP DUP
RLOW 0= Is the source AL register?
IF 250 Yes. Code for AL reg and immediate data mode.

SWAP W, C, Assemble code and the immediate byte.
ELSE Memory-immediate data mode.

366 OVER W, Assemble code 366 with the word field.
DUP RLOW 300 OP, Assemble immdiate byte value.
R16? ,/C, If 16 bit data, assemble high byte.

THEN
THEN

THEN
ELSE Destination is not a register.

ROT UP REG? Is source a register?
IF 204 WMEM, Yes. Assemble reg-mem TEST instruction.
ELSE Immediate value.

DROP 366 SIZE, Immediate data and reg/mem mode.
0 MEM, Memory reference.
SIZE @ ,/C, If 2 bytes operand, assemble the second byte.
SIZE ON Activate 16 word mode.

THEN
THEN ;

24.6. STRUCTURES IN CODE DEFINITIONS

Structures similar to those in the regular colon definitions can also be assembled in code definitions.
However, the structures in code definitions are constructed using the branching and looping machine
instructions. The test condition for branching are not a flag on top of the data stack but the condition
flags kept in the CPU status register.

Forward and backward branching are constructed using some words similar to the MARK and

20
RESOLVE words in the colon definition.

: A?>MARK (--- f addr) Set up a forward branch in code definition.
TRUE Leave a flag on stack for error checking.
HERE Address to branch from.
0 C, A dummy byte later to be resolved to a branching offset.
;

: A?>RESOLVE (f addr ---) Resolve a forward branching.
HERE OVER 1+ - Calculate the branching offset.
SWAP C! Store it after the branch instruction.
?CONDITION Abort if the flag is not true.
;

: A?<MARK (--- f addr) Set up a backward branch in code definition.
TRUE Set the flag.
HERE Leave current address on stack.
;

: A?<RESOLVE (f addr ---) Resolve a backward branch.
HERE 1+ - Backward branch offset.
C, Assemble the offset. Complete the branching instruction. ?
CONDITION Abort if flag is not true.
;

The branching instructions are vectored through the words >MARK, >RESOLVE, <MARK, and
<RESOLVE. The execution routines vectored by these words can now be resolved by pointing them to
the above structure words just defined in the assembler.

' A?>MARK ASSEMBLER IS ?>MARK
' A?>RESOLVE ASSEMBLER IS ?>RESOLVE
' A?<MARK ASSEMBLER IS ?<MARK
' A?<RESOLVE ASSEMBLER IS ?<RESOLVE

Conditionals in the assembler are machine codes to be assembled by the structure commands like IF,
UNTIL, and WHILE. The conditionals are defined as constants to be assembled:

HEX
75 CONSTANT 0= 74 CONSTANT 0<> 79 CONSTANT 0< 78 CONSTANT 0>=
7D CONSTANT < 7C CONSTANT >= 7F CONSTANT <= 7E CONSTANT >
73 CONSTANT U< 72 CONSTANT U>= 77 CONSTANT U<= 78 CONSTANT U>
71 CONSTANT OV
DECIMAL

: IF (opcode --- f addr) Assemble a conditional branch instruction to start a forward
branch.

21
C, Assemble conditional opcode.
?>MARK Set up forward branch.
;

: THEN (f addr ---) Close a conditional branch.
?>RESOLVE ;

: ELSE(f1 addr1 --- f2 addr2) Resolve forward branch for IF and set up another
forward branch to THEN.

0EB Unconditional branch opcode.
IF Assemble it here.
2SWAP THEN Resolve forward branch from IF.
;

: BEGIN (--- f addr) Set up a backward branch.
?<MARK ;

: UNTIL (f addr opcode ---) Resolve the backward branch to BEGIN.
C, Assemble the conditional opcode.
?<RESOLVE Resolve the branch offset.
;

: AGAIN (f addr opcode ---) Resolve the backward branch with an unconditional branch
instruction.

0EB Unconditional branch.
UNTIL Let UNTIL do the resolving and assembling.
;

: WHILE (--- f addr) Forward branch.
IF ;

: REPEAT (f1 addr1 f2 addr2 ---) Branch back unconditionally.
2SWAP Get the BEGIN location.
AGAIN Assemble unconditional branch to BEGIN.
THEN Resolve WHILE clause.
;

: DO (n --- addr) Set up an assembler do-loop.
CX MOV Assemble an instruction setting up the loop counter.
HERE Leave address for branch instructions.
;

: NEXT (---) The inner interpreter.
>NEXT #) JMP Assemble an indirect jump.
;

DECIMAL

