

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000"" l&bit Forth Chip SC32"" 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 &prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. *Stack depths limited only by available memory.
-&channel 1/0 bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. 4 2 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. .100mm x 160mm Eurocard size (+layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.

-233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
-System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. *32 KB to 512 KB 0-wait-state static RAM.
100mm x lmmm size (&layer) board. *100mm x 160mm Eurocard size (+layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

Features

6 Adventures in Serial Communications A1 Mitchell
Serial data communications can be many times less expensive than parallel methods. But with
far fewer wires for the data, speed penalties can be significant. This discussion of data formats,
protocols, and circumventing DOS overhead by directly controlling UARTs with Forth shows
that properly implemented serial communications can be pushed to extremely high speeds
or sent over distances up to four kilometers.

A Line Editor and History Function Charles Curley
Users of skeletal Forth systems: you can retrieve and re-execute that series of commands
without re-typing them. And just because you aren't using a fully frilled text editor doesn't
mean you have to live entirely without editing tools. Boost your programming productivity
right where you spend the most time-at the command-line.

Parallel Forth: The New ApproachMichael Montvelishsky
From Russia, the author provides an extension that brings parallel programming to Forth-
even if, for now, you d o have only one processor. With it, you can write code processes that
not only communicate with each other, but manage productive offspring.

20 Readability Revisited Garth Wilson
Every well-run ship and airplane has its gear stowed and hatches secured. More than aesthetics,
these are issues of practicality and safety. Whether or not you have been accused of producing
write-only code, refining your program's physical layout will improve its clarity, reliability, and
maintainability, and will demonstrate your care and workmanship.

27 Print ZIP Barcodes Walter J. Rottenkolber
Generating postal barcodes, whether to speed your mail or to save money, is an interesting
project in applied Forth. It requires careful design and placement of graphics, and understand-
ing five-bit numbers and postal codes u p to eleven digits long. This implementation will make
your letters compatible with state-of-the-art scanning and sorting technologies.

33 Optimizing '386 Assembly Code David M. Sanders
This article discusses optimization techniques for machine code generated during compilatoin.
'386 assembly language is used to illustrate the techniques, but many of are applicable to other
processors, including the 68000 family. Certain techniques can especially reduce the amount
of machine code generated by Forth compilers.

Departments I

4 Editorial ANS Forth announced

..................... 5 Letters Something old, something new; Off-line resources.

31 Advertisers Index

42 Fast Forthward Forth: always new, despite its age

Forth Dimensions 3 March 1994 April

ANS Forth Announced
The following on-line message from Elizabeth Rather will mark a major benchmark

in the evolution and public perception of Forth:

"ANS Forth has been officially approved by X3, the Information Systems sub-group of
ANSI responsible for computer languages, hardware, media, etc., and was forwarded to
ANSI early in January, 1994, for a two-week letter ballot by the Board of Standards
Review (BSR). BSR approval is expected to be automatic, as there were no negative votes
from X3. Publication of the official standard is expected in March, 1994.

"With the exception of minor editorial corrections, the approved standard will be the
same as dpANS6 published for a typographical review on a number of electronic bulletin
boards in August, 1993.

"X3J14, the X3 Technical Committee that developed the Standard, will meet June 20,
1994, in Rochester, NY. The purpose of this meeting will be to respond to any requests
for clarification that have come in, organize a mechanism for dealing with such requests
over the next few years, and vote to enter a 'dormant' stage until the Standard is
scheduled for review in approximately four years' time. Guests at the meeting are
welcome. Contact E. Rather, 1-800-55FORTH if you are interested."

For information on how to submit an official "request for clarification," see the
complete text of Ms. Rather's announcement-category 10, Topic 2, Message 180 on
GEnie's Forth RoundTable.

Where From Here?
Whether or not you adopt, or even implement, ANS Forth yourself, it will generate

a predictable wave of interest in Forth. Think of it as a carrier signal or as surf--either
way, the task now is to use its momentum, great or small, to increase the visibility and
viability of Forth in general, and of our individual skills, products, and services in
particular. This is a perfect time for some strategic planning.

This is also a good time to give key people a one-year subscription to Forth
Dimensions. Our authors will expose them to current developments and techniques,
showing that Forth is very much alive and well, and proving that it is a practical and
efficient problem-solving tool. Use the mail-order form or contact the FIG office to send
someone a gift membership.

This issue introduces new Russian FIG member Michael Montvelishky, author of
"Parallel Forth: the New Approach." We first met Michael through Internet e-mail, but
the special assistance of Jeff Fox expedited the appearance of his article in these pages.
We thank both of them, and welcome further contributions discussing the significance
of Parallel Forth, as well as its implementation.

Is it in the nature of Forth to be write-only, or is that just the nature of some
programmers? Like handwriting, it needs to communicate to others but falls short more
often than we care to admit. Garth Wilson's "Readability Revisited" reminds us that good
code is in the eye of the beholder as well as in the guts of the machine. Some of his methods
are familiar (though not used consistently enough), and some may seem controversial.
But, stepping out of the ruts of personal prejudice and unconscious habits, one sees a
principle at work that is hard to argue with.

Let us know what you think about these and the other articles in this issue-your letters
and e-mail are more than welcome, they help to shape what future issues will bring.

-Marlin Ouuetson
MXRLZN.0 on GEnie, or

marlin. o@genie.geis.com
4 March 1994 April

Volume XV, Number 6
March 1994 April

Published by Ihe
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the
editor, and comments from its read-
ers. No responsibility is assumed
for accuracy of submissions.

Subscription to Forth Dimen-
sions is induded with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publication,
the address is: Forth Interest Group,
P.O. Box 2154, Oakland, California
94621. Administrative offices: 510-
89-FORTH. Fax: 510-535-1295. Ad-
vertising sales: 805-946-2272.

Copyright Q 1994 by Forth In-
terest Group, Inc. Thematerial con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the artides and by
Forth Interest Group, Inc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
the articles, except reproductions
for non-commercial purposes, with-
out the written permission of Fonh
Interest Group, Inc. is a violation of
the Copyright Laws. Any code bear-
ing a copyright notice, however,
can be used only with permission
of the copyright holder.

The Forth lnterest Group
The Forth Interest Group is the
association of programmers,
managers, and engineers who
create practical, Forth-based
solutions to real-world needs. Many
research hardware and software
designs that will advance the
general state ofthe an. FIG provides
a dirnate of intellectual exchange
and benefits intended to assist each
of its members. Publications,
conferences, seminars, tele-
communications, and area chapter
meetings are among its activities.

"ForthDimensions(1SSN 08&1-0822)
is published bimonthly for $40/46/
52 per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-dass
postage paid at Oakland, CA.
POSTMASTER: Send address
changes to Forth Dimensions, P.O.
Box 2154, Oakland, CA94621-0054."

Forth Dimensior

Letters to the Editor-and to your fellow readers-are always wel-
come. Respond to articles, describe your latestprojects, ask for input,
advise the Forth community, or simply share a recent insight. Code is
also welcome, but is optional. Letters may be edited for clarity and
length. We want to hear from you!

Something Old, Something New
Dear Mr. Ouverson,

I read Ellis Cooper's article on "The Visible Virtual
Machine" (WM) in Forth Dimensions XV/5 with some
surprise. The stack picture he proposes is in both of my fig-
Forths, and these date back to over ten years ago.
Moreover, most of the features in his GUI version of Forth
are already present in Frans van Duinen's PDE. This editor
was praised highly in FD XI/2.

I was fortunate to obtain a copy of PDE. After some
debugging and tuning up, I have been using my version
for three years now. As in Cooper's W M system, PDE has
two windows. One is a screen editor, and the other
displays messages and does command-line functions. It
differs from W M in that the second window displays only,
the data is not captured to a file.

The primary work window is the full-screen editor. The
1 editor resembles WordStar with similar cursor movements,

editing functions, and block moves. Most programming
functions (debugger, disassembler, view, etc.) are activated
by placing the cursor at the beginning of the word, and
pressing the appropriate function key. You can also copy

An integrated work
environment puts the
fun into programming.

screens from one file to another, add or
delete screens, tag screens for recall, and
so on, all with just a keystroke or two.

A step-trace function on uncompiled
words visualizes the stack. A single
keystroke activates it, and the cursor
moves from word to word. No need to
retype words in the command line. Com-
piler words can be jumped over and the
stack contents adjusted.

The WM, in character-based form,
already exists as PDE.

If Cooper's article is a plea for Forth
to have a more convenient, integrated,
and intuitive development environment,
then I fully agree with him. The original

editor of my Forth, Laxen and Perry's F83, is command-line
driven. It's as unpleasant to work with as a line editor, and
is a big turnoff to anyone new to Forth. An integrated work
environment, whether W M or PDE, definitely puts the fun
into programming, and should be part of any modern Forth.

Yours truly,
Walter J. Rottenkolber
P.O. Box 1705
Mariposa, California 95338

Off-Line Resources
Dear Sir,

I recently received Forth Dimensions XV/4, within
which were a number of useful telephone numbers for on-
line resources. I have tried to make contact with the two
United Kingdom numbers, but both seem to be inaccurate.
When I called the number given for Max BBS, I made
contact with an elderly gentleman who was most dis-
turbed by my call, as he has had many similar calls
requesting access to the BBS.

Please, can you re-publish the correct numbers as soon
as possible, so that I can make contact with those BBS's if
they are still active, and also prevent any further annoy-
ance to the gentleman at the 0905 number.

Best regards and keep up the good work.
B.M. Morris

Thanks, Mike, for setting us straight. Just before receiv-
ing your note, I had a conversation with the FIG office in
which we agreed not topublish any of the resource Listings,
not even the FIG Chapters information, until we can
complete the rather daunting task of updating and recon-
firming the validity of all that information.

Our apologies to anyone who has answered their tele-
phone to begreeted by a shrieking tone even more irritating
and unwelcome than that of a bill collector or telephone
salesperson. -Ed.

FORTH and others I

Forth Dimensions 5 March 1994 April

Adventures in Serial

A1 Mitchell
Loomis, California

Serial vs. Parallel
Data communications comes in at least two flavors,

serial and parallel. Deciding which is appropriate for an
application is often as much an economic as a technical
decision.

Serial communications has a significant advantage in
hardware costs over parallel communications: very few
wires are required. Information is transmitted one bit at a
time rather than a byte at a time. This mandates either a
longer time to transmit the data or a higher data rate, but
the number of wires is significantly reduced. Because
fewer wires are needed, the attendant costs are reduced.

Parallel communications transmits a bit on each of many
conductors strobed by a separate clock line. This increases
the effective data rate as well as the costs. Each bit will
require not only a wire but a driver, a receiver, and two
connector pins. Additionally, there are usually a number of
qualifier signals, including the clock. Further, due to the
number of active lines within the cable, interference is
increased, limiting the upper bandwidth more than is

The cost of parallel hardware
can be many times that of serial.

immediately apparent. The cost of parallel communications
hardware can be many times that of serial communications.

Bandwidth Limitations
Let us assume similar impedance characteristics for

both serial and parallel cables. The most common parallel
standard is the Centronics Printer Interface. In this stan-
dard, information is sent in eight-bit bytes. While the data
on one line may be rising, the adjoining wire may be
falling. There is interference between the two which limits
the upper data rate.

If a cable with similar characteristics were used for
serial communications, the above problem would be less
significant, as only one wire is changing state at a time. In
most serial communications schemes, the data is self
clocking via the protocol used.

Let's first look at the most common protocols.

Serial Data Formats and Protocols
Synchronous data transmission is usually resewed for

machine-to-machine communications, due to the stability
required. Most operator interfacing is by keyboard, which
gives the data transmission rate a sporadic nature; there-
fore, we will not cover synchronous communications in
this paper.

Most computers are set u p for asynchronous serial
communications. The ubiquitous IBM computers use a
Universal Asynchronous Receiver/Transmitter (UART) to
reduce CPU overhead. The UART, usually an 8250 or 16550,
is a semi-intelligent peripheral which has a number of
programmable functions. Hardware connections and func-
tions are shown in Figure One.

Only a few of these many wires and signals are
required to effect reliable communications. The original
RS-232 standard was written in 1767, and room was left for
future enhancement, which is seldom required. Simple
communications in one direction can be accomplished
with as little as two wires (Signal Ground and either TXD
or RXD), and bi-directional communications with only
three wires.

Although the RS-232 hardware is quite simple, a
plethora of software options are possible. The 8250 UART
can operate from 300 to 115K baud; however, MS-DOS
only supports 300 to 7600 baud. This is not a serious
limitation since, in Forth, we have the ability to speak to
memory-mapped hardware directly. Not only can we use
baud rates other than what DOS limits us to, but we have
access to a number of input and output lines which can be
used for other purposes.

The UART VO's are normally used, if at all, for handshalung
in the expanded protocols of the RS-232 specification, however
this is extremely rare. Since the UART I/O's are available, why
not use them for hardware expansion? For example, a simple
switch could be connected between CTS and RTS to sense the
closure of a security door.

All registers of the UART are listed in Figure Two along
with their individual bit function. To convert the register
address to a hardware address requires an offset described
by the COM port designation. For example, let us suppose

; we want to read the CTS pin on COM1 directly. CTS resides

March 1994 April 6 Forth Dimensions

/ Figure One. Cabling and pinouts. 1

Ground
Transmitted Data
Received Data
Request To Send
Clear to Send
Data Set Ready
Siqnal Ground
Carrier Detect
Secondary Carrier Detect
Secondary CTS
Secondary TXD
Transmit timing
Secondary RXD
Receive timing
Secondary RTS
Data Terminal Ready
Siqnal Quality
Rinq Indicator
Data rate selector
Data rate selector

in the Modem Status Register, the sixth register, in bit four.
We would then add the base address of the respective
COM port; in this case, the base address of COMI is at hex
03FA, so we would add 6. Therefore, to examine the CTS
input, in Forth, we could code it as:

CONSTANT COMl $3FA CONSTANT IIR 2
CONSTANT COM2 $2FA CONSTANT LCR 3
CONSTANT COM3 $3EA CONSTANT MCR 4
CONSTANT COM4 $2FA CONSTANT LSR 5
CONSTANT RBR 0 CONSTANT MSR 6
CONSTANT THR 0 CONSTANT DLL 7
CONSTANT IER 1 CONSTANT DLM 8

: ?CTS (-f)
CoMl MSR + P@
$10 AND O<> ;

Another advantage of using the resident 8250 UART to
examine external events are the Delta bits in the Modem
Status Register. Often it is necessary to attend to other
housekeeping tasks and the program is not able to spend
100% of the time monitoring the individual input. If the
input changes state and returns before the program can
return then the event will be missed. The Delta bits
indicate whether the respective bit has changed state since
the last time it was read by the CPU. This often eliminates
the need for interrupt-driven hardware.

Serial Data Train
Previously we mentioned that the UART was program-

mable to different protocols. Which protocol to use is
determined by a number of factors. For example, if we
were to transfer ASCII data we could use seven data bits,
since the standard ASCII character set is confined to 128
characters. Alternatively, to transfer binary data, eight bits

Forth Dimensions

are needed to represent the full value possible in an eight-
bit byte.

This is why Intel and Motorola designed their Intel
Hexadecimal and Motorola-S records. Both are ASCII
representations (seven data bits) of hexadecimal code
(eight data bits) which can be transmitted over serial lines
using seven-bit protocols. Most EPROM burners which
operate from a serial port require one of the two formats.
ASCII transmission is often used, even though it requires
processing of the data, because it is faster to send with one
less bit per byte and no error checking.

An RS-232 data byte is composed of one start bit; seven
or eight data bits; then an optional parity bit; and one, one
and one-half, or two stop bits. The start bit is mandatory,
used as a reference for synchronization and preparation of
data reception. Depending upon the protocol, each byte
can then have between nine and twelve bits.

The parity bit is an interesting subject in itself. Even when
the protocol in use requires the parity bit, it is often ignored
by the software. This is usually because of the relatively slow
interrupt service routines in the 80x86 chipsets.

Inside the clone is an Intel 8259 Programmable Interrupt
Controller which receives an interrupt request from the 8250
UART. The 8259 must then notify the CPU that an interrupt has
occurred. The CPU then pushes a few registers onto the CPU
stack for safekeeping, and calculates the hardware interrupt
vectorlocation basedupon the intermpt number. TheCPU then
looks up t h 32-bit address and unconditionally jumps to that
service address. That address is installed by the communications
program being run.

In our case, we will be writing the program so on entry
we must know what interrupt number our hardware will be
toggling, as well as the hardware address the service routine
will reside at. The interrupt service routine will be ended
with a ReTurn from Interrupt (RTI) to relinquish control of
the CPU and allow normal program flow to continue.

7 March 7 994 April

Signal Name

TXD
RXD
RTS
CTS
DSR
SG
CD

DTR

RI

DB25 pin
1
2
3
4
5
6
7
8
12
13
14
15
16
17
19
20
2 1
22
23
24

DB9 pin

3
2
7
8
6
5
1

4

9

Origin

DTE
DCE
DTE
DCE
DCE

DCE
DCE
DTE
DTE
DCE
DCE
DCE
DTE
DTE
DCE
DCE
DTE
DCE

Figure Two. 8250 UART reqister bit assianments. 1 -

Registers

As you cansee, theoverheadrequiredissubstantial.The
program should be optimized before attempting any high
data rates. Even a '386-class machine is hard pressed to run
7600 baud reliably. In Microsoft Windows we have found
a '386\40 machine insufficient to run 7600 without error.

Because of the tremendous overhead of the ISA Bus
machines, we need to consider that the CPU will occasion-
ally be busy in other tasks when the UART signals that a
byte has been received. That byte needs to be rescued as
fast as we possibly can to avoid being lost. If we do not
respond to the interrupt request fast enough, the next
incoming byte of data will overwrite the first, forever to be
lost unless we implement one of the more esoteric error
detection and recovery methods.

At 7600 baud, with no parity bit, eight data bits, and one
stop bit, this is one byte every

one second
bytes-per-second =

[W/(l start bit+ 8databirs+

or one byte every 1,041 microseconds.

Further overhead is caused by DOS calls for writing to
the disk or to the screen, which are general-purpose ROM
BIOS routines and not optimized for speed. Faced with
these combinations of overhead, we elected to create a
temporary ring buffer to receive the incoming data until
the foreground task can complete its processing.

A Simple Communications Program
TO minimize conflicts with the foreground tasks, let us

first create a ring buffer large enough so that we can be
away for extended periods of time:

March 1994 April

- - 1

Receive
Buffer
Transmit
Holding
Interrupt
Enable
Interrupt ID

Line
Control

Modem
Control
Line Status

Modem
Status
Divisor
Latch Low
Divisor
Latch Hi

1 0 2 4 c o n s t a n t s e r i a l - b u f f e r - l e n g t h
c r e a t e s e r i a l - b u f f e r

s e r i a l - b u f f e r - l e n g t h a l l o t
v a r i a b l e h e a d
v a r i a b l e t a i l
s e r i a l - b u f f e r s e r i a l - b u f f e r - l e n g t h +

c o n s t a n t e n d - o f - s e r i a l - b u f f e r
This creates a receive buffer into which the interrupt

routine will pass the received data. The variables head and
t a i l bracket the input data for foreground processing.

The interrupt routine is relatively straightforward-we
need only to read the UART receive buffer, increment the
tail pointer, and write the received byte at the tail pointer
address, then return from the interrupt (see Listing One).

The standard COM3&4 DOS mapping shares INT3 with
COM2&4, and INT4 with COM1&3. This is very unstable.
We use a COM3&4 board which has the ability to map the
interrupts to any of the 15 AT-class interrupts, and use
INT10&11 for COM3&4, respectively. The CICC232 board
from B&B Electronics gives complete freedom as to the
interrupt selection, hardware address of the ports, selection
of RS-232/422/485, and uses an enhanced UART, the 16550.
The 16550 features a 16-byte FIFO to spool the incoming
data and is highly recommended, especially at the higher
data rates or within Windows. (See Listing Two.)

Next, we compute and install the interrupt vector
(Listing Three).

Putting it all together, here is a simple terminal program:
DUMB (- 1

I N I T S
BEGIN

BYTE? I F EMIT THEN

KEY? I F TXD THEN
U N T I L ;

8 Forth Dimensions

Zero
DBO

DBO

data
ready

O=
pen-
Word
Length
bit zero

DTR

DSR

Delta
CTS
0

8

RBR

THR

IER

IIR

LCR

MCR

LSR

MSR

D LL

DLM

One
DB 1

DB1

TX
empty
int ID

bit zero
Word
Length
bit one

RTS

Over-
run

error
Delta
DSR

1

9

Two
DB2

DB2

RX
status
int ID

bit one
#of
stop
bits

OUT 1

Parity
Error

Trail
Edge

2

10

Bits
Three
DB3

DB3

modem
status

0

Parity
enable

OUT2

Frame
Error

Delta
DCD

3

11

Four
DB4

DB4

0

0

Even
Parity

LOOP

Break
Int.

CTS

4

12

Five
DB5

DB5

0

0

Stick
Parity

0

TX
Hold
Reg.
DSR

5

13

Six
DB6

DB6

0

0

Set
Break

0

TX Shift
Reg.

RI

6

14

Seven
DB7

DB7

0

0

Divisor
access

bit
0

0

Delta
CD
7

15

RS-232
The hardware description is a

single-ended digital signal of at least
k8.0 volts output. The inputs are
defined as having thresholds of k3.0
volts. This gives a very high noise
rejection and hysteresis, which re-
sults in excellent performance up to
about 50 feet at 9600 baud.

Listing One. 1
label serial(coml,2)

ax push bx push dx push
BEGIN CS: COM-PORT #) DX MOV

DX AL IN 4 # AL TEST
O<> WHILE CS: COM-PORT #) DX MOV

2 # DX SUB dx a1 in
cs: head #) bx rnov cs: a1 0 [bx] rnov
bx inc end-of-serial-buffer # bx cmp
O= if serial-buffer # bx rnov then
cs : bx head #) rnov

REPEAT
$20 # dx rnov $20 # a1 rnov a1 dx out
dx pop bx pop ax pop iret end-code

Listing Two.

label serial (com3,4)
ax push bx push dx push
BEGIN CS: COM-PORT #) DX MOV

DX AL IN 4 # AL TEST
O<> WHILE CS: COM-PORT #) DX MOV

2 # DX SUB dx a1 in
cs: head #) bx rnov cs: a1 0 [bx] rnov
bx inc end-of-serial-buffer # bx cmp
O= if serial-buffer # bx rnov
then cs: bx head #) rnov

REPEAT
$20 # a1 rnov $A0 # dx rnov a1 dx out
$20 # dx rnov a1 dx out dx pop
bx pop ax pop iret end-code

RS-422 and RS-485
RS-422 uses the same UART and

identical software of the RS-232 stan-
dard, while the RS-485 requires one
additional signal. The RS-485 de-
fines a "Party Line" or "Multi-Drop"
communications method allowing
u p to 32 talkershsteners to hang on
the same set of lines.

Allowing multiple talkers requires
that each node, when not specifically
speaking, be in a receive, not transmit,
state. This is sometimes called "tri-
stated." If two talkers simultaneously
attempt to speak on the same line,
excessive current will flow and the
data from both will be garbled. This
requires extra hardware to gate the
transmitter on and off while the re-
ceiver is turned off and on. In the B&B
COM board used, 232CICC1 is used to
provide this function.

Both of these standards refer to
balanced transmission lines

the levels, giving an effec- I
tive *10 volt transition from

rather than the single-ended
(unbalanced) line of the RS-
232 standard. Balanced lines
are a pair of lines which
transmit opposite polarity
signals simultaneously to
represent the serial data.

Balanced lines have
much higher data integrity.
The net current through
the pair is a null value, so
the interference output is
reduced as well. Standard
drivers typically pull one
l i n e t o + 5 v o l t s w h i l e t h e
other is pulled to ground.
A bit change will reverse

low voltage logic-level power supplies.
Al Mitchell has been doing embedded systems programming since 1974, when

Due to the balanced lines, more powerful drivers, and he worked on lntel 4004,

Listing I
CREATE DOS INTS $OC C, SOB C, $72 C, $73 C,
: DOSINT# (- b) COM @ 2/ DOSINTS + C@ ;

: SET-SERIAL-VECTOR (-)

?cs: DOSINT# $72 <
IF serial (coml, 2)
ELSE SERIAL (COM3,4)
THEN DOSINT# interrupt! ;

CREATE INT#S

CI $21 C, SF7 Cl $21 C, SFB C, $A1 C, SF7 C, $A1 C,

: SET-8259 (- n a)
COM @ INT#S +
COUNT >R C@ DUP PC@ R> AND SWAP ;

sensitive receivers, distances can be extended to as much I
as four kilometers under ideal circumstances, or to very
high data rates over shorter distances.

Forth Dimensions 9 March 1994 April

A Line Editor and
History Function
Charles Curley
Gillette, Wyoming

This paper describes an input line editor, 2 la MS-DOS,
and a history function, 5 la Unix, giving Forth the best of both.

Historical Note
The Forth used for the code described herein is

FastForth, a full 32-bit BSR/JSR-threaded Forth for the
68000, described in unmitigated detail in Forth Dimen-
sions XIV/5. It is a direct modification of an indirect-
threaded Forth, real-Forth. This is, in turn, a direct descen-
dent of fig-Forth. (Remember fig-Forth?) fig-Forth vocabu-
lary, word names, and other features have been retained.

For those not familiar with 32-bit Forths, the memory
operators with the prefix w operate on word, or 16-bit,
memory locations. FastForth uses the operators F@ and F !
for 32-bit memory operations where the address is known
to be an even address. To avoid odd address faults, the
regular Forth operators Q and ! use byte operations.

The FastForth version for the 68000 is shown here,
rather than an MS-DOS 80x86 version, to avoid the
confusing and ugly overhead of segmented architecture.

Often, an error in a command
is revealed only after the
user hits return.

Why Bother?
The basic intent behind this exercise is to give Forth

two facilities the implementor has found useful in other
operating systems. A line editor, such as that provided by
MS-DOS, allows the user to modify a command line by
moving the cursor, and inserting and deleting characters.
Many Unix implementations provide a history function,
which allows the user to recover previously executed
command lines and re-execute them. This and the line
editor capability combine to give FastForth very powerful
command processing.

Charles Curley isa long-time Forth nuclear guru who lives in Wyoming. When not
work~ng on computers he teaches firearms safety and personal self defense. His
forthcoming book, Polite Society, covers federal and state firearms legislation in
layman's terms.

Using the Line Editor and History
The line editor can be very useful. Often, as a Forthwright

enters a line of text, he finds he has committed a typo. With
the normal EXPECT, one would have to backspace to the
error, correct it, then re-type that portion of the line which
was backspaced out. The traditional EXPECT did not erase
characters on the screen as the backspace key was
entered, giving the neoForthwright the impression that
what he was backspacing over had been retained, when
in fact it had been discarded.

This line editor eliminates that false impression, and
also makes it possible to retain a portion of the line to the
right of the cursor while making corrections.

For example, if you want to dump a portion of memory,
you will need to enter a starting address, a count, and the
word DUMP. If you are just about to hit return, and realize
that you want to force the address and count to be in
hexadecimal, you can left-arrow to the beginning of the
line, enter the word HEX, a space, and hit return. The
complete line will be there, and you will get your hex dump.

Often, an error in a command line is revealed only after
the user hits return and the system executes the comniand
line. In the above example, you can use the history
function to recall the dump command. You can then edit
the line to dump at a different address, or for a different
count, or in a different base.

This is useful when you forget which vocabulary you
are in. If you enter a command and a word is not currently
available, the command will fail. You may then recover the
command, prepend a vocabulary name to it, and hit
return.

The history function also allows the user to define and
edit macros on the fly. These macros are previous entries
in the string array. Repetitive searches of databases or
through source code can be implemented by typing the
first command, and repeating it with the up-arrow key.

The Design
FastForth is intended for embedded processor applica-

tions. A minimal version of EXPECT is suitable for such a
nucleus. In such a version, only the backspace and delete
keys operate, and they operate identically.

March 1994 April 10 Forth Dimensions

However, FastForth's EXPECT is vectored, so program-
mer utilities such as the assembler and editor may include
a more extensive line editor capability. This allows exten-
sive line editing on the target hardware during develop-
ment without sacrificing nucleus size. The line editor is
removed before the program is committed to ROM.

The line editor uses a number of variables to track the
size of the line being edited, the location of the cursor, and
other characteristics. These are annotated in detail in the
source code and in the glossary.

A headerless string array is defined for the history
capability. This array stores each string in the history in the
traditional Forth count-and-string format. The starting
address of each entry is stored in another array, STRARRAY.
This is an array of pointers. A variable, NXTLN, points to
the current string indirectly by pointing to the string array.
This means that moving from each entry to the next
consists of incrementing or decrementing NXTLN by the
size of a pointer, and handling wrap-around correctly.

The traditional Forth array was not used here because
of speed considerations. This would have been defined
something like this:

: ARRAY CREATE STRINGS * ALLOT
\ count --- I b u i l d a r r a y

DOES> >R STRINGS * R> + ;

\ e n t r y # --- a d d r I

This means that every access to the array would have
involved a multiply. The double-indirection method elimi-
nates this time-consuming operation. Furthermore, using
the double-indirection method means that calculations are
performed only at the time a new line is selected, never at
access time.

Using these variables and indirection, strings are loaded
into the string array and copied from it to the edit buffer
by always referring to the variable.

A design decision was made that, when a line is copied
from the history buffer, the cursor will appear on the left
end of the line. This is due to experience with Forth. Often
a line must be edited and re-executed because a vocabu-
lary or other modifier was not given. These modifiers
typically must be at the beginning of the line, not the right-
hand end. Also, the Home key provides a quick method
for the user to move to the right-hand end of the line,
should he wish to.

The Implementation
The glossary indicates the function of each word. The

listing should be read along with the coding descriptions
of the words given below.

The implementation starts with a loader screen, screen
501. For development purposes, the debugger can be
called. For inclusion in the utilities, this call to the
debugger is commented out.

The word TASK is used as a marker in the dictionary.
During development, this is forgotten and recompiled
below the application to allow the programmer to re-
compile the application by entering the phrase RETRY

Forth Dimensions

TASK. Once an application is deemed complete and is to
be added to the utilities, TASK is forgotten, the application
is compiled, then TASK is redefined on top. Used in this
manner, the word acts as a moveable marker to indicate
where the utilities end and applications begin.

The word BELL defines a word which emits an ASCII
bell character. This is typically used as an alarm or an alert
on some error.

Line five of screen 501 forces the line input code to be
(EXPECT) , the nucleus input working word. This is done
at compile time to ensure (especially during debugging)
that, in the event of a compile-time error, EXPECT will
have a valid working word to execute.

On line seven, we establish the vocabulary where most
of the line editor will reside. This hides the bones of the
application from the user once the project is completed.

Line nine of screen 501 effects compilation of the next
six screens. It is written this way because the word +BLK
and its family may not exist when this code is compiled
into the utilities.

Screen 502 compiles a number of variables and con-
stants. These are described in the glossary. The most
important one to the user is the constant STRINGS, on line
seven. It indicates the number of strings to be preserved
in the string array. It is the equivalent of the Unix
environment variable H I STORY. In order to effect changes
in this constant, the line editor must be recompiled.

On line 11, a most implementation-specific constant
sets the maximum line length. This constant should
specify the maximum line length that the user may enter
into the terminal input buffer in the course of normal Forth
operations.

The next screen, 503, shows the construction of the
string array by the word MAKESTRS. This word allots
memory for each string in the buffer, and stores its address
in the array of string addresses, STRARRAY. This word is
executed once, at compile time.

The next two words handle the process of moving from
one entry in the string array to the next. UP moves from
a given string to the next higher address string, and
handles wrap-around at the top. DN defines the process for
moving down in the suing buffer. These two words turn
the string array into a ring buffer for strings.

The phrase NXTLN F@ F@ will show u p often in the
remainder of the code, as that phrase always returns the
address of the current string buffer entry. In a traditional
Forth, this phrase would probably be built into a word to
make the code more readable. However, the FastForth
optimizing compiler turns this three-word phrase into two
processor instructions. The implementor chose to go for
faster code over programming elegance.

Similar phrases based on variables, such as CURS F@
and SIZE F@, resolve to one processor instruction, and so
are not built into words that make pseudo-constants.

HISTORY, and its alias H I ST, at the top of screen 504,
show the ring string buffer at work. They exist to allow the
user to view the contents of the string array. They are made
generally available to the user by placing them in the FORTH
vocabulary. HISTORY walks through the ring buffer, dis-

11 March 1994 April

Glossary / Name Screen Line Vocabulary Flags Name Screen Line Vocabulary Flags

BELL 501 3 FORTH u
Emits the standard ASCII bell character to the current output
device.

BKSP 506 1 EXPECTING u
Deletes the character to the left of the cursor. If the cursor is
at the left edge, a bell is emitted and n o other action is taken.
It is activated by the Backspace key.

BUF 502 2 EXPECTING i u
This variable holds the address of the buffer in which text is
being edited.

CURS 502 1 EXPECTING i u
This variable holds the relative position of the cursor within the
line of text being entered.

1 DEL 505 10 EXPECTING u
Deletes the character under the cursor. It emits a bell i f the
result is a n empty line. It is activated by the Delete key.

DN 503 9 EXPECTING u
Moves down o n e line in the string buffer, and places that line
in the edit buffer for editing. It is activated by the down-arrow
key.

EXPECTING 501 7 FORTH i u
This vocabulary hides the bones of the line editor from the user.

GETSTR 505 1 EXPECTING u
Recovers a string from the string array and places it in the editing
buffer. This code replaces the existing contents of the editing
buffer, s o the cursor is forced t o the left edge of the terminal.

504 4 FORTH u
An alias for HISTORY. Some versions of Unix use this name.

MAKESTRS 503 1 EXPECTING u
This word runs once at compile time. It builds the string array
and the array of pointers to the strings.

NXTLN 502 5 EXPECTING i u
This variable points to the next location in the string buffer to be
used.

PLACE 506 11 EXPECTING u
Put a character into the current line being edited, in either
overwriting or inserting mode.

PLACEF 502 4 EXPECTING i u
This flag indicates whether the line editor is in overwriting mode
(zero) or in inserting mode (non-zero).

PUT 506 3 EXPECTING u
Place a character into the current string in overwriting mode.

REDRAW 504 7 EXPECTING u
Redraws the line on the screen. It is typically used after inserting
or deleting a character.

REND 505 14 EXPECTING u
This function moves the cursor to the right end of the line being
edited. It is activated by the Home key.

RIGHT 505 7 EXPECTING u
This function moves the cursor right o n e place in the current
line. I f the cursor is already at the right end, a bell is emitted
instead. It is activated by the right-arrow key.

SIZE 502 3 EXPECTING i u
This variable holds the current size OF the line already in the edit
buffer. It is adjusted as the string is expanded or contracted.

STORESTR 504 13 EXPECTING u

A utility word to print out the contents, if any, of the string
buffer. The name is taken from the Unix utility with much the
same function.

I HISTORY 504 1 FORTH u

I NSERTKEY 506 13 EXPECTING u
This function toggles the insert flag. It is activated by the Insert key.

I This function places the line in the edit buffer into the string

INSRT 506 7 EXPECTING u
Insert a given key into the edit buffer at the current cursor
position. T o overwrite, use PUT.

LEFT 505 5 EXPECTING u
This function moves the cursor left one position, non-destruc-
tively. If the cursor is already at the left side of the buffer, a bell
is emitted instead. It is activated by the left-arrow key.

LNED 507 1 FORTH u
This is the application word. It is substituted for the working
word of EXPECT in order to activate the history and line
editing functions.

array. It is activated when editing is complete.

STRARRAY 502 9 EXPECTING i u
This array holds pointers into the string array.

STRINGS 502 7 EXPECTING i u
This constant indicates the number of strings to be held in the
string array. It is used at compile time and run time.

STRSI ZE 502 11 EXPECTING i u
This constant indicates the maximum size of the strings to be
edited. It is derived in a very system-specific manner from the
nucleus word QUERY.

up 503 6 EXPECTING u
This word moves u p one line in the string array. It is activated ; by the up-arrow key.

I (This glossary was partially produced by a glossary generator which is part of FastForth.) I
1 J

March 1994 April 12 Forth Dimensions

Scr # 501
0 \ b e g i n l i n e e d i t o r (16 5 91 CRC 8:25)
1 FORTH DEFINITIONS (DEBUG) FORGET TASK
2 FORTH DEFINITIONS (: TASK ;) BASE F@ DECIMAL
3 SEQ BELL 1 C, CTL G C,
4
5 ' (EXPECT) 'EXPECT F!
6
7 VOCABULARY EXPECTING IMMEDIATE EXPECTING DEFINITIONS
8
9 BLK F@ DUP 1+ SWAP 6 + THRU \ HERE FIRST OVER - ERASE

10
11 ' LNED ' EXPECT F !
12 HERE FENCE F! BASE F! : TASK ; EDITOR FLUSH
13
14
15

S c r # 502
0 \ l i n e e d i t o r : v a r i a b l e s , c o n s t a n t s (25 11 91 CRC 13:44)
1 0 VARIABLE CURS \ l i n e c u r s o r
2 0 VARIABLE BUF \ h o l d i n g b u f f e r
3 0 VARIABLE SIZE \ s i z e o f l i n e a l r e a d y i n b u f f e r
4 1 VARIABLE PLACEF \ a r e w e i n s e r t i n g o r r e p l a c i n g ?
5 0 VARIABLE NXTLN \ p o i n t e r t o n e x t l i n e t o p l a c e
6
7 10 CONSTANT STRINGS \ number o f back s t r i n g s saved
8
9 CREATE STRARRAY STRINGS 4 * ALLOT \ p o i n t e r a r r a y
10
11 ' QUERY 5 + C@ CONSTANT STRSIZE \ *very* implementa t ion s p e c i f i c
12

Scr # 503
0 \ l i n e e d i t o r : m a k s t r s , up dn h i s t o r y (25 11 91 CRC 13:47)
1 : MAKESTRS \ c o n s t r u c t t h e s t r i n g b u f f e r a t compile t i m e .
2 STRINGS 0 DO HERE DUP STRARRAY I 4* + F!
3 STRSIZE 1+ DUP ALLOT ERASE LOOP ;
4 MAKESTRS STRARRAY NXTLN F!
5
6 : UP 4 NXTLN + ! NXTLN F@ STRARRAY - 4/
7 STRINGS = IF STRARRAY NXTLN F! THEN ;
8
9 : DN NXTLN F@ STRARRAY \ down one i n t h e s t r i n g b u f f e r
10 = IF [STRARRAY STRINGS 4* +] LITERAL NXTLN F! THEN
11 -4 NXTLN+! ;
12
13
14
15

Scr # 504
0 \ l i n e e d i t o r : r edraw, h i s t o r y a c c e s s (25 11 91 CRC 13:47)
1 FORTH DEFINITIONS
2 : HISTORY EXPECTING STRINGS 0 DO DN NXTLN F@ F@
3 COUNT DUP IF CR I 4 .R SPACE THEN TYPE LOOP SPACE ;
4 : HIST HISTORY ;
5
6 EXPECTING DEFINITIONS
7 :REDRAW\ --- I r e - d i s p l a y t h e l i n e from c u r s o r
8 ERL BUFF@ CURS F@ + SIZE F@ CURSF@ -
9 -DUP IF DUP >R TYPE SPACE
10 R> 1+ 0 DO LEFT LOOP
11 ELSE SPACE LEFT DROP THEN ;
12
13 : STORESTR \ --- I s t o r e s t r i n g i n a r r a y
14 BUFF@ NXTLN F@ F@ 1+ SIZE F@ 2DUP SWAP 1- C! CMOVE;
15

Forth Dimensions 13

playing each line in it. Since
the word walks through the
ring buffer exactly the num-
ber of times that there are
entries, the pointer is left
back in its starting position.
This code depends on the
word TYPE dropping its two
arguments when presented
with a count of zero.

REDRAW uses the termi-
nal-specific operator LEFT
to move the cursor left one
place on the screen. The
Atari ST screen emulates
the VT-52 terminal, and the
present cursor position can-
not be read by the applica-
tion. Other implementations
may be possible where the
terminal code permits read-
ing the cursor position.
REDRAW redisplays the line
from the current cursor po-
sition out to the right end of
the line. An extra space is
emitted in case the most
recent keystroke deleted a
character in the line.

STORESTR (bottom of
screen 504) and GETSTR
move strings between the
edit buffer and the string
array. STORESTRstores the
count (from SIZE) in the
first byte of the array entry,
and GETSTRuses the count
to determine the length of
the string to be moved into
the edit buffer.

LEFT and RIGHT, on
screen 505, move the cur-
sor one space to the left or
right, if possible. If the cur-
sor is already at the end of
the line, a warning bell is
emitted instead. These two
words use their eponymous
cursor control words to
move the screen cursor ap-
propriately. They are acti-
vated by the appropriate
cursor-control arrow key.

DEL, on line ten, de-
letes the character under
the current cursor location.
Line 11 does the actual
deletion, culminating in the
CMOVE at the end. Line 12

March 1994 April

determines the appropriate re-
action. If the cursor is at the left
edge of the line, a bell is issued.
Otherwise, the size of the string
is reduced by one. The line is
then redrawn on the screen. It
is activated by the Delete key.

At the bottom of screen
505, REND doesn't tear any-
thing. Rather, it moves the cur-
sor to the right end of the string
under edit. This function is
activated by the Home key.

At the top of screen 506 is
the word BKSP which oper-
ates the backspace key func-
tion. It moves the internal cur-
sor to the left one space, then
deletes the character under it.

PUT, INSRT, and PLACE

control placement of characters
into the edit buffer, accordng to
the flag variable PLACEF. If
PLACEF is asserted, the given
character is inserted into the
string, using INSRT. Otherwise,
it overwrites the character under
the cursor with PUT. Those two
words handle the logical cursor
and string size as appropriate.

Control of the placement
flag is through the word
INSERTKEY. This word toggles
the variable flag P L A C E F us-
ing the word TOGGLE, a byte
operator. Because the 68000
places the least significant byte
of a long word at the high end
of memory, it is the last byte in
the cell which must be ad-
dressed. This means that the
actual address to be toggled is
not PLACEF but P L A C E F 3 +.
The addition is done at com-
pile time here. Using this tech-
nique instead of the variable
itself costs nothing at run time,
because FastForth variables are
compiler directives which com-
pile literals into the dictionary.

A more transportable way
to code this would be:

: INSERTKEY

PLACEF DUP F @

I F O F F

E L S E ON

THEN ;

gexl conlinues onpage 17.)

March 1994 April

S c r # 5 0 5
0 \ l i n e e d i t o r : k e y s t r o k e s (1 6 5 9 1 CRC 8 : 2 1)
1 : GETSTR \ --- 1 g e t s t r i n g f rom a r r a y
2 NXTLN F @ F @ COUNT S I Z E F ! BUF F @ S I Z E F @ CMOVE
3 CURS OFF CTL M EMIT REDRAW ;
4
5 : LEFT \ --- I a c t i o n on l e f t a r row
6 CURS F @ I F LEFT -1 CURS + ! ELSE BELL THEN ;
7 : RIGHT \ --- I a c t i o n on r i g h t a r row
8 CURS F @ S I Z E F @ - O< I F CURS l + ! RIGHT
9 ELSE BELL THEN ;

1 0 : DEL \ --- I d e l e t e under c u r s o r
11 BUF F @ CURS F @ + DUP 1 + SWAP S I Z E F @ CURS F @ - CMOVE
1 2 CURS F @ S I Z E F @ - O< I F -1 S I Z E + !
13 ELSE BELL THEN REDRAW ;
1 4 : REND \ --- I move c u r s o r t o r i g h t e n d
15 S I Z E F @ CURS F @ - -DUP I F 0 DO RIGHT LOOP THEN ;

S c r # 5 0 6
0 \ l i n e e d i t o r : k e y s t r o k e s (1 8 1 9 1 CRC 2 1 : 1 4)
1 : BKSP LEFT DEL ;
2
3 : PUT \ c --- I p u t t h e c h a r i n t h e b u f f e r
4 DUP EMIT BUF F @ CURS F @ + C! S I Z E F @ CURS F @ =

5 I F S I Z E l + ! THEN CURS l + ! ;
6
7 : INSRT \ c --- I i n s e r t t h e c h a r i n t h e b u f f e r
8 BUF F @ CURS F @ + DUP 1 + S I Z E F @ CURS F @ - <CMOVE
9 S I Z E l + ! PUT REDRAW;

1 0
11 : PLACE PLACEF F @ I F INSRT ELSE PUT THEN ;
1 2
1 3 : INSERTKEY [PLACEF 3 +] LITERAL 1 TOGGLE BELL ;
1 4 FORTH DEFINITIONS
15

S c r # 5 0 7
0 \ l i n e e d i t o r : l i n e e d i t o r (3 1 2 9 1 CRC 2 2 : 0 6)
1 : LNED \ a d d r c t -- I e x p e c t w / l i n e e d i t i n g
2 EXPECTING >R BUF F ! CURS OFF S I Z E OFF NXTLN F @
3 BEGIN KEY DUP O= I F KEY CASE
4 A S C I I R OF INSERTKEY ENDOF \ i n s e r t key
5 A S C I I P OF DN GETSTR ENDOF \ dn a r row
6 A S C I I M OF RIGHT ENDOF \ r . a r row
7 A S C I I K OF LEFT ENDOF \ 1. ar row
8 A S C I I H OF GETSTR UP ENDOF \ up a r row
9 A S C I I G OF REND ENDOF \ home key

1 0 ENDCASE ELSE DUP CTL M -
11 I F DUP 1 2 7 = I F DEL ELSE DUP CTL H = I F BKSP ELSE
1 2 DUP PLACE THEN THEN THEN THEN ?STACK
1 3 0 BUF F @ S I Z E F @ + C! CTL M = S I Z E F @ R = OR UNTIL
1 4 RDROP REND S I Z E F @ OUT F ! SPACE
15 NXTLN F ! S I Z E F @ I F DN STORESTR THEN ;

Scr # 5 0 8
0 \ l i n e e d i t o r : t e s t s e t u p (2 3 1 2 9 0 CRC 1 2 : 2 8)
1 \ : t s t pad 3 0 l n e d h i s t o r y ;
2
3 : TEST EXPECTING HEX
4 PAD 4 0 A S C I I Z F I L L PAD 2 0 LNED PAD 4 0 DUMP S I Z E F @ . ;
5
6 PAD BUF F ! 1 0 S I Z E F !
7 PAD 8 0 A S C I I Z F I L L
8 0 +BLK BLOCK PAD C/L CMOVE
9

1 0 ; s
11 : GETSTR \ --- I g e t s t r i n g f rom a r r a y
1 2 NXTLN F @ F @ COUNT DUP >R BUF F @ S I Z E F @ + SWAP CMOVE
1 3 R> S I Z E + ! REDRAW ;
1 4
15

14 Forth Dimensions

F-PC

1 Parallel Forth:
The New Approach
Michael Montvelishsky
Saransk, Russia

As a rule, the arrival of a new programming language
is caused by the arrival ofsome new programming method
or paradigm. Thus, Algol-60 marked the appearance of the
structured programming approach, and Pascal heralded
the advanced user-defined data types. Object-oriented
programming was born coupled with Smalltalk, but C++
has marked its entrance into the professional leagues. New
programming paradigms demand new programming lan-
guages. But Forth users need not change languages
because, of course, Forth is extensible and can easily
adopt new paradigms. The subject of this paper demon-
strates how Forth can adapt a parallel programming
paradigm.

One of the hot areas of programming science is
"parallel computing." C.A.R. Hoare, author of Communi-
cation Sequential Processes is the first theoretical founder
of parallel computing. The programming language Occam
is based on Hoare's theory. It is considered to be one of
the main parallel-programming languages. There are two
major features of this interesting language:

other process and running with it cooperatively. Passive
tuples are tools for information exchange; they exchange
information like notes on a bulletin board.

Paradigms of Occam and Linda do not conflict with one
another, but rather complement each other. It is hard to
emulate Linda in Occam, and it is hard to emulate Occam
in Linda efficiently.

The subject of this paper is a parallel extension to Forth.
What new has arrived with Parallel Forth? Very little: see
the glossary on the next page.

Several notes, about the source code:
1. All the user variables of a son that is defined in a

program have the same values as those of its parent
before I I (...) or EV (...) constructions. Thus, it's
possible to use user variables to pass parameters from
a parent to a son, or to a cooperative parent.

2. Make sure the user area and stack size for each process
are big enough to run without hanging up. It's easy to
write special words to fill these areas with some
character and then to see how many of them were

I I used.

extensible, it can easily adopt
new programming paradigms.

Forth users need not change
languages-because Forth is

1. Channels for information exchange and synchroniza-
tion between processes.

2. The ability of the currently running process to run
several (the number may be very large) "son" parallel
processes. Parent processes stop themselves and run
son processes, then they start to run again after all son
processes are done.

3. If you mount a son process' ring with I I (...) , you
can't run co-operatively with EV (...) until PAR starts
the ring where the EV (...) is at.

Another popular parallel programming model is Linda
by D. Gelernter. Linda is not a programming language, but
a parallelizing extension to a conventional programming
language. There is C-Linda, Fortran-Linda and Forth-
Linda. Linda's paradigm is based on the idea of active and
passive tuples. Active tuples are processes started by some

-
4. There is automatic memory allocation for I I (...) and

EV (...) processes. But automatic memory deallocation
is only for I I (...) processes (and all processes inside
them)! Can you guess why?

5. All processes start with empty stacks.

Now, about the programs. The source of the parallel
Forth extension is in Listing One. I've used F-PC ver. 3.53.
It's one of most complete Forths for IBM-PC compatibles,
and it's public domain! The source doesn't contain code
words, so you can transfer it easily to another Forth
platform with only minor changes. You can rewrite PAUSE
in assembler to increase efficiency, but the best way is to
implement Parallel Forth on some real multi-processor
hardware.

A sample program is shown in Listing Two @age 191.
I've chosen a scalar vector multiplication as an example of
using the parallel wordset. The task is like task X4 from

Forth Dimensions 15 March 7994 April

chapter 4.3 of C.A.R. Hoare's Communication Sequential
Processes. I've included the equivalent Occam program
code as comments. Sorry, I have no transputer, so I have
not checked out this Occam code but I hope it's valid.

The second example program (Listing Three) is less
multi-processing but more useful. It's an alarm clock.
Type:
2 1 0 0 ALARM" It's time to go home!"

Glossary

to start experimenting with Parallel Forth!

MULTI Enable multi-processing mode.

SINGLE Disable multi-processing mode.

I I (...) Coupled words to add a new parallel
branch (all words inside parenthesis)
into the currently mounted (not run-
ning!) process' ring.

EV (...) Coupled words to add a new parallel
branch into the currently running pro-
cess' ring. It's like the active tuple in
Linda, and the syntax has come from
Forth-Linda by Jeff Fox.

PAR Stop the current process and start a son
process' ring, mounted by the parent
process by means of a I I (...) construc-
tion. Wait until all son processes are
done, then run the parent process again.

PAUSE.. Deferred (for now!) word. InMULT I mode,
switch to the next process in the current
ring. In SINGLE mode, this is a no-op.

STOP Stop a process and remove it from the
current process' ring.

STOP-ALL Stop all processes in the current ring and
resume the parent process. Very useful to

Michael Montvelishky is from Saransk (capitol of the republic of Mordovia, 600
km, southeast of Moscow). He received his Electronics Engineer diploma in 1982
at Mordovia State University. He went to Leningrad (St. Petersburg now) Univer-
sity in 1982 for postgraduate work. There he dealt with robotics software and got
hisPh.D. degree in 1989. He started with Forth in 1988. "It's my favoriteso far, but
I write programs in C and Pascal sometimes. There are many projects I've done
(alone or in tandem with Max) in Forth. Latest and greatest is the embedded
system for CNC of Electroerosion machine tool with High-Level Geometric (Forth-
based) language and CAD features. We've stopped work on this (almost
finished!) project now, because the customer is on the edge of bankruptcy and
hasn't money to pay us. I'm a reader (docent) at Mordovia University now, using
Forth in my course of programming."

emulate Occam ALT processes.

DATA-STACK-SIZE
RETURN-STACK-SIZE
USER-AREA-S IZE Variables to control the size of

USER areas and stacks. Needed because
different processes have different de-
mands for stacks and the number of user
variables.

BUFFER Generic word to define buffers. Use buffers
for the most efficient data exchange be-
tween processes (without synchronization).

>B (n b --) Output a 16-bit value to the buffer b.

B> (b -- n)...... Input a 16-bit value from the buffer b.

CHAN Generic word to define channels. A
channel is a fixed-length buffer, useful
for the exchange of information with
synchronization.

[I CHAN Generic word to define channels' area.

>C (n c --) Output a 16-bit value to the channel c.

C> (c -- n) Input a 16-bit value from the channel c.

[1 WORDJ ust like F-PC's ARRAY and with the
same aim.

Jeff Foxadds "Dr. Montvelishsky iscurrently doing work for UltraTechnology. He
has submitted several routines for the MuP21 and F21 microprocessors under
development at Computer Cowboys by Charles Moore. Dr. Montvelishsky's
CORDIC function executes 50 times faster on MuP21 than on a '387. Here at Ultra
Technology, Dr. Montvelishsky will be consulting on the design of parallel Forth
extensions for the F21 Parallel Forth engine, robotics, scientific programming,
and on using Forth to teach computer science."

Readers can wrilc to Dr. Michael B. Montvelishsky. Avenue Lenin 21-29, Russia
430000, Saransk or send e-mail to mic@fclub.mordov~a.su on the Internet

Total control
with [MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 InterpreterICompilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Editor and assembler included
Uses standard operating system files
500 page manual written In plain English
Support for graph~cs, floatlng point, native code generation

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compller
Compiles compact ROMable or disk-based applications

= Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation . Cross-complles to 8080, 2-80, 64180, 680x0 famlly, 80x86 family,
80x96197 family, 8051131 family, 6303, 6809, 68HC11
No license fee or royalty for complled appllcatlons

Laboratory Microsystems Incorporated
Post Office Box 10430. Marina Del Rey, CA 90295

Phone Credit Card Orders to. (310) 306-7412
Fax: (310) 301-0761

March 7994 April 16 Forth Dimensions

Listing One. Parallel Forth extension. 1
I \ Dr. Michael B. Montvelishsky, Saransk Russia 1993

\ PARALLELISM WORDSET by Michael Montvelishsky, 25-Sep-93
ANEW PARALLEL
CR .FREE

\ .. \
\ It is just a simple troock : -) "TROOCK" is the Russian
\ To replace the pause hook : -) pronounce of the "TRICK"
\ PAUSE is CODE-word now.
' PAUSE \ OLD
DEFER PAUSE ' NOOP IS PAUSE
' PAUSE \ OLD NEW
PDUP SWAP - \ OLD NEW SHIFT
OVER 1 + + ! \ OLD NEW (ADJUSTED !)
TUCK \ NEW OLD NEW
HERE SWAP - \ NEW OLD SIZE
CMOVE FORGET PAUSE
\ PAUSE is DEFERed NOW!

USER
VARIABLE (NEST)
VARIABLE (PARENT)
VARIABLE (NEXT)
VARIABLE RP
VARIABLE SP
VARIABLE RETURN-STACK-SIZE
VARIABLE DATA-STACK-SIZE
VARIABLE USER-AREA-SIZE

\ Point to the last mounted proc
\ Point to the parent proc
\ Point to the next proc in ring
\ To save
\ stacks' value FORTH
\ To change return stack size
\ - \ data stack size
\ - \ user area size

\ GLOBAL memory allocation tool:
DP CONSTANT (HEAP)
: MALLOC (HEAP) + ! ;
: HEAP (HEAP) @ ;

\ Initiate variables:
UP @ (PARENT) !
UP @ (NEXT) !
0 (NEST) !
64 USER-AREA-SIZE !
128 RETURN-STACK-SIZE !
64 DATA-STACK-SIZE !

: PROC-SIZE (-- current-proc-size)

USER-AREA-SIZE @ RETURN-STACK-SIZE @ + DATA-STACK-SIZE @ +

: GO-NEST SP@ RP@ RP ! SP ! (NEST) @ UP ! RP @ RP! SP @ SP! ;
: (PAUSE) SP@ RP@ RP ! SP ! (NEXT) @ UP ! RP @ RP! SP @ SP! ;

\ Stop all current processes and go to parent process
: STOP-ALL (PARENT) @ (NEXT) ! (PAUSE) ;

\ Parallelism enable/disable
: MULTI ['] (PAUSE) IS PAUSE ;
: SINGLE ['] NOOP IS PAUSE ;

\ Stop itself
: STOP (--- : Excludes proc from procs' ring)
UP @ DUP (NEXT) @ - IF \ Last in the ring?
UP @ BEGIN (NEXT) 2DUP @ - WHILE @ UP ! REPEAT
SWAP UP ! (NEXT) @ SWAP ! (PAUSE)

ELSE
STOP-ALL

THEN

\ Create NEW process with specified PFA PARRENT -process and
\ process to be PREVlous in processes' ring

(Ltsfrng One conl:nues on next page)

Forth Dimensions 17

(Line Editor, continued frompage 14.)
INSERTKEY is activated by

the Insert key.
The last screen is 507, and it

is wholly given over to the mon-
ster word LNED. Line two con-
tains the necessary initialization.
The main loop, starting on line
three, concludes at the end of
line 13. This is followed by the
close-out code on lines 14 and
15.

Most of the interior of the
loop is a case statement using
the Eaker case statement. Lines
ten, 11 and 12 deal with the
delete and backspace keys in a
series of nested i f ... else ...
t h e n statements. Line 13 deals
.with the end-loop condition,
which is either a carriage return
(control-M) or an overflow of
the line buffer.

Screen 508 contains a num-
ber of test words which were
found useful during the coding
phase. They are not part of the
final application, and are not
compiled except for testing.

Completion of compilation
returns control to screen 501.
Line 11 installs the line editor
into the system by ticking the
line editor and placing its code
field address into the user vari-
able ' EXPECT.

Because forgetting this code
would have disastrous results,
we inhibit forgetting below LNED
by moving FENCE to above it.

User Controls
Because the code is self-in-

stalling at compile time, the user
does not even need to know it is
there in order to use it. How-
ever, he will get the most out of
it by adding a few keystrokes to
his repertoire.

The left- and right-arrows
operate to move the cursor left
and right within the line.

The up- and down-arrows
operate to move the user within
the string buffer. The up-arrow
will retrieve the most recent line
from the string buffer into the
editor buffer. The user may scroll
through the string buffer by re-
peatedly striking the up-arrow.

March 1994 April

: MOUNT (PFA PARRENT PREV --- : Create and mount new process)
HEAP PROC-SIZE MALLOC \ Allocate proc space
UP @ DUP >R OVER USER-AREA-SIZE @ CMOVE \ Copy parent's users
OVER UP ! (NEXT) @ SWAP UP ! (NEXT) ! \ Adjusts new (NEXT)
UP @ USER-AREA-SIZE @ +
RETURN-STACK-SIZE @ + \ Adjust for the NEW :
DUP DUP RPO ! 4 - RP ! \ R P O & R P
DATA-STACK-SIZE @ + DUP SPO ! SP ! \ SPO & SP
SWAP (PARENT) ! \ (PARENT)
(NEST) O! \ (NEST)
-ROT RP @ 2! \ PFA to begin with
UP @ SWAP UP ! (NEXT) ! \ Point PREV' s (NEXT)
R> UP ! \ to the NEW

\ Run-time words for mounting and evaluating new process
: (110
2R@ 4 + UP @ (NEST) @ ?DUP O=
IF HEAP DUP DP ! THEN HEAP (NEST) ! MOUNT

I ;
I
: (EVO

(NEST) @ 0- IF
2R@ 4 + (PARENT) @ (NEXT) @ MOUNT

THEN ;

: I I (COMPILE (I I () COMPILE BRANCH ?>MARK ; IMMEDIATE
: EV (COMPILE (EV () COMPILE BRANCH ?>MARK ; IMMEDIATE
:) COMPILE STOP ?>RESOLVE ; IMMEDIATE
: PAR (NEST) @ IF GO-NEST DP @ (HEAP) ! (NEST) O! THEN ;

\ Use chans for information exchanging & SYNCHRONISATION
: CHAN 2VARIABLE ;
: C> (CHAN -- W : Get word from the channel)
>R BEGIN R@ @ O= WHILE (PAUSE) REPEAT R@ 2+ @ R> O!

: >C (W CHAN -- : put word to the channel)
>R BEGIN R@ @ WHILE (PAUSE) REPEAT R@ 2+ ! R> -l! ;

\ Use buffers for EFFICIENT information exchanging
\ BUFF-SIZE and MASK may be increased!
16 CONSTANT BUFF-SIZE
15 CONSTANT MASK
: BUFF CREATE 0 , BUFF-SIZE ALLOT ;
: .OUT 1+ ; (IN +O)
: .BUF 2+ ;
: B> (BUFF -- W : Get word from the buffer)
>R BEGIN R@ C@ R@ .OUT C@ = WHILE (PAUSE) REPEAT
R@ .OUT C@ DUP R@ .BUF + @ SWAP 2+ MASK AND R> .OUT C!

: >B (W BUFF -- : Put word to the buffer)
>R R@ C@ 2+ MASK AND
BEGIN DUP R@ .OUT C@ = WHILE (PAUSE) REPEAT
SWAP R@ C@ R@ .BUF + ! R> C!

: 4" 2* 2* ;

\ Generic words for word and channel array
: [I CHAN
CREATE 4* HERE OVER ERASE ALLOT ?STACK
DOES> SWAP 4* + ;

\ IMHO []WORD is more useful than F-PC's ARRAY
: []WORD
CREATE 2* HERE OVER ERASE ALLOT ?STACK
DOES> SWAP 2* + ;

MULT I
CR .FREE

March 1994 April 18

The down-arrow scrolls through
the buffer in reverse order.

The Insert key toggles the insert
mode, from overstriking to insert-
ing.

Delete and Backspace operate
to delete characters. The Delete
key deletes the character under the
cursor, and shortens the line by
one for each keystroke. The Back-
space key deletes the character to
the left of the cursor, moves the
cursor left one place, and shortens
the line by one character.

Further Expansion
Additions will be left as an exer-

cise for the student. The Atari's
Help key could be tied into a help
screen for the line editor. The Undo
key could be used to obliterate the
current contents of the edit buffer
and allow the user to start over.

The modifier keys, Control and
Alternate, could be used to extend
the operation of the keyboard. For
example, control-left-arrow could
be used to move left an entire
word. Alternate-left- and -right-ar-
rows could move the cursor to the
appropriate end of the line.

Another extension could use
the disk to preserve the contents of
the string buffer between invoca-
tions of the Forth system. This
could be done either with blocks,
in the traditional Forth manner, or
with file extensions to Forth.

As currently implemented, in-
voking the history capability over-
writes whatever is in the edit buffer.
One could rewrite the code to
allow the user to enter part of a
new line, and then recall (perhaps
by insertion) a line from the string
buffer.

The current implementation
uses variables, making the code
non-reentrant. To use this code in
a multi-user system, the variable
will have to be replaced with user
variables. The FastForth optimiz-
ing compiler handles user vari-
ables, so there is no benefit other
than readability to making pseudo-
constants with the user variables.
In both FastForth and traditional,
indirect-threaded Forth, the user
variable approach actually occu-

Forth Dimensions

Listing Two. Parallel scalar vector multiplication. 1
fload figurel
30 CONSTANT SIZE
USER VARIABLE U.1 FORTH
SIZE []WORD V1
SIZE []WORD V2
SIZE 1+ [ICHAN N
SIZE [ICHAN W
SIZE [JCHANE

\ DEF SIZE = 30 :
\ VAR U.1
\ V1 [SIZE],
\ V2 [SIZE] :
\ CHAN N[SIZE+l],
\ W[SIZE] ,
\ E[SIZE] :
\ VAR Tl,T2, T3, T4:

: VECT-MULT \ PROC VECT.MULT =

\ SEQ
SIZE 0 DO \ U.1 - [0 FOR SIZE]
I 1+ I v1 ! \ Vl[U.I] := u.1 + 1
I 1+ I v2 ! \ V2[U.I] := U.1 + 1

LOOP \ PAR
SIZE 0 DO I U.1 ! \ U.1 = [O FOR SIZE]
I U.1 ! \ PAR
I I (u.1 @ Vl @ u.1 @ w >c) \ W[U.Il ! Vl[U.I]
[I(U.1 @ V2 @ U.1 @ E >C) \ E[U.Il ! V2[U.I]
I I (\ SEQ
U.1 @ W C> \ W[U.I] ? T1
U.1 @ E C> * \ E(U.11 ? T2
U.1 @ N C> + \ N[U.I] ? T3
U.1 @ 1+ N >C \ N[U.I+l] ! Tl*T2+T3

) \
LOOP \
II(0 0 N >C) \ N[O] ! 0
1 1 (SIZE N C> U.) \ SEQ

\ N[SIZE] ? T4
\ WRITE(T4) :

PAR ;

pies less room in the dictionary
than the variable approach.

Availability
In the best Forth tradition,

the code is released to the pub-
lic domain. Enjoy it in good
health.

FastForth for the Atari ST,
including the above code, may
be had in alpha release from
the author, Charles Curley, P.O.
Box 2071, Gillette, Wyoming
82717-2071. Please consult the
author for the current state of
documentation, etc.

Listing Three. Parallel alarm clock.

f load figurel
\ Alarm clock
ANEW ALARM
HIDDEN ALSO EDITOR ALSO

USER
VARIABLE ALARM-HM
VARIABLE ALARM-STRING
FORTH

: ALARM" (HOURS MINUTES I <TEXT>")

SWAP FLIP + 0 0. B>T DROP ALARM-HM ! \ Get time
HERE , " ALARM-STRING ! \ Get alarming string
EV (
ALARM-HM @
BEGIN \ Wait . . .

1000 FOR PAUSE NEXT \ Skipping for efficiency
DUP GETTIME DROP U<=

UNTIL
DROP SINGLE \ Disable parallelism
SAVESCR SAVECURSOR \ Save screen & cursor
DKGRAY >BG WHITE >FG \ Select colours
TRUE ALARM-STRING @ COUNT ?SOFTERROR \ Alarm ! !
RESTCURSOR RESTSCR MULTI \ Restore screen & cursor

) \ Enable parallelism

ONLY FORTH ALSO DEFINITIONS

Forth Dimensions 19 March 1994 April

Garth Wilson
Whittier, California

I had been thinking about writing an article on read-
ability of Forth code, but I became more determined after
going through a recent issue of Forth Dimensions. It was
full of things that reduce code readability, cover to cover.
It's no wonder some have called Forth a write-only
language! It doesn't need to be this way. If a programmer
gets the application working but the code is unreadable,
he hasn't done his job.

After looking through my library at others' treatments
of the subject, a part I see as lacking special attention is
what Jack Ganssle calls "pretty code."' It has not been
stressed enough in our programming industry. I've had
non-programming superiors who thought that any work
beyond "just getting it working" was frivolous, and that the
programmer who spent the time was not sensitive to the
company's needs.

Jack Ganssle tells of a Volkswagen Beetle maintenance
book he had which strongly encouraged the owner to
keep the engine clean. One reason was that you're more
likely to keep it in good shape if you can do the necessary

Producing readable code
is not an objective procedure
with an exact formula.

maintenance without getting filthy. We've all seen a lot of
"filthy engines" in our industry-ones we don't want to
touch.

I've had code that was sold as "toolbox" code that was
too unreadable to figure out what was necessary in order
to use a small piece of it in my own application. I thought,
"Why'd they even bother?" It doesn't have to be that way.

Special attention will be given here to layout, and to
making the layout more perceptible. "Layout" here refers
to the decisions as to whatwords will be put on a particular
line of source code, where in the line they will start, use
of blank lines to separate code "paragraphs," where the
comments will go, etc. Let's look first at vertical alignment,
then line breaks, zero-stack-effect lines, comments (in-
cluding stack-effect), and case.

* "The C Blues," Embedded Systems Programming, April 1993

March 1994 April

Vertical Alignment
Comprehension is accelerated dramatically by vertical

alignment of related elements. Structure words need to be
aligned vertically unless the structure is very simple; for
example, B E G I N ?TERMINAL U N T I L would fit nicely on
a single, very readable line; but ?DO and LOOP in Listing
One need to be one above the other, obviously standing
out from the contents of the loop.

The indentation should be at least three spaces. Re-
cently I was trying to read some code in a book. The
indentation for setting off loops was only one space,
which made it look like the printhead just didn't come
back to the same place with every carriage return, produc-
ing a ragged margin.

Having many nested structures can be a pain, and can
usually be avoided by making each nested level a separate
definition. In some cases, however, it is difficult to come up
with a truly descriptive colon-definition name that's any
shorter than the code itself. Having neither good names nor
the code right there, you will have trouble understanding
the flow of what the code is supposed to do. Vertical
alignment and readability can still be preserved using
methods like the one shown in Listing Two-a instead of
Listing Two-b.

Listing Two-b is far more confusing, and takes just as
many lines, despite the lack of blank lines to set off the
different parts. I've seen this kind of thing carried to the
extreme, making a huge sideways 'V' from the top of the
printed page to the bottom, with the point of the 'V'
indented so far over to the right that it left no room for
comments.

Many Forth programmers would say a definition should
never get this long, and would proceed to "flesh it out" in
Forth one-liners, requiring many, many levels of nesting
at execution time. I would go along with this only as long
as the colon-definition names are very descriptive of what
they do, and that the "fleshing out" is not used as a
substitute for good commenting or layout.

Vertical alignment of similar words on lines helps, too.
Our brain homes in on patterns that simplify the mental
processing and memory requirements of the material.
Consider Listing Three-a. These simple definitions can be

I Forth Dirnensior

Listing One. Vertical alignment and indenting.

: LPTTYPE (ADR CNT --) ("TYPE" VERSION FOR PRINTER [LPT] .)

OVER + SWAP (t y p e WILL CALL THIS IF OUTDEV=LPT.)

?DO (LOOP LIM & INDX ARE ACTUAL ADDRs.)

I C@ LPTEMIT (@ & PRINT CHR AT NXT ADR IN STRING.)
OUTERR @ (SEE IF LPTEMIT HAD ANY PROBLEM. 1
IF CONSOLE LEAVE THEN (IF LPTEMIT NOT SUCCESSFUL, SET FOR)

LOOP t (LCD OUTPUT AGAIN & LEAVE THE LOOP.)

Listing Two-a. When nested structures are necessary.

: SAMPLEWORD (i n p u t -- o u t p u t) (comments comments ...I

CONDITIONS IF (comments comments ...)
ACTIONS ACTIONS ACTIONS (comments comments ...)
ACTIONS ACTIONS ACTIONS ELSE (comments comments ...)

CONDITIONS IF (comments comments ...)
ACTIONS ACTIONS ACTIONS (comments comments ...)
ACTIONS ACTIONS ACTIONS ELSE (comments comments ...)

CONDITIONS IF (comments comments ...)
ACTIONS ACTIONS ACTIONS (comments comments ...)
ACTIONS ACTIONS ACTIONS ELSE (comments comments ...I

ACTIONS THEN THEN THEN
-

I Listing Two-b. The scrambled-eggs version. I
: SAMPLEWORD (i n p u t -- o u t p u t)

CONDITIONS
IF ACTIONS ACTIONS ACTIONS

ACTIONS ACTIONS ACTIONS
ELSE CONDITIONS

IF ACTIONS ACTIONS ACTIONS
ACTIONS ACTIONS ACTIONS

ELSE CONDITIONS
IF ACTIONS ACTIONS ACTIONS

ACTIONS ACTIONS ACTIONS
ELSE

ACT IONS
THEN

THEN
THEN

made much more mentally manageable by simply lining
things u p so the brain can "factor" it. This example has
many factors that the brain should only have to catch once,
greatly simplifying the job of figuring out what someone
else (or maybe you yourself) has written. Listing Three-b
takes care of those.

Listing Four-a shows a colon definition I wrote to figure
out which key or keys, if any, were being pressed on a 16-
key keypad connected through port A (PA) of a 65C22 VL4
(versatile interface adapter) IC. The four most significant

bits were set up to be inputs, and the four least significant
were to be outputs.

There's more description of it farther down. Listing
Four-b shows the same code without the vertical align-
ment. It resembles a kitchen or bathroom you don't even
want to be in (let alone use) because it's so dirty.

Something else crept into Listing Four-&the ; is on
the left margin. This type of thing is done in C a lot (with
the curly braces); but when we see many colons and semi-
colons all on the margin, it takes more attention to tell

Forth Dimensions 21 March 1994 April

Listing Three-a. 1
: BOLDON 1 B EMIT . " E" -2 LPT-OUT +! ; (PUT P R I N T E R I N BOLD MODE.)

: BOLDOFF 1 B EMIT ." F " -2 LPT-OUT + ! ; (TAKE PRINTER OUT OF BOLD.)

: TINYON F EMIT -1 LPT-OUT +! ; (PUT PRINTER I N COMPRESSED.)
: TINYOFF 1 2 EMIT -1 LPT-OUT + ! ; (TAKE PRINTER OUT OF COMPRESSED.)

Listing Three-b. Pave t h e way to mental factoring.

: BOLDON 1 B EMIT ." E" -2 LPT-OUT + ! ; (PUT P R I N T E R I N BOLD MODE. 1
: BOLDOFF 1 B EMIT ." F" -2 LPT-OUT + ! ; (TAKE P R I N T E R OUT OF BOLD.)

: TINYON OF EMIT -1 LPT-OUT +! ; (PUT P R I N T E R I N COMPRESSED MODE.)
: TINYOFF 1 2 EMIT -1 LPT-OUT +! ; (TAKE P R I N T E R OUT OF COMPRESSED.)

Listing Four-a. Keyboard scan word, lined up and t idy.

: WHICHKEYS (-- key-cell) (OUTPUT A CELL W / A B I T S E T 4 EA KEY H I T .)

7 VIAPA C ! (MAKE ONLY KBD ROW 1 LO. 1
VIAPA C @ 8 S H I F T OFFF OR (PUT n ON STK W / 0 I N B I T S WHOS KEY I S D N .)

B VIAPA C ! (MAKE ONLY KBD ROW 2 LO.)

VIAPA C @ 4 S H I F T FOFF OR AND (AND-IN ROW-2 B I T S .)

D V I A P A C ! (MAKE ONLY KBD ROW 3 LO. 1
VIAPA C @ FFOF OR AND (AND-IN ROW-3 B I T S .)

E VIAPA C ! (MAKE ONLY KBD ROW 4 LO.)

VIAPA C @ - 4 S H I F T FFFO OR AND (AND-IN ROW-4 B I T S .)

NOT (MAKE EA B I T WHOS KEY I S H I T A 1, OTHRS 0 .)

Listing Four-b. T h e dir ty-ki tchen version.
1

: WHICHKEYS (-- key-cell) (OUTPUT A CELL W / A B I T SET 4 EA KEY H I T .)
7 VIAPA C ! (MK ONLY KBD ROW 1 L O .)
VIAPA C@ 8 S H I F T OFFF OR (PUT n ON STK W / 0 N B I T S WHOSE KEY I S D N .)

B VIAPA C ! (MAKE ONLY KBD ROW 2 LO. 1
VIAPA C@ 4 S H I F T F O F F OR AND (AND-IN ROW-2 B I T S .)

D VIAPA C ! (MAKE ONLY ROW 3 L O .)
VIAPA C @ FFOF OR AND (AND-IN ROW-3 B I T S .)

E VIAPA C ! (MAKE ONLY ROW 4 LO. 1
VIAPA C@ - 4 S H I F T FFFO OR AND (AND-IN ROW-4 B I T S .)
NOT (MAKE EA B I T WHOS KEY I S H I T A 1, OTHRS 0 .)

them apart, since they look so much alike. Nothing
encountered while the compiler is on should be on the left
margin. If you follow this suggestion, you'll know the end
of the colon definition by the next thing that's on the
margin, since most lines encountered when STATE is OFF

will start on the left margin with : , CREATE, (, inputs for
CONSTANT, etc.

Whatever you do, please don't print your code using
proportional spacing! That's a sure way to mess u p vertical
alignment, as well as complicate the reading process by
giving us something that is very different from what we're
used to seeing on our screens as we program!

Editors
You might have already noticed that these lines are

more than 64 characters long. Screen files have their place
and their advantages, but in many situations a flexible text
editor works much better. I use the Norton programmers'
text editor with three-button mouse support (but no GUI!)
in a very simple system I have set u p where I can develop
embedded-system code on a target system (in its RAM).
The PC is only used for keeping the source code and, later,
for metacompiling to put finished code into ROM for the
target.

In two or three seconds (the main limitation being
typing speed), I can go from writing a small piece of code,

March 1994 April 22 Forth Dimensions

' 1 Listing Five. Include descriptive diagrams with a text editor.

B I T
15

B I T
11

B I T
7

B I T
3

8 0 0 0 CONSTANT "KEY (up arrow
0 8 0 0 CONSTANT vKEY (down arrow
0 0 0 8 CONSTANT MENUKEY
0 0 0 4 CONSTAPJT YESKEY
0 0 0 1 CONSTANT NOKEY

CREATE KEY#TBL
4 0 0 0 , 1 C, 0 1 0 0 , 6 C,
2 0 0 9 , 2 C, 0 0 4 0 , 7 C,
1 0 0 0 , 3 C, 0 0 2 0 , 8 C,
0 4 0 0 , 4 C, 0 0 1 0 , 9 C,
0 2 0 0 , 5 C, 0 0 0 2 , 0 C,

(COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL
(1 1 2 1 3 1 4 1 1 2 1 3 1 4 1 1 2 1 3 1 4 1 1 2 1 3 1 4 1
(

B I T
14

B I T
1 0

B I T
6

B I T
2

1

(
(
(
(
(
(
(
(
(
(
(
(
(

B I T
13

B I T
9

B I T
5

B I T
1

to compiling it (if necessary), to trying it on the target-
all without leaving, suspending, or even backgrounding
the editor. It is set u p so no code changes are needed to
make the transition from RAM to ROM for the finished
system. It's very simple, and the only hardware and
software required has been out for years. It's a natural for
Forth. (That will be material for another article. In spite of
its simplicity, I haven't found anyone else who has heard
of such a thing, so evidently it does deserve an article.)

Use a text editor where possible, so you have lots of
room for comments, and s o you can use more of the
special characters and have short descriptive names like
loon, O C , $LIFE, or +2%. GO ahead-use A for ang-

(
(
(

B I T
1 2

B I T
8

B I T
4

B I T
0

(ENTER EXIT
(CONTINUE

h

v

MENU

stroms. You can replace (xA2+yA2) A 1 /2 with d (x2+y2)
without any of those hidden word processor control codes
that are hostile toward compilers.

The only drawback is that you may have to modify
L>NAME (or another Forth word that takes a CFA or LFA
to find the NFA). This is because it typically backs u p until
it encounters the first byte whose high bit is set. This
drawback is minor, since if you don't make the modifica-
tion, the only effect you will probably notice is that WORDS
or decompiling words will print the names with special
characters wrong. Just in case the high bit is set in an actual
character of the name itself, L>NAME needs to see if the
length indicated by the five least-significant bits agrees

Forth Dimensions 23 March 1994 April

1

4

7

YES

)
)
1

ROW 1

(1
()
(COLl COL2 COL3 COL4 1
(PA7 PA6 PA5 PA4 1
(
(ROW1
(PA3
(
(ROW2
(PA2
(
(ROW3
(PA1
(
(ROW4
(PA0

2

5

8

0

rnsb lsb
<----------- S T A C K ------------- K E Y C E L L 0 N >

ROW 2

1
Keyboard front view, with row)
and column labels. 1
Keyboard is a 4x4 matrix.)
Normally all the rows are held)
low, and when a key is pressed,)
one of the columns gets pulled)
down, which also pulls the IRQ)
[CAI] down [true] to assert the)
IRQ to tell the pP to see which)
key was pressed. Actually, we)
are not using keypad interrupts)

3

6

9

NO

(at this time, but the hardware)
(is there should we want to in)
(the future.)

ROW 3 ROW 4

Listing Six. Even add timing diagrams with a text editor.

(U I L)
(NORMAL)
(A B C F G A . . . 1
(1
(1
(I F JUMPED GUN 1
(A B CD E G A . . . 1

Listing Seven. Use of binary when individual bits are of interest.

: SYNCSERSETUP (--)

[BI
VIADDRB C@ 1 OR VIADDRB C! (SET PBO AS OUTPUT FOR STROBE LINE.)

VIAACR C@ OOOlOlOO OR (ENABL SR TO SHIFT OUT UNDR T2 CTRL.)

1101O111 AND VIAACR C! (DECR AT @2 RATE.)

00100100 VIAIER C! (DISABL SR-EMPTY & T2 IRQs.)

(SET T2 FOR ABT lookHz SHFT RATE, LO)

[H I 8 VIAT2CL C! (BYT 1ST. T2 GETS RST AUTOMATICALLY)
0 VIAT2CH C! ; (SO ITS NOT REALLY 1-SHOT IN SR MODE)

March 1994 April 24 Forth Dimensions

with the number of bytes already backed over. If there is
disagreement, it has not arrived yet at the NFA, and it
needs to keep looking. You might see right away that a few
combinations could still fool it. Those are easy enough to
determine and avoid.

A text editor will allow you to use the graphics
characters for diagrams in your comments. The diagrams
in Listing Five are out of an application I did a couple of
years ago. They preceded my keyboard-scan code in
Listing Four-a.

Where an explanation of timing is appropriate to
understanding code, you can even include a timing
diagram. For example, following a timing descriptior! in
the comments on a recent project, I put in the diagrams in
Listing Six to graphically summarize.

The source code should be more than just compiler-
needed input-it should be the major software document.
The diagrams are worthless to a compiler, but are priceless
to someone who has to come along later and figure out
how to update the code.

A text editor like the Norton Editor can also allow you
to look at two files at once with a split screen, and to copy
portions from one to the other, test portions for differ-
ences, etc. The transfer between files is transparent as you
move the cursor with the mouse.

You can scroll. You can use block markers as book
marks which the editor can find instantly after you have
been looking at something elsewhere in the file. You can
use different modes of search, or search-and-replace,
including reverse and case-insensitive. The searches will
be extremely fast, since usually the whole file is in RAM
and disc access is unnecessary. You can flip the case from
the cursor to the beginning or end of the line to transfer
from upper- to lower-case (or vice versa) without retyp-
ing. You can reformat a paragraph, which is useful for

comment paragraphs when you need to insert or delete
something in the middle without messing u p all the line
lengths.

If you can forego the few advantages of screen files, a
text editor can give you far more flexibility than the screen
editors I've seen.

More Vertical Alignment
Listing Seven shows a colon definition I used to set up

a synchronous serial port on a 65C22 VIA (versatile
interface adapter) IC. The register names came right out of
the data book, which has register diagrams showing the
bit-by-bit functions. We want to pay attention to individual
bits (not the overall number they make up), and we want
to mask and set or clear individual bits; so it makes sense
to use binary and line them u p vertically, just as our
second-grade teachers taught us to do for addition.

Sometimes, immediate do-nothing words are very
helpful for clarifying code. You could have words like
: SAMPLES ; IMMEDIATE
: k ~ z ; IMMEDIATE

to use in a sequence that plays back a specified set of
samples at a specified rate, like
TBLl 2000 SAMPLES 8 kHz PLAYBACK

Alternatively, SAMPLES could, for example, store the
number on the top of the stack for PLAYBACK to use, so
the net stack effect of 20 0 0 SAMPLES would be (--).

Now and then, we hear talk of programming languages
or command structures that are very "English-like," as if it
were a plus. Frankly, English is a lousy pattern for a
programming language to follow. For technical communi-
cation, it's far better than some other languages, yet
confusion still abounds.

Listing Eight-a. M a x i m u m - s t a c k - d e p t h vers ion-hard to understand or add comments.

: SETLCDADR (n --)

F AND DUP 7
> I F 7 AND 4 0
OR THEN 8 0
OR LCDINSTR! ;

Listing Eight-b. Sentence-line version.

: SETLCDADR (n --) (n I S CHR P O S I T I O N #, RANGE O-F. 1
F AND (L I M I T LCD ADR TO 00-OF FOR 1 6 CHR.)

DUP 7 > (S E E I F CHR ADDR I S FOR 2ND $ OF D I S P .)
I F 7 AND 4 0 OR THEN (I F SO, CLR B I T 3 & S E T B I T 6 . 1
8 0 OR (S E T B I T 7 TO INDICATE LCD CHR ADR.
LCDINSTR ! (GIVE ADR AS INSTRUCTION TO LCD.

Listing Nine.

: LCDDATA! (C --) (LCD DATA STORE. 1
RIOTDRA C ! (S E T UP DATA LNS ON LCD. 1

LCDDATAWR RIOTDRB C ! (SET UP R / W & RS ON LCD. 1
LCDDATAWRtE RIOTDRB C ! (S E T LCD ENABL LN TRUE SO LCD TAKES BYT.)

LCDDATAWR RIOTDRB C ! (S E T LCD ENABL LN FALSE AGN TO END WR C Y .)
LCDNOWR RIOTDRB C ! ; (SET R / W LN BK TO RD.)

In spite of this, sometimes it is still practical to make an
English sentence. For example, you can have
TURN OFF "TEST" LED

where TURN is a variable, OFF is a standard Forth word
that zeroes the cell at the address shown by the number
at the top of the stack, "TEST" is a constant with a one
in the bit corresponding to the light-emitting diode (LED)
labeled "TEST" on the front panel, and LED is a colon
definition that examines TURN to know whether to turn
the specified light off or on. There is no question left as to
what this does.

Line Breaks
A common problem contributing to unreadability is

that of poor word arrangement on lines. Prose would be
very awkward done this way:

The manager called Betty.
He asked her to come into his office.
The manager dictated a letter.
Betty took the dictation.
Betty typed up the letter.

but this is perfect for programming! Violations will often
be accompanied by very inadequate commenting, since it
is harder to get a comment sentence to match up with a
line of code that does not resemble a sentence. It is ironic
that explanation is needed most when it's hardest to fit in.

I wish I could include some examples of code I've seen

where these principles were severely violated but, if I did,
someone would probably be very unhappy. So I just tried
to come up with some artificial examples.

Listing Eight shows a definition used to tell a one-line,
sixteen-character, liquid-crystal display (LCD) where to
put the next character it receives. First look at the
"sentence-line violation" version in Eight-a.

It becomes much more readable when we use the line
breaks to divide program "sentences." This also makes it
easier to match some good comments to each line, which
in turn further improves human comprehension. Look at
Eight-b.

LCDDATA! in Listing Nine is an example of the
program sentence-line concept, coupled with vertical
alignment that improves our mental "factoring." This word
was used to store a data character (as opposed to an
instruction byte) to the same LCD. The R I O T (RAM,
11'0, and timer) was an IC on a board I was working with.
DRA and DRB are its data registers A and B. The words in
the left column are constants.

There is nothing left on the stack at the end of any of
the lines in LCDDATA ! in Listing Nine. This brings us to
another point that ties in with the sentence-line concept.

Zero-Stack-Effect Lines
Code is much easier to understand if we minimize each

line's net stack effect as well as the final stack depth. This
is closely related to the sentence-line concept, in that we
want to tie up loose ends as much as possible before
finishing the line. More often than not, it is impossible to

Forth Dimensions 25 March 1994 April

Listing Ten-a. Zero-stack-effect line.

TMBUF ARCTM [YR MINUTES - I+] L I T CMOVE (C o p y t i m e , d a t e t o a r c b u f f e r .)

Listing Ten-b. A parameter calculated on e a c h line.

CALCULATE SOURCE ADDRESS AT RUN TIME (comments comments comments)

CALCULATE DESTINATION ADDRESS AT RUN TIME (comments comments comments)

[CALCULATE COUNT AT COMPILE TIME] L I T (comments comments comments)

CMOVE

Listing Eleven. Comments t h a t need comments.

CODE CODE CODE CODE (A max a d d r a d d r ' a d d r " t o k - l e n)

March 1994 Aprjl 26 Forth Dimensions

eliminate all net stack effect; but it is important that we
work toward that goal, nevertheless.

A line with a CMOVE might simply be like Listing Ten-a.
But if it takes a few operations to calculate the parameters,
each of those operations will usually need its own line, as
in Listing Ten-b.

Now (in listing Ten-b) we have a code paragraph made
up of four sentence lines. If this is only part of a colon
definition, a blank line should be used to separate it from
other code that may come above and below it.

Stack-Effect Comments
When code can be written in minimal-stack-effect

lines, there will be little need for stack comments for each
line. Sometimes, however, things will get a bit confusing,
and there may not be any good way to get around it.

If there is any question about what's left on the stack
at the end of a line, that should be cleared up in the
comments. In those cases, I like to start the comment line
with a A as a stack symbol, followed by a description of
what's on the stack after the line is finished executing.

Listing Eleven shows the stack effect comment follow-
ing a line of code in something we bought. It hardly
qualifies as a description. Maximum what? Addresses of
what? Granted, when there are five things on the stack to
tell about, you don't have much room to tell what each one
is. But since that was the case, they should have put a few
lines of "glossary" above or below the code, telling you
that when you come upon "add r , " understand that it
means such-and-such. The same would apply at the next
step up, where there is truly a description, but accomplish-
ing it required non-standard abbreviations beyond what is
intuitive.

Dropping down to use another line may initially seem
like an obvious solution to the problem of insufficient
comment room. However, if this requires putting com-
ment space between lines of code that should not be
separated, it may partially defeat the purpose.

Comments
Much has already been said about comments. I will

only add that if there is not enough room to the right of
the code to put in complete comments, by all means-put
a paragraph or two (or whatever it takes) above the code
to describe what it will be doing, and why. No abbrevia-
tions are necessary here. Make a complete description.
Leave nothing hidden! Expose everything! Typing it in
while it is fresh in your mind will take a fraction of the time
it would take to figure it out with inadequate comments a
year or two later when you want to make an update. It will
be even more valuable if someone else has to figure it out.

In some cases, you may need to write about hardware
or other limitations encountered that led u p to the decision
to do it the way you did. Sometimes when I didn't do this,
those things have slipped my mind and I would think,
"Hey, there's a much better way to d o this!" After spending
some time on it, I would start remembering that I had
already tried my "better" idea and that there was a good
reason for not doing it that way.

Case
Lower-case is generally only for internals, like b r a n c h ,

lit, l i t q , etc. For example, in the Forths I've used, DO
compiles d o (a different word), and CREATE compiles the
address of the run-time routine called c r e a t e (also a
different word). The programmer rarely accesses the
internals directly. Because of this, some Forths (LMl's
UR/FORTH, for example) start out by putting the PC in
"Caps Lock."

The ascenders and descenders of lower-case letters are
part of what our brain uses to recognize words quickly
when we read prose, when our eyes stop once for every
few words as we read quickly. Our process of reading
code, however, is much different. When we read prose,
the line divisions are mostly meaningless, existing prima-
rily because an 8.5" x 11" book is much more manageable
than a ribbon a mile long. However, the line breaks in

(Continues onpage 31 .)

Pvint ZIP

Walter J. Rottenkolber
Mariposa, California

Since the early 1980's, the U.S. Postal Service (USPS)
has been making the change from manual to automated
mail processing. Both optical character recognition (OCR)
and POSTNET (Postal Numeric Encoding Technique)
barcode scanning technology were implemented to guide
the sorting and distribution machinery. OCR was designed
to read the address and print a barcode at a time before zip
codes were widely distributed.

I suspect that great hope was held for OCR technology.
Letting the computer generate the zip code from the
printed address would have eliminated the enormous task
of disseminating zip code data. But even today, OCR can
correctly scan only 4 6 5 0 % of labels, whereas over 98% of
barcodes are readable. As a result, the USPS has switched
to the barcode as the primary zip-encoding method, and
as of March 21, 1993 has implemented new barcode-
reading equipment.

The original (conventional) barcode has very strict
placement requirements. Its read area is a 5/8" x 4 3/4"

Individual mailers get
faster delivery; businesses
get cheaper rates.

block in the lower-right corner of the envelope. The
barcode is centered in the area, with the base located
1/4" above the bottom of the envelope. The left end of the
bar should be between 4 1/4" and 3 1/2" from the right
edge of the envelope. The USPS still uses this area to print
barcodes, so it should be left clear of any other printing.

The new equipment allows for a far wider placement
of the POSTNET barcode. This area is between the
envelope bottom and 4" above the bottom (including the
conventional barcode area), and 1/2" inside the right and
left sides of the envelope. However, the left-most end of
the bar must be less than 10 1/2" from the right edge. The
barcode can also be part of the address label, but it doesn't
have to be.

In a label, the preferred location of the barcode is
above the name field or any optional keyline or endorse-
ment lines. This leaves the address fields clear for OCR, if
necessary. However, it can be located at the bottom of the
label. The main requirement is that at least a 1/25" gap
separate the top and bottom of the bar from other writing,
and that the right and left edges have at least a 1/8" (better
1/49 clearance from envelope window edges or other
printing.

The zip code is encoded as a series of five-bit numbers.
A 1 bit is represented by a tall bar, and a 0 bit by a short
bar. The five bits are assigned the values 7, 4, 2, 1, 0. A list
of the codes is given in Figure One. Numbers from zero to
nine are coded by setting two bits which add u p to the
number (two-of-five code), For example, the number 3 is
represented by setting bits one and two (2+1), and eight
by bits four and one (7+ 1). The only exception is 0, formed
by bits four and three, which would add u p to eleven.

The POSTNET barcode is composed of three parts:
frame barsat each end, the number code, and a correction
character (Figure Two). The frame bar is simply a tall bar.

Figure One. The two-of-five code. 1
11000 00011 00101 00110 01001
0 1 2 3 4

01010 01100 10001 10010 10100
5 6 7 8 9

Figure Two. Example barcode. I
Zip code - 39762-0494

Zip code
Checksum 1

Forth Dimensions 27 March 1994 April

L (a discount.
Forth Dimensions 29 March 1994 April

5
\ Zipcode Bar Print Routine

(Set Binary 1 2 BRSE !
\ Uses 5-bit code with 2 uf 5 set, C bit values of 7 4 2 1 0.
\ Code shifted 3 bits left.
C m T E ZBFIRCDDE

11- C, @lll@@@ C, 1181886 C, \ 0,1,2
BBilBBBB C, 01@@100@ C, @lBieBeB C, \ 3,4,5
811iW&?@ C, 1@0@1@0@ C, 1@0lM@@ C, \ 6,7,8
101- C, \ 9

DEE I M#

6
0 \ Zipcode Bar Print Routine
1
2:PZIP# I n -)
3 ZBFIRWDEt@FiIP
4 5 0 W
5 DUP @(IF T#LMR
6 ELSE SHORTBRR THEN 2* \ sift bit left
7 LCKIPDROP;
8
9 : DIGIT? (n -- f 1 18 U(; \ t=0..9
18

7
0 \ ZipcPde Bar Print Routine
1
2 : ZIPBRR a 1 - n) \ n= digit sun
3 0 -ROT BOUFlDS DO I C@ 48 - DUP DIGIT?
4 IF W PZIPt t ELSE DRDP THEN LDOP ;
5
6 : ZCHKSUlr! (n -- 18 TUM(HOD - PZIPX ;
7 \ Checksura is 10's ccmplewnt of least significant digit
8 \ in the sum of numbers in zipcode.
9
18 \ : ZIP9 (- a 1) PFU) D!4P 2e EXPECT SPRN @ ;
11 \ Used to enter ziprode as: ZIP (cr) zipstring (cr)
12
13 : ZIP9 (-- a 1 1 BL PFIRSE-UORD ;
14 \ Used to enter zipcode on camandline: ZIP zipstring (cr)
15

8
0 \ Zipcode bar Print Routine
i
2: PZIPBAR (a 1 - 1
3 FRRmPFlR ZIPBFIR ZCHKSL#II FRRREWR ;
4
5 : ZIP1 (a 1 - 1 \ Single print zipbar
6 ZIPL& STRTZIP PZIPBFIR STOPZIP ;
7
8 : ZIP2 (a 1 -- 1 \ Double print-pass zlpbar
9 2DUP ZIP1 ZIP1 ;
18
11 : ZIP (- 1 (S zipcode$
12 \ Enter Zipcade string on cowandline; include leading zerps
1 ZIP9 DW, 5 (IF 2DROP EXIT THEN \ win. 5 digits or quit
14 ['IZFSPRMISPSPRCE CIWS#@RPOS! Z I R ;
15 \ set to ZIP^ far single print-pass zipbar.

as the flip word.)
The checksum is calculated by doing a 10 MOD on the

sum, which isolates the least-significant digit. Subtracting
this number from ten gets the ten's complement. This
value is then tacked onto the end of the barcode.

printing the POSTNET barcode requires the
graphics mode. The printer-specific codes in the source
listing-fed to the printer by (PRINT)-are for the
Okidata u92. You will need to dredge u p the codes and
routines for your printer if it is another make.

To enhance the usefulness of the zip code routine, I
added simple programs to print addresses on envelopes
(ENV) and on labels (RLBL and ALBL). The label routines
are set for three-across, 15/16" x 2 1/2" labels. L Z I P ~ is
complicated because the offset (ZIPOS) requires 12CpI
to set the column position, while the barcode needs
~ O C P I to get better spacing. The label routine is quite
simple, printing the addresses vertically, rather than across.
Column position (one through three) is determined by
SETCOL before you start printing.

The physical dimensions of the barcode are summa-
rized in Figure Three. These are based on the original
inkjet printers used by the postal service. The new
scanners are supposed to have wider latitude, but the
postal service hadn't updated the standards when I last
checked. In theory, my Okidata u92 prints bars slightly too
narrow, and tall bars slightly too short, according to the
standards; but only testing will tell if the barcode scans.

The light reflected from the background must be at
least 30% higher than from the barcode. Originally, this
had to be in the red and green portions of the spectrum,
but the equipment is now blue-sensitive (except to a
narrow range of light blue-the kind found on graph
paper). Generally, light colors are fine. Gray is a tricky
color, since it appears lighter than its reflectivity would
suggest. Dark red and dark green, the colors of Christmas-
time, cause no end of trouble. A white label is, of course,
ideal. Background patterns or writing that "shows through"
should have less than a 15% print contrast ratio (PCR).

Similar considerations apply to the color of the barcode
itself, which has to be 30% less reflective than the
background. The scanner is partially infrared-sensitive, so
a dark red bar should be avoided.

The postal service knows that mail sorting represents
the area with the greatest potential for saving labor and
money. At present, the primary encoding method is the
POSTNET barcode. The equipment first scans for the
barcode. 1f that fails, OCR is attempted and, lastly, human
intervention.

To encourage pre-barcoding mail, the postal service is
trying the carrot trick. For the individual, speedier service
is promised. Since every time a letter drops out of the scan
sequence it goes to the end of the line, mail processing is
faster with a proper barcode in place.

Businesses are given price breaks for batch mailings,
based on volume, length of zip code, and amount of pre-
sorting. This includes first-class mail, not just "junk" mail.
Mailing as few as 250 letters at one time could qualify for

A great advantage of pre-barcoding is that you get the
savings without the hassle of pre-sorting. One thousand
letters that are five-digit pre-barcoded, without sorting,
will cost nine dollars less to mail than zip+4 pre-sorted
($0.233 vs. $0.242, first class). The longer (DPBC) barcode
will get you even more savings.

Some of the new barcode readers can also handle flats,
i.e., large envelopes and magazines. Whether pre-barcoded
batch discounts will be extended to these isn't settled yet,
but publishers should keep in touch with the postal
service.

Getting the zip code information can be a problem. The
five-digit code is widely distributed, but the +4 code takes
a bit more doing. The +4 code for California alone takes
four volumes, making a stack twice as high as the national
codes. It's obvious that looking them u p from printed
references works only for an individual with a short
mailing list.

For businesses, it's a job for computers. The USPS will
start you off with a free, one-time search of the zip codes
with data from your address files. After that, third parties
specializing in zip codes will upgrade your label database
for a fee. CD-ROMs with nationwide zip+4 codes are also
available, if you have the capability of doing it yourself.

To make implementing pre-barcoded mail less painful,
the postal service has published informative booklets
explaining all.

For help in designing mail to work with barcode
scanners and in upgrading your databases, the USPS has
Mailpiece Design Analysts and Business Consultants avail-
able at their district centers. You can reach one via mail or
toll-free telephone. The analyst I spoke with was eager to
help and knew her zip code technology. The USPS is
trying harder.

Figure Three. Barcode dimensions.

Bar width 0.01 5" to 0.025"
Tall bar height 0.115 to0.135"
Short bar height 0.040 to 0.060
Space between bars 0.01 2" to 0.040"
Pitch 22 * 2 barslinch
Dots should touch, but can be up to 0.005" apart.
Bar rotation (leaning) or pattern skew (tilt): less
than 5 degrees total.

Lenath of code minimum maximum
five-digi t 1.245" to 1.625"
nine-digit 2.075" to 2.625
eleven-digit 2.495" to 3.125"

9
\ Return W d w s s

: RETRDDR (-- a1 a! a1 a i n 1
" Your Name"
" Your S t ree t Rddress"
" Your H m t w n , CR"
" Your-Zipcode" 4 ;

\S
Enclose each l i n e of address block in quote ?narks ('1.
Last l i n e NST be zipcode. Number is # of l i r s .

18
\ Envelope Rddress

: (FIDDR) (addr-blk.. . - 1 \ Stack has addr len of addr C V s
PRINTINS W
3 SURP 2* 1- DO

CR I ROLii I ROLL P L I E
-2 +LC@ SPRCE TYPE (z i p 1 CR
PRI#TING OFF ;

11
\ Envelope Rddress

: FRRDDR (--)

RPOSt B RWS ! RETRDDR lFIDDR) ;

: WDDR (addr-bl k.. . -- 1
RPOS# @ WOS !
) R 3WP ZIP2 R) (RDDR) ;

: VTFIE (-- 1
PRINTING ON VTRI @ 0 DO CR LOOP PRINTING OFF ;

: ENV (addr-blk.. . - 1
9 VTFIWI ! B RPOS# ! 40 RF)OS# ! 1'1 2PSPFICE IS PSPFICE
LETTER PRRDDR VTM FdDDR KRNCE'L ;

12
8 \ Label Haker
1
2 : SETCM (n - - 1 \ Ccll L . 3
3 DLP 1 3 BENEEN NOT IF DRW 3 THEN
4 1 - 2 2 * 4 + R W S ! ;
e

6 : SEWEL (addr-blk - 1
7 l X P 1 BLPI LETTER 8 (l p i 1 OVER - VTM# ! ;

9 : R21P (a 1 -) \ Single print zipbar
18 STRTZIP PZIPMR STOPZIP ;
11
12 : LZIPI (addr-blk -)
13 1XPI ZIWS l W 1 1R 2DW RZIP R) ;
14

1 1
March 1994 April 30 Forth Dimensions

(Readability, continued from page 26.)

13
0 \ Lahe1 Raker
1

2 : LZIR (addrblk -
3 LZIPl LZIPl ; \ Double print zipbar
4
5 : WZIP (addr-blk -)
6 B L P I t ' 1 1 P S P R E I S ~ LZIR;
7
8 \ Note: Set column (SETOIL) to n= 1. - 3 before printing labels.
9

16 : RLBL (- 1 \ Return address label
11 RETRDDR SETLRBEL (ADDR) VTRB PCRNCEL ;
12
13 : RLBL (addr-blk - \ Nailing address label
14 MIZIP SETLRBEL (RDDR) VTAB W C E L ;
15

14
B \ FIG FDIM Rddress
1
2 : FI6 (- n... 1
2 ,I Forth Interest Group"
4 " P.D. Box 2154"
5 " Oakland, W"
6 "94621-2154"4;
7

.. 8 : FD119 (n...
9 " Marlin Duverson, Editor''

10 FIG l+ ;
l!

program code are verysignificant, and the ascenders and
descenders of lower-case letters make for jagged lines that
blur those boundaries.

Sometimes we have to use many abbreviations and
acronyms to get a substantial comment to fit on a line,
since if the comment does not say enough, it may be as
nebulous as the code. Abbreviations and acronyms don't
go over as well in lower-case, since we tend to try to
pronounce them as written instead of recognizing their
meaning. Even when there is plenty of room, I usually use
the same abbreviations and acronyms, just to be consis-
tent. However, in cases where you can forego these
condensations, using lower-case for the comments can
help the eye separate them from the code.

Remember that consistency also contributes to "pretty
code" and helps readability. The numbers 0-9 are always
"capitalsn-why mix them with lower-case a-f in hex
nUmBErS? Many systems will not even recognize lower-
case letters as numbers, so using upper-case will improve
portability, too.

Conclusions
Forth gives an incredible measure of freedom to the

programmer. Since one of the implications is that code
does not have to be readable to run, this flexibility is
sometimes wrongly interpreted as a weakness. In an effort
to make code more maintainable, some companies have
set style standards that their programmers must meet.
These bring up the bottom end, but also have the
undesirable side effect of preventing use of some of the

FORTH and Classic
Compuf er Support

that second view On a ~ ~ l i c a -
tions, check out The Computer Journal. Ifyou run
an obsolete computer (non-clone or PCIXT clone)
and are interested in finding support, then look no
hrther than TCJ We have hardware and software
projects, plus support for Kaypros, S100, CP/M,
6809's, PC/XT1s, and embedded systems.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run on
any system We provide old fashioned support for
older systems. All this for just $24 a year! Get a
FREE sample issue by calling:

(800) 424-8825

TC Jw
Lincoln, CA 95648

Forth Dimensions

best strategies.
Producing neat, attractive, readable code ("pretty code")

is not an objective procedure with an exact formula. There
is an art to it. In a way, it's like penmanship; I don't expect
e v e ~ o n e ' s to look just like mine, but if a person's writing
is illegible, that is definitely a problem. The continual aim
to achieve greater degrees of readability should be part of
our Forth way of life. I hope this article has helped and
encouraged in that direction.

Laboratory Microsystems, Inc. 16

Miller Microcomputer
... Services .5

Silicon Composers 2
L

3 1 March 1994 April

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

Just how good is HSIFORTH? Well, it's already
good enough to control mile long irrigation arms to water
the nations crops, good enough to control orbiting shuttle
experiments, good enough to analyze the nation's blood
supply and to control the telephone switching systems.
It monitors pollution (nuclear and conventional) and
simulates growth and decline of populations. It's good
enough to simulate and control giant diesel generator
engines and super cooled magnet arrays for particle
accelerators. In the army and in the navy, a t small
clinics and large hospitals, even in the National Archives,
HSIFORTH helps control equipment and manage data.
It's good enough to control leading edge kinetic art, and
even run light shows in New York's Metropolitan
Museum of Art. Good enough t o form the foundation of
several of today's most innovative games (educational
and just for fun), especially those with animation and
mini-movies. If you've been zapping Romulans, governing
nations, airports or train stations, or just learning to type
- you may have been using HSIFORTH.

Our customers come from all walks of life. Doctors,
lawyers and Indian Chiefs, astronomers and physicists,
professional programmers and dedicated amateurs,
students and retirees, engineers and hobbyists, soldiers
and environmentalists, churches and social clubs.
HSIFORTH was easy enough for all to learn, powerful
enough to provide solutions, compact enough to fit on
increasingly crowded disks. Give us a chance t o help you
too!

You can run HSIFORTH under DOS or Microsoft
Windows in text and/or graphics windows with various
icons and pif files for each. What I really like is cranking
up the font size so I can still see the characters no
matter how late it is. Now that's useful. There are few
limits to program size since large programs simply grow
into additional segments or even out onto disk, The Tools
& Toys disk includes a complete mouse interface with
menu support in both text and graphics modes. With
HSIFORTH, one .EXE file and a collection of text files
are all that you ever need. Since HSIFORTH compiles to
executable code faster than most languages link, there is
no need for wasteful, confusing intermediate file clutter.

HSIFORTH runs under MSDOS or PCDOS,
or from ROM. Each level includes all features
of lower ones. Level upgrades: $25. plus price
difference between levels. Source code is in
ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs a s fast a s 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79 and
83 Standard plus F83 programs.

PERSONAL LEVEL $299.
Fast direct to video memory text

& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device U0;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
sofkware floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures ZT

all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker fm

foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROWdirect/indirect;
threaded systems start a t 200 bytes,
Forth cores from 2 kbytes;
C data structures & struct+ compiler;
MetaGraphics Turbowindow-C library,
200 graphidwindow functions, Postscript

style line attributes & fonts, viewports.

ONLINE GLOSSARY $45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $ 79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data; DOS
& BIOS fully and freely available; 32 bit
addresdoperand range with 386.
ROMULUS HS/FORTH from ROM $99.

Shippinglsystem: US: $9. Canada: $21. foreign:
$49. We accept MC, VISA, & AmEx

David M. Sanders
San Francisco, California

code tends to take more space, it executes considerably
faster. There is no coded "inner interpreter" in this type of
Forth implementation; the inner interpreter is the processor's
silicon-encoded, instruction-fetching mechanism.

This article discusses certain optimization techniques
for machine code generated by a Forth compiler. The Intel
386 processor is used to illustrate the techniques, but many
of them are applicable to a wide variety of processors,
including the Motorola 68000 family. The discussion and
examples are based upon 386 assembly language1; in
practice, the optimizations would probably be carried out
directly upon machine-code instruction codes, without

I. Introduction
Many existing Forth compilers generate the code within

a compiled word in the form of a sequence of pointers to
other words. An "inner" interpreter then fetches these
pointers, one at a time, and executes the appropriate
routines that, when taken together, simulate the action of
the Forth machine model. However, an increasing number
of Forth implementations generate machine code directly
during the compilation of Forth words. While the resulting

CCLocal optimizations" that
are particularly applicable to
Forth compilers can greatly
reduce the amount of
machine code generated.

amount of machine code that would otherwise be generated.
In particular, I look at optimizations related to three areas:
1. optimizations related to buffering the top of the data

stack in registers;
2. optimizations related to updating the data-stack pointer;

and
3. optimizations related to combining generated code

instruction sequences into shorter and faster code
instructions.

I also look into some ramifications for Forth itself, in the
form of some extensions.

II. Buffering the Stack Top in Registers
The 386 has a subroutine stack, which would be used

by Forth as the return stack. When a machine-code-
compiled Forth word calls another compiled word, an
assembly-language CALL instruction is generated; the
compilation of an exit from a Forth word would generate
an assembly-language RET.

The 386 has no explicit stacks aside from the subrou-
tine stack; the Forth data stack would need to be imple-
mented by using a register such as ED1 as the stack-pointer
register, and incrementing and/or decrementing the pointer
register as ne~essa ry .~

Ideally, the topmost part of the data stack should be
buffered in one or more registers, so that the number of
memory operations needed to manipulate the stack can be
reduced. The number of memory operations can be further
reduced if a variable number of items from the top of the

the use of an assembler.
In this article, I focus principally on techniques that are

particularly applicable to Forth compilers, rather than on
techniques that are common to compilers in general. The
techniques dscussed relate to certain "local" optimizations
that, when employed together, can significantly reduce the

I -
the number of generated memory accesses comes at the
expense of compiler complexity. In this case, the stack-
pointer register (ED1 is used in the examples in this article)
points to the top of the in-memory portion of the data stack.

During compilation, the compiler must itself keep track
of the stack "state," which is used to indicate the registers

I data stack can be buffered in registers. Such a reduction in

MOV EDX, EAX
This instruction sets EDX (the destinat~on) to the contents of €AX (the source).
In addition, when a register is used as a base or index register, the register
name is enclosed in square brackets [I . As an additional example:
MOV [ED1]+4. EAX
This instruction sets the memory location addressed by [contents of ED1 plus
four] to the contents of EAX. Most instructions permit a memory location to be
used as either a destination or a source.

1 For those of you not familiar with lntel assembler notation, the destination
o~erand comes before the source operand. For example:

On the lntel 8088, which was used in early IBM PC's, a significant speed-up
in instructionexecution timecould often be realized by using string instructions
such as STOS, even without the REP instruction prefix, whenever possible.
However, in designing the 386, lntel deliberately optimized instructions such
as MOV [EDI], EAX so thatany speed-up resulting from using string instructions
without the REP prefix is completely negated, even if the pointer register (EDI)
must be incremented or decremented in a separate instruction.

that currently contain items from the top of the data stack.
F~~ the 386, the ideal registers to use for that purpose are

Forth Dimensions 33 March 1994 April

EAX, EBX, and EDX. This leads to a total of 16 possible
stack states,:, which are listed in Table One. Three of those
states are illustrated in Figure One.

The stack state determines the code that is generated
for each simple Forth word. ("Simple" words are identified
by the settings of appropriate flags associated with the
entries for those words. Simple words include dup, drop,
swap, +, and, xor , @, ! , =, <, >, and the like. Also,
instructions such as if, e l s e , then , begin, and r e -
pea t will, at compile time, cause appropriate machine
code to be generated; such code is also dependent on the
stack state.) Table Two shows examples of code generated
for five different simple Forth words, using states 0, 1, and
12 (as shown in Figure One) as the starting states. Figures
Two-a through Two-d illustrate four examples of stack-
state changes that result from the compilation of words.
Observe that some entries in Table Two generate no code
for certain stack states; their actions are emulated by
changes in the stack state at compile time.

Note that when a word does not cause code to be
generated, it can still change the state of the stack during
compilation. Since the changed stack state affects the code
that is generated by subsequent words, the semantics of the
original word are still preserved, in spite of the fact that no
code was generated for that word. Figure Three illustrates
this, by comparing the code generated by drop swap with
the code generated by swap alone, in each case starting
from stack state 1. While drop does not generate any code,
it still changes the stack state
and, thus, the code generated
for swap.

Table One. Stack-top states by register usage I
Stack state EAX EBX EDX
m!& contents contents <=ontents

0 <nothing> <nothing> <nothing>
1 Top item <nothing> <nothing>
2 <nothing> Top item <nothing>
3 <nothing> <nothing> Top item
4 Top item 2nd item <nothing>
5 Top item <nothing> 2nd item
6 2nd item Top item <nothing>
7 <nothing> Top item 2nd item
8 2nd item <nothing> Top item
9 <nothing> 2nd item Top item
10 Top item 2nd item 3rd item
11 Top item 3rd item 2nd item
12 2nd item Top item 3rd item
13 3rd item Top item 2nd item
14 2nd item 3rd item Top item
15 3rd item 2nd item Top item

is not updated more often than absolutely necessary in the
generated code. Instead, logical changes to the pointer can
be tracked in a virtual offset. The virtual offset can then be
applied as an offset in address calculations. When it is
necessary to update the actual pointer value, the virtual
offset is added as a literal to the pointer; the offset is then

m. Updating the
Data Stack Pointer

In some processors, such
as those in the Motorola 68000
family, a register may be used
for an address and also modi-
fied (post-incremented or pre-
decremented) in the same
instruction. However, the Intel
386 and many other proces-
sors don't incorporate this ca-
pability, or else restrict it to a
few special instructions; the
modification of a pointer must
be performed in a separate
instruction. Instead, the Intel
386 may add an offset value
to a register to compute an
effective address, with little or
no penalty in execution time.

For the Intel 386, it makes
sense if the register being
used, for the data-stack pointer

Figure One. Examples of stack states. 1

March 1994 April 34 Forth Dimensions

[ED11 Top item -

[ED1+4] 2nd item -
[ED1+8] 3rd item -
[ED1+121 4th item -

j.

For a processor such as a member of the Motorola 68000 family, there are
eight available data registers. Other processors may have a varying number
of regislers available for use as data-stack-buffering registers. However, as
more registers areused to buffer the top of the stack, the nurnberof stackstates
increases rapidly. For two registers, the number of stales is only five. However,
for four registers, the number of states increases to 65. For five registers, the
number of states totals 326; for six regislers, 1957!

If more than three registers are used to buffer the top of the data stack, a more
"restricted" scheme for assigning registers to stack items is recommended in
order to keep Ihe tolal number of stack states toamanageable number.Amore
complete discussion of this topic, including possible register assignmenl
strategies, is beyond the scope of this article.

[ED1+4] 5th item

[ED1+8] 6th item

[EDI+12] 7th item

Stack state = 0 Stack state = 1

j.
Stack state = 12

1 EBX Top item

EAX 2nd item

[ED[]

[ED1+4] 3rd item -
[ED1+8] 4th item

[ED1+12] 5th item

J-1

[ED11 4th item

Table Two. Code generated for five words, and associated stack-state changes.

dup (state = 0) MOV EAX, [EDI] (new state = 1)
.............. dup (state = 1) MOV EBX, EAX (new state = 4)

...................... dup (state = 12) SUB EDI, 4
MOV [EDI], EBX
MOV EDX, EBX (new state = 13)

drop (state = 0) ADD EDI, 4(state unchanged)
drop (state = 1) <no code generated> (new state = 0)
drop (state = 12) <no code generated> (new state = 5)

..................... swap (state = 0) MOV EAX, [EDI]
MOV EBX, [ED1]+4
ADD EDI, 8 (new state = 6)

..................... swap (state = 1) MOV EBX, [EDI]
(illustrated in Figure Two-a) ADD EDI, 4 (new state = 6)
swap (state = 12) <no code generated> (new state = 10)
(illustrated in Figure Two-b)

.......................... rot (state = 0) MOV EAX, [EDI]
MOV EBX, [ED1]+4
MOV EDX, [ED1]+8
ADD EDI, 12 (new state = 14)

.......................... rot (state = 1) MOV EBX, [EDI]
MOV EDX, [ED1]+4
ADD EDI, 8 (new state = 14)

rot (state = 12) <no code generated> (new state = 15)
......................... xor (state = 0) MOV EAX, [ED!]

XOR EAX, [ED1]+4
ADD EDI, 8 (new state = 1)

......................... xor (state = 1) XOR EAX, [EDI]
(illustrated in Figure Two-c) ADD EDI, 4(state unchanged)
xor (state = 12) XOR EAX, EBX (new state = 5)
(illustrated in Figure Two-d)

Figure Two-a. Generated code and change-of-stack-state example for swap.

1 1 EAX Top item EBX Top item \ri
EAX

[ED1+8] 5th item

[ED1+12] 6th item I J
(Pops one item
from memory
part of stack)

reset to zero. Figure Four
illustrates the virtual offset
and its use.

In the previous section,
updates to the stack pointer
(EDI) were generated in code
for the sake of clarity. How-
ever, in practice, equivalent
modifications are made to
the virtual offset at compile
time, and the actual offsets
used in address calculations
(using the [EDIl+n address
mode) are modified by the
prior value of the virtual off-
set. Table Three shows the
same generated code as
Table Two, but modified to
accommodate a compile-
time virtual offset; code for
the exit word has been
added to the table, in order
to illustrate the code that is
generated when the pointer
register must be updated.
(For all compiled Forth
words, I am assuming that
stack state 1 is the state for all
entries and exits; the virtual
offset must be zero for all
entries and exits.)

N. Special
Considerations for

Stack-Top O p ~ t i o n s
The optimization tech-

niques for the data stack
require special handling
when program branches
and/or direct accesses to the
data stack are present. There
are three different aspects
that must be considered
when optimizing a Forth prc-
gram with these techniques:

1. When branch targets
(and the sequential flow
of execution) come to-
gether at a common
point, the stack states
and the values of Voffs
(the "virtual offset" for
the data stack) must be
"rectified so that a single,
common stack state and
Voffs value can be as-
sumed by the compiler
at that point, regardless
of the source of each

Forth Dimensions 35 March 1994 April

Stack state = 1 New stack state = 6 branch. This consider-
ation applies both to

forward branches (such as those
generated by the i f ... t h e n
control structure) and to back-
ward branches (such as loops).
Figure Five illustrates several
examples of rectifying the stack
state and the value of Voffs at
branch targets.

2. All compiled Forth words must
be able to assume that the stack
state and Voffs value are set to
default values upon entry. This
means that a calling word must
enforce those defaults before
calling another compiled word.
Likewise, a calling word needs
to be able to assume that those
same defaults are present on
return; the called word must
enforce the defaults upon exit-
ing. Coercion to defaults does
not imply a restriction on the
usage of the data stack as seen
by the Forth programmer; it
does, however, imply that ex-
tra code to set u p the stack state
and the Voffs value may need
to be g e n ~ r a t e d . ~

3. If the stack pointer needs to be
accessed (via the word @ s p or a
similar mechanism), it must be
derived by taking the value of
the data-stack pointer EDI, then
modifying it to account for both
the stack state and the current
value of Voffs. Likewise, if it is
expected that items on the stack
will be made available for
memory accesses, then the con-
tents of all registers that buffer
data-stack items (EAX/EBX/
EDX) must be forced out to
memory prior to any such ac-
cesses; this can be accomplished
by rectifying the stack to state 0.

[ED11 4th item

[ED1+4] 5th item

[ED1+8] 6th item

[EDI+12] 7th item -

Figure Two-c. xor 's generated code and change-of-stack-state.

Starting stack state = 1 Stack state is unchanged

Figure Two-b. swap's generated code and change-of-stack-state. 1
Top item

2nd item

EDX 3rd i tem ------------

-
stack. In add~tion, Forth code should neverattempt toenterany compiled Forth stack state or the Voffs value, no code is generated.
word, except at the legitimate entry point at the start of the word. It is important to remember that both the stack state and

EDX 3rd item

The rectification of one stack state to another is
accompanied by the generation of code that moves values
between the EAX/EBX/EDX registers and, possibly, the

4The same considerations for calling a compiled Forth word also apply to the
use of execute to call a word indirectly via an executable addresson the data

memory portion of the data stack; the value of Voffs may
be modified in the process. Rectification of the value of
Voffs to another value Voffs(,,,) involves generating code
that adds the difference V~ffs(,,,,,~ -Voffs(,,,) to the data-
stack pointer EDI, then setting Voffs to Voffs(,,,). If
rectification does not involve a change to either the Current

<no code generated>

Some early Forth programs take advantage of the fact that many Forth
implementationscompileeachnewwordintheformofasequenceofaddresses
that point to the called words. Since an increasing number of Forth
implementations generate machine code directly, such techniques should be
completely avoided. Instead, if a table of executable-word addresses is
needed, the table should be built explicitly as an array of addresses that can
be used with the execute word. (The ANSI Forth standard recognizes that
different Forth implementations mav use comoletelv different methods to

March 1994 April

\

>

,' \,

the Voffs value are significant only during compilation.
while the resulting generated code will reflect the influ-
enceS of those there is no run-time tracking of what
those values were in the generated code. (However, any
data structures generated for debugging purposes will
need to track those values in order to d i s d a ~ the data . ,

generate and interpret run-time code'; it specifically prohibits "tricks," such as
the one just mentioned, that may be dependent on the way in which Forth code
is generated.)

Forth Dimensions
1

[ED11 4th item

[ED1+4] 5th item

[ED1+8] 6th item

[ED1+12] 7th item

stack's Contents correctly,)

Starting stack state = 12

J.
New stack state = 10

- -

Table Three. Code generated for six words with Voffs i n ~ o r ~ o r a t e d . 1

....... dup (state = 0) MOV EAX, [EDI]+ Voffs (new state = 1)
..................... dup (state = 1) MOV EBX, EAX (new state = 4)

.......... dup (state = 12) cVoffs += -4>
MOV [ED!]+ Voffs, EBX
MOV EDX, EBX (new state = 13)

........... drop (state = 0) cVoffs += +4> state unchanged)
...................................... <no code generated>

........... drop (state = 1) <no code generated> (new state = 0)
......... drop (state = 12) <no code generated> (new state = 5)
......... swap (state = 0) MOV EAX, [EDI]+ Voffs

MOV EBX, [EDI]+ voffs+4
cVoffs += +8> (new state = 6)

......... swap (state = 1) MOV EBX, [EDI]+ Voffs
cVoffs += +4> (new state = 6)

....... swap (state = 12) <no code generated> (new state = 10)
.............. rot (state = 0) MOV EAX, [EDI]+ Voffs

MOV EBX, [ED[]+ Voffs+4
MOV EDX, [EDI]+ Voffs+8
<Voffs += +i2> (new state = 14)

.............. rot (state = 1) MOV EBX, [ED!]+ Voffs
MOV EDX, CEDI]+ Voffs+4
cVoffs += +8> (new state = 14)

rot (state = 12) <no code generated> (new state = 15)
............. xor (state = 0) MOV EAX, [EDI]+ Voffs

XOR EAX, [EDI]+ Voffs+4
cVoffs += +8> (new state = 1)

............. xor (state = 1) XOR EAX, [EDI]+ Voffs
cVoffs += +4> state unchanged)

........... xor (state = 12) XOR EAX, EBX (new state = 5)
............ exit (state = 0) MOV EAX, [EDI]+ Voffs

ADD EDI, Voffs+4
RET
cVoffs = 0> (new state = 1)

............ exit (state = 1) ADD ED!, Voffs
RET
cVoffs = 0> state unchanged)

.......... exit (state = 12) ADD EDI, Voffs-8
MOV [EDI], EAX
MOV [ED1]+4, EDX
MOV EAX, EBX
RET
~ V o f f s = 0> (new state = 1)

Figure Two-d. XOK'S generated code and change-of-stack-state. I

EDX 3rd item (1 [EDI] 3rd item (was 4th) I
1 1 [ED1+4] 4th item (was 5th) I 1 [EDI] 2nd item 1) A 71 [ED1+8] 5th item (was 6th)

[ED1+4] 3rd item [ED1+12] 6th item (was 7th)

1 [EDl+l:] 5th item 1 1

1 Starting stack state = 12 New stack state =5

V. Combining Generated
Code Instructions

The optimizations discussed
previously relate to improving
the speed of the generated code
by reducing the number of in-
structions, and the number of
memory accesses, needed to
manipulate items on the data
stack. There is an additional class
of optimizations for the gener-
ated machine code, which takes
advantage of the fact that gener-
ated code instructions can often
be combined into a smaller num-
ber of faster instructions.

The most obvious area in
which generated instructions can
be combined is when literal val-
ues are used. Frequently, the lit-
eral is consumed by the next
word. If the word following the
literal is a simple word (i.e., a
word that is subject to machine-
code optimization), it is often
possible to combine the literal
with the code that is generated by
the simple word. For example,
the non-combined way of gener-
ating code for the sequence 1 5 +
from stack state 1 would be:5
MOV EBX, 15
(push literal 15 onto data stack)

ADD EAX, EBX
(add pushed value to prior top item)

1 In all the examples in this section, I am
assuming that the starting stack state is state
1 ; the use of Voffs is omitted.

1 However, when these two
code instructions are combined,
a single code instruction can be
used instead:
ADD EAX, 15
(add literal 15 directly to top item)

Forth Dimensions 3 7

-

March 1994 April

When a named constant is
called, it operates much like a
literal, in that the constant value is
pushed onto the data stack. A
variable operates in much the same
way, except that the constant be-
ing pushed is the variable's ad-
dress. In both cases, the pushed
value can often be combined into
the next instruction in much the
same way as a literal. For example,
the code instructions to access the
contents of a variable, as generated
by the sequence v l @ (where v l is
defined by the phrase v a r i a b l e
vl), might initially appear as:

MOV EBX, offset v16
MOV EBX, [EBXI

These instructions can be
replaced by the single code
instruction:
MOV EBX, v l

Another common situation
occurs where a variable's con-
tents are accessed, then con-
sumed by the following word.
For example, the sequence v l
@ + might generate the follow-
ing code without combining:
MOV EBX, offset v l
MOV EBX, [EBXI
ADD EAX, EBX

When combining is used,
the above three-machine-code
instructions are replaced with a
single instruction:
ADD EAX, vl

Figure Three. Code generated by swap with and without preceding d r o p . I

state = 1 state =6 state = 1 state =6

ldrop] I=]
(drop generates no code itself, but it
changes the stack state to 0 before

swap generates its code!)

Other combinations are pos-
sible as well. For example, an
index may be scaled, then added
to the base address of an array
of 32-bit values; the indexed
element is then accessed. An
example is the sequence
a r r a y l vl @ 4 * + @ (where
a r r a y 1 returns the starting
address of an array of 32-bit
values). The resulting gener-
ated code could take advantage
of the indexed addressing mode
to allow otherwise-separate in-
structions to be combined:
MOV EBX, v l
MOV EBX, arrayll4*EBXl

It also makes sense to per-
form computations involving
literals during code generation.
For example, the word se-
quence c 1 4 * 1+ + (where c 1
is defined by the phrase 3 0
c o n s t a n t c 1) may generate the code instruction:
ADD 121 (cl = 30, s o 4 * c l + 1 = 121)

Figure Four. Illustration of the virtual offset.

Initial Voffs (virtual offset) = zero

new

value

Initial Push 2 items Pop 1 item Pop 2 items Pop 1 item Update
to memor from memory from memory from memory pointer
(~offs-=EY (Voffs+=.l) (Voffs +=8) (Voffs +=4) (Voff s=O)

This also applies to address calculations, such as for the
sequence a r r a y l 2 0 + @ :

MOV EBX, arrayl+20

Another situation where combining code instructions is
particularly useful occurs when a test is followed immedi-
ately by a control-structure word such as i f or u n t i l . The
need to generate an explicit flag is thus eliminated, and the
test plus control-structure branch can often be reduced to

For those of you not familiar with lnlel assembler notation, the use of offset
before an address value causes the address value to be treated as a literal. If
an address value is not preceded by offset, the corresponding memory
location is accessed instead. However, a non-address value does not need
offset to be treated as a literal.

from two to four instructions. For example, the sequence =

i f ... t h e n might generate the following code:
MOV EBX, (ED11
ADD EDI, 4
CMP EAX, EBX
JNE -LBL-nnn
(-LBL-nnn is a compiler-generated jump label)

Of course, a comparison with a literal or constant value
generates even simpler code. For example, the sequence
8 < i f ... t h e n might generate the following code:
CMP EAX, 8
JNL - LBL-nnn
. . .

March 1994 April 38 Forth Dimensions

Figure Five. Examples of rectifying the stack state and Voffs value for various control-structure jumps. I

{ssX, VoffsX) = stack state #X;
Voffs value vX

I -LBL-nnn: I matched entries are removed from the array, and the

To implement the combining of machine instructions,
the compiler looks for sequences of simple Forth words
that could potentially generate combinable instructions. In
practice, an array is used to retain u p to some maximum
number of entries that contain tokens for words that have
been recently parsed off during compilation, but for which
no machine code has yet been generated. When the array
is full, a pattern-matching scan is started on the array,
beginning with the first entry. A set of code-generating
patterns is matched, one pattern at a time, against the
array's contents. Longer patterns are scanned before
shorter ones, but the matched pattern must always begin
with the first entry in the array. Since patterns are defined
for all possible single tokens, at least one token in the array
is guaranteed to be matched.

When a matching pattern is found in the array, the
- ~ - -

In order to avoid the overhead of actually moving array entries down after
earlier entrtes have been removed, thearray should, in practice, beimplemented
as acircular queue. The length of the array should be at least equal to the length
of the longest code-generating pattern. However, the use of "tokens" permits
the individual entries in both the array and the patterns to be reduced down to
one or two bytes apiece: it also speeds up the process of matching patterns to
the array's contents.

remaining entries are moved down to fill in the vacated
entries.' (If computations involving literals or constants
are involved, the removed entries may instead be replaced
by a smaller number of entries.) The matched pattern is
associated with the code to be generated for that pattern.
Since at least one entry will now be vacant at the end of
the array, the compiler can then continue to parse off at
least one additional word. Note that pattern-matching on
the array is performed only when it is full, or when the
compiler must force the entire array to be compiled into
code and then emptied. The latter situation may occur
when a non-simple word (such as another compiled
word) is called from the currently compiled word, when
an e x i t is encountered, or when a branch target is
reached. Figure Six illustrates an example of the pattern-
matching process for a simple (if contrived) setup.8

8 There are two additional areas where optimizations may have a significant
impact. The first area is in replacing multiplications by "small" constants with
sequences of shifts, additions, and/or subtractions. The second area involves
the multiplication of a loop index by a constant value; the multiplication of the
index can be replaced by maintenance of a "shadow" index in parallel with the
"regular" loop index. (Multiple "shadow" indexes may be associated with a
single "regular" index.)

Forth Dimensions 39 March 1994 April

In the case of literal or constant values (including the starting addresses of
arrays), the associated values may be kept in a separate, parallel array, where
each entry is 32 bits (four bytes). For certain commonly used constants, such
as 0, 1,2, and -1, special "tokens" may be used that permit generation of code
that can be optimized for the presence of such constants.

Both of these areas of optimization are beyond the scope of this article.
Interested readers are referred to the sections on code optimization in the book
Principles of Compiler Design by Aho and Ullman, published by Addison-
Wesley. (Computer science students may recognize this book as the infamous
"dragon book" because of the cover design.)

Figure Six. Illustration of the pattern-matching process for a simple set of patterns. I
@ dup (v l is defined as a variable)

I D

@ + @ dup

.L (token array full) ;??::tf8Fgp2#yE: I:::::::::?;::.,,:.::: .A> ...

,,:,:, J ~ & ~ & ~ ~ ; ~ & ~ ~ : : ~ : ~ ~ . 9 ma tc he+ pattern (1)
\ / Replace pattern with single entry

V

(token array full) I j::: ... !.:.:.:.:.:.:.,.:::::fi:::::m:::<::::::::m? 1 :...... , I~L~~IcgS..t:4,a...::, ,....... . ,.,.,.,.,~,~.~.~. . . , ,.,.,.,.,.,.,....., . 1 z p 1 > matches pattern (2)
I Generate code: , , , r t a c k state = I)

) MOV EBX, d w o r d ptr (<v1+4>)
(new state = 6)

(etc.)

Set of matching token patterns (partial): / (1) literal <n l> ; literal <n2>; add I Replace pattern with single entry: literal <nl+n2>
(2) literal <n>; fetch
(3) literal <n>
(4) add

(5) dup
(6) fetch

(stack state = 1) MOV EBX, d w o r d ptr (<n>) (new state = 6)
(stack state = 1) MOV EBX, o f f set (<n>) (new state = 6)
(stackstate=l) ADD EAX, [E D I] + V o f f s

voffs += +4 (state unchanged)
(stack state = 6) MOV EDX, EBX (new state = 13)
(stack state = 6) MOV EBX, [EBX] (state unchanged)

VI. Macros and Macro Compilation
One major problem with the foregoing optimization

techniques is that, in many typical compiled Forth words,
simple words may be thoroughly intermixed with calls to
other compiled words. Unfortunately, calls to compiled
words can severely limit the opportunities for code opti-
mization, because of their nature:
1. A monkey wrench gets thrown into optimization of

operations on the data stack by calls to compiled
words, because each call to a compiled word requires

that both the stack state and the value of Voffs be
rectified to values consistent with the expectations
already compiled into each and every compiled word.
By contrast, when sequences of source code contain
only simple words, the compiler has considerably
more flexibility in how it generates its code with
respect to the optimization of data-stack handling.

2. In addition, there is simply no way to combine a call to
a compiled word with any other machine instruction.
Thus, opportunities for code optimization due to the

March 1994 April 40 Forth Dimensions

combining of instructions are also severely limited.

What is needed is a mechanism whereby calls to
compiled words can be replaced by in-line code se-
quences. An in-line code sequence is simply the same
sequence of words that would otherwise be present in the
compiled word. (Of course, the terminating e x i t would
be omitted, andseveral other words may not be equivalent
when used in-line vs. in a compiled word's definition.)

For example, the words a b s and >= have the following
Forth source definitions:
: a b s d u p 0< i f n e g a t e t h e n ;

: >= < n o t

If these words are later compiled into another word, the
generated code would make subroutine calls to them, as
in the following example:
: deadzone

(nl n2 n 3 -- n l i f ln l -n21 < n 3)

(n l n2 n 3 -- n2 i f 1x11-n21 >= n 3)
> r o v e r o v e r -
a b s r > >= i f t h e n d r o p ;

generates subroutine call to >= T ILwap
U g e n e r a t e s subroutine call to abs

However, if the words a b s and >= could be set up as
in-line routines, the above example for deadzone would
generate code as if the source definitions for a b s and >=
were substituted at the appropriate places:
: deadzone

> r o v e r o v e r -
dup O < i f n e a a t e t h e n
(a b s d e f i n i t i o n s u b s t i t u t e d)
r >
< n o t
(>= d e f i n i t i o n s u b s t i t u t e d)
i f swap t h e n d r o p ;

Needless to say, there are more opportunities for code
optimization in the second definition of deadzone ,
especially with regard to execution speed. However, since
the compiled words are expressed in their full, in-line form
in the second definition, the resulting code may be
somewhat larger. In the typical 386 environment, program
size is less of an issue than it is in some other environ-
ments, while speed continues to be a significant concern,
especially in such compute-intensive applications as graphi-
cal user interfaces, animation, and multimedia.

I propose that the following mechanism be imple-
mented in the compiler to permit "macros" (i.e., in-line
code definitions) to be created: namely that such defini-
tions use the word :macro to start their definitions, rather
than the usual : (colon) word. In effect, every word within
the macro definition, except for the terminating ; (semi-
colon) word, is deferred, rather than compiled in the usual

-- ~p

gSince all words are deferredin a macro, it is entirely possible to have a macro
that has incomplete control structures. For example, a definition such as the
following is perfectly legitimate as a macro:
: m a c r o n o t i f n o t i f ;
However, such a macro should not be made executable at interpret time,
because of the incomplete i f control structure (t h e n is missing). If you use
e x e c u t a b l e on this macro, you will get a compiler error message.

fashion. If the definition is followed by the word e x e c u t -
a b l e , an interpret-time alias is created for the macro; the
alias, which has the same name as the macro, is then
executable in interpretive mode.9 The following gives
modified definitions for a b s and >= using macro defini-
tions:
:macro a b s

dup 0< i f n e g a t e t h e n ;

e x e c u t a b l e

:macro >=
< n o t ; e x e c u t a b l e

An additional word, does>macro , completes the
basic macro facility. The word does>macro bears the
same relationship to d o e s > that :macro bears to the :
(colon) word.

The macro facility just described can be extended in a
number of ways. The principal way in which it could be
extended would be to introduce words that are not
deferred within a macro definition. This opens up some
new possibilities, such as conditional compilation via
macros. However, my primary purpose in introducing the
macro capability in this article, was to show how it could
be used to permit better code optimization via the in-line
compiling capability.

W. Conclusion
A Forth implementation may compile words in such a

way as to generate machine-language code, rather than
just pointers that require additional run-time interpreta-
tion. Such machine code can be optimized so that it runs
even faster. There is sometimes a savings in space as well,
although space savings may not be as critical an issue,
especially for typical 386-based PC's.

While I used the Intel 386 to illustrate my examples, the
basic ideas can be transferred to other processors as well.
This is especially true of the Motorola 68000 family. The
optimizations I have presented are particularly oriented
toward the generation of optimized code for a Forth
compiler, although some of the techniques can be applied
to other languages as well. Likewise, some (though not all)
optimization techniques used with other compilers may
be profitably applied to a Forth compiler.

In order to take maximum advantage of optimization
possibilities, the Forth compiler should be extended with
a facility for in-line substitution of source code definitions,
in lieu of the compiling of subroutine calls that impose
severe restrictions on code optimization. I have presented
the definition of a basic macro facility that fills this purpose
and opens up some new possibilities in its own right.

The author, a consultant specializing in PC-based Forth, has more than six years
of experience with Forth and related systems; the company he owns is engaged
in developmentof a major Forth for Microsoft Windows 3.1. If you have questions
or comments on this article, address them to David M. Sanders, PSI0 FOUR
Enterprises, 370 Turk St., Suite #123, San Francisco, California 94102. This
material is not copyrighted and has been placed in the public domain, although
credit to the author would be greatly appreciated.

Forth Dimensions 4 1 March 1994 April

A Forum for Exploring Forth Issues and Promoting Forth

Forth: Always New, Despite its Age
Whenever we send out a Forth marketing message, we

need to speak of Forth using the latest terminology on the
high-tech horizon. Two terms to consider with regard to
Forth are "application framework" and "introspection."

Did you know that, among other things, Forth is a
deuelopment system framework and a programming lan-
guage framework?As the term framework implies, it frames
your program with a structure to carry the code you supply.

A framework offers another form of code reuse. The
most familiar format for reusable code is a library, which
consists of bundled service-providing routines that you
choose to call or not. Besides offering already-made
services, the framework "prewires" certain services to-
gether to roughly model the application you are about to
build. The framework offers a basic design for accomplish-
ing a task, instead of offering piecemeal code that you may
use along with your own design.

Frameworks such as Hypercard and MacApp are help-
ing application programmers create GUI applications for

The actual processor is
less of a concern than
the virtual processor...

the Macintosh with greatly reduced effort. For PCs running
Windows, the premier framework is Visual BASIC.

The code from the framework satisfies general goals,
such as queuing the input events associated with a mouse
and keyboard. ~ ~ ~ l i c a t i o n - s p e c i f i c goals are met by your
own routines, which the framework has a way to call at the
appropriate times.

Forth can be seen not merely as an application frame-
work (particularly if your final application preserves the
Forth interpreter), but also as a development system
framework and a programming language framework.

The Forth programming language is subject to modifi-
cation by the programmer. Typically, control structures
are written to replace the ones that came with a system.
Because it does not involve redesigning Forth from the

ground up, this type of language refinement is equivalent
to the use of a framework. In this way, Forth functions as
a programming language framework. (The end product is
a Forth dialect or a new language-typically one that
preserves the basic Forth compiler.)

Habitually, Forth programmers create decompilers,
tracers, code profilers, and other tools. In Forth, they are
easy to create. In this case, Forth is functioning as a
development system framework-allowing you to create
specific development tools within an overall tool frame-
work. (The end product is a customized application
development system that preserves most of Forth's native
development tools.)

The term framework helps convey an important mes-
sage to the larger programming community. It is one way
that Forth can be considered a very progressive, and a very
high-level, environment.

Programs Become Introspective
Another new term we can use to describe Forth involves

the concept of introspection. This term came to my attention
recently with regard to Dylan. The Dylan programming
language is a product of long-term research at Apple
Computer. Dylan is object oriented, so the concept of
introspection is the concept of self-identifying objects:

The [Dylan] language should contain features for
introspection. This means that the language run-time
should have sufficient power to answer questions about
itself and the objects it manages. For example, it should
be possible at execution time to analyze the structure of
an object, find the subclasses of a class, etc.

To facilitate type-safety and introspection, objects are self-
identifjring in memory. Unless all uses of an object can be
analyzed at compile-time, the run-time memory for the
object should contain enough information to identify its
class and value. --&Ian Language Reference

The ease with which Forth decompilers can be written
suggests that Forth compilers already produce memory
images that are subject to meaningful inspection.

Several Forth programmers at the Asilomar FORML
conference last year were interested in developing Forth

March 1994 April 42 Forth Dimensions

I systems that relied on decompilers to allow browsing and [1
editing of compiled routines in terms of their computed
source code.

At the Silicon Valley FIG Chapter meetings, there has
been talk of building decompilers to display the source
code corresponding to the compiled code in several
languages, including Forth and C. That kind of translation
could eventually provide cross-platform tools for working
simultaneously in Forth and C environments.

(Another approach to mixed language support might
be to implement C in such a way that its run-time system
supports a two-stack architecture. Currently, C uses one
stack to support function returns as well as the parameter-
ization of routines. It does not sound as though it would
be a difficult for C to accept a two-stack architecture. The
challenge would be to make sure that the switchover was
seamlessly transparent to C programmers.)

Why Get Real, When
Virtual Reality is Better?

Forth is for programmers who want to be assured that
the code that runs on the processor is their own creation,
not the compiler's creation. Insofar as high-level Forth
instructions are ultimately mapped into the native instruc-
tions of a given processor, the preceding statement is
slightly misleading. However, due to Forth's lack of syntax
and lack of intense processing as part of its compiling
process, the statement still rings essentially true.

Yes, the Forth implementor has written most of the low-
level code that ultimately runs on the processor. But the
actual processor is less of a concern than the virtual
p roces so r~on t ro l of which is the object of desire for the
Forth programmer. We are much more able to realize our
dreams when the medium for their creation is virtual reality.

Forth gives the illusion of having assembly-language levels
of control to do whatever needs doing, but without the usual
inflexibility of an assembly language development system.

Forth is a carefully chosen virtual processor language
that is capable of being very sweeping, as well as being
very granular. It can be made as high level as desired
because the virtual Forth processor's instruction set is
extensible in a multitude of ways. We can create compilers
for new data structures and compiler extensions that make
sophisticated routines easier to specify. We can even
create new compiling systems based on the compiler
framework supplied with Forth. Metacompilers and target
Forth compilers are two examples of added-on systems
often developed using Forth's compiler-compiler tools.

Perhaps the virtual component of our pursuit of Forth
is the central one. Perhaps, because we are unable or
unwilling to deal with reality, we make u p our own reality
to suit our needs. Forth offers us a virtual programming
environment (or programming language framework) whose
content is placed under our control. After our flights of
fancy without real-world constraints, we become hooked
without hope of recovery.

Someday, when Forth is regularly implemented in
silicon, we'll get back to nonvirtual reality.

-Mike Elola
Forth Dimensions

NOVEMBER 1993
FORTH, Inc. announced a new cross-compiler to

support the Motorola 68HC16 microcontroller, which
includes Background Debugging Mode (BDM). With
BDM, thorough software tests can be performed without
in-circuit emulators or other special hardware.

The new software is supplied along with the Motorola
M68HC16ZlEVB development board. It provides 64K
bytes ofEPROM or RAM (expandable to 128K), acentronics-
compatible parallel port used by the BDM, and one RS-232
port. The new chipForth is tailored to work with this target.
It can also be configured to support other boards contain-
ing the 68HC16 target processor.

From a host PC, chipForth provides interactive, incre-
mental programming. The host PC runs the polyForth
development environment under MS-DOS. The target
runs a real-time multi-tasking executive and a kernel
including many useful primitives. Source code is provided
for the target software, the cross-assembler, and the cross-
compiler.

The 68HC16 version of chipForth is the latest addition
to FORTH, Inc.'s line of development systems suited to
real-time and device control applications. Other versions
support the 8031/51, 80x96, 68HCl1, and 68xxx families
of microcontrollers.

DECEMBER 1993
Creative Solutions, Inc. announced that it will provide

a version of MacForth to run on Apple's new line of RISC
computers based on the Power PC microprocessor. Apple
expects to ship its new class of computers in the first half
of 1994.

CSI also announced the Hustler HDS+ series of plug-in
boards for Macintosh computers. The first of this series is
a new board with high-speed serial ports (230,000 baud on
one port or 115,000 baud on two ports) and a 64K data
buffer. It had an introductory price of $299 when it was
announced.

COMPANIES MENTIONED
Forth Inc.
11 1 N. Sepulveda Blvd.
Manhattan Beach, California 90266-6847
Fax: 310-318-7130
Phone: 310-372-8493

Creative Solutions, Inc.
4701 Randolph Road, Suite 12
Rockville, Maryland 20852
Phone: 301-984-0262

43 March 1994 April

Business, industry, and edu- software project through the
cation are discovering that analysis and implementa-
FOEYTH is an especially effec- tion process, showing how
tive language for producing to simplify your program
compact, efficient applications and still keep it flexible
for realtime, real-world tasks. throughout. Both beginning
And now there's Thinking and experienced program-
Forth-an instructive guide mers will gain a better
that illustrates the elegant logic understanding and mastery
behind the language and shows of such topics as
how to apply specific problem-
solving tools to software, FORTH style and conventions

regardless of your program- * decomposihon

ming environment. factonng
handling data
simplifying control structures

It combines the philosophy and more.
behind Forth with traditional,
disciplined approaches to soft- And, to give you an idea of
ware development- to give you how these concepts can be
a basis for writing more read- applied, Thinking Forth con-
able, easier-to-write, and tains revealing interviews
easier-to-maintain software with real-life users and with
applications in any language. Forth's creator, Charles H.

Moore.
Written in the same lucid, hu-
morous style as the author's To program intelligently, you
StartingForthand packedwith must first think intelligently,
detailed coding samples aand and that's where Thinking
illustrations, Thinking Forth Forth comes in.
reviews fundamental Forth
concepts and takes you from
the initial specification of your

h
L

