

I for Windows 95/98 nd-Mk&ws NT I

Super-efficient implementation Easy to add DLLs and to call
for speed (32-bit subroutine- DLL functions
threaded, direct codeexpansion) DDE client services for inter-
Full GUI advantages (like drag- application communication
and-drop editing; hypertext Files and blocks supported
source browsing; visual stack, . Simple creation of windows,
watchpoints, and memory win- menus, dialogs, etc. - no
dows) but retains traditional third-party tools needed
command-line control and tools . Flexible, extensible access to
Complies with ANS Forth. in- system callbacks and mes-

I cluding most wordsets Gaes, and exception handler I

This classic is n o longer out of print!

Poor Man's Explanation o
Kalman Filtering
or, How I Stopped Worrying and
Learned to Love Matrix Inversion

by Roger M. du Plessis

$1 9.95 plus shipping and
handling (2.75 for surface U.S.,
4.50 for surface international)

You can order in several ways:

e-mail: kalman@taygeta.com
fax: 831 -641-0647 can call our 24-hour message

voice: 831 -641 -0645 line at 831 -641 -0647. For your
convenience, we accept Mas-

mail: send your check or money order ter-Card and VISA.
in U.S. dollars to:

Taygeta Scientific Inc.
1340 Munras Avenue, Ste. 314 Dept. FD Monterey, CA 93940

Forth Dimensions XX.5.6

High-Accuracy Table Lookup Using Cubic Interpolation by Brad Eckert

r-4 User Stacks in ANS Forth by Len Zettel

Aspects of a Particular Three-Stack Machine Design by Rick Hohensee

l-4 Polyalphabetic Encryption Cracker by Hugh Aguilar

rn SWOOP: Object-Oriented Programming in SwiftForth by Rick VanNorman

FI Embedding 4tH Bytecode by Hans Bezemer

F. PIC Assembler by Richard Mayer

l-4 Reed-Solomon Error Correction by Glenn Dixon

M Look Ma, No Interrupts! Real-Time Forth by Dr. Everett E Carter, Jr.

DEPARTMENTS

4 EDITORIAL

26 FORTH TOOLBELT #8
PRESWOOP

., 75 FORTH TOOLBELT #9
EVALUATE Macros

78 NEWS
Forth in Space - again.

52 STRETCHING STANDARD FORTH #24 78 URLs
Linked List and Ordered List Where to find the code published in this issue.

58 STRETCHING STANDARD FORTH #25 79 SPONSORS & BENEFACTORS
Ordered List Examples

Forth Dimensions XX.5,6 3

Forth always has been a language whose success was rooted not in theory but in prac-
:ice. Despite a general lack of corporate or university sponsorship -with apologies to those
:ompanies and institutions of higher learning in which Forth has indeed been championed
3ver the years - it has been in the trenches that Forth has proven its efficacy, efficiency,
3nd vitality. A few publications have objectively documented Forth's strengths but most,
relying by necessity on advertising dollars and appeal to mass interests in order to address
their understandably bottom-line concerns, largely have ignored it. This is not to say that
Forth is an unpublished language; the Bibliography ofForth References which was maintained
For a number of years by The Institute for Forth Application and Research, documented a
surprising depth and breadth of coverage, both academic and popular, of this language.
(The Bibliography, when last I saw it, was sadly out of date; if updated, it probably would
double its already impressive size.)

Despite the fondest wishes of many, Forth has never achieved mass appeal. Instead, it
has suffered the fate of the long-distance runner, whose success lies in crossing the finish
line, not in besting the pack.

But Forth mostly is a tool for toolbuilders and problem solvers, not the mass market. Its
adaptability and flexibility have been of most value in situations calling for outstanding
performance under unusual constraints. Fast development needed? Skillful Forth program-
mers regularly deliver full-featured programs in the time required by skilled users of other
languages to deliver an initial prototype. Few resources available? Forth's model allows a
degree of application functionality that can only be viewed as incredible in hardware that
barely accommodates the run-time kernel of other languages.

Of course, true to its historical trend, this is swimming upstream. General practice these
days - at least the tales that make news and drive up costs for consumers and small enter-
prises - is to throw more-expensive hardware at a problem, to deploy larger programming
teams, to design solutions that ultimately will require expensive maintenance and admin-
istrative personnel until a bigger, costlier solution relegates the old one to the scrap heap.

But in the trenches, the troops carry on. Alone or in teams, proficient Forth programmers
continue the daily work of finding appropriate niches, and of delivering good work on time.
Forth's greatest asset is the integrity and diligence of its users who appreciate the benefits
inherent in, or which can be coaxed from, what the mainstream might view as limitations.

Since its inception, Forth also has benefitted from the efforts of an even smaller minor-
ity of adherents, a few people whose public contributions have been not so much the pro-
grams they write or features they introduce to the language, but their ability to help this
dispersed community of independent-minded users to cohere and communicate and coop-
erate in ways that benefit everyone. The loss of one of those people, as happened last spring,
reminds us to be very grateful for each person who takes the time and thought necessary to
share their experience, knowledge, and even wisdom, with the rest of us.

In Memoriam

With great regret, we must report that Robert Reiling passea away on Wednesday, May 5
of this year.

In the Forth community, Mr. Reiling was the director of"the annual FORML Conference,
and was a past President of the Forth Interest Group. His diplomacy and professional de-
meanor, as well as his personal commitment and friendliness, could always be relied upon,
and he will be missed. His dedication and encouragement also extended to groups that in-
cluded the seminal Homebrew Computer Club and local ham radio enthusiasts.

Bob had contracted cancer, and responded to treatment favorably enough to direct the
20th FORML Conference last November and, shortly thereafter, to resume his full-time
work until the illness recurred.

We extend our condolences to Bob's friends and family and, like many others, are very
grateful for his contributions and support.

I

Forth Dimensions
Volume XX, Number 5,6

January 1999 April

Published by the
Forth Intenst Group

Editor
Marlin Ouverson

Circulation/Order Desk
Trace Carter

Forth Dimensions welcomes editorial ma-
terial,letters to theeditorrand comments
from its readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in theForth In-
terest Group at $45 per year ($53 Canada1
Mexico, $60 overseas air). For member-
ship, change of address, and to submit
items for publication,the address is:

Forth lnterest Group
100 Dolores Street, suite 183
Carmel,California 93923
Administrative offices:
831.37.FORTH Fax: 831.373.2845

Copyright O 1999 by Forth lnterest
Group,lnc.The material contained in this
periodical (but not the code) is copy-
righted by the individual authors of the
articlesand by Forth lnterest Gmup,lnc.,
respectively. Any reproduction or use of
this periodical as it is compiled or the
articles, except reproductions for non-
commercial purposes,without the writ-
ten permission of Forth lnterest Group,
Inc. is a violation of the Copyright Laws.
Any code bearing a copyright notice,
however,can be used only with permis-
sion of the copyright holder.

The Forth lnterest Group
The Forth lnterest Group is the associa-
tion of programmers, managers, and
engineers who create practical, Forth-
based solutions to real-world needs.
FIG provides a climate of intellectual
exchange and benefits intended to as-
sist each of its members. Publications,
conferences, seminars, telecommuni-
cations,and area chapter meetings are
among its activities.

FORM DIMENSIONS (ISSN 0884-0822)
is published bimonthly for $45/53/60
per year by Forth lnterest Group at
1340 Munras Avenue, Suite 314,
Monterey CA 93940. Periodicals post-
age rates paid at Monterey CA and at
additional mailing offices.

POSTMASTER: Send address changes to
FORTH DIMENSIONS, 100 Dolores Street,
Suite 183, Carmel CA 93923-8665.

Forth Dimensions XX.5.6

This algorithm basically trades speed for table size by as-
suming that the line joining points in a lookup table is really
a curve. The value in question rests on the curve between the
two middle points of a four-point segment. The curve is as-
sumed to be a third-degree polynomial that passes through
all four points.

Intended for use on small processors, this code uses only
integer arithmetic. I originally wrote it to calculate various
transcendental functions to 16-bit precision. There are more
efficient ways to approximate such functions, but the gen-
eral-purpose method presented here lends itself to arbitrary
functions, too.

The theory behind the algorithm is as follows:
Given points yo, yl, y2, and y3, there is a point f(x) be-

tween yl and y2 where the region of interest is 0 < x < 1.
f(x) = w O + w l * x + w 2 * xA2 + w 3 * xA3

For four equally spaced points (n = -1,0,1,2), f(n) gives
four equations:
f(-1) = yo = wO - wl + w2 - w3
f (0) = yl = wo
f(1) = y 2 = w O + w l + w 2 + w 3
f (2) = y 3 = wO + 2wl + 4w2 + 8w3

Simultaneously solving these equations yields the follow-
ing coefficients upon which the algorithm is based:

The word CUBIC^ does the approximation using four data
points at an address. CUBIC does some indexing and scaling
in order to be useful in using a lookup table.

The algorithm takes some shortcuts to keep the math
simple, so a wildly varying lookup table could cause an over-
flow. In typical applications, you won't come close to this
situation,. but it always pays to test.

The example given here represents the first quadrant of a
sine function using 19 data points. This gives better than 16-
bit precision. An 80 point table gives a maximum error of
about .004 PPM.

\ Table Lookup Using Cubic Interpolation

8 cells constant cellbits \ bits/cell assuming byte addressing
\ change if your address units aren't

bytes

1 cellbits 1- lshift 0 Zconstant wround \ i.e. 0x00008000 for 16-bit
Forth

variable wptr \ points to the input data
'I

: @seq (- - d)
\ get next point for coefficients (write in assembly for speed)

wptr @ @ s>d
[1 cells I literal wptr + ! ;

Forth Dimensions XX.5,6 5

(a - - n) \ 6 * w 1
wptr ! 0.
@seq d2* d- @seq d3* d-
@seq d6* d+ @seq d- drop ;

(a - - n) \ 6 * w 2
wptr ! 0.
@seq d3* d+ @seq d6* d-
@seq d3* d+ drop ;

(a - - n) \ 6 * w 3
wptr ! 0.
@seq d- @seq d3* d+
@seq d3* d- @seq d+ drop ;

: cterm (frac nl n2 -- n3) \ n3 = nl * frac + n2
>r m* d2* wround d+ nip \ trunc --> round
r> + ;

: cubic4 (frac a -- n) \ frac = O..maxint
\ perform cubic interpolation on 4-cell table at a

>r dup dup r@ w3 \ ~3
r@ w2 cterm \ w3*f + w2
r@ wl cterm 6 / \ (w3*n*n + w2*n + wl) / 6
r> cell+ @ cterm ; \ *n + yl

: tcubic (nl addr -- n2)

\ perform cubic interpolation on table at addr
\ nl = O..2"cellsize-1

dup cell+ >r @ (nl tablesize I addr)

um* >r 1 rshift r> (frac offset I addr)

cells r> + cubic4 ;

: CUBIC (nl span addr -- n2)

\ perform cubic interpolation on table at addr, nl = O..span-1
>r >r 0 swap r> um/mod nip
r> tcubic ;

.,
create exampletable \ Sine table (1st quadrant)

16 I t 16 points plus 3 endpoints)
-3212 , 0 , 3212 , 6393 , 9512 , 12540 , 15447 , 18205 ,
20788 , 23170 , 25330 , 27246 , 28899 , 30274 , 31357 , 32138 ,
32610 , 32767 , 32610 , \ clipped to maxint for 16-bit 4ths

. (32768" sin (lodegrees) is) 10 90 ExampleTable CUBIC .

6 Forth Dimensions XX.5.6

Forth programmers are, of course, familiar with the con-
cept of the information stack, since the data stack and return
stack are at the heart of Forth. Here I would like to remind
readers of the concept of a stack as an abstract data type. In this
view, a stack is defined in terms of the things you can do with
it, regardless of the implementation details that make those
things possible. In this view, a stack is characterized as follows:

I You can put things on a stack.
You can take things off a stack.

1 The thing taken off is always the last thing put on.

Here we present words to create and manipulate stacks
implemented as a linked list.

Figure One illustrates the principle of the linked list. The
rectangles represent nodes-a number of contiguous memory
locations. These blocks of memory do not have to be next to
each other, nor must they all be of the same size, nor do they
have to be in order (although any of these conditions may be
imposed by an implementor in the name of performance ef-
ficiency, depending on the application).

The key idea is the existence of a link field (shown in Fig-
ure One at the left end of each node) that points from one
node to the next. There is a separatepointer to the head of the
list, and the pointer of the last node is a null pointer, pointing
to nothing. In Forth, it is convenient to use zero as a null
pointer, since it is easy to test for and there are few systems
that would allow memory location zero to be the valid start-
ing address of a link node. Variations on this theme include
having pointers to other locations on the list, circular lists
(where the last item points to the first item) and doubly linked
lists (with pointers going in both directions).

Linked lists are important in the computer world because:
they can be traversed almost as rapidly as accessing
contiguous memory locations,
items can be added or removed "on the fly," therefore,
they use memory efficiently.

We now have a pretty good problem specification. We need
Forth words to:

create a user stack
push items onto the user stack from the Forth data stack
pop items off the user stack onto the Forth data stack

It would also be handy if, following a pop, performing,,a
push restored the items to the user stack in the same order
they had been (making push and pop reciprocal operations).

The accompanying code shows one way to do this.

We have the defining word.. .
: s tack CREATE 0 , ;

Usage: s t ack mystack (creates a stack named mystack);
then rnystack puts the address of the pointer to the top of
the user stack on the Forth data stack.

CREATE lays down the necessary header information for a
new word in the Forth dictionary (itself often a rather com-
plicated linked list or lists). 0 , gives the word a cell of data
space and initializes it to the null pointer (since the stack is
empty when created). When rnystack is executed, its action
will be to put the address of its cell of data space on the Forth
data stack. Since that is all we need or want, there is no need
for further action by a DOES> in this simple defining word.

Figure One

pointer

Now for push, which will create and populate a new node.
We need a link field, which we will put first. This is a handy
position, since the address of its cell will be the first node
information available, and this way we can get at everything
else with simple positive offsets. Since we want to be able to
use variable-size nodes, the next cell will contain the node
size, necessary overhead for this capability. The third cell will
be the first of the cells containing the data of the node.

The size specification could be either the number of ac-
tual data cells or the actual node size, both data and over-
head. My personal preference, implemented here, is to use
the total node size. This means the programmer needs to re-
member to bump the size specification to the number of ac-
tual data cells plus two. Push will take items off the Forth
data stack one by one and store them in the node in order, so

Forth Dimensions XX.5,6

\ This is an ANS Forth Program requiring the Memory-Allocation word set
\ Words to handle a user-created stack as a linked list with nodes of arbitrary size.

: stack CREATE 0 , ;

: node-size (node-addr -- node-size) CELL+ @ ;

: n! (nl .. nn addr n - -) \ Store nl to nn in consecutive cells
\ starting at addr.

CELLS OVER + SWAP DO I ! 1 CELLS +LOOP ;

: n@ (addr n -- nl . . nn) \ Fetch n consecutive values starting at
\ addr + (wordsize)* (n-1) & leave them
\ on the stack.

1- CELLS OVER + DO I @ -1 CELLS +LOOP ;

: node. (addr -) \ Display the contents of the node at addr.
DUP @ U. DUP CELL+ @ CELLS OVER + SWAP CELL+ DO I @ . 1 CELLS +LOOP ;

: list. (ptr -) \ Display the contents of the stack pointed to by ptr.
CR DUP @ O= IF ." stack empty" DROP EXIT THEN
CR BEGIN @ ?DUP WHILE DUP node. CR REPEAT ;

\ Thanks to Marcel Hendrix for noting that ALLOCATE works in address units.
: push (nn . . nl addr - -) \ Push nl .. nn onto the stack pointed to

\ by addr. nn is the node size in cells
OVER >R R@ (get-node)
CELLS ALLOCATE \ Get node space
ABORT" push : ALLOCATE failed."
>R DUP @ \ Get address of node at the top of the node stack
R@ ROT ! \ Make new node top of stack
R> R> n! ; \ Store node contents.

: pop (addr -- nn . . nl) \ Pop stack pointed to by addr, leaving
\ node values on the stack and freeing
\ the node space.

DUP @ DUP O= ABORT" Empty user stack."
DUP @ ROT ! DUP > R
CELL+ DUP @ 1- n@ R>
FREE ABORT" pop: FREE failed" ;

the item deepest on the Forth data stack will be in the node's
end position.

Looking at the code for push, OVER > R R@ parks a copy of
the node size on the return stack. CELLS ALLOCATE gets a'
node-sized chunk of memory, ABORTing with an error mcs-
sage if for some reason it could not do so. > R parks the ad-
dress of the new node on the return stack. DUP makes a copy
of the address of the pointer to top-of-user-stack. @ puts the
address of the current top-of-user-stack on the Forth data stack.
R@ puts the address of the new node on the Forth data stack,
ROT puts the address of the pointer-to-top-of-user-stack on
top of it, and ! stores the new node address in pointer-to-
top-of-user-stack. FO puts the address of the new node on the
Forth data stack. The next FO puts the node size on top of it,
and our word n ! populates the node.

Since we mentioned it, let's take a look at n ! (n-store). We
need to store n items of information, each the size of a cell,
in consecutive memory cells starting at addr. The obvious way
to do this is with a DO ... LOOP. So let's see.. . we could set up
the following:
0 DO SWAP OVER I CELLS + ! LOOP DROP ;

This would do it. 0 DO sets up the loop parameters. SWAP
puts the next item to store on top of the stack. OVER puts a
copy of the base address over it. I CELLS + gives the address
the proper offset. ! stores the item. At the end of the loop,
we are left with the base address on the stack, so we DROP it.
Not too bad.

Can we do better? Suppose we could arrange it so that I
furnished the storage address itself instead of a count. Then

8 Forth Dimensions XX.5,6

-

the business contents of the loop could simply be I !, but I
would have to increase by the number of address units in a
cell. We could do that with 1 CELLS +LOOP. Okay, so far we
have GO I ! 1 CELLS +LOOP. Then we notice we no longer
need the DROP. All that's left is figuring out how to set up the
proper DO range. The first value of I has to be addr. The last
value of I used will be addr plus (n-l)*(address units in a cell).
Given the rules governing GO loops, this means an upper limit
of addr plus @)*(address units in a cell), because with an in-
creasing index, the iteration stops one pass short of the loop
limit. We can get the required loop parameters with CELLS
OVER + SWAP. CELLS switches us from number of cells to
number of address units. OVER + gets the required upper limit.
SWAP puts things in order for the following DO. At the cost of
some preliminary setup work, we have reduced the number
of words inside the loop (where most of the work will be done)
from seven words to four, a fair savings.

Let's look at pop, the inverse operation of push. First we
check that there is indeed something on the stack to pop,
ABORT1'ing if there isn't. Assuming we pass that test, the stack
picture is now (addrl addrz), with addrl being the address of
the pointer-to-top-of-stack, and addr2 the address of the first
cell of the top of stack. DUP @ puts the pointer to the next item
down (if any) on top of the data stack. ROT ! makes the pointer-
to-top-of stack point to that item, since that will be the new
top of stack after the pop completes. DUP > R parks a copy of
the address of the item to be popped on the return stack. CELL+
bumps the address to the cell containing the size of the node.
Dup @ 1- gives the parameters needed by n@, which puts the
required information on the data stack. Finally, R> FREE gives

1 the space occupied by the popped node back to the system,
since the application no longer needs it. Doing this here means ' we don't have to worry further about garbage collection, which
can be a headache. We'll let the system take care of that, since
it should be more competent to do so.

n @ follows the pattern of n! with some adjustments for
circumstances. ere the index has to start at the high address
and count down, thus the -1 CELLS +LOOP. The first address
fetched will be at addr + (n-l)*(cell size in address units), so we
have 1- CELLS OVER +. Because this loop will be counting
down, the final value of I in the loop will be the limit value,
which we set to addr. So we see that what at first seems to be
a Forth idiosyncrasy turns out to be nicely suited to the uses

-- -

of zero-based addressing, where n items are indexed as u(O),
u(l).. u(n-1) rather than u(1) ... u(n).

At this point we have covered how to create a user stack,
and how to push items on to it or pop them off. Another
handy thing to do (perhaps while debugging an application)
is list the contents of a stack. For this we have list. ("list-
dot"). Given a pointer to a list, we look at the next pointer
and, while it is non-null, we display the node contents with
node. (which follows the same principles as n!) and then go
on to the next item. node. has some complications that come
from dealing with messy realities. Addresses in Forth can cover
the full range of unsigned numbers, so the first cell is dis-
played using u . while the remaining values are diplayed with
. (dot). This leads to some complications in setting up the
Do parameters. We can still get the upper limit with DUP CELL+
@ CELLS OVER +, but since we have already displayed the
contents of the first cell, we increment the DO starting value
using CELL+.

Now that we have reviewed everything, let's try a simple
example:

Stack mystack
... will create an empty user stack named mystack.

Mystack list
... will produce the message "stack empty," since we haven't
put anything in it yet. So let's follow up with:

567 3 mystack push mystack list.
We should now see 0 3 5 67. Now let's try:

mystack
pop mystack push
1009 885 234 5 mystack push
mystack list.

(On as many lines as you like, with as many uses of .S as you
prefer). Using SwiftForthTM from FORTH, Inc. I saw:

22282240 5 234 885 1009
0 3 567
ok
... which is what I should have seen.

Forth-Gesellschaft eV (Germany's FIG) has changed the name and address of i ts web site.
The new URL is:

http://www.forth-ev.de -.

For the benefit of those who do not read German, at press time, a translation of the whole site into
English was in preparation.

The site's webmaster is Dr. Egmont Woitzel, member of the Board of Directors of Forth-Gesellschaft.

Up to now, the work put into the new site is entirely due to Dr. Egmont Woitzel and Professor Dr.
Thomas Beierlein, both from the Directorial Board of Forth-Gesellschaft.Much additional work comes
from Friederich Prinz, Editor of Vierte Dimension and Member of the ~irectorial Board.

Forth Dimensions XX.5,6 9

Forth Dimensions XX.5,6

Abstract
H3sm ("Hohensee's 3-stack machine") is a demo imple-

mentation of a virtual computing machine with three dis-
tinctly featured stacks, plus a Size register controlling the data
stack. The stacks are the Return Stack, the Pointer Stack, and
the Data Stack. The Data Stack, the Size register and affiliated
ALU and stack operators implement a fundamental type called
a pyte, which is an integer at the current value of Size. Size
varies from one to 256 eight-bit bytes. Pointers and return
addresses and their respective stacks are address-bus cells, as
usual. H3sm currently has only a vestigial interpreter and no
interpretive threading (compiler) capability. The current H3sm
does demonstrate pyte arithmetic.

GNU C source code for H3sm is at http://linuxOl.gwdg.de/
-rhohen/H3sm.html1 and is heavily commented.

H3sm and this essay are primarily the work of Rick (Rich-
ard Allen) Hohensee, with distinct improvements by Michael
Somos (http://grail.cba.csuohio.edu/-somas/). Amongst other
things, Somos generalized the code for either-endian hosts,
which I did not intend to address myself.

Impetus
The idea of a three-stack "Forth" has been gnawing at me

for several years. Around 1992, I attempted and failed to write
a three-stacker on the Commodore 64. At the time, I thought
a doubly linked dictionary was a good idea, and I ran out of
steam trying to implement that in 6502 machine language.
Jonah Thomas UET) has since pointed out that I could do the
things I wanted without double linking. The H3sm dictio-
nary linking is fairly conventional in this regard, so, in true
Forth style, JET must be credited for something that, thank-
fully, isn't in H3sm.

Several things about a conventional Forth bug me or just
seem curious. The absence of microprocessor-style conditional
flags, the plethora of size-typed operators, and the fact that I
can never, to this moment, remember the order of operands to
Forth ! ("store"). I have hoped that three stacks can make a
useful distinction between data and pointers, which will solve
my little ! problem, and will also provide some reduction in
the namespace-explosion that is one of Forth's weak points.

Also curious is what I see as the missing coda to Phil
Koopman's Stack Machines: The New Wave. This book describes
the history of computing engines in terms of the number of "'

stacks they have. Koopman points out that stacks like tQe
typical CPU return stack and the Forth parameter stack are
implicit to the instruction sets of their respective machines,
and are not addressed, as registers are on machines with
multiple similar registers. Koopman shows that computers
have improved noticeably as they went from zero, to one,
and then to two stacks. However, I don't recall much conjec-

ture in the book on more than two stacks, or any compelling
case for two being the absolute upper limit.

H3sm therefore begs to beg the question Koopman begs.
Well then, many have said, why not 1024 stacks, or what-
ever? Because, if they're all the same, you wind up with waste-
ful addressing bits in the opcodes again. The key lies in the
fact that with a small number like three, each "stack" can
have properties distinct from the others. With two, you don't
have much flexibility. With three, data items can be differ-
ent in size than addresses. Variably sized, in fact. (Koopman's
book is on the web in its entirety, by the way.)

Looking at machine design very subjectively, a Forth is a
nice little assortment of data structures/mechanisms. Forth's
openness and simplicity allows re-use of its component parts.
H3sm adds a couple of distinct parts to the toolkit. An H3sm
models a machine with an address bus of typical size, and
may help abstract the size of the data bus over a wide range
of possible sizes.

The name pyte originally was from "precision byte," and
Size originally was called "Precision." My technical back-
ground is in the field operations of land surveying, where
one develops a mindset in which numbers are duals, with a
unit and a precision. I've wanted a computer that can change
itself from a low-precision implement to a high-precision
implement-such as from a surveyor's manual "Chinese
Ninety" or an artist's outstretched thumb, to a first-order tri-
angulation theodolite-with the change of one variable.

Design
Each of the three H3sm "stacks" has a behavior that is

distinctly different from the other two.

return
The return stack is rather typical, containing address-size ex-
ecution tokens. One day, we might do loop indices and such
on the return stack, too.

pointer
The H3sm pointer stack is address-cell sized. The pointer stack
is "sluggish"; it is not auto-pop/push. The pointer stack
pointer is usually left pointing to the recently referenced cell.

data
The data stack operates on pytes, groups of 1,2, 4,8, 16 ... 256
bytes. Boolean flags are the low byte of a pyte. False is zero.
Non-zero is true. The H3sm true word asserts 255 in a flagpyte.

Sizel'register"
The current effective size of data stack operands is the Size
state variable. There are user-visible accessors of this Size "reg-

ister." Operations on pytes are in terms of Size, except where
a pyte is treated as a flag, aka a flagpyte.

So the three stacks are the data typing of H3sm; typing is
enforced by the various operands. The data stack is where a
datum can be treated arbitrarily. There are a few ops to move
things from stack to stack, with some conversion and data
loss in some cases, as may be necessary between pytes and
addresses, and to and from Size.

The above data structures are defined by their interaction
with the H3sm primitives in Table One [see following page].
(I kinda like the term atoms in lieu of the usual primitives, by
the way.) It is messy, but not huge. I count 97 words. These
atoms were more than sufficient to write the simple inter-

preter. The interpreter is about 20 non-atomic words, written
as (C-compiled-in) threads of the atoms. Glaring omissions
include -, *, * /, and move. Available flow-control is rudi-
mentary. Conversely, there's about a dozen scaffolding con-
stants and so on that could easily be done without. Note that,
in exchange for things like p+s and so on, we don't have any
of the likes of 2+, 2DuP, et al.

The functionality of the above atoms may be more than
you think at first glance. The math and logic that does exist
works at any s i z e from 1 to 256 bytes. Fairly rich pointer-
twiddling is also available. I would describe this as "thicker"
than a Forth. A quick session with some pyte arithmetic may
illustrate some of this thickness. r is the register picture word.
Numbers are hex.

Listine One. Sample session with pyte arithmetic.

(the next 2 lines are my florid shell prompt, with input of "H3sm1')
$ cLIeNUXO /dev/tty3 r 00:30 :15 /mount/bl/H3sm
SH3sm
total Virtual Address Space including dictionary is 65536 bytes.
actual address of VAS is Oxbffe5d2c

gcc-compiled at 22:37:38 on Dec 28 1998

latest bffe8674
r

RETURN POINTER
a3 4 0
a50 0

0 0
0 0
0 0
0 0

rsl= 2 psl= 0

(this is our H3sm input line, r)
DATA pyte Size = 4
msB, lower bytes --->
00 0 0 00 00 T.O.D.S.
0 0 00 00 02
00 0 0 00 00
0 0 00 00 00
00 0 0 00 00
dsl = 0 = 1sB of TOS ip = 2520

0-TAY!
44444444 66666666 10101010 r (more input, 3 #Is and another r)

RETURN PO INTER DATA pyte Size = 4
a34 0 msB, lower bytes --->
a50 0 1 0 1 0 1 0 1 0 T.O.D.S.

0 0 66 66 66 66
0 0 44 44 44 44
0 0 0 0 00 00 00
0 0 00 0 0 00 02 ,,

rsl= 2 psl= 0 dsl = 1 2 = 1sB of TOS ip = 2520

0-TAY!
2222 + r (etc.)

RETURN POINTER DATA pyte Size = 4
a34 0 msB, lower bytes --->
a50 0 1 0 1 0 32 32 T.O.D.S.

0 0 66 66 66 66
0 0 44 44 44 44
0 0 00 0 0 00 00
0 0 00 00 00 02

Forth Dimensions XX.5,6

Table One.

(P; begins a pointer stack comment.
(R; is a Return Stack comment.
(is a Data Stack comment.
I I I means "below (left of) here is required but not changed."
HNC is Head Name Cell of a dictionary word.

Atom name Stacks effects

address
AND
bytemask
dualmask

call
cells
aint
bump

bye

charsize
doHNC
downsize
drop

dup
ell

! P
extend
emit
false
@
@size
flag
four

gap
hostfn
! BUFFER0
max
NOT
negate
last
literal

-P
no
nothing
nown
ones
one
OR
over

pdrop
pdup
period

P @
+

(P; --- ptr)
(pytea pyteb --- pyteaandb)
(--- Oxff)
(--- Oxffff)

(R; --- xt)

(flagp --- !flagp)
(--- junk)

(P; HNIC ---) (R; --- RETlnull)

(pyte ---)
(pytea I l l --- pytea)

(P; p store 1 1 1)

(pyte ---
(--- Oflag)
(P; ptr I l l ---) (--- pyte)
(P; noun --- noun)
(pyte --- flagpyte)
(--- 4)
(--- ptra-b) (P; ptra ptrb I l l ---)
(--- sh.ret.va1) (P; epa bpa 1 1 1)

(a b --- maxab)
(pyte --- !pyte)
(a --- 2's-complement-negative-a)
(P; --- count.byte.addr)
(--- pyte)
(pyte ---) (P; ptr --- ptr-intpartofpyte)
(flagpyte ---)

(P; --- nown-body)
(--- -1)
(--- 1)
(pytea pyteb --- pyteaORb)
(a b - - - a b a) ..
(P; ptr ---)
(P; ptra --- ptra ptra) '.
(--- 46)
(P; ptrl --- ptr2)
(a b - - - c)
(pyte ---) (P; ptr ---ptr+bytepartpyte)

Size effects, comments

might be handy for Unicode
1 !SIZE

4 !SIZE
the NOT of a flag

return to caller of H3sm
with flag byte of TOS
1 !SIZE (acheat)
Forth EXECUTE
shift Size down, or to one ! SIZE

unconditional branch
store a ptr

treated as a char

!SIZE
bytewise O R a pyte into its low byte
pyte constant

conditional branch if true
NO P

or fffff
pyte constant

decr pointer stack lubber

ASCII . pyte constant
ptrl overwritten

(Table continues on next page.)

L I
12 Forth Dimensions XX.5.6

Atom name Stacks effects Size effects, comments

P-s
P+S
p+b
P+C
P-c
P-c
pTO s
sTOp

P!
PswaP
P> r
PUP
push
? =

r d r o p
r e t u r n

rPcoPY
r>P
r > s
s a v e D i c t i o n a r y
s i g n
s i x t e e n
s i z e d
s i z e
s> r
s p a c e

I

swap
t e n
t h r e e
t i m e
TOcode
T O l a s t
TOlink
> s
t r u e
two
ushif t
u p s i z e
v a s b a s e
w a i t
Osl
Opsl
O f s l
XO R

Yes
z e r o
ok
r
tdurnp

Forth Dimensions XX.S,6

(P; ptr --- ptr-Size)
(P; ptr --- ptr+Size)
(P; ptr --- ptr+l)
(P; ptr --- ptr+4)
(P; ptr --- ptr+4)
(P; ptr --- ptr+4)
(P; Size 111)
(P; --- Size)
(P; store p Ill --- store p)
(P; a b --- b a)
(P; ptr Ill) (R; --- ptr)
(P; --- oldptr)
(R. --- '

I 1P
(a b --- flagpyte)
(R; a ---)
(R; xt ---)
(R; a Ill) (P; --- a)
(R; ptr ---) (P; --- ptr)
(R; size ---)

(pyte --- 1 or 254 or 0)
(--- 16)
(P; --- ptr)
(--- Size)
(R; --- Size)
(--- 32pyte)
(P; ptr Ill) (pyte ---)
(pytea pyteb --- pyteb pytea)
(--- 10)
(--- 1)
(--- utime.int)
(P; HNC --- Code-Body-Cell)
(P; ptr ---)
(P; HNC --- Link-Cell)
(size ---)
(--- true-flagpyte)
(--- 2) pyte constant
(shiftee amount --- shifted)

(P; --- addr.of.vas.x[O])
(P; bpa Ill --- epa)
(what ever . . . ---)
(P; what ever ... ---)
(R; what ever ... ---)
(pytea pyteb --- pyteaXORb)
(flagpyte ---)
(--- 0)

(P; text Ill ---)

dup r to p

!SIZE

pyte constant, decimal 16

pyte constant for a space

pyte constant, decimal 10
pyte constant
4 !SIZE

update latesttlast

!SIZE
implementation requirement
blocks flow

conditional branch if false.
0 as a pyte constant

..
machine language-monitor-style stack pic

rsl= 2 p s l = 0 d s l = 1 2 = 1 s B of TOS i p = 2520

0-TAY!
2 T O s i z e + r

RETURN PO I N T E R
a34 0
a50 0

0 0
0 0
0 0
0 0

rsl= 2 p s l = 0

0-TAY!
8 T O s i z e d u p r

RETURN
a34
a50

0
0
0
0

rsl= 2

POINTER
0
0
0
0
0
0

p s l = 0

DATA p y t e S i z e = 2
m s B , l o w e r b y t e s --->
42 42 T . O . D . S .
6 6 6 6
6 6 6 6
44 44
44 44
d s l = 12 = 1 s B of TOS i p = 2520

DATA p y t e S i z e = 8
m s B , l o w e r b y t e s --->
42 42 6 6 6 6 6 6 6 6 44 44 T . O . D . S .
42 42 6 6 6 6 6 6 6 6 44 44
44 44 00 00 00 00 00 00
00 02 00 00 00 00 00 00
00 0 0 00 00 00 00 00 00
d s l = 1 4 = 1 s B of TOS i p = 2520

In the above, we did + at two and four bytes, and dup at
eight bytes, to the pyte. This is operator vectoring, not over-
loading. There is no interpreting involved. I'm told that big-
ger adds are slow in silicon, without lots of extra silicon, but
wide Booleans could be a big win in a relatively small amount
of silicon if you have a use for them. More important may be
the semantic freedom to design an algorithm for pytes, and
to use it for whatever size data is appropriate at any particu-
lar moment. The H3sm interpreter is very nearly Unicode-
transparent for this reason, although there are one or two
charsize assumptions in the current code.

Implementation
For those who don't care to browse the source, H3sm is a

rather nasty piece of C. H3sm is distinctly not what C likes to
do. My interest in C in this context is simply as a portable
assembler, and the code reflects that intent. As little as pos-
sible of C's sophistication is used. All of H3sm is in a single C
function, main(). H3sm uses GNU C labels-as-values, in pure
mimicry of Gforth. This is a GNU extension to C that is a form
of computed GOTO, and is in H3sm1s NEXT macro; i.e., it is
essential to H3sm1s threading scheme. I suspect H3sm1s thread-
ing scheme, which I call Virtual Machine Subroutine Thread-
ing, has a unique aspect. It is similar to what has been called
"call threading" (by Ertl or Paysan, I think, in comp.lang.forth).
However, H3sm has no w, no "Working Register." An atomic bit
is necessary in the headers of atoms (primitives) to distinguish
them from threads. The resultant threading behavior is slightly
less confusing to me, resembling normal subroutine calls a bit
more than most other schemes.

14

One possible benefit of this cretinous C style is simple
embeddability. It is trivial to rename main0 and include
H3sm in something else. This doesn't give any communica-
tion between H3sm and the host code, however. A bootable
version of H3sm should not be terribly difficult, either, and
perhaps would be more interesting than an embedded one.

The interpreter and pre-threader compiled-in threads in
H3sm are very wasteful code, both in terms of code and
memory used by the executable, which, at about 90K, is too
big for such a simple program. Mercifully, that stuff only runs
at startup. There was value in doing them the way I did,
though, because the cpp macros served as a preview of the
language and of what it would be like to program it from the
interpreter.

In C, size can be any integer between 1 and 256 inclu-
sive. In silicon, Size may better work as 1, 2, 4, 8, etc. Maybe
not. As it is, a size that can match, e.g., Intel floating-point

q % stack item sizes, is a happy accident of this implementation.
Loop indices are pytes. Pytes are relatively worse perfor-

mance-wise in C than they would be in silicon, and will be
the next thing I change in H3sm. I'm quite pleased that
H3sm loops benchmark at about half the speed of Perl, for
such a fragile demo, but with int loop indices on the re-
turn stack she should run distinctly more like a Forth.

Impressions
Well, I like it. I think it was worth doing. I see some pos-

sibility for pytes to reduce the "What is an int?" problems

Three-Stack Machine continues on page 67.

Forth Dimensions XX.5,6

Forth Dimensions XX.5,6 15

The Polysub -well-known but not very secure
In this article, we will present the Polyalphabetic Substi-

tution Cipher (the "PolySub"), which most readers should be
familiar with. This is the one in which a key is repeatedly
XOR'd with the plaintext to produce the ciphertext (or vice-
versa). We will then present a program which will crack this
cipher, working on the assumption that the plaintext charac-
ters have varying frequencies and that one plaintext charac-
ter in particular is much more frequent than the others (we
assume that this character is the blank). This article is ori-
ented toward novices, so we provide a lot of implementa-
tion-level description of our encryption-cracking program.

On computers, the PolySub is usually implemented with
XOR. This allows the same program to be used for both en-
cryption and decryption, since XOR undoes itself. In pre-com-
puter days, plus and minus were used. The PolySub was in-
vented in 1568 by Leon Battista and was used extensively by
the Union Army during the American Civil War.

Let's look at an example of the PolySub using plus and
minus. We will use an alphabet of all capitals encoded 0
through 26 (a blank is a zero), and we will use a key of "DOOR"
(see Figure One).

We are using modular addition to encrypt. The message
would be decrypted by using modular subtraction. This
method is an excellent system for anybody who doesn't have
access to an electronic computer. The reason is that one can
easily construct a "computer" out of cardboard.

The idea is to have a circular piece of cardboard riveted,
through its center, to another piece of cardboard so that it
can be spun freely. Both wheels have the alphabet written on
them clockwise. To encrypt or decrypt, one locates the cur-
rent letter from the key stream on the inner wheel and lines
it up with the blank on the outer wheel.

If encrypting, one then locates the current message letter
on the outer wheel and finds the corresponding encryption
letter on the inner wheel. If decrypting,

"DOORFENCE" the key length is nine. On the other hand, if
the message is first encrypted with "DOOR" and then with
"FENCE", the effect is the same as if it was encrypted once with
atwenty-character (4*5) key of "JTCUIUTFGTWRRTXICRW".
The security is actually a little better, because the effective twenty-
character key is a jumble of characters and can't be as easily
guessed as "DOORFENCE" which is composed of recognizable
English words. When doing multiple encryptions like this, one
should be sure that none of the key lengths have common de-
nominators. If they are the same lengths, for example "DOOR"
and "GATE", it is still effectively a four-character key (although
the characters at least are jumbled as "KPIW").

The first part of the CrakPoly program is the code to load
and save files, and to encrypt and decrypt them. After that,
we get into cracking ciphers for which we don't have a key.
There are two phases to cracking the PolySub: the first is de-
termination of the key length, and the second is determina-
tion of the key contents.

Preliminary Code - encrypting and decrypting files
Our PolySub cracking program is called "CrakPoly.scr" and

is written in URIForth from Laboratory Microsystems, Inc.
The source code is in Figure Two. CrakPoly should run under
any Forth-83 compiler. It has been tested under both 32-bit
and 16-bit URIForth. The reader is encouraged to put QI (pro-
vided on screen 5) inside various words as an aid to dissecting
the program. Execution will stop and the user can examine
the contents of variables before continuing with the program.

We have two data buffers, CIPHERTEXT and PLAINTEXT.
These each have FILE S I Z E bytes of memory allocated to
them. FILE-SIZE is d2ined in screen 1 and is currently set
quite small, so readers with eight-bit computers can load and
run the program. Readers with 32-bit computers should set
FILE-SIZE larger.

The word INPUT-FILE in screen 17 is used to load a file

one would locate the current encrypted ~i~~~~ one.
letter on the inner wheel and find the cor-
responding message letter on the outer
wheel. Note that the famous Julius Caesar MEATLOAF FOR DINNER <-- the plaintext (unencrypted) message
encryption scheme (adding three to every D ~ O R D ~ O R D ~ O R D ~ O R D ~ O <-- the key stream
letter) is just a degenerative form of the -------------------
Plus-Minus scheme. It has only a single QTPKPCPXDUC'?DSXERTF <-- the ciphertext (encrypted) message
character long key (the "C"). The Julius
Caesar scheme is a Monoalphabetic Sub- Below is the same thing in numerics.
stitution cipher.

ThePolySub'ssecuritycanbeenhanced 1 3 0 5 0 1 2 0 1 2 1 5 0 1 0 6 0 0 0 6 1 5 1 8 0 0 0 4 0 9 1 4 1 4 0 5 1 8
alittlebitbyhavingalongkey.Thisisbest 0 4 1 5 1 5 1 8 0 4 1 5 1 5 1 8 04 1 5 1 5 1 8 0 4 1 5 1 5 1 8 0 4 1 5 1 5
accomplished by repeatedly encrypting the ------ -- -- - - - -- - -- - - - - - --- -- - ---- - -- -- - ---- - - - - - --- - --- -
message .Forexample , i fyourkeyis 1 7 2 0 1 6 1 1 1 6 0 3 1 6 2 4 0 4 2 1 0 3 0 9 0 4 1 9 2 4 0 5 1 8 2 0 0 6

Figure Two.

Screen # 0
\ CRAKPOLY 19:36 05-29-99

Crack the polyalphabetic substitution cipher (XOR).
written by Hugh Aguilar
January/February/March/April 1999 Forth Dimensions

Screen # 1
\ word size arithmetic CHARS MOSTEST

I WSIZE CONSTANT W \ less cumbersome to type

\ these depend upon having a 32-bit system
: W + 4 + ;
: W - 4 - ;
: w* 2* 2* ;
: W/ 2/ 2/ ;

(256 CONSTANT CHARS
CREATE MOSTEST 0 , BL MOSTEST C!
\ most frequent plain char

5000 CONSTANT FILE-SIZE \ maximum file size

Screen # 2
\ LOW-ENCRYPT LOW-DECRYPT for Plus-Minus system 11:39 05-31-99

\ \ Plus-Minus system

: LOW-ENCRYPT \ plain-char key-char -- cipher-char
+ DUP CHARS >= IF CHARS - THEN ;

: LOW-DECRYPT \ cipher-char key-char -- plain-char
- DUP O< IF CHARS + THEN ;

Screen # 3
\ LOW-ENCRYPT LOW-DECRYPT for Minus-Plus system 20:12 05-30-99

\ \ Minus-Plus system

: LOW-ENCRYPT \ plain-char key-char -- cipher-char
- DUP O< IF CHARS + THEN ;

: LOW-DECRYPT \ cipher-char key-char -- plain-char
+ DUP CHARS >= IF CHARS - THEN ; ..

Screen # 4
\ LOW-ENCRYPT LOW-DECRYPT for XOR system 11:39 05-31-9

: LOW-ENCRYPT \ plain-char key-char -- cipher-char
XOR ;

into memory. It takes two parameters,
the filename and the buffer pointer. The
filename should be the address of a
counted string containing the fully
qualified filename. The buffer pointer
should be either CIPHERTEXT or
PLAINTEXT. OUTPUT-FILE also in
screen 17 and also takes a filename and
a buffer pointer, but it outputs the con-
tents of the buffer to the file.

If there is a document in PLAINTEXT,
executing the word ENCRYPT in screen
14 will fill CIPHERTEXT with the en-
crypted version of the document. Ex-
ecuting the word DECRYPT, which is also
in screen 14, will decrypt the document
in CIPHERTEXT and fill PLAINTEXT with
the unencrypted version.

Note that ENCRYPT and DECRYPT Use
the words LOW-ENCRYPT and
LOW DECRYPT which are defined in
screen 4. These words in screen 4 are for
the XOR PolySub. We also have versions
of LOW-ENCRY PT and LOW-DECRY PT in
screens 2 and 3. Both of these screens
are commented out. Screen 2 is for the
Plus-Minus PolySub, and screen 3 is for
the Minus-Plus PolySub. If the reader is
using either of these kinds of PolySub,
he should comment out screen 4 and
compile screen 2 or 3, instead.

Phase 1. - Determining key length
In order to determine the key's

length, we need to assume that the char-
acters in the plaintext are of varying fre-
quencies. We don't care which charac-
ters are more frequent than the others
or how they are distributed, so long as
they aren't rectangularly distributed. We
will repeatedly shift the ciphertext over
and compare it against the original
unshifted version of the ciphertext. We
count how many of the characters be-
ing compared are equal to the charac-
ter they line up against in the unshifted
version.

We have an array called COINCI-
DENCES. The first index is the count of
coincidences for ciphertext being
shifted over by one character, the sec-
ond index is the count of coincidences
for ciphertext being shifted over by two
characters, and so forth. COUNT-COIN-
CIDENCE~ in screen 18 counts these
coincidenses. COINCIDENCES actually
contains percentages, rather than raw
counts, because a different number of
comparisons is done by each call to
COUNT-co INCI DENCES. Our percentages
have two decimal digits to the right of
the decimal point.

Forth Dimensions XX.5.6

FILL-co INCIDENCES in screen 19
calls COUNT-co INC I DENCES repeatedly
and fills the C O I N C I D E N C E S array.
Note that we have a word called
SEARCH-S I ZE which determines how
many shifts we do. If our file is small,
we only do a third of the total. This is
because the more we shift, the less ac-
curacy we have. If we did the entire
file size, our numbers toward the end
would be garbage and would only
mess us up. Note that, the way the
author originally had COUNT-COINCI-
D E N C E S written, it would rotate
ciphertext around such that the char-
acters at the end of the file would be
compared to the characters at the be-
ginning. In this way, we wouldn't get
decreasing accuracy with increased
shifts. This turned out to be a bad idea,
because it caused coincidences to get
counted more than once, which
tended to smooth out the numbers.

Screen 21 contains the word SHOW-
C o I NC I DENCE S which uses these
words to show what is in the COIN-
C I D E N C E S array. If the reader uses
SHOW-COINCIDENCES to look at CO-
INCIDENCES, he should see there are
spikes in the values. These spikes oc-
cur on multiples of the length of the
key used to encrypt ciphertext. By
eyeballing COINCIDENCES, it is fairly
easy for the user to determine the key
length.

We want our program to determine
this automatically, however. There is
some difficulty in this, because it is not
clear what threshold a value must be
over to be considered a spike. This
threshold value varies with the data.
Also, no matter how carefully the
threshold value is set, some values
which are spikes don't go over it, and
some which aren't do go over it. There
is a lot of variance in the data, espe-
cially when cracking small files.

We set our threshold to the mid-
point of the data in COINCIDENCES.
This is done by CALC-THRESHOLD in
screen 22. The author originally tried
using a constant value of 4%. This
didn't work, because the threshold is
at different heights, depending upon
the length of the key. The author then
tried using the average. This didn't
work either; it was way too small, es-
pecially when the key length was
large, and we got a lot of false spikes.
The next attempt was to use the aver-
age plus the standard deviation mul-
tiplied by some empirically chosen

Forth Dimensions XX.5,6

Screen # 5
\ miscellaneous words

: #? \ d -- new-d \ used in <# ... #> for the most sig digits
2DUP DO= I F BL HOLD E L S E # THEN ;

: #- \ d -- new-d \ used in < # . . . #> for the most sig digits
2DUP DO= I F E L S E # THEN ;

: Q I \ --
QUERY INTERPRET ;

: ROVER \ a b c -- a b c a \ "rot over"
2 P I C K ;

: ZERO \ adr -- \ zeros out the word at ADR
0 SWAP ! ;

Screen # 6
\ miscellaneous words

: U>= \ a b - - flag
U< o= ;

: I N C \ adr -- \ increments the value
1 SWAP + ! ;

: P-ALLOT \ -- \ allots enough that HERE is paragraph aligned
HERE 1 6 MOD ? D U P I F 1 6 SWAP - ALLOT THEN ;

: PCREATE \ allotment -- \name \ paragraph aligned CREATE
P - ALLOT HERE > R ALLOT R> CONSTANT ;

\ Don't use PCREATE in conjunction with DOES>.

Screen # 7
\ CARRAY WARRAY 1 9 : 3 9 0 5 - 3 0 - 9 9
\ Note that "base-adr" means the address provided by DOES>

: CARRAY \ size -- \name \ paragraph aligned char array
CREATE HERE > R 0 , P-ALLOT HERE R> ! ALLOT
DOES> \ index base-adr -- address

@ + ;

: WARRAY \ size -- \ name \ word array
CREATE W* ALLOT
DOES> \ index base-adr -- address

SWAP W* + ;

-.
Screen # 8
\ 2CARRAY WITHIN 1 9 : 3 9 0 5 - 3 0 - 9 9
\ Note that "base-adr" means the address provided by DOES>

: 2CARRAY \ horz-size vert-size -- \name \ 2 D char array
CREATE OVER , DUP , * ALLOT
DOES> \ horz-index vert-index base-adr -- address

DUP W+ W+ > R \ return: data-adr --
@ \ horz-index vert-index horz-size --
* + R > + ;

: WITHIN \ char lowest highest -- flag

17

> R > R
DUP FD >= SWAP R> <= AND ;

Screen # 9
\ PRINTABLE NUMERIC SPANISH

: PRINTABLE \ char -- flag
32 127 WITHIN ;

: NUMERIC \ char -- flag
ASCII 0 ASCII 9 WITHIN ;

: SPANISH \ char -- flag \ accented chars and upside-down ? !
> R R@ 129 = R@ 130 = O R
R@ 144 = O R R@ 160 = O R R@ 161 = O R
R@ 162 = O R R@ 163 = O R R@ 164 = O R
R@ 165 = O R R@ 168 = O R FD 173 = O R ;

\ These are char-kind filter words.

Screen # 10
\ UPPERCASE ALPHA ALPHANUMERIC PUNCTUATION 13:23 05-31-99
: UPPERCASE \ char -- flag

ASCII A ASCII Z WITHIN ;

: LOWERCASE \ char -- flag
ASCII a ASCII z WITHIN ;

: ALPHA \ char -- flag
DUP UPPERCASE SWAP LOWERCASE O R ;

: ALPHANUMERIC \ char -- flag
DUP ALPHA SWAP NUMERIC O R ;

: PUNCTUATION \ char -- flag \ also includes the blank
DUP ALPHANUMERIC O= SWAP PRINTABLE AND ;

\ These are char-kind filter words.

Screen # 11
\ constants and variables 20:36 05-30-99
100 CONSTANT KEY-SIZE
KEY-SIZE CARRAY KEY-STRING
KEY-SIZE WARRAY KEY-LENGTHS VARIABLE BIG-KEY-LENGTHS
KEY-SIZE CHARS 2CARRAY KEY-CHAR
VARIABLE KEY-LENGTH \ actual key size

FILE-SIZE PCREATE CIPHERTEXT
FILE SIZE PCREATE PLAINTEXT
VARIABLE F I LE-MORE \ where we try to Sut more of file
VARIABLE FILE-LENGTH \ actual file sige
VARIABLE PAST-CI PHER \ ptr past valid data in CIPHERTEXT

250 CONSTANT NON-CHAR \ print this for nonprintable chars
16 CONSTANT DUMP-WI DTH \ horizontal chars in DUMP display
18 CONSTANT SHOW-KEYS \ keys shown by SHOW-KEY

Screen # 12
\ constants and variables DOSINT FILE1
300 CONSTANT MAX-SEARCH-SIZE
MAX - SEARCH-SIZE WARRAY COINCIDENCES

constant. For example, a constant of .68
will result in 75% of the values being
under the threshold. This worked bet-
ter, but it was overly complicated and
still not good enough.

The midpoint worked best and was
very simple: We have spikes clustered
around some high value and non-spikes
clustered around some low value. There
are more non-spikes than spikes, espe-
cially when the key length is long, and
this is what was messing us up when
we were using the average. his dispar-
ity was what we were trying to compen-
sate for with the standard deviation. By
using the midpoint, we avoid concern-
ing ourselves with how many spikes
there are, relative to the number of non-
spikes. The midpoint draws a line
betwean the highest value and the low-
est value, and-this line pretty much
separates the spikes from the non-
spikes. CALC-THRESHOLD doesn't have
to be perfect, because the KEY-LENGTHS
array, described next, smooths over er-
rors caused by values being seen as
spikes when they are non-spikes, and
vice-versa (as long as there aren't too
many errors).

We have an array called KEY-LENGTHS
as big as our maximum key size, and
which we will fill with percentage
probabilites of the key being any par-
ticular length. We have to do this be-
cause there is no way to be absolutely
sure of the key length, due to the vari-
ance mentioned earlier. F I LL-KEY -
LENGTHS in screen 23 fills this array. This
word calculates the distances betwean
the spikes. If all these distances were the
same, we would know for sure that this
distance was the key length. They usu-
ally aren't, so we just count the times /
we see the different distances.

These counts go in KEY-LENGTHS.
KEY-LENGTHS% in screen 24 converts
these counts into percentages. This is
mostly for aesthetic purposes when dis-
playing them later; CALC-KEY-LENGTH
doesn't need it done. We also have a
variable called BIG-KEY-LENGTHS
which counts any spike distances which
are too big to fit in KEY-LENGTHS. Hope-
fully, this will be zero.

CALC-KEY-LENGTH calculate~ the
actual key length. First it fills KEY-
LENGTHS, then it searches through
KEY-LENGTHS for the biggest value. The
index to this value is our key length. If
we have two or more values which are
equal, we go with the smallest index.
In almost all cases when this happens,

Forth Dimensions XX.5,6

the higher index is a multiple of the
lower one. The smallest is the actual key
length (otherwise, we would have a key
which was some string repeated some
number of times).

Screen 25 contains FILL KEY
LENGTH, which does everything needed
to determine the key length. This is the
word the user will type at the keyboard
in order to do phase one of the program.
Note that, if the user disagrees with the
program's idea of what the key length
is, he can use KEY LENGTH! to set it
manually. F I LL-KEY-LENGTH displays
the front portion of co INCIDENCES at
the top of the screen. This raw data is
only marginally useful. F I LL-KEY
LENGTH displays KEY-LENGTHS at the
bottom of the screen. The user can see
here what the probabilities of the vari-
ous key lengths are. These are a guide
for what to give KEY-LENGTH ! if the user
disagrees with what the program found
to be the most likely. In practice, this is
rarely needed; FILL-KEY-LENGTH is al- l most always correct.

Phase 2. - Determining key contents
We are ready for phase two, determi-

nation of what the contents of the key
are. The individual characters of the key
are solved for as if they were of distinct
Mono-alphabetic ciphers. The second
phase of the program the author found
to be more straightforward than the first
phase. It is all downhill from here!

In screen 1, we have a variable called
MSTEST which contains the plain char-
acter we think will be the most fre-
quently occuring. This defaults to the
blank. This value is not normally
changed during the program's execu-
tion. It is made a variable rather than a
constant, however, because the user may
want to change it if he is decrypting
some file which is not text. This change
can be made without having to
recompile the program. Note that,
sometimes even in English text, the
blank is not the most frequent charac-
ter. Consider Figure Three, in which 'e'
is the most frequent.

The program will still successfully
crack ciphers like this. The text file for
this article has 1.74 times as many
blanks as 'el characters. The ratio might

10000 CONSTANT UNITY \ multiplier for percents
\ percents with two digits to right of decimal point

VARIABLE THRESHOLD \ height to be considered a spike
CHARS WARRAY FREQS \ count of encryption results

VARIABLE 'LOW-ENCRYPT \ vector to LOW-ENCRYPT or LOW-DECRYPT
VARIABLE 'CHAR-KIND \ vector to char kind checking word
DOSINT
0 CONSTANT READ-ONLY
1 CONSTANT WRITE-ONLY
2 CONSTANT READ-WRITE
HCB FILE1 \ handle control block

Screen # 13
\ <ENCRYPT>

VARIABLE SRC \ either CIPHERTEXT or PLAINTEXT
VARIABLE DST \ either CIPHERTEXT or PLAINTEXT

: ADVANCE-KEY INDEX \ key-index -- new-key-index
I+ DUP KEY-LENGTH @ = IF DROP o THEN ;

: <ENCRYPT> \ source dest -- \ either CIPHERTEXT or PLAINTEXT
DST ! SRC ! 0 \ key-index --
FILE-LENGTH @ 0 DO

SRC @ I + C@ OVER KEY-STRING C@ 'LOW-ENCRYPT PERFORM
DST @ I + C!
ADVANCE-KEY-INDEX LOOP

DROP ;

Screen # 1 4
\ ENCRYPT DECRYPT GET KEY -

: ENCRYPT \ --
['] LOW-ENCRY PT ' LOW-ENCRY PT !
CIPHERTEXT FILE-SIZE ERASE
PLAINTEXT CIPHERTEXT <ENCRYPT> ;

: DECRYPT \ --
['I LOW-DECRYPT 'LOW-ENCRYPT !
PLAINTEXT FILE-SIZE ERASE
CIPHERTEXT PLAINTEXT <ENCRYPT> ;

: GET-KEY \ cipher-char plain-char -- key-char
LOW-DECRY PT ;

Screen # 15
\ KEY-LENGTH! KEY-STRING! SHOW-KEY - STRING 20:14 05-30-99

: KEY-LENGTH! " \ key-length --
DUP KEY SIZE > ABORT" too long of a key"
KEY-LENGTH ! ;

: KEY-STRING! \ counted-string --
COUNT DUP KEY-LENGTH !
0 DO

DUP C@ I KEY - STRING C!
1+ LOOP

DROP :

Forth Dimensions XX.5,6

: SHOW KEY-STRING \ --
o KEY-STRING KEY-LENGTH @ DUMP ;

Screen # 16
\ SHOW-PLAIN INIT-KEY-LENGTHS

: <SHOW PLAIN> \ from --
DECRYPT
PLAINTEXT t 320 DUMP ; \ a screenfull pretty much

: SHOW-PLAIN \ --
0 <SHOW-PLAIN> ;

: INIT-KEY-LENGTHS \ -- \ sets BIG-KEY-LENGTHS as well
KEY SIZE 0 DO I KEY-LENGTHS ZERO LOOP
BIG-KEY - - LENGTHS ZERO ;

Screen # 17
\ INPUT-FILE OUTPUT-FILE

: INPUT-FILE \ filename buffer-ptr --
>R FILEl NAME>HCB R@ FILE-SIZE ERASE
FILEl READ-ONLY FOPEN ABORT" can't open file for input ."
FILEl R> FILE-SIZE FREAD FILE-LENGTH !
FILEl FILE-MORE 1 FREAD ABORT" File is too big to load."
FILEl FCLOSE ABORT" can't close file for input." ;

: OUTPUT-FILE \ filename buffer-ptr --
>R FILEl NAME>HCB
FILEl WRITE-ONLY FMAKE ABORT" Can't open file for output."
FILEl R> FILE LENGTH @ FWRITE
FILE-LENGTH @-< ABORT" Disk is full ."
FILEl FCLOSE ABORT" Can't close file for output." ;

Screen # 18
\ COUNT-COINCIDENCES FILL-PAST-CIPHER
VARIABLE CO IN-COUNT
VARIABLE CO IN-SUM

: COUNT-COINCIDENCES \ cipher-ptrl cipher-ptr2 -- percentage
COIN-COUNT ZERO COIN-SUM ZERO
BEGIN DUP PAST-CIPHER @ U< WHILE

OVER C@ OVER C@ = IF COIN-SUM INC THEN
SWAP 1t SWAP 1t COIN-COUNT INC REPEAT

2 DRO P
COIN-SUM @ UNITY COIN-COUNT @ * / ;

\ cipherptrl is < cipherptr2 -.
: FILL-PAST-CIPHER \ --

CIPHERTEXT FILE-LENGTH @ + PAST - CIPHER ! ;

Screen # 19
\ SEARCH-SIZE KEY-SEARCH-SIZE FILL - COINCIDENCES 12:08 05-30-99

: SEARCH-SIZE \ -- search-size
FILE-LENGTH @ 3 / MAX-SEARCH-SIZE MIN ;

\ We never shift less than one third of the file length.
\ This value is empirically determined.

/ : KEY-SEARCH-SIZE \ -- key-search-size

be closer to 1.0 for languages other than
English, or by happenstance in short
files. The MOSTEST character doesn't
have to strictly be the most frequent, as
long as it is very frequent. The reason is
that, in our KEY-CHAR array, we calcu-
late the 256 best guesses for each char-
acter in the key. We have various ways
of filtering out the "best" guesses, if they
aren't likely to be characters the
encrypter would have used in his key.

We have a two-dimensional array
called KEY-CHAR which we are going to
fill. Row 0 in the KEY-CHAR array will
contain our best guess for what the key
is. Row 1 is the second-best guess, and
so forth. Let's first look at FILL-KEY in
screen 28, and then work our way back
through the lower-level routines.

FILL KEY calls FILL-FREQS in
screen 26for each character of the key
(column of KEY-CHAR). FILL-FREQS
takes a pointer into CIPHERTEXT and
increments through CIPHERTEXT by the
key length. FILL FREQS counts how
many of each character is represented
in CIPHERTEXT. FILL-FREQS is making
this calculation as if for a Mono-alpha-
betic Substitution cipher whose charac-
ters just happen to be regularly spaced
every KEY-LENGTH characters inside
CIPHERTEXT.

FILL KEY then calls COLUMN-FILL-
KEY which will fill one column of
KEY CHAR. COLUMN-FILL-KEY calls
SINGLE-FILL-KEY in screen 27 for each
row. SINGLE-FILL KEY takes the hori-
zontal and vertical indices which it will
be setting in KEY CHAR. SINGLE-FILL-
KEY finds the ciprher character in FREQS
which appears most often and assumes
this must correspond to the MoSTEST
plain character. s INGLE-FI LL-KEY cal-
culates what key character would have
produced this cipher character, assum-
ing that the plain character is the
MO STEST character. This character is
stored in KEY-CHAR. SINGLE FILL-KEY
returns this most-frequent cipher char-
acter, the index into FREQs which
pointed to the highest value. COLUMN-
FILL KEY stores a -1 value into this spot
in F R ~ Q S before moving on to calculat-
ing the next most likely character. This
is done so SINGLE FILL-KEY doesn't
find the same best value over and over.

Screen 30 has the TO-KEY-STRING
routine. The author originally just cop-
ied row0 of KEY-CHAR over to
KEY-STRING. This needed some en-
hancement. We were not taking into
consideration that very few people are

Forth Dimensions XX.5,6

going to have a key with unprintable
characters in it. We want to filter these
out. We have several ways of filtering
out unwanted characters. TO-KEY-
STRING takes the cfa of a char-kind word
(one of PRINTABLE, NUMERIC,SPANISH,
UPPERCASE, LOWERCASE, ALPHA, ALPHA-
NUMERIC, and PUNCTUATION). TO-KEY-
STRING searches down each column in
KEY-CHAR and finds the first character
in the char-kind class which TO-KEY-
STRING was given. Every column of
KEY-CHAR will hold every possible char-
acter (each column has 256 entries), so
we are bound to find something that
satisfies our c h a ~ k i n d requirement. In
this way, we get the best guesses which
are of some char-kind class.

FILL-KEY-STRING does everything
needed to determine the key contents.
FILL-KEY-STRING USeS ALPHA as its
default char-kind. FI LL-KEY STRING is
the word the user will type a t the key-
board in order to do phase two of the
program. In practice, especially when
cracking short files, FILL-KEY-STRING
will provide an incomplete answer
(some key characters are right and some
are wrong).

Interactive Guessing - Often needed
on short files

There are two ways for the user to
deal with an incorrect KEY-STRING con-
tent. One is to guess what the key string
is, the other is to guess what the
plaintext is. Often, by looking at the key
string shown, the user can spot English
words. If some characters seem wrong,
look at the display of KEY-CHAR above
for that character's column.

Scan down from the top to find a
likely looking character. Use KEY-
STRING! to Set KEY-STRING. Use
S HO W-PLAIN to see the resulting
plaintext. The user can also use
TO-KEY-STRING with some other
char-kind routine (followed by SHOW-
KEY-STRING) to try various filters. We
have lots of char-kind routines. Note
that encrypters sometimes are required
to change their key every month. Of-
ten, people pick a key which is always
used and then append the two-digit
month number (01 of January, etc.) on
the end of it. Look for patterns like this.

Back on screen 25, we had a word
called TRY. After we have determined
our KEY-STRING we normally run
SHOW-PLAIN to see what we have
achieved. We may find that the result is
recognizeable text, but that some of the

Forth Dimensions XX.5,6

SEARCH-SIZE KEY-SIZE MIN ;

: FILL-COINCIDENCES \ -- \ coincidences within CIPHERTEXT
FILL PAST-CIPHER
SEARCH-SIZE 1 DO \ minimum key length is 1

CIPHERTEXT DUP I + COUNT-COINCIDENCES
I COINCIDENCES ! LOOP ;

Screen # 20
\ SHOW-INDEX SHOW-PERCENTAGE SHOW-TABLE-ENTRY 10:47 05-28-99

: SHOW-INDEX \ index --
0 < # # # ? #? #>TYPE .") " ;

: SHOW-PERCENTAGE \ percentage -- \ 2 digits right of decimal
10 / \ get rid of low digit
0 < # #ASCII . HOLD # #? #- #> TYPE ." " ;

: SHOW-TABLE-ENTRY \ percentage index --
SHOW-INDEX SHOW-PERCENTAGE ;

VARIABLE SHOW-FROM \ starting index in PERCENTAGES
48 CONSTANT SHOW-TOTAL \ total percentages shown
8 CONSTANT SHOW-ROW \ should be a denominator of SHOW-TOTAL

Screen # 21
\ SHOW-CO INCI DENCES SHOW-KEY-LENGTHS

: SHOW-COINCIDENCES \ from -- \ show SHOW-TOTAL at FROM
SHOW-FROM ! CR
SHOW-FROM @ SHOW-TOTAL + SEARCH-SIZE MIN SHOW-FROM @ ?DO

I COINCIDENCES @ I SHOW-TABLE-ENTRY
I 1t SHOW - FROM @ - SHOW-ROW MOD O= IF CR THEN
LOOP ;

: SHOW-KEY-LENGTHS \ -- \ show them all
CR KEY-SIZE 1 DO

I KEY-LENGTHS @ I SHOW-TABLE-ENTRY
I SHOW-ROW MOD O= IF CR THEN
LOOP

CR ." too big = " BIG-KEY-LENGTHS @ SHOW-PERCENTAGE ;

Screen # 22
\ CALC-THRESHOLD

VARIABLE COIN-MIN \ smallest value found in COINCIDENCES
VARIABLE COIN-MAX \ largest value found in COINCIDENCES

: CALC-THRESHOCD \ -- threshold \ midpoint of COINCIDENCES
100 COIN-MIN ! 0 COIN-MAX !
SEARCH-S~ZE 1 DO I COINCIDENCES @

DUP COIN-MIN @ < IF DUP COIN-MIN ! THEN
DUP COIN-MAX @ > IF DUP COIN-MAX ! THEN
DROP LOOP

COIN - MAX @ COIN-MIN @ - 2/ COIN-MIN @ + ;

Screen # 23
1 \ FILL-KEY-LENGTHS 12:21 05-29-99
I : <FILL-KEY-LENGTHS> \ distance-from-last-spike --

DUP KEY-SIZE < IF \ within key

21

KEY-LENGTHS INC
ELSE

DROP BIG - KEY-LENGTHS INC THEN ;

: FILL-KEY-LENGTHS \ -- spike-count
0 0 \ spike-count last-spike --
SEARCH-SIZE 1 DO

I COINCIDENCES @ THRESHOLD @ U> IF \ found a spike
I SWAP - <FILL-KEY-LENGTHS>
1+ I THEN \ spike-count last-spike --

LOOP
O= ABORT" We found no spikes at all!" ;

Screen # 24
\ KEY-LENGTHS% CALC-KEY - LENGTH

: KEY-LENGTHS% \ spike-count -- \ change to percentages
KEY-SIZE 1 DO

I KEY-LENGTHS @ UNITY ROVER * / I KEY-LENGTHS !
LOOP

BIG-KEY-LENGTHS @ UNITY ROT * / BIG-KEY-LENGTHS ! ;

: CALC-KEY-LENGTH \ -- length
INIT KEY-LENGTHS FILL-KEY-LENGTHS KEY - LENGTHS%
0 \-rnax-key-length --
KEY-SIZE 1 DO

I KEY LENGTHS @ OVER KEY LENGTHS @ > IF - -
DROP I THEN

LOOP ;
\ CALC-KEY-LENGTH uses the lower index if two have = values

Screen # 25
\ FILL-KEY-LENGTH TRY

: FILL-KEY-LENGTH \ --
FILL-COINCIDENCES 1 SHOW-COINCIDENCES
CALC-THRESHOLD THRESHOLD !
CR ." threshold = " THRESHOLD @ SHOW-PERCENTAGE
CALC - KEY-LENGTH KEY-LENGTH! SHOW-KEY - LENGTHS
CR ." Key length is: " KEY LENGTH @ . ; -

: TRY \ plain-char horz-index vert-index --

(FigureTwo - source code - continues on page 24.)

Figure Four.

AMENDMENT 4. .\
The right of the people to be secure in their persons,
houses, papers, and effects, against unreasonable searches
and seizures, shall not be violated, and no warrents shall
issue but upon probable cause, supported by oath or
affirmation, and particularly describing the place to be
searched, and the persons or things to be seized.

Figure Five.

" MESSAGE.TXTW PLAINTEXT INPUT-FILE
" Very-Personal" KEY - STRING! ENCRYPT

22

characters are wrong. These wrong char-
acters correspond to erroneous charac-
ters in KEY-STRING. Fixing this inter-
actively is what TRY is for.

TRY takes a plain character, and a
horizontal and vertical index into
PLAINTEXT. We are hoping this plain
character is what should go in that spot
in PLAINTEXT. The reason we have a
horizontal and vertical index into
PLAINTEXT is that the DUMP in
SHOW PLAIN displays PLAINTEXT as a
two-dimensional array. We are, presum-
ably, using TRY after using SHOW-PLAIN
while we are looking at SHOW-PLAIN'S
output. TRY fixes the corresponding
character in KEY-STRING and reruns
SHOW-PLAIN. We can TRY another char-
acter, or we can stop if our plain text
looks correct. This is quite similar to the
Jeopardy game, in which a person looks
at a plaintext message with some of the
characters missing and tries to guess
what those characters are. When the
plaintext appears to be correct, execute
SHOW-KEY-STRING to find out what key
TRY has built.

An Example Run -The program from
the user's persective

We are done with our study of the
encryption-cracking program. ~ e t ' s run
through an example. The reader should
enter the text in Figure Four exactly, and
save it in a file called ~ e s s a ~ e . t x t . Be
careful to put the end-of-lines at the
same places so that the program will give
the exact same results we will describe
here. Message.txt should have a length
of 354 characters.

Execute the code shown in Figure
Five in order to fill CIPHERTEXT with en-
crypted data. Now pretend you don't
know what the plaintext is or what the
key is, and try to crack the cipher. First
execute FILL-KEY-LENGTH. This will re-
sult in an output as shown in Figure Six.
It seems clear that the key length is 13,
since there is a 60% chance this is true.
We have a 20% chance of it being 26,
and a 20°h chance of it being 52. Note
that both 26 and 52 are multiples of 13.
Take a glance over the COINCIDENCES
data at the top and note that 13 has a
value of 9.g0h, which is considerably
higher than the other values. This is defi-
nitely a spike.

Execute FI LL-KEY-STRING. This will
result in an output as shown in Figure
Seven. The program has found
"VeryePersonal". This looks good, except
for that 'e' after "Very". Look at the

Forth Dimensions XX.5,6

KEY-CHAR data shown at the top of the
screen. Scan down the fifth column. The
top character is 'el and the second best
one is I - ' . The hyphen seems likely. Ex-
ecuting the code " Very-Personalv1
KEY-STRING! SHOW-PLAIN will show
that this is the correct key. An alterna-
tive to scanning down columns in
KEY-CHAR would be to use the char-kind
filters. It seems clear there must be some
punctuation character
or a blank between
HVery" and "Personal".
Execute ' PUNCTUATION
T O - K E Y - S T R I N G
SHOW-KEY-STRING
which will set KEY-
STRING to an all-punc-
tuation guess. Look at
what the fifth character
is, and discover it is a
hyphen. Scanning the
columns in KEY-CHAR
and using the char-kind
filters are the two meth-
ods used for guessing the
key.

Let's go back to our
"VeryePersonal" key and
try guessing the plain-
text. Execute SHOW-
PLAIN to see the plain-
text. The result should
be as shown in Figure
Eight. This is clearly En-
glish plaintext with

Figure Six.

some characters wrong. For example, on the sixth row we see a word "pa8ers". We
can guess that this is supposed to be the word "papers". Execute ASCI I p 2 5 TRY
to try out a 'p' in place of that '8'. Note that we are using a horizontal index of 2,
since we start counting at zero. We are also using a vertical index of 5, since we
count the rows from the top down, starting at zero. TRY automatically executes
SHOW-PLAIN after fixing its KEY STRING character so the user can see the result.
Sometimes it is necessary to use TRY several times to fix several characters (or to fix
one character, if you're not sure what it should be). When the plaintext looks
correct, use SHOW-KEY-STRING to find what key you built with your various TRY
executions.

t h r e s h o l d = 4.9
1) 0 .0 2) 0 .0
9) 0.0 10) 0 .0

17) 0.0 18) 0.0
25) 0 .0 26)20 .0
33) 0 .0 34) 0 .0
41) 0 .0 42) 0 .0
49) 0.0 50) 0 .0
57) 0 .0 58) 0.0
65) 0.0 66) 0 .0
73) 0.0 74) 0 .0
81) 0 .0 82) 0.0
89) 0 . 0 90) 0.0
97) 0 .0 98) 0 .0

t o o b i g = 0.0
Key l e n g t h i s : 1 3

I

Figure Seven.

V e r y e ' e 6 0 $?
! 8 - ' ! ! & / 3 1

' + < * o ') 1 ' ; & I
' * = - } $ 3 0 * & "
' l " < y ' 1 7 : l * . (

' 1 6 . , - ' 7 ; s . + 2
' H X / ! ' * = ! = 5 *

Z # 4 b = + > # # > a -
7 $ 0 7 c ' - " & I ! % .

" 3 ; d ' l % l (' - <
' - 4 = h ' 6 & 2 5 4 / >
' 6 7 ? i " ' . : m

' > ' 1 } O : < = < o A
' i " x P ! ' = ? n ! !
t o - S m r ' ~ z v #

I ! # I ! # # * B D # $
x l r $! I t % $ E " 9 %

% % ' I 1' # & (' I 11 # (&

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
0017:015C10 5 6 6 5 7 2 7 9 6 5 5 0 6 5 72 7 3 6F 6E 6 1 6C V e r y e P e r s o n a l

Forth Dimensions XX.5,6 23

- -

(Figure Two - source code - continued.)

16 * + >R R@ KEY-LENGTH @ MOD KEY-STRING
R> CIPHERTEXT + C@ \ plain-char key-ptr cipher-char --
ROT GET-KEY SWAP C!
SHOW-PLAIN ;

\ TRY assumes PLAINTEXT is paragraph aligned.
\ TRY acts like PLAINTEXT is a 16 wide 2d array (as DUMP shows).

Screen # 26
\ INIT-FREQS FILL-FREQS

: INIT FREQS \ --
CHARS o DO I FREQS ZERO LOOP ;

: FILL-FREQS \ cipher-ptr -- \ steps by KEY-LENGTH
INIT-FREQS
PAST-CIPHER @ SWAP DO

I C@ FREQS INC
KEY-LENGTH @ +LOOP ;

Screen # 27
\ BEST-CIPHER-CHAR SINGLE-FILL - KEY

: BEST CIPHER-CHAR \ -- best-cipher-character
-1--1 \ best-cipher-char best~cipher~char~occurances --
CHARS 0 DO \ I is the test character

I FREQS @ OVER > IF 2DROP
I I FREQS @ THEN

LOOP
-1 = ABORT" FREQS was corrupt" ;

: SINGLE-FILL-KEY \ horz-index vert-index -- best-cipher-char

(Figure Two - source code - continues on next page.)

Figure Eight.

Final Thoughts - PolySub encryption
is a toy algorithm

Try the program using different key
sizes. Try it with "SUPERCALIFRAGI-
LISTIC" for a difficult exercise, and with
"UNIQUE" for an easy exercise. Try it
using a key containing mixed upper-
case, lowercase, numbers, and so forth.
It is kind of fun to crack ciphers with
the program; it can be like solving a
puzzle. Readers may also find it enjoy-
able to beef up CrakPoly in various
ways. There are enhancements which
would make CrakPoly better at crack-
ing very short ciphers, though it is al-
ready quite good. Our Message.txt file
was only 354 bytes, and CrakPoly
cracked it with ease. The best enhance-
ment would be to get rid of TRY'S need
for numeric coordinates into
PLAINTEXT. Entering these is tedious
and error-prone. We would want TRY to
allow the user to move a cursor around
in the plaintext with his arrow keys.
When he got his cursor over an offend-
ing character, he would type the correct
character and TRY would fix the key
string and display a regenerated
PLAINTEXT.

It is hoped that the reader has found
our discussion of CrakPoly to be inter-
esting. There might be a few readers who
have a practical need for it. An example
would be a company owner who could
write a PolySub program and give it to
his employees, saying, "Use this on all

0123456789ABCDEF
AMEN.MENT 4.
T e right of t e
people to *e se
cure in <heir pe
rsonsd..houses,
pa8ers, and eff-
cts, againsthunr
easonablehsearch
es.. an, seizures
, s all not be v
!elated, and &o
warrents s all..
issue b=t upon p
roba* le cause, s
u8ported by oa<h
or. .affirm) tion
, and pa: ticular
ly de;cribing th
e 8lace to be..;
earched, andhthe

24 Forth Dimensions XX.5,6

-

sensitive documents to prevent corpo-
rate espionage." Many of the employ-
ees will use it on personal documents
they are storing on company comput-
ers. These, of course, are what the com-
pany owner was actually interested in.
For the most part, however, CrakPoly is
just a toy program without any commer-
cial prospects.

CrakPoly could only be written in
Forth, and it would never have been
written in C++. The reason is that
CrakPoly is necessarily interactive, with
TRY and TO-KEY-STRING and
KEY-STRING ! and SO forth. TO write a
GUI that would achieve this level of
interactiveness would be more work
than would be justified for a toy pro-
gram. All commercial products these
days have GUI interfaces, and C++ is
oriented towards writing GUIs. C++ does
not have any ready facility for execut-
ing commands from the keyboard. The
author has used LEXIYACC under C++
to provide programs with a command-
line interface. This is a powerful tech-
nique, but it also requires a lot of work.
In Forth, the command-line interface is
free. In general, a person who only
knows C++ would have to decide that
CrakPoly requires more work than it is
worth, and would never start the
project. This would be a shame, because
CrakPoly does have some value.

The author found that writing
CrakPoly was fun, and that using it is fun,
too. Also, designing and writing fun pro-
grams is good practice for working on
commercial products. C++, with its em-
phasis on GUIs and commercial develop-
ment, requires too much work to be used
in weekend projects. Because nobody pro-
grams as a leisure activity anymore, in so
doing getting practice at programming,
our professional programming is now
described with terms like "death march
project" and "anti-pattern." These appar-
ently are the wages of professionalism.

In case any reader has been using the
PolySub to encrypt anything of value,
this article should dissuade him. Per-
haps, in the future, we can delve into
writing an encryption program which
does provide good security. In the mean-
time, the reader is encouraged to use
PGP, which provides good security and
is a standard method of encryption. It
is good to have a standard so that ev-
erybody can easily exchange encrypted
files with one another. Standardizing on
the PolySub because it is well-known,
however, would be a mistake.

Forth Dimensions XX.5,6

(FigureTwo - source code - continued.)

KEY CHAR >R BEST-CIPHER-CHAR
DUP- MOSTEST C@ GET-KEY R> C! ;

Screen # 28
\ COLUMN-FILL-KEY FILL-KEY

: COLUMN-FILL-KEY \ horz-index --
CHARS 0 DO \ I is the vert-index

DUP I SINGLE-FILL-KEY \ horz-index best-cipher-char --
FREQS -1 SWAP ! \ won't be the best of next vert-index
LOOP

DROP ;

: FILL KEY \ --
FILL-PAST-CIPHER
KEY-LENGTH @ 0 DO \ I is horz-index

CIPHERTEXT I + FILL-FREQS
I COLUMN-FILL-KEY
LOOP ;

Screen # 29
\ SHOW-KEY SHOW-KEY-HEX 19:18 05-29-99
: SHOW KEY \ -- -

C R
SHOW KEYS 0 DO \ J = vert-index
KEY - LENGTH @ 0 DO \ I = horz-index

I J KEY-CHAR C @ DUP PRINTABLE IF
EMIT ELSE DROP NON-CHAR EMIT THEN

SPACE LOOP CR LOOP ;

: SHOW-KEY-HEX \ --
CR BASE @ >R HEX
SHOW-KEYS 0 DO \ J = vert-index
KEY-LENGTH @ 0 DO \ I = horz-index

I J KEY-CHAR C@ 0 < # # # BL HOLD #> TYPE
LOOP CR LOOP

R> BASE ! ;

Screen # 30
\ TO-KEY-STRING FILL-KEY-STRING 19:47 05-30-99
: <TO-KEY-STRING> \ --

KEY-LENGTH @ 0 DO \ J is the horz-index
0 I KEY STRING C! \ default
CHARS 0 b \ I is the vert-index

J I KEY-CHAR C@ DUP 'CHAR-KIND PERFORM IF
J KEY-STRING C! LEAVE ELSE DROP THEN

LOOP .,
LOOP ;

: TO-KEY-STRING \ char-kind-cfa --
'CHAR-KIND ! <TO-KEY - STRING> ;

: FILL KEY-STRING \ --
FILL-KEY SHOW-KEY
['1 ALPHA TO-KEY-STRING SHOW-KEY-STRING ;

Rick VanNorman took my Simple Object-Oriented Pro-
gramming and extended it. It is much more powerful. Be-
cause of the extra power, it is no longer a simple implemen-
tation, but it is still easy to use and fast.

Rick implemented SWOOP for SwiftForth using general-
purpose SwiftForth words. It is an easy task to define these
general-purpose words in Standard Forth. With that prelude,
SWOOP becomes available for Forths conforming to Standard
Forth. I have been using Swoop in my work since the begin-
ning of the year.

If you already have definitions for these words with the
same meaning, you should comment out those definitions
here-especially when your definitions are more efficient.

There are two problems not handled by Standard Forth.
1. In extending the set of classes, using MARKER may corrupt

the list. In SwiftForth, PowerMacForth, and probably
others, C H A I N name cooperates with MARKER to discard

tokens that would cause trouble.
2. ANS Forth specifies word list identifiers as "implementa-

tion-dependent single-cell values that identify word
lists," which is the weakest possible specification, mean-
ing you know nothing about them. ANS Forth also
ignores saving the system after compiling new defini-
tions, and then reloading the system with a possible
relocation of addresses.

Some systems, such as PowerMacForth, define a word list
identifier (wid) so that it is valid only in the session in which
it's defined. To provide maintenance and transition,
WORDLIST: should provide, in such systems, named word
list identifiers that can be used across sessions. The defini-
tion of WORDLIST: here is for implementations without a
problem with word list identifiers.

0 [IF] ..

ANS Prelude for SWOOP
.....................

All these definitions are generally useful.

Comment out definitions with the same meaning that you
already have.

CELL CELL- /ALLOT ?EXIT -EXIT ! + @ + STRING,

CHAIN RELINK, >LINK

CREATE-XT WORDLIST :

I . [THEN] !

{ begins a comment that may extend over multiple lines
until a terminating right brace } is encountered. (-- 1

26 Forth Dimensions XX.5,6

... [THEN]

: NOT O= ;

: 1 ("ccc.. .) " --)
BEGIN SOURCE + (a d d r)

[CHAR] } PARSE + > NOT WHILE ()

REFILL O= UNTIL THEN ; IMMEDIATE

CELL CELL- /ALLOT ?EXIT -EXIT ! + @ + STRING,
... ...

CELL and CELL- are convenient for address arithmetic. I I /ALLOT allots and clears dataspace. 1

-EXIT is O= IF EXIT THEN

@+ fetches the value x from addr, and increments the address
by one cell. (a d d r -- a d d r + 4 x)

! + writes the value x to addr, and increments the address by
one cell. (a d d r x -- a d d r + 4)

STRING, compiles the string at addr, whose length is u, in the
dictionary starting at HERE, and allocates space for it.

(a d d r u --)

These are all in SwiftForth, PowerMacForth, and others.

I 1 CELLS CONSTANT CELL I
: CELL- CELL - ;

: /ALLOT (n --) HERE SWAP DUP ALLOT ERASE ; I
: ?EXIT (n --) \ IF EXIT THEN .,

POSTPONE IF POSTPONE EXIT POSTPONE THEN ; IMMEDIATE

: -EXIT (n --) \ O= IF EXIT THEN
POSTPONE O= POSTPONE IF POSTPONE EXIT POSTPONE THEN ;
IMMEDIATE

: ! + (a d d r n -- addr+CELL) OVER ! CELL+ ;

: @ + (a d d r -- addr+CELL n) DUP CELL+ SWAP @ ;

Forth Dimensions XX.5,6 27

: STRING, (str l e n --)

HERE OVER 1+ CHARS ALLOT 2DUP C! CHAR+ SWAP MOVE ;

CHAIN RELINK, >LINK
.......................

For relocation of machine addresses, they are referenced
self-relative.

CHAIN <name> defines the head of a linked-list of addresses.
The list must be pruned when elements are forgotten.
In SwiftForth and PowerMacForth this will be done for you.

(f fnamef f -- 1

RELINK, takes a link from one list and installs it in the
current list. (a d d r --)

>LINK adds a link starting at HERE to the top of the linked
list whose head is at addr (normally a variable). The head
is set to point to the new link, which, in turn, is set to
point to the previous top link. (a d d r --)

: CHAIN ("name" --) CREATE 0 , ;

j : RELINK, (a --) DUP @ DUP IF OVER + HERE - THEN , DROP ; I
: >LINK (--) ALIGN HERE OVER RELINK, OVER - SWAP ! ;

{ ...

-ORDER removes a word list from the context, wherever it is.
(wid --)

+ORDER puts a word list in the context at the top.
.. (wid --)

: -ORDER (wid --)

>R GET-ORDER (widn . . . wid1 n) (R : w i d)
DUP BEGIN DUP WHILE (widn . . . w i d l n i)

DUP 1+ PICK (widn . . . wid1 n i w i d i)
R@ = IF (widn . . . wid1 n i)

DUP 1+ ROLL DROP
>R 1- R>

Toolbelt #8 code continues on page 49.

28 Forth Dimensions XX.5,6

Wil Baden kindly introduced my object implementation
in the preceding issue of Forth Dimensions. Here I will attempt
to present the details of its operation.

1. Origins and motivations
Prior to embarking on this project, I evaluated several Forth

OOP implementations: Baden[l], Ertl[4], McKewan[S], and
Pountain[6]. None entirely met my requirements.

The first consideration I faced was the order of the object/
message tuples. The two fundamental flavors of this syntax
are message-object and object-message. Both have existing imple-
mentations, pros and cons, supporters and detractors. I de-
cided on object-message because it more closely paralleled the
Forth programming paradigm. It also has the benefit, in nested
object definitions, of progressing from the general to the spe-
cific, or from the collection of data to the individual datum.

My second consideration was whether to have the compo-
nents of a class parse or not. In most of the object-oriented
Forths I studied, each entity parses its successor and determines
what the phrase means. Ertl objected strongly to this as limit-
ing the usefulness and extensibility of the messaging model-
making it difficult to pass messages on the Forth stack-and as
imposing an artificial dependency on the adjacency of oper-
ands. I agree with this analysis, and developed a syntax almost
completely independent of parsing requirements.

The third consideration was that the class model had to
provide for encapsulation and information hiding. This is ap-
parently an absolute requirement if an object model is to be
taken seriously. Some existing systems provide this, others
do not.

All these features were implemented to one degree or an-
other in the various systems I evaluated. But none addressed
my fourth consideration: the need for the generated code to
be target-compilable. This reduces to the need for the com-
pile and interpret behaviors and structures to be fully sepa-
rate from, and independent of, the run-time code.

2. Basic SWOOP Components
2. I . Defining a simple class

Po I N T (defined below) is a simple class I have been using
as my primary building-block example for SWOOP. It dem-
onstrates two of the four basic class member types: data and
colon.

The word following CLASS is the name of the class; all defi-
nitions between CLASS and END-CLASS belong to it. ~ h e i e
definitions are referred to as members of the class. When a class
name is executed, it leaves its handle (xt) on the stack. The
constructor words are the primary consumers of this handle.

CLASS P O I N T
VARIABLE X
VARIABLE Y
: S H O W (- -) X @ . Y e . ;
: DOT (--) ." P o i n t a t " SHOW ;

END-CLASS

The class definition itself does not allocate any instance
storage; it only records how much storage is required for each
instance of the class. VARIABLE reserves a cell of space and
associates it with a member name.

The colon members SHOW and DOT are exactly like normal
Forth colon definitions, except they are only valid in the ex-
ecution context of an object of type POINT. x and Y also be-
have exactly like normal Forth VARIABLES except for being
valid only within the scope of a POINT object.

There are four kinds of members:
1. Data members, including all data definitions. Available

data member defining words include CREATE (normally
followed by data compiled with , or C ,), BUFFER : (an
array whose length is specified in address units), VARI-
ABLE, CVARIABLE (single char), Or CONSTANTS;

2. Colon members, normal colon definitions that may act
on or use data members;

3. Deferred members, colon-like definitions with a default
behavior that can be referenced while defining the class,
but may have substitute behaviors defined by sub-classes
defined later;

4. Other objects.

The deferred members allow for polymorphism and late
binding, and will be discussed later.

2.2. Static instances of a class
Having defined a class, we can create an instance of it.

BUILDS is the static instance constructor in SWOOP; it is a
Forth defining word and requires the handle of a class on the
stack when executed.
P O I N T B U I L D S O R I G I N

This defines a static object of class POINT named O R I G I N .
. Now, any of the members of POINT may be referenced in the
context of this object. For example:
5 O R I G I N X !
8 O R I G I N Y !
O R I G I N DOT

When the name of an object is executed, two things hap-
pen: first, the Forth interpreter's context is modified to in-
clude the namespace of the class that created it. Second, the

--

Forth Dimensions XX.5,6 29

address of the object is placed on the stack. The phrase
O R I G I N 2 CELLS DUMP

is perfectly valid (assuming you have a suitable DUMP func-
tion). Each of the members of the class act on this address.
Members that represent data simply add an offset to it; mem-
bers that are defer or colon definitions push the address into
'SELF (which holds the current object address) before ex-
ecuting, and restore it afterwards.

2.3. Dynamic objects
We can also create a temporary context in which to refer-

ence the members of a class. U S I N G parses the word follow-
ing it and, assuming that it is the name of a class, makes its
members available for use on data at a specified address. For
instance, I can place data at PAD and use the members of
POINT to act on it:
6 PAD ! 9 PAD CELL+ !
PAD USING POINT DOT

This will print 6 and 9. It is a very simple, user-managed
dynamic instance of a class. It is also, generally, not a good
way to use dynamic objects.

A better idea is to let SWOOP manage dynamic instances
for you. NEW is the dynamic constructor. It is not a defining
word, but is a memory management word similar to ALLO-
CATE. It requires a class handle on the stack, and returns an
address. When the object is no longer needed, it can be dis-
posed of with DESTROY.

0 VALUE FOO
POINT NEW TO FOO
8 FOO USING P O I N T X !
9 9 FOO USING POINT Y !
FOO USING P O I N T DOT
FOO DESTROY 0 TO FOO

This example uses FOO to keep up with the address of an
instance of POINT. After the instance is created, it may be
manipulated (with a slight change in syntax) in the same
way a static instance of POINT is. When it's no longer needed,
the instance is destroyed and the address kept in FOO is in-
validated.

Objects created by NEW do not exist in the Forth dictio-
nary, and must be explicitly destroyed when no longer used.

Another form of dynamic object instantiation is local ob-
jects. These, like local variables, are available only inside a
single colon definition, and are instantiated only while the
definition is being executed. Here's an example:
: TEST (--)

[O B J E C T S POINT MAKES J O E OBJECTS]
J O E DOT ;

You can define as many local objects as you need between
[OBJECTS and OBJECTS] . They will all be instantiated when
TEST is executed, and destroyed when it is completed. This
is a particularly useful facility in Windows programming,
because these objects can be used in Windows callback rou-
tines. Unfortunately, local objects cannot be implemented
straightforwardly in ANS Forth, as that depends heavily on
internal SwiftForth implementation features, so they are not
included in the released code.

Forth Dimensions XX.5,6

- - -

2.4. Embedded objects
Pre-defined classes may be used as members of other

classes. The syntax for using one is the same as for defining
static objects. These objects are not static; they will be con-
structed only when their container is instantiated.
CLASS RECTANGLE

POINT BUILDS UL
POINT BUILDS LR
: SHOW (--) UL DOT LR DOT ;
: DOT (--) ." Rectangle, " SHOW ;

END-CLASS

In this example, the points giving the upper-left and lower-
right corners of the rectangle are instantiated as POINT ob-
jects. The members of RECTANGLE may reference them by
name, and may use any of the members of P O I N T to manipu-
late them. In this example, SHOW references the DOT member
of POINT to print UL and LR; this member is not the same as
the DOT member of RECTANGLE.

These embedded objects are exactly like data allocations
in the class: they simply add an offset to the base address of
the object's data when referenced. There is nothing special
about creating an instance of such a class, but the created
object has all public members of the embedded objects avail-
able as well.

In this definition of POINT the members x, Y, and SHOW are
now private, available to local use while defining POINT and
hidden from view afterwards. Since a point is relatively useless
unless its location can be set and read, members which can do
this are provided in the public section. However, these defini-
tions achieve the desired level of information hiding: the ac-
tual data storage is unavailable to the user and may only be
accessed through the members provided for that purpose.

2.6. Inheritance and polymorphism
Inheritance is the ability to define a new class based on an

existing class. The new sub-class, which initially has exactly
the same members as its parent, can replace some of the in-
herited members or can add new ones. If the subclass rede-
fines an existing member, all further use within the subclass
will reference the new one; all prior references were already
bound and continue to reference the previous member.

Polymorphism goes a step further than inheritance. In it, a
new subclass inherits all the members of its parents, but may
also redefine any DEFER: members of its parents.

For example, our previous example could be written this
way:
CLASS POINT
VARIABLE X
VARIABLE Y
DEFER: SHOW (--) X @ . Y @ . ;

2.5. Information hiding
Classes are composed of named members. Thus far, all the

: DOT (--) ." Point at " SHOW ;
END-CLASS

: DOT (--) ." Point at " SHOW ;
END-CLASS

members have been visible in any reference to the class or an
object of the class. Even though the member names are hid-
den from casual reference by the user, the information-hid-
ing requirements of object-oriented programming are more
stringent.

The accepted level of information hiding in OOP seems
to be that classes must have at least the ability to hide rnem-
bers from any external access. SWOOP accomplishes this via
three keywords:

PUBLIC identifies members that can be accessed globally.
PROTECTED identifies members that are available only
within the class in which they are defined, and in its sub-
classes.
PRIVATE identifies members that are available only
within the defining class.

When a class definition is begun, all member names de-
fault to being PUBLIC, which is to say visible outside of the
class definition. PRIVATE or PROTECTED changes the level of
visibility of the members.
CLASS POINT
PRIVATE
VARIABLE X

Forth Dimensions XX.5,6

Then you could make a sub-class like this:
POINT SUBCLASS LABEL-PO INT

: SHOW (--)

.Iv X" X @ . ." Y" Y @ . ;
END-CLASS
LABEL-PO INT BUILDS POO
PO0 DOT

The original definition DOT in the parent class POINT will
still reference SHOW, but when it is executed for an instance of
LABEL- POINT, the new behavior will automatically be substi-
tuted, so POO DOT will print the labeled coordinates.

3. Data Structures
This section will describe the basic data structures involved

in classes and members, as a foundation for discussing more-
detailed implementation strategies underlying SWOOP. *

..

VARIABLE Y
: S H O W (- -) X @ . Y e . ;

PUBLIC
: G E T (- - x y) X @ Y @ ;
: P U T (x y - -) Y ! X ! ;

Figure One. Structure of a class

Defer 4.1. Global state information
SWOOP depends on two variables for its behavior during

compilation and execution. I T H I S contains the handle of
the active class, and SELF has the active object's data ad-
dress. The system provides words to set, save, and restore these
variables. See the section on system variables in Listing One.

I

I

3.7. Classes
The data representation of a class is shown in Figure One.

Each class is composed of a eight-cell structure. All classes are
linked in a single list that originates in the list head CLASSES.
This allows the system or user to see all created classes, and
will be used in the future to facilitate the implementation of
a class browser.

Each class has a unique handle. When executed, a class
name will return this handle. The handle also happens to be
the xt that is returned by ticking the class name. For example,
if POINT is a class, then

POINT .
prints the same value as
POINT .

Each class (except SUPREME) has a superclass. By default, it
is SUPREME, but a class can be a child of any pre-existing class.
The value in the Super field is the handle (xt) of the superclass.

Classes are composed of members, divided into three lists-
public, protected, and private-which are identical except for
their visibility to external references. Each list has a head in
the class data structure. With inheritance, these lists may chain
back into its superclass, and its superclass, etc., all the way
back to SUPREME. The ordering within the chain is such that
the head points to the last (most recently defined) member,
which is linked to the next most recently defined, etc. This
is the same ordering as within a Forth dictionary, and allows
for redefinitions. These lists, in conjunction with the class
handle and the wordlist MEMBERS, define the class namespace.

The size field represents the size (in bytes) required by a
single instance of the class. This value is the sum of all ex-
plicitly referenced data in the class itself plus the size of its
superclass.

The class tag is a simple constant used to identify the data
structure as a valid class.

Figure Two. Basic structure of a member

Object

A class definition is begun by CLASS or SUBCLASS and is
ended by END-CLASS. While a class is being defined, the nor-
mal Forth interpreterlcompiler is used; its behavior is modi-
fied by changing the search order to include the class
namespace and the wordlist CC-WORDS.

All links in this system are relative, and all handles are
execution tokens (xt). This is the only way I have found to
generate a system I could guarantee to be portable across many
different ANS Forth platforms. In the general case, this re-
sults in data structures that are relocatable. Specifically, in
SwiftForth, this means that the objects created in the interac-
tive system at a given address will work when saved as a DLLs,
which are loaded arbitrary addresses by the operating system.

3.2. Members
Members are defined between CLASS and END-CLASS. They

parallel the basic Forth constructs of variables, colon-defini-
tions, and deferred words. The definition of a member has
two parts. First is the member's name, which exists in the
wordlist MEMBERS. The xt of this name is used as the member
id when it is referenced. Second is the member's data struc-
ture. This contains information about how to compile and
execute the member. Each member is of the general format
shown in Figure Two; the specific format of some member
types is shown in Figure Three.

The data structure associated with a member has five fields:
member compiler, link, message id, member run time, and
data. The data field is not of fixed length; its content de-
pends on the programmatic expectations of the compiler and
run-time routines.

The compilerxt is the early binding behavior for members,
and the run-time xt is the late binding behavior. Each variety
of member has a unique compiler xt and run-time xt; both ex-
pect the address of the member's data field on the stack when
executed. The message id in each entry is the xt given by the
member's name in the MEMBERS wordlist.

The data field contents vary depending on the type of
member the structure represents. For data members, the data

32 Forth Dimensions XX.5.6

field contains the offset into the current object. For colon
members, it contains the Forth xt which is executed to per-
form the actions defined for the member. In defer members,
the data field also contains an xt, but it is only used if the
defer is not extended beyond its default behavior. The data
field of colon members contains the actual Forth xt to be
compiled when the method is referenced. In object mem-
bers, the data field contains both the offset in the current
object of the member and the class handle of the member.

FigureThree. Data structures for various member types ., 4. Implementation Strategies
Having discussed the basic syntax and data structures in-

Colon volved in SWOOP, we can now consider the underlying
mechanisms in the system.

In SwiftForth, these are implemented as user variables so that
object code is re-entrant.

SWOOP maintains two wordlists associated with the com-
pilation of classes and objects. MEMBERS contains the list of
unique identifiers used to name the members of classes, and
CC-WORDS contains the compiler words used to construct the
definitions of the members of classes.

4.2. Classes and member identifiers
In other OOP implementations, classes are composed of

instance data, methods that can act on the data, and mes-
sages corresponding to these methods that can be sent to
objects derived from the class.

In SWOOP, instance data and methods are combined into
a single orthogonal concept: members. Each member has a
unique identifier which can be used as a message. Members
exist as created names in the MEMBERS wordlist; each member's
xt is its identifier. A given name will exist only once in MEM-
BERS; a member name always corresponds to the same iden-
tifier (i.e., xt), regardless of the class or context in which it is
referenced.

Classes are composed of members organized in the public,
protected, and private lists. The structure of a class is shown in
Figure One. The member lists of a class are based on switches
(VanNorman 17)) and use a member identifier as a key. A class
doesn't know the names of its members, only their identifiers.

4.3. Compilation strategy
The two common models of object systems in Forth seem

to be mutually exclusive: one parses and has encapsulation,
the other doesn't parse but lacks information hiding.

The main strengths of the parsing model are encapsulation
and information hiding. This is achieved by each word being
immediate-it always executes, and it parses the next word
instead of allowing the Forth interpreter to do so. This is how
the context for the next word is enforced; it contains an im-
plied search order change at each token of a multi-word phrase.
An unpublished implementation by Charles Melice achieves
information hiding via wordlists; each word parses and ex-
plicitly searches for its successor in a class-unique wordlist.

The main strength of the non-parsing model is its gener-
ality. Code simply pushes object addresses on the stack, modi-
fies them, then eventually acts on these addresses. Each to-
ken is standalone, not knowing or caring what produced its
input or what consumed its output. All names exist in the
primary system wordlist.

The epiphany was my realization that the strengths of these
models did not contradict each other. The SWOOP model is a
synthesis of these two strengths. The result of this interplay of
ideas is the namespace. A class's namespace is defined by all
words in the MEMBERS wordlist whose handles match keys in
the class's public, protected, or private member lists.

The executable definitions associated with entries in MEM-
BERS are immediate. When MEMBERS is part of the search or-
der, a reference to a member may be found there, and it will
be executed. When it is executed, it will search for a match
on its handle in the list of keys in the member lists for the
current class (identified by ' THIS). If a match is found, the
compilation or execution xt associated with the matching
member will be executed, depending on STATE. If there is no
match in the current class, the name will be re-asserted in
the input stream and the Forth interpreter will be invoked to

Forth Dimensions XX.5,6

search for it in other wordlists, handling it subsequently in
normal fashion.

4.4. Compilation of classes and objects
One of my goals for SWOOP was to make the definition

of classes and, in particular, the members of a class, map onto
the common Forth paradigm, which meant being able to tem-
porarily supercede the meaning of the Forth defining words.
I achieved this by having a wordlist called cc-WORDS that
contains all of the member-defining words, and which is only
present in the search order while compiling a class.

The simplest way to discuss the compiler is to walk through
its operation as a class is built. So, we define a simple class:
CLASS POINT

VARIABLE X
VARIABLE Y
: D O T (- -) X @ . Y @ . ;

END-CLASS

The phrase CLASS POINT creates a class data structure
named POINT, links it into the CLASSES list, adds CC-WORDS
and MEMBERS to the search order, and Sets T H I S and CSTATE
to the handle of POINT. The variable CSTATE contains the
handle of the current class being defined, and remains non-
zero until END-CLASS is encountered. This is used by the vari-
ous member compilers to decide what member references
mean, and how to compile them.

VARIABLE x (and, likewise, Y) executes the class-defining
word VARIABLE in CC-WORDS, which adds a member name to
MEMBERS and to the chain of public members for POINT.

Although the colon definition DOT looks like a normal
Forth definition, its critical components : and ; are highly
specialized words in the cc-WORDS wordlist. This version of
: searches for the name DOT in the MEMBERS wordlist; if there
is one already, it uses its handle as the message ID for the
member being defined. Otherwise, it constructs a name in
MEMBERS (rather than with the class definitions being built),
keeping its handle. Then it begins a : NONAME definition, which
is terminated by the ; . This version of ; not only completes
the definition, it uses its xt along with the message ID to
construct the entry in the appropriate chain for DOT.

When a class member is referenced (such as in the refer-
ence to X in DOT), its compiler method is executed. This rou-
tine (such as COLON-METHOD and DATA-METHOD) compiles a
reference to the member.

4.5. Self
Notice that, seemingly, we have inconsistent use of our

members. While defining PO I NT, we simply reference x; while
not defining POINT, we must reference an object prior to x.
This problem is resolved in some systems by requiring SELF
to appear as an object proxy during the definition of the class.
: DOT (--) SELF X @ . SELF Y @ . ;

This results in a more consistent syntax, but is wordy and
repetitive. However, to the compiler, the reference to x is not
ambiguous, so the explicit reference to SELF is unnecessary.
While a class is being defined, SWOOP notices that x (or any
other member) is indeed a reference to a member of the class
being defined and automatically inserts SELF before the ref-
erence is compiled. This results in a simpler presentation of

the routine, and makes the code inside a class look like it
would if it were not part of a class definition at all.

4.6. Binding
The way a member is referenced may be decided at com-

pile time or at run time.
If the decision is made at compile time, it is known as

early binding and assumes that a specific, known member is
being referenced. This provides for simple compilation and

Figure Four. Member data structure,
showing embedded switch

Switch structure

34 Forth Dimensions XX.5,6

the best performance when executed.
If the decision is made at run time, it is known as late

binding, which assumes that the member to be referenced is
not known at compile time and must, therefore, be

member

looked up at run time. This is slower than early bind-
ing because of the run-time lookup, but it is more
general. Because of its interactive nature, this behav-
ior parallels the use of the Forth interpreter to refer-
ence members.

SWOOP is primarily an early binding system, but
late binding is available through two mechanisms.
The first is deferred members, a technique that paral-
lels the Forth concept of a deferred word. This imple-

Figure Five

44B163 4 # EBP SUB 83ED04
4B166 EBX [EBPl MOV 895D00

44B169 49030 [ED11 EBX LEA 8D9F30900400
44B16F 0 [EBX] EBX MOV 8B1B
44B171 RET C 3

ments the facet of late binding where the member
name to be referenced is known, but the behavior is not yet
determined when the reference is made. The second is the
word SENDMSG, which sends an arbitrary message ID to an
arbitrary object. This strategy makes it possible to, for example,
send Windows message constants to a window object for pro-
cessing.

5. Optimization
Version 2.0 of SwiftForth (currently in beta release) will

include both SWOOP and a powerful rule-based optimizing
compiler. Many of its optimization strategies provide signifi-
cant improvement on both the size and performance of code
generated by SWOOP. For example, the sequence:
CLASS POINT

VARIABLE X
VARIABLE Y
: D O T X ? Y ? ;

END-CLASS

CLASS RECT
POINT BUILDS UL
POINT BUILDS LR

END-CLASS

CLASS CUBE
RECT BUILDS TOP *\

RECT BUILDS BOT
END-CLASS

CUBE BUILDS FOO

: TEST1 (--) FOO TOP UL X @ ;

...g enerates the code shown in Figure Five for TEST-, less
than one machine instruction per Forth word.

6. Future enhancements
As noted, SWOOP was designed from the outset to be

amenable to cross- or target-compiling. This is most obvi-
ously manifest in the separation of compile-time and run-
time behaviors for members associated with a class. In a non-
extensible, ROMable target, the compiler portion of the mem-
ber data structure would reside in the host during compila-
tion and interactive testing, and only the run-time support
(shown in Figure Four) would reside in the target.

Note that the design of the member data structure incor-
porates a "switch," as described in my previous article [7].
These can be implemented extremely efficiently. Early-bound
members will simply execute their xts; late-bound members
will call the run-time switch.

7. Source code
The source code is broken into two basic parts: the pre-

amble PRESWOOP, which Wil Baden presents elsewhere in this
issue of Forth Dimensions, and the source code for swoop itself
in Listing One. Listing Two provides some simple extensions
to the object model, showing how to add new data types, etc.

References
1. Baden, Wil. "Simple Object-Oriented Programming,"

Forth Dimensions XX, No. 4 (1999), 14-17.
2. Entsminger, Gary. The Tao of Objects. Redwood City,

California: M&T, 1990.
3. Ertl, Anton. "Standardizing OOF Extensions," Forth

Dimensions XIX, No. 1 (1997), 24-25.
4. Ertl, Anton, "Yet Another Forth Objects Package," Forth

Dimensions XIX, No. 2 (1997), 37-41.
5. McKewan, Andrew, "Object-Oriented Programming in

ANS Forth," Forth Dimensions XVIII, No. 6 (1997)) 1429.
6. Pountain, Dick. Object-Oriented Forth: Implementation of

Data Structures. London: Academic Press, 1987.
7.VanNormanI Rick. "A Forth Switchblade," ~ o r t h ~ i m e n -

sions XX, No. 3 (1998), 19-22.

1 Listing One
{
(C) Copyright 1999 FORTH, Inc. www.forth.com
FORTH, Inc. grants to members of the Forth Interest Group permission to use this code
providing the user clearly acknowledges FORTH, Inc. as author. FORTH, Inc. assumes no
responsibility for the accuracy or completeness of this code. We will greatly appre-
ciate being notified of any improvements users may make or recommend.

.. .. 1

The following set of words have the most promise of performance
improvement if optimized with machine code. These inefficient versions
should be commented out if other versions already exist.

Classes return their xt when executed. A class's xt is considered
to be its handle. All class operations are based on this handle.

'THIS has the handle of the current class and
'SELF has the address of the current object.

THIS returns the handle of the current class and
SELF returns the address of the current data object, normally used

only while defining a class.

>THIS writes a new value into 'THIS and
>SELF writes a new value into 'SELF.

>C C> >S S> are compiler macros which preserve the values of
'THIS and 'SELF respectively. They are used in pairs around
code sequences.

>C C> save, set, and restore 'THIS. "THIS >R >THIS . . . R> >THIS1'
>S S> save, set, and restore 'SELF. " SELF > R >SELF . . . R> >SELFv'

>DATA returns a data address for the xt of an object
.. 1

VARIABLE 'THIS
VARIABLE 'SELF

: THIS (-- class) 'THIS @ ;
: SELF (-- object) 'SELF @ ;

: >THIS (class --) 'THIS ! ;
: >SELF (object --) 'SELF ! ;

: >C (class --)
POSTPONE THIS POSTPONE >R POSTPONE >THIS ; IMMEDIATE .\

: c> (--)
POSTPONE R> POSTPONE >THIS ; IMMEDIATE"

: > S (object --)
POSTPONE SELF POSTPONE >R POSTPONE >SELF ; IMMEDIATE

: s> (--)
POSTPONE R> POSTPONE >SELF ; IMMEDIATE

: >DATA (xt -- object) >BODY 3 CELLS + ;

Forth Dimensions XX.5.6 35

{ ..
CSTATE has the class handle while we are defining a class.

" S E L F ' is a compiler tool to emplace a reference to S E L F before
each class-local item while compiling the class. This makes the
code look nicer; instead of S E L F X @ one can just say X @ .
Pronounce this by wiggling two fingers on each hand in the air
while saying the word S E L F .

" T H I S " emplaces a reference to the current class as necessary for
resolving defer methods or simply executing a class member.

.. 1

1 VARIABLE CSTATE !
: " S E L F ' (--)

CSTATE @ - E X I T CSTATE @ T H I S <> ? E X I T POSTPONE S E L F ;

: " T H I S " (--) CSTATE @ I F
CSTATE @ T H I S = I F POSTPONE T H I S E X I T THEN

THEN T H I S POSTPONE LITERAL ;

{ ..
We manage our object system with two system wordlists.

CC-WORDS has the defining words used while building classes and
MEMBERS has the unique identifiers for class members.

+MEMBERS adds the MEMBERS wordlist to the search order and
-MEMBERS removes it from the search order.

+CC puts MEMBERS and CC-WORDS on the top of the search order and
-CC removes them from the search order.
.. 1

WORDLIST: CC-WORDS
WORDLIST : MEMBERS

: +MEMBERS (--) MEMBERS +ORDER ;
: -MEMBERS (--) MEMBERS -ORDER ;

: +CC (--) +MEMBERS CC-WORDS +ORDER ;
: - (--) -MEMBERS CC-WORDS -ORDER ;

{ ..
Classes are:

I I link I xt I super I public I protected I private I size I tag I I I I >SUPER etc traverse this structure from theclass handle. 1
S I Z E O F returns the size of the specified"c1ass.

/ ICLASSl is how many cells are required to define a class. I
CLASSTAG is a marker derrived from the xt of I C L A S S I .
.. I

: BODY+ (n "name" -- n+l) 1 CREATE DUP CELLS , I+ DOES> @ SWAP >BODY + ;

36 Forth Dimensions XX.5,6

0 BODY+ >CLINK
BODY+ > CHANDLE
BODY+ >SUPER
BODY+ >PUBLIC
BODY+ >PROTECTED
BODY+ >PRIVATE
BODY+ >SIZE
BODY+ >CLASSTAG

CONSTANT [CLASS]

[CLASS1 CONSTANT CLASSTAG
1 CLASS 1 1+ CONSTANT OBJTAG

: SIZEOF (class -- n) >SIZE @ ;

{ ..
Executing a named class returns its xt, which is its handle.

When a class is created, THIS will contain the handle of the class
until END-CLASS is executed.

CLASSES has the list of all known classes.
OPAQUE has 0 if new members are PUBLIC, 1 if new members are PROTECTED,

and 2 if new members are PRIVATE. This is an offset, translated into
cells from >PUBLIC when used in NEW-MEMBER.

CLASS defines a new class. With
SUBCLASS, we use
INHERITS to build a new class from an existing one.
RE-OPEN allows further refinements of a class.

SUPREME is the mother of all classes. Members may be added to
it with extreme care.

.. 1

CHAIN CLASSES

VARIABLE OPAQUE

: RE-OPEN (class --) DUP >THIS CSTATE ! 0 OPAQUE ! +CC ;

: (CLASS) (--) CREATE-XT (xt) DUP RE-OPEN
CLASSES >LINK (xt) , ICLASSI 2 - CELLS /ALLOT CLASSTAG ,
DOES> CELL+ @ ;

(CLASS) SUPREME -MEMBERS -CC

: INHERITS (class --)
HERE CELL- @ CLASSTAG <> ABORT"
ICLASSl 1- CELLS NEGATE ALLOT
DUP ,
DUP >PUBLIC RELINK,
DUP >PROTECTED RELINK,
0 1

DUP SIZEOF ,
CLASSTAG ,
DROP ;

: CLASS (--)
(CLASS) SUPREME INHERITS ;

INHERITS must follow CLASS <name>"
\ forge'e all except link.
\ poi,pt superclass field to new parent.
\ inherit public
\ and protected.
\ never inherit private.
\ inherit size.
\ mark this as a class.

Forth Dimensions XX.S,6 37

: SUBCLASS (class --)
(CLASS) INHERITS ;

COMPILE-AN-OBJECT compiles a reference that returns the object's
address generated by the given xt and adds MEMBERS to the search order.

INTERPRET-AN-OBJECT returns an object's address.

(OBJECT) compiles or executes an object reference. I
BUILDS creates a named object which looks like:

I xt I class 1 data I

USING sets the class search order so that the MEMBERS wordlist is active.
The net result is to allow the use of arbitrary class methods on an
arbitrary address in memory.

.. 1

: COMPILE-AN-OBJECT (addr xt --) >R
@ + POSTPONE LITERAL FD COMPILE, CELL+ @ >THIS +MEMBERS ;

: INTERPRET-AN-OBJECT (addr xt -- addr) >R
@ + SWAP CELL+ @ >THIS +MEMBERS FD EXECUTE ;

: (OBJECT) (addr xt -- I addr)
STATE @ IF COMPILE-AN-OBJECT ELSE INTERPRET-AN-OBJECT THEN ;

: BUILDS (class --)
CREATE-XT IMMEDIATE (xt) , OBJTAG , (class) DUP , SIZEOF /ALLOT
DOES> ['1 >DATA (OBJECT) ;

: USING (--) ' DUP >CLASSTAG @
CLASSTAG <> ABORT" Class name must follow USING''
>THIS +MEMBERS ; IMMEDIATE

{ ..
NEW is the dynamic object constructor and
DESTROY is the corresponding destructor.
.. 1

: NEW (class -- addr)
DUP SIZEOF CELL+ CELL+ ALLOCATE THROW OBJTAG ! + SWAP ! + ;

: DESTROY (addr --)
CELL- CELL- FREE THROW ;

{ ..
A class has three member lists associated with it: public, protected, and
private These lists indicate which message3 the class recognizes and how
to compile and/or execute the member whe,? referenced. The format of these
lists is

I compiler-xt I link I member handle I runtime-xt I data I . . .
The data field varies from method to method. This is documented
below in the METHODS section.

The structure of the member list contains an embedded switch statement;
the linklmemberlxt pattern.

I I

38 Forth Dimensions XX.5,6

A member handle represents a valid member if it is in the MEMBERS
wordlist and either the public, protected, or private member list of the
current class. This represents the namespace of the class.

NEW-MEMBER builds a list entry for the current class associating the
.member with compiler and runtime xts and a single data value.

BELONGS? returns the address of link if the member belongs to the
current class. BELONGS? should be coded for speed, as it is in the
critical path for virtual methods.

PUBLIC? searches the public list,
PROTECTED? searches the protected list, and
PRIVATE? searches the private list of THIS .

CLASS-MEMBER? checks THIS class for the member. Used by RESOLVED, for
virtual members (DEFER:) and so doesn't check PRIVATE.

VISIBLE-MEMBER? checks the member lists of THIS class for the member.
Since this is the action of all members, it must function both
during class compilaion and during method reference in normal
compilation.

If THIS is zero, it fails; no class is current to search.

If CSTATE is non-zero, we are compiling a class.
If CSTATE=THIS, the reference is to the current class; search

public, protected, and private.
If CSTATE<>THIS, the reference is to another class; search

public and protected, but not private.

MEMBER? checks the specified class for the member id on the stack.
.. 1

: NEW-MEMBER (member data runtime-xt compiler-xt --)
ALIGN
, THIS >PUBLIC OPAQUE @ CELLS + >LINK ROT , , , ;

: BELONGS? (member list -- 'member true I member false)
BEGIN

DUP @ DUP WHILE +
2DUP CELL+ @ =

UNTIL NIP TRUE EXIT
THEN NIP ;

: PUBLIC? (member -- 'member true I member 0)
THIS >PUBLIC BELONGS? ;

: PROTECTED? (member -- 'member true I member 0)
THIS >PROTECTED BELONGS? ; .\

: PRIVATE? (member -- 'member true I member 0)
THIS >PRIVATE BELONGS? ;

: CLASS-MEMBER? (member -- 'member true I 0)
THIS IF

PUBLIC? DUP ?EXIT DROP
PROTECTED? DUP ?EXIT DROP

THEN DROP 0 ;

-

Forth Dimensions XX.5,6

: VISIBLE-MEMBER? (member -- 'member
THIS IF

PUBLIC? DUP ?EXIT DROP
CSTATE @ IF

PROTECTED? DUP ?EXIT DROP
CSTATE @ THIS = IF

PRIVATE? DUP ?EXIT DROP
THEN

THEN
THEN DROP 0 ;

--

true I 0)
\ class is selected
\ exit if in public
\ compiling a class
\ exit if in protected
\ compiling this class
\ exit if in private
\
\ else normal forth reference
\ failing

: MEMBER? (member class -- 'member true I member 0)
>PUBLIC BELONGS? ;

..
3ARLY-BINDING executes the compiler-xt of the given member, which

compiles a reference to it according to the member type.

LATE-BINDING executes the runtime-xt of the given member. All
members require an object address on the stack when executing.
This is used for runtime binding (i.e., true late binding) and
for Forth interpreter access.

REFERENCE-MEMBER either compiles or executes a member.

?OBJECT throws if the entity whose address is on the stack is not
an object.

SENDMSG executes the given member id in the context of the class to
which the object belongs. This is considered to be sending a
message.

RESOLVED looks up the member in the current class and executes it.
This is used at runtime for late binding of virtual functions.
We search from the class pointed to by THIS at runtime, and the
first member match we find is executed. If no better behavior is
defined than the initial DEFER:, we will find that and execute
it by default.

: EARLY-BINDING ('member --)
DUP 3 CELLS + SWAP CELL - @ EXECUTE ;

: LATE-BINDING (object 'member --)
OVER CELL- @ >THIS 2 CELLS + @+ EXECUTE ;

: REFERENCE-MEMBER ([object] 'member --)
STATE @ IF EARLY-BINDING ELSE 4

CSTATE @ IF (interpreting in a class definition)
0 SWAP 2 CELLS + @+ EXECUTE

ELSE
LATE-BINDING THIS O= IF -MEMBERS THEN

THEN
THEN ;

: ?OBJECT (object --)
2 CELLS - @ OBJTAG <> THROW ;

: RESOLVED (member --)
CLASS-MEMBER? O= THROW 3 CELLS + @ EXECUTE ;

40 Forth Dimensions XX.5,6

FORTH INTEREST GROUP
MAIL ORDER FORM
HOW TO ORDER: Complete form on back page and send with payment to the Forth lnterest Group. All items
have one price. Enter price on order form and calculate shi~pina & handlina based on location and total.

A volume consists of the six issues from the volume year (May-April).

Volume 1 Forth Dimensions (1 979-80) 101 -$85

Introduction to FIG, threaded code, TO variables, fig-Forth.

Volume 6 Forth Dimensions (1 984-85) 106-$85

Interactiveeditors, anonymousvariables, list handling, integer
solutions, control structures, debugging techni ues
recursion, semaphores, simple I/O words. ~uicksort.%i~h:
level packet communications, China FORML.

Volume 7 Forth Dimensions (1 985-86) 107 - $65

Generic sort, Forth spreadsheet, control structures, pseudo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.

Volume 8 Forth Dimensions (1 986-87) 1 08 - $65

lnterru t driven serial input, database functions, TI 99/4A, 1 XMOD&. on-line documentatlon, dual CFAs. random
numbers, arrays, filequery, Batcher'ssort, screenless Forth,
classesin Forth. Bresenhamline-drawing algorithm, unsigned
division, DOS file I/O.

1 Volume 9 Forth Dimensions (1 987-88) 109 - $65

Fractal landscapes, stack error checking, perpetual date
routines, headless compiler, execution security, ANS Forth
meeting, computer-aided instruction, local variables,
transcendental functions, education, relocatable Forth for
68000.

Volume 10 Forth Dimensions (1 988-89) 110-$65

dBase file access, string handling, local variables, data
structures, object-oriented Forth, linear automata,
standalone applications, 8250 drivers, serial data
compression.

Volume 11 Forth Dimensions (1 989-90) 111 -$45

Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary
table search, phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions (1 990-91) 112-$45

Floored division, stack variables, embedded control, Atari
Forth, optimizing compiler, dynamic memory allocation,
smart RAM, extended- recision math, interrupt handling, %

neural nets. Soviet ~ortE, arrays, metacompilation.

Volume 13 Forth Dimensions (1 991 -92) 113-$45

Volume 14 Forth Dimensions (1 992-93 114-$45

Volume 15 Forth Dimensions (1 993-94) 115-$45

Volume 16 Forth Dimensions (1 994-95) 116-$45

Volume 17 Forth Dimensions (1 995-96) 117-$45

Volume 1 8 Forth Dimensions (1 996-97) 118-$45

Volume 19 Forth Dimensions (1 997-98) 119-$45

The annual FORML Conference is an educational forum for shatina and
discussing new or unproven proposals intended to beneffi Forth, &d is
fordiscussion of technical as~ectsof a ~ ~ l ~ c a t i o n s in Forth. Proceedinas
are a com~ilation of the ~ a ~ e r s and abkracts. FORML is an activitv%f
the Forth Interest Group '

1981 FORML PROCEEDINGS 311 - $70
CODEless Forth machine, quadruple-precision arithmetic,
overlays, executablevocabula stack, data typing in Forth,
vectored datastructures, using??rth in aclassrmm yramid
files. BASIC. LOGO, automatic cueing language for mukmedia.
NEXOS-a ROM-based multitasking operating system. 655
PP .

1982 FORML PROCEEDINGS 312 - $65
Rockwell Forth processor, virtual execution, 32-bit Forth,
ONLY for vocabularies, non-IMMEDl,ATE looping words,
number-lnput wordset, I/O vectoring, recurslve data
structures. programmable-logic compiler. 295 pp.

1983 FORML PROCEEDINGS 313 - $65
Non-Von Neuman machines, Forth instruction set, Chinese
Forth, F83, compiler& interpreterco-routines, I &exponential
function, rational arithmetic, transcenden2 functions in
variable-precision Forth, portable file-system nterface, Forth
codlng conventions, expert systems. 352 pp.

1984 FORML PROCEEDINGS 314 - $65
Forth expertsystems, consequent-reasonin inferenceeng~ne,
Zen floating point, portable graphics worjset, 32-bit Forth,
H,P71 B Forth, NEON-object-oriented pr ramming, decom-
p~ler design, arrays and stack variables.??i'8 pp.

1986 FORML PROCEEDINGS 316 - $65
Threading techniques, Prolog, VLSl Forth microprocessor,
natural-Ian uage Interface, expert system shell, inference
engine, mufiple-inheritance system, automatic programming
environment. 323 pp.

1988 FORML PROCEEDINGS 318 - $65
lncludes 1988Australian FORML. Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing.
programmable controllers, Prolog, simulations, language
toplcs, hardware, Wil's workings & Ting's philosoph Forth
hardware applications, ANS ~ o r t h sesslon, future of forth in
Al applications. 310 pp.

1989 FORML PROCEEDINGS 319 - $65
lncludes papers from '89 euroFORML. Pascal to Forth,
extensible optimizer for compiling, 30 measurement with
object-oriented Forth, CRC polynomials. F-PC, Harris C
cross-com iler, modular approach to robotic control, RTX
recompiler g r on-line marntenance, modules, trainable neural
nets. 433 pp.

1992 FORML PROCEEDINGS 322 - $45
Object-oriented Forth based on classes rather than
prototypes, color vision sizing processor, virtual file systems,
transparent target development, signal-processing pattern
classification, optimization in low-level Forth, localvariables,
embedded Forth, auto displa of di ital images, graphics
package for F-PC, B-tree In Ar th 280 pp.

1993 FORML PROCEEDINGS 323 - $45
lncludes papers from '92 euroForth and '93 euroForth
Conferences. Forth in 32-bit protected mode, H D N format
converter, graphing functions, MIPS eForth, umbilical
compilation, portable Forth engine, formal specifications of
Forth, writing better Forth, Holon -,a new way of Forth,
FOSM -,a,Forth strlng matcher, Logo In Forth, programming
productlvlty. 509 pp.

1 1994-1 995 FORML PROCEEDINGS (in one volume!) 325 - $55

FORTH PROGRAMMER'S HANDBOOK,
, Edward K. Conklin and Elizabeth D. Rather

ALL ABOUT FORTH, 3rd ed.. June 1990, Glen B. Haydon 201 - $90

Annotated glossary of most Forth words in common use,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementa-
tion exarnoles in hioh-level Forth and/or 8086/88 assembler.
Useful coinmentac given for each entry. 504 pp.

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 21 5 - $37

eForth is a Forth model designed to be portable to many of
the newer, more powerful processors available now and
becoming available in the near future. 54 pp. (w/disk)

Embedded Controller FORTH, 8051, William H. Payne 216 - $85

Describes the implementation of an 8051 version of Forth.
More than half the book is composed of source listings (w/
disks C050) 51 1 pp.

F83 SOURCE, Henry Laxen & Michael Perry 217 - $30

A complete listing of F83, including source and shadow
screens. Includes introduction on getting started. 208 pp.

F-PC USERS MANUAL (2nded.,V3.5) 350 - $30

Users manual to the public-domain Forth system optimized
for IBM PC/XT/AT computers. A fat, fast system wlth many
tools. 743 pp.

F-PC TECHNICAL REFERENCE MANUAL 351 - $45

A must if you need to know F-PC's inner workings. 269 pp.

THE FIRST COURSE, C.H. Ting 223 - $37

This tutorial exposes you to the minimum set of Forth
instructions needed to use Forth to solve practical roblems
in the shortest possible time. "...This tutorial was gveloped
to complement The Forth Course, which skims too fast over
elementary Forth instructions and dives too quickly into
advanced topics in an u per level college microcomputer
laboratory.. . A running p-PC Forth system would be very
useful. 44 pp.

THE FORTH COURSE, Richard E. Haskell 225 - $37

This set of 1 1 lessons is designed to make it easy for you to
learn Forth. The material was developed over several years
of teaching Forth as part of a seniorlgraduate course In the
design of embedded software computer systems at Oakland
University in Rochester, Michigan. 756 pp. (w/disk)

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $37

Good examples and applications - a great learning aid.
polyFORTH IS the dialect used, but some conversion advice
IS included. Code is well documented. 286 pp.

I FORTH NOTEBOOK II. Dr. C.H. Ting 232a - $37

Collection of research pa ers on various topics, such as
ima e processin , para~lerprocessin~, and miscellaneous
appications. 23?pp.

*,

This reference book documents all ANS Forth wordsets
with detalls of more than 250 words), and describes the i orth vlrtual . ' machine, implementation strategies, the impact
of multitasking on program, design, Forth assemblers, and
codlng style recommendat~ons.

INSIDE F-83, Dr. C.H. Ting 235-537 1
Invaluable for those using F-83.226 pp. I

OBJECT-ORIENTED FORTH, Dick Pountain 242 - $50 I
Implementation of data structures. First book to make
object-oriented programming available to users of even very
small home computers. 178 pp.

STARTING FORTH (2nd ed.) Limited Reprint, Leo Brodie 245a - $50 I
In this edition of Startin Forth-the most popular and
complete introduction to Porth-s ntax has been expanded
to include the Forth-83 ~tandardl (The ori inal printing, b
now out ofstock, but ye are m a k q avagble a spec~al,
limited-edit~on reprlnt wlth all the orlg~nal content.) 346 pp.

THINKING FORTH, Leo Brodie 255 - $35 I
Back by popular demand! To program intelligently, you
must first thlnk Intel11 ently. The bestselling author of Start~ng
Forth is back. witf the first gude to uslng Forth for
applications. This book captures the philosoph of the
language. showing users how to write more-readabL more-
maintalnabie applcations. Both be inning and experienced
programmers will gain a better uncferstanding and mastery
of topics like decomposition, factoring, handling data.
simplifying control structures. Forth style and conventions.
To give you an idea of how these concepts can be applied,
Thinking Forth contains revealin interviews with users and
with Forth's creator, Charles ~.%oore. Reprint of original.
2 72pp.

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++.
Norman Smith 270 - $35

This book is about an application language. More specifically,
it is about how to write your own custom application
language. The book contains the tools necessary to begin
the process, and a complete sample language
implementation. (Guess what language!) Includes disk wlth
complete source. 108 pp.

WRITING FCODE PROGRAMS 252 - $60 I
This manual is for designers of SBus interface cards and
other devices that use the FCode interface language. It
assumes familiarity with SBus card design requirements
and Forth programming. Discusses SBus development for
OpenBoot 1 .O and 2.0 systems. 474 pp.

L R I E L S OF MEMBERSHIP
Your standard membership in the Forth Interest Group brings
Forth Dimensions and participation in FIG activities-like
members-only sections of our web site, discounts, special
interest groups, and more. But we hope you will consider
joining the growing number of members who choose to show
their increased support of FIG'S mission and of Forth.

Ask about our special incentives for corporate and library
members, or become an individual benefactor!

Company/Corporate - $1 25
Library - $1 25
Benefactor - $1 25
Standard - $45 (add $1 5 for non-U.S. delivery)

Forth lnterest Group
See contact info on mail-order form, or send e-mail to:

office@forth.org

