
using FIELD or one of the words derived from FIELD (INTE‑
eral flag bits in them. Everybody is familiar with the 'immedi​


GER, POINTER, etc.). Later on, he can rewrite this word as a
ate' flag bit and knows that the word IMMEDIATE sets this in


colon word (early‑binding) or as a VIRTUAL field (late‑bind‑
the last word defined. Some Forth systems also have a few name


ing). All code, whether member functions or external func‑
field flag bits undefined which the user can define for his own


tions, that accessed the field will now access the function.
purposes. We have a word called PRIVATE which is like I MME​


This works for both storing to and fetching from the address.
DIATE except that instead of setting the'immediate' flag bit, it


Anybody who uses OOOP should be aware of Uniform Ac‑
sets a different flag bit which we shall call the 'private' flag bit.


cess and make use of it.
We have another word called END MO DU LE which traverses the





entire dictionary and removes any words that have their 'pri​


Polymorphism & information‑h Wing ‑ weakly supported
vate' flag bit set from the dictionary search. These words are



There seems to be some confusion of definitions of poly‑
still in the dictionary and any words which call them will still


morphism. Rick Van Norman says this [6]:
work. It is just that the words can't be found in a future dictio​





nary search and hence can't be called from any future words.




Polymorpbism goes a step further than inheritance. In it,
If a new word is defined with the same name, there will be no



a new subclass (derived class] inherits all the members of its
redefinition warning given. In a large program, there can be



parents [base classes), but may also redefine any DEFER:
thousands of words defined. Only a fraction of these are docu​



[virtual] members of its parents.
mented and intended to be used throughout the program, the





rest were just of local interest and are just clutter. END ‑ MODULE



This isn't polymorphism, this is just inheritance as OOOP
could be incorporated into END_CLASS in order to emulate

provides and as we have been describing throughout this ar‑
the concept of private member functions as provided by C++.

ticle. Two classes can have fields of the same name that do dif‑
The author prefers to not do this. It is best to organize the code

ferent things only if they are in the same inheritance chain, That is,
into modules (each stored in a separate file) and to use

one is a base class of the other. In true polymorphism, two classes
END ‑ MODULE at the end of each one to hide all of the words in

can have fields of the same name that do different things even
that module which are not intended to be used outside of the

though neither is a base class of the other (and the fields may
module. If an inheritance chain of classes are all defined within

not have the same relative position within the objects).
a single module, placing END_MODULE at the end of that mod​



OOOP does not support true polymorphism. We have
ule has the effect of making the private words act similarly to


object addresses being passed around on the parameter stack
the PROTECTED words of C++.

and being stored in data structures. We can tell at run‑time

PRIVATE and END MODULE are very handy words for re​

what class an object is (by using I S_A or COULD_OCOPY). There
ducing name‑space cfutter. Because they are not strictly tied

is no inherent way, however, to tell at compile‑time what
to object‑oriented programming, the user has some flexibil​

class an object address is of. This information would be nec‑
ity with them. If END MODULE is incorporated into END CLASS,

essary for the compiler to modify the dictionary search such
then PRIVATE words‑ are essentially the same as C+_+ PRI​

that, when a field name is later referenced, the compiler uses
VATE words. If END ‑ MODULE is used at the end of each mod​

the field name associated with the class which this object is
ule, then PRIVATE words are essentially the same as STATIC

of. The only way for the compiler to obtain this information
words in C and C++ modules. If an entire inheritance chain

is for the programmer to explicitly tell the compiler. In
is in a single module, then PRIVATE words are essentially the

SWOOP [6], this is accomplished by tagging each use of an
same as C++ PROTECTED words. Despite being a fairly simple


object address with the word USING followed by the class‑
construct, our private concept works fairly well. It is not as I


defining word name. The author of OOOP has no intention
thorough as C++'s PUBLIC, PROTECTED, and PRIVATE words I

I

of doing anything like this in OOOP. The source code would
(especially if one takes into account how C++ classes also


get so cluttered with all of those USING xxx tags that it would
declare their base classes as PUBLIC, PROTECTED, or PRIVATE).


be unreadable. Most of the time, they are not needed any‑
On the plus side, it works quite well and it doesn't involve a


way, because it is fairly rare to have classes with common
lot of source code clutter like the USING xxxtagsofSWOOP.


field names. Generally, this happens by accident because there
The only real problem with PRIVATE and END_MODULE, is


are a lot of classes and name‑space pollution has become a
that the author doesn't know of any way to write them in


problem. Name‑space pollution is not unique to object‑ori‑
Forth‑83. He does know how to write them in UR/Forth, which


ented programming; any large program will suffer from it.
is the compiler that he uses. The implementation, however,


The solution, within OOP and without, is to be alert to re‑
involves accessing internal non‑standard features of UR/Forth.


definition warnings and to think up new names as needed. It
The OOOP code provided with this magazine article has only


is fairly rare for the programmer to purposely use polymor‑
dummy definitions of PRIVATE and END ‑ MODULE. The reader


phism. The only example that the author can think of is nu‑
needs to write these himself so that they will work with what​


merics (the same example that we used for unrestrained type
ever compiler he is using. If the reader doesn't know how to


casting). Two classes, such as COMPLEx and REAL, may not be
do this, he is still encouraged to use PRIVATE and END MODULE


in the same inheritance chain but may have common field
throughout his application in the hopes that he wilTeventu​


names (the arithmetic operations). Since OOOP is not sup‑
ally be able to put some substance to these words.


porting unrestrained type casting, there is little need to sup​


port true polymorphism either.
Implementation ‑ nothing very complicated



OOOP will probably never have true polymorphism. A little

The complete code for OOOP is in the file OOOP.4TH


information hiding could be useful, though. Name‑space pol‑
which is provided with this article. It is straightforward and


lution becomes a problem as programs become large. OOOP
uncomplicated Forth‑83 code. The reader should be able to


has a facility for dealing with this. Word name fields have sev‑
quickly get it running on any Forth‑83 system and probably,


Forth Dimensions XXI.1,2


69

