

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000"" l&bit Forth Chip SC32"" 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 &prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. *Stack depths limited only by available memory.
-&channel 1/0 bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. 4 2 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. .100mm x 160mm Eurocard size (+layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.

-233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
-System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. *32 KB to 512 KB 0-wait-state static RAM.
100mm x lmmm size (&layer) board. *100mm x 160mm Eurocard size (+layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

Features 1

8 The FSAT Project Jim Schneider 9 A development environment with the advantages of both Forth and Unix would include the tools
which many mainstream programmers are comfortable with and which they have come to expect.
It would also offer access to Forth by those who otherwise might not tread its alien (to C users)
territory. Not incidentally, it would provide new tools to Forth programmers. (Part one of a series.)

Mixed Integer Arithmetic Walter J. Rottenkolber I5 Forth follows the assembler paradigm-data is not typed, the programmer must keep track of it
on the stack. And because operators are not overloaded, different functions must be specified for
the different data types. The author shares his pre-defined functions, the better to use public-
domain source code that may require such routines.

Towards Natural Language Programming Markus Dahm
Forth is often used to write applications, but many potential users of application languages do not
want to be experts in programming. In Germany, an object-oriented Forth is being used as the base
of an application language that allows users to write meaningful programs in their native languages.
This allows them to concentrate on solutions rather than on the syntax of a computer language.

f More on Numbers C.H. Ting 24 The tutorials continue, this time exercising Forth's faulity (and your familiarity) with commonly
useful mathematics functions. Included: sines and cosines, random numbers, square and cube
roots, greatest common divisors, and the Fibonacci sequence.

8
An H-P Laserjeneskjet Driver Charles Curley 28 One of the more popular printers in recent years, the Hewlett-Packard Deskjet series offers good
quality and relatively inexpensive inkjet technology. To control its features from within your
favorite Forth environment requires only an understanding of the printer's control language and
these public-domain routines.

One-Screen Virtual Dictionary Gordon Charlfon 40 Files use disk space dynamically and are relatively complex, both in the amount of code required
to implement them and in the programs that use them. But blocks are simple windows into a larger
virtual memory, requiring only a way of organizing this secondary memory system. Attempts to
structure block space with dynamic allocation schemes tend to be complex. For a static allocation
system, however, we already have a good model to work from: the Forth dictionary.

I 4 EditorialCall for contest entries, myth breaking, C-ing Forth.

5 Letters Smashing marketplace myths; three-piece logic; potable dpANS
Forth; C saws, frogs, and princesses.

t4 Advertisers Index

36 Fast Forthward The impact of open systems.

... I 43 On the Back Burner Dead reckoning.
I I

Forth Dimensions 3 July 1993 August

Forth Dimensions
Volume W , Number 2

July 1993 August

What is the ideal Forth development environment? Opinions range from bare-bones fig-
Forth (simple, maybe elegant) to F-PC (rich) to hardware implementations (fast), graphical
interfaces (contemporary), object oriented (post-modern?), etc. Of course, how you define
a development environment will depend on whether you are looking at the issue from within
the Forth community, the larger software community, or the world of embedded systems.

Whatever your perspective, you still have time to share your expertise and opinions and
win up to $500. The deadline for entries in the Forth Dimensions "Forth Development
Environmentsn contest is August 1, 193. Completed papers (hard copy and diskette, please)
must be received at our office by that date. The theme is the same as for the upcoming FORML
conference, and papers for that event are also eligible for the FD contest ifthey are received
by the contest d&dltm; just mail a separate copy to the attention of the FD editor. For some
of the suggested topics, see the FORML announcement on the back cover; contest details are
provided in the ad on page six of our last issue.

Published by the
Forth Interest Qroup

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

is included with membership inthe
Forth Interest Group at $40 per
year ($52 overseas air). For mem-
bership, change of address, and to

, I

Forth Di-ions welcomes
edtorial material, letters to the edi-
tor, and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscripionto hrthDimemiom

Our last issue carried Donald Kenney's "Forth in Search of a Job." The author gave reasons
why a software manager might reject Forth as a programming solution in a corporate
environment. The objections sounded familiar and a little depressing (perhaps even
reasonable, from a certain point of view). Were they blunt words, a death knell, or a healthy
dose of reality therapy? Well, old hands at the sales game know that once you have a clear
picture of a prospective customer's objections, you are on the road to making a sale.

Elizabeth Rather, President of Forth, Inc. and chairperson of the committee developing
ANS Forth, responds in this issue with a letter I'd like every Forth programmer and business
to any prominently in their consciousness. After twenty years of running a leading Forth
business, Ms. Rather has heard all the arguments against Forth and has an impressive arsenal
of evidence and case histories with which to shoot down each of those objections. We are
fortunate to have her no-nonsense attitude andget-the-jobdone approach in our community.

It seems to me that, as always, we have choices about how we react to the world. We
can beat our breasts and whine about Forth's market share, or we can use our assets to
penetrate and impress the portion of the marketplace to which we do have access. We can
place a couple of ads about our product or service and wait for something (or nothing) to
happen, or we can prepare ourselves to go out and meet our prospects face to face. We can
cringe at objections to Forth and slink back to our offices to lick our wounded egos, or we
can counter those objections with hard facts and real examples, and then demonstrate the
validity of our claims, proving both our own expertise and Forth's facility by doing a great
job and, thus, creating another happy client.

Unlike Michaelangelo, the Pope is not elevating us to the chapel ceiling; if our art is
important to us, we will erect our own scaffolding, one success at a time. Sure, we'd all like
to ride the coattails of an endorsement by Bell Labs, for example. But instead, we must rely
on business acumen, including sales techniques, a s a necessary complement to our
programming skills.

*

1 z I

We also present in this issue a new author. Jim Schneider's FSAT project is of considerable
scope, tackling the thorny and controversial issues involved in providing a Unix-like Forth
development environment which will allow, among other things, compiling C routines into
Forth. While progressing to that end, he promises to provide some interesting utilities to keep
us happily occupied while he sweats the details of the big picture. And, for the sake of those
who repeatedly ask, "Where is the younger generation of Forth programmers," Jim has
provided details of his own rites of passage.

Discerning readers will notice congruities between Jim's article and Mike Elola's essay in
this installment of "Fast Forthward." I'm tempted to ponder whether this represents Forth's
future. But it is probably more accurate to observe that this is another of the faces that Forth's
extensibility-malleability-permits it. Whether its virtue suffers or is lost entirely in the
translation will depend on both the eye of the beholder and the mind of the implementor.

-Marlin Ouvenon

submit items for publication, the (
address is: Forth 1nterest Group,
P.O. Box 21 54, Oakland, California
94621. Administrative offices: 510-
@-FORTH. Fax: 510-535-1295.
Advertising sales: 805-946-2272.

Copyright 63 1993 by Fotth In-
terest Group, Inc. The material con-
tained in this periodical (but not
the code) is copyrighted by the
individual authors of the articles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repre
ductions for non-commercial pur-
poses, without the written permis-
sion of Forth Interest Group, Inc. is
a violation of the Copyright Laws.
Any code bearing a copyright n e
rice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and benefm
intended to assist each of its mern-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Forth Dimemions (ISSN 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, d o P I , 1293 Old
Mt. View-Alviso Rd., Sunnyvale,
CA 94089. Second-class postage
paid at San Jose, CA. POSTMAS-
TER: Send address changes to Fortb
Dimensions, P.O. Box 2154, Oak-
land, CA 94621 ."

July 1993 August 4 Forth Dimensions

It is specious to equate using Forth in a shop that may also
use C to "22 dialects of 13 programming languages."

Letters to the Editor-and to your fellow readers--are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Fbrth community, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity andlength. We
want to hear from you!

Smashing Marketplace Myths
Dear Mr. Ouverson:

I was appalled by Donald Kenney's article, "Forth in
Search of a J o b (Forth D i m i o n s XV/l). I have certainly
heard these objections many times, and I agree that it's
important for all of us to know that these are the fears that
haunt some managers. What I object to is his bland accep-
tance of these myths, the assumption that these bogeymen
are real, despite considerable real-world evidence to the
contrary. Let's take them one at a time.

1. Integration, maintenance, bug @es: As we have been
serving professional Forth users for 20 years now, we and
our customers have many examples of both large systems
(which I'll discuss later) and projects that have evolved
over many years. We have found that Forth wears
extraordinarily well. In fact, our very first customer, Bob
Barnett of Cedar Rapids, Iowa, has developed a success-
ful data entry system over nearly 20 years (we first worked
with him in the spring of 1974), on at least six different

Forth hasn't taken over
the worlcCnot for any
technical reason, but for
a marketing reason.

CPUs. California Municipal Statistics, in San Francisco, has
a very complex data base program that Chuck Moore first
developed in 1976 that is still in use; they've done a lot to
it themselves, and have called us in a few times to assist
with special projects, sbch as porting it to more modern
platforms.

More recently, Federal Express has been maintaining two
major Forth-basedsystems, the oldest ofwhich dates from
1987. They have a team of about eight programmers, who
maintain both these and some C-based systems. They
have told us they find the Forth-based systems far easier
to maintain than the C-based systems; they can turn
change requests into releases in only a few weeks rather

Forth Dimensions 5

"Choice of language doesn't matter. "I agree that it often
seems that way to most managers, and programmers as
well. In regard to choosing, say, C vs. C++ or Pascal, it's
probably even accurate. But choosing Forth can often
reduce costs as well as calendar time (which is often more
important) by really significant margins. Not only can the
work go quicker, with a smaller prograrrming team, it
frequently also requires much simpler, cheaper comput-
ers to run on.

When we developed the Heating, Ventilation, and Air
Conditioning (HVAC) system for the GM/Saturn plant in
Tennessee, they told us we saved them several million
dollars over more conventional approaches. We did this
by developing software that ran on cheap, embedded Z-
80 boards coordinated by a few PCs rather than using
many VAXs (as proposed by the next lowest bidder). On
the Saudi Arabian airport project in the mid-1980's, we
produced in 18 months and about 30 programmer-years
software that a prior team had failed to deliver in three
calendar years and 100 programmer-years.

Of course, we're experts. But a few years ago, Cameron
Lowe of Bell Canada wrote in a magazine article that he
and his partner completed in three months a project that
their C experts had estimated at three to four y e a r s a n d
it was theirfitst Forth project.

These are not trivial differences. Savings of years and tens
of thousands or millions of dollars will get most managers'
attention.

Cost and availability ofForthpmgrammm: As presented,
the issue is "grabbing a body quick for a short time." In
fact, in most communities there exists a group of frus-
trated Forth programmers who are unhappily programming
in C because prospective employers are afraid to use
Forth because there aren't any Forth programmers!

But it is also true that not knowing Forth is a remediable
condition. We offer courses here almost every month, or
on-site if there are more than three or four people to train.
There are other trainers as well, not to mention books and
well-documented Forth products that we straightforward
to learn. Often companies are better served by finding
really sharp programmers (assembler, C, etc.) who are
familiar with the application domain in question, and
letting them learn Forth.

As much as I hate to say it, not all Forth programmers are
equally qualified for a particular project. If you're doing
a time-critical embedded system, training a C program-
mer familiar w i h the processor and application in Forth
will probably produce a better result than using some-

July 1993 August

July 1993 August 6 Forth Dimensions

body whose experience is limited to PCs and high-level
Forth. In fact, a good C or assembler programmer trained
in Forth and using Forth will very likely do better than the
same person using C! (Re-read the item about Cameron
Lowe, above-we hear many such stories.)

When I talk with folks running the larger Forth shops, I
occasionally ask whether programmer recruitment has
been a problem. Although they would all rather have
more top-notch Forth programmers besieging them with
resumes, they generally have no serious complaints.

As to cost, the important thing to remember is the overall
cost of getting the project done, not the hourly fee for the
programmer! What you want is the best-qualified person,
who will do the best job for the best overall price. We have
long, happy relationships with people all over the country
who have found it cost effective to deal with us for things
ranging from small "tweaks" to an existing system, to
major projects. For a number of years, for example, we've
supported Bob Gherz, an astronomer at the University of
Minnesota, who has a polyFORTH-based telescope con-
trol program that he runs at three different observatories.
He can call us on the phone, ask for some little thing, and
we'll likely have it done and transferred by modem in a
few hours. Although he has bunches of dirt-cheap
graduate students at his beck and call, he says he finds it
much less expensive overall to deal with us.

4. 7he suits in tbemnt ofice.. . might be delighted to hear
you've found a way to save them significant time and
money by using a technique that's been usedsuccessfully
by many of the technology leaders of America. No fairy
tales needed.

5. "Irhesystem design willpmbablybaue been bungled. "Yes,
sigh, it usually is. But even a lot of Forth detractors admit
that it's great for developing by "successive prototyping,"
the fall-back path of choice when the design is fuzzy or
non-existent. Often it's easier to do a prototype of, say, a
user interface, than to get somebody to uy to imagine on
paper how it should look. And when the design decisions
are being reconsidered, Forth's interactivity and flexibility
really shine.

As to the large project issue, we've been involved in
numerous 5-20 programmer teams over the years. The
main difference between these and similar projects using
other languages is that each programmer is so productive
that you have to be on your toes making sure they're
being productive in the right directions. Communication
and coordination is even more important (and there is
never enough of it in any project!). But is this a liability?
Somehow I've never heard managers wishing their
programmers were slower or less productive!

Also, since you can do a particular job quicker and with
a smaller team in Forth, some team-management issues

solve themselves.

Readability is an issue in every language, as are other
subjective style issues. We have had great success by
establishing in-house coding standards that everyone
follows. As a result, you can't look at any of our code and
guess who wrote it-and programmers never feel the
discomfort of having to cope with someone else's idie
syncratic style. Other successful large shops do the same.
It matters less what those styles are than that they exist and
are observed.

Shared data and other technical issues are handled pretty
much the same in Forth as in other languages. The details
are all dfferent, but the principles are the same.

6. 7he contmk won't adapt: My experience is that proce-
dures simplify. We have developed some tools for
configuration management-as have other shops-that
we are reasonably comfortable with, although there's
always room for improvement. Federal Express is pretty
formal, and report their procedures adapted to Forth well.
Sun Microsystems (which uses Forth in the Open Boot on
every SPARC Station) uses the UNIX tools.

The basic problem here is that Mr. Kenney is swallowing
these common myths whole, unexarnined and untested.
They make great rationalizations, but there's too much
contradictory evidence to respect them as facts. It's a
disservice to the Forth community to pass on this stuff
without at least checking with some of the folks who have
been very successful doing just those things the myths say
you can't do.

So where do I think Forth is going? During the first decade
of FORTH, Inc.'s life, "everyone" was using Fortran and saw
no need for a "new mainline language." Then "everyone"
used Pascal (briefly), now C. But look! There on the horizon!
It's C++! The fact is that language (like other) fashions come
and go. "Mainline" languages were designed for a particular
purpose, and then got popular and started being used for
other purposes. Forth was designed for a particular purpose:
to maximize both programmer and code efficiency, particu-
larly in real-time applications. Lots of people still want to do
that. Forth hasn't taken over the world-not for any technical
reason, but for a marketing reason: no large, well-known
organization has elected to spend a lot of money populariz-
ing it. Until that happens (miracle!), it will continue enabling
imaginative companies such as AMTELCO (remember Olaf
Meding's arlicle a few issues ago?) to smash their competition
and take 80% of the market. Would your company like to do
that?

Sincerely yours,
Elizabeth D. Rather, President
FORTH, Inc.
11 1 N. Sepulveda Boulevard
Manhattan Beach, California W266-6847

Three-Piece Logic
Dear Mr. Ouverson,

Donald Kemey's article, "Forth in Search of a J o b is, alas,
on the mark. At a software conference in February, I noted
out of about 250 booths the following language vendors:
zero vendors of Forth, Ada, COBOL, Modula2; one vendor
of APL, Lisp, Prolog, Smalltalk; two vendors of BASIC,
Fortran; three vendors of Pascal; four vendors of C++; and
seven vendors of C. In addition, most of the libraries and GUI
code generators were in C. The debuggers were mostly
geared toward C and C++.

I heard a great story from a programmer with a major
software company. He believed C was popular because it
behaves like a high-level assembler and is available on many
platforms. His job, however, was to write tight assembly code
for fast math functions, and then reverse-engineer it into C
code that compiles into the original assembly routine. The
suits thought this made sense.

Yours truly,
Walter J. Rottenkolber
P.O. Box 1705
Mariposa, California 95338

Potable dpANS Forth
Dear Mr. Ouverson:

In readng Charles Curley's review of Jack Woehr's new
book, Forth: TheNewModel, I found myself wondering what
version of dpANS Forth Mr. Curley is using (the current
version is dpANS55; by July there will be a new and possibly . .

final draft).-over the last year or so, many hours have been
spent clarifying issues such as those he raises. Although he
is correct that it is not the place of a standard to serve as a
tutorial for complete newcomers to the language, leaving the
field open for helpful texts such as Jack's, we have made
strenuous efforts to make requirements clear. If they are not
clear, we would greatly appreciate knowing what is confus-

words show their compile-time stack behavior as:

DO (C: -- do-S~S)
IF (C: -- 0rig)
THEN (C: 0rig --)
LOOP (c: do-sys --)

No other words, including I and LEAVE, have any
compile-time action or affect the control-flow stack (which
exists only at compile time) in any way. Therefore, if the
structures are nested properly (they are), the definition will
compile properly. No control-flow stack manipulators are
needed; they rarely are.

Curley seems conhsed by the fact that the execution
behaviors of Do, I, LEAVE, and LOOP have a return-stack
notation:

DO (R: -- loop-SyS)
I (R: bop-SYS - bop-sys)
LEAVE (R: ~OOP-S~S -)
LOOP (R: loop-sy~ -)

%s relates to the availability of the run-timeloop control
parameters. Note the description of the execution behavior
of LEAVE:

Discard the current loop control parameters. An ambiguous
condition exists if they are unavailable. Continue execution
immediately following the innermost syntactically enclosing
DO . . . LOOP or DO . . . +LOOP.

Now, admittedly there are a bunch of syllables in
"syntactically enclosing." So if you still don't know whether
that last I . will be executed, check out the Appendix
A.6.1.1760 LEAVE (many sections have identically numbered
Appendix A sections, another good place to keep a tentacle),
where it says:

: LEMME-OUT
100000 0 DO
I 1000 = IF LEAVE THEN
I . LOOP ;

ing so we can clarify it. But such comments are useful only
in reference to a particular draft, preferably the current one.
so we can avoid revisiting problems we've already solved!

I Consider the example that Curley raises, the definition:

In the first place (a point Curley misses), although this may
compile fine on Vesta's 68332 32-bit Forth, the standard does
not guarantee that the literal 100000 will compile correctly on
16-bit systems! The phrase ENVIRONMENT? MAX-N will
return the value of the largest usable signed integer on a
particular system.

Moving on to the points he does raise, I wonder why he
thinks it might not compile? He seems to be concerned about
the control-flow stack; however, for each word that has
prescribed compile-time behavior, use of the control-flow
stack is explicitly documented. In h s example, the affected

Note that LEAVE immediately exits the loop. No words
foollowing within the loop will be executed, Typical
ue:
: x ... DO ... IF ... LEAVE THEN LOOP ... :

These appendix notes are explanatory only, and do not
contain requirements. We supplied them where either we or
the many people that have contributed helpful comments
(formal or informal) over the years thought extra clarification
would be useful.

There certainly is a place for good books providing
tutorials, background materials, code examples, tricks and
techniques, and many other things that it would be inappro-
priate to include in a standard. I hope Jack's book is the first
of many. But I do believe readers will find the current draft
better than Houston Shipping Channel water. It may not be
Perrier, but it's at least L.A. Tap.

Sincerely yours,
Elizabeth D. Rather
/Ms. Rather is the chairperson of the ANSI Technical Commit-

Forth Dimensions 7 July 1993 August

tee developing the ANS Forth. -EdJ

C Saws, Frogs, and Princesses
Dear Marlin,

It is with mixed feelings that I renew my membership for
yet another year. Please let me explain.. .

I am not a programmer, but instead an engineer who must
program at least enough to make my hardware designs
function. I design for two basically quite different realms: one
is interface cards in a PC-type machne that usually includes
a user interface, and the other is embedded control proces-
sors usually with no user interface. Over the years, for the PC
(and before that for CP/M 8080 computers) I have written in
assembly or Forth.

With the exception of one sad, sorry experience with
Forth on a '136, I usually program the particular embedded
processor in its assembler. A couple of years ago, I was
dragged kicking and screaming to C because (1) in my work,
more and more I was (am) required to be able to look at other
people's C code and understand at least a little of it, and (2)
I have a commitment as a working engineer to be at least
minimally competent is such a widely accepted language. I
chose Turbo C 2.0 because of the (really great for a beginner)
"user environment." A bonus for me, and the thing that really
prompted this letter, is the very powerhl graphical functions
(BGI).

One project I am currently working on involves upgrad-
ing the control system on an industrial machine, and part of
the upgrade is to replace about a dozen analog panel meters
with virtual instruments on a CRT. The customer wants a PC-
type computer for reasons of long-term availability of spare
parts. My natural urge to write the code in Forth was
squelched by two things: (1) I could not, in good conscience,
leave them with code controlling a very expensive machine
with very expensive down time that would be essentially
unsupportable (they have no internal computer expertise, I
am not going to be around forever-I'm an old guy now-
and finding someone to understand both Forth and their
machine is not likely), and (2) no Forth I know of has a
graphics library of panel meters, annunciators, bar graphs,
etc.

There is no way that, in my lifetime, I could write in Forth
the graphical words to draw these instruments and update
them in real time. For $250, I bought a complete real-time
graphcs and measurement control library (that uses Turbo
C's BGI) that lets me easily call functions that draw and
update needle and arc meters; scrolling, sweep, and x,y
charts; bar graphs; annunciators; and much more.

So the real world compels that I write in C. Do I like C?
Not a whole bunch. Almost every line of code is a struggle.
I find it very powerful, I like the user interface, I like the
hundreds (thousands?) of functions available. Last month, I
bought for less than $50 a commercial, supported library that
has dozens of functions for user interface (windows, buttons,
pull-down and pop-up windows, etc.) that, of course, is
compatible with my Turbo C.

What I really miss from Forth is the ability to execute
words from the keyboard as an aid to hardware checkout and

/ debug. The edit/compileAinWexecute sequence, even in the
I smooth one-key turbo environment, is clunky compared to

the slick, quick, smooth environment I have with ~if th, with
its instant compile that occurs when exiting the built-in editor

[(remember Fifth? it's an F83 variant with a very innovative
and elegant coding environment, local variables, a great
word-by-word trace feature, and more).

Do I still program in Forth (Fifth)? Yes, of course. There
are times when it is perfect. A few days ago, I needed a quick
PC program to check out a quadrature-phase rotary encoder
for use as a panel-mounted, operator input device for

I incrementing/decrementing a variable. In less than an hour's
time, I had working code in Fifth.

So, finally, to the reason for renewing my Forth Interest
Group membershp. Even though I paid for and registered

/ my copy of Fifth, I feel that if I continue to use it, I should
acknowledge my appreciation by supporting the Forth
community. Which is not to say that I like every Forth.. . there

/ are some truly lame products out there. I've kissed a lot of
frogs and found few princesses. Some of the loudest
advertisers have produced the least value. But that's a story

/ for another time.

/ So, okay, here's the $40.

Sid Knox
Helios Systems
Oxnard, California

Total control
with [MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 InterpreterICompilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Editor and assembler included
* Uses standard operating system files - 500 page manual written in plain English

Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler . Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications . Excellent error handling . Produces headerless code, compiles from intermediate states,
and performs conditional compilation - Cross-compiles to 8080, 2-80,64180, 680x0 family, 80x86 family,
80x96197 family, 8051131 family, 6303, 6809, 68HC11
No license fee or royalty for compiled applicat~ons

Laborato y Microsystems incorporated
Post Office Box 10430, Marina Del Rey, CA 90295

Phone Credit Card Orders to: (310) 306-7412
Fax: (3 10) 30 1-076 1

July 1993 August 8 Forth Dimensior

The FSAT Project
or, How to Build an Operating Environment, Win Friends, and Influence People,
All While Being Politically Incorrect (in a Politically Correct Way. ..)

Jim Schneider
Sunnyvale, California

This series of articles is my attempt to give back something
to a language and a culture that has given so much to me.
Essentially, I'm attempting to build a development environ-
ment that has the advantages of both Forth and UN*X, and
hopehlly sidesteps the disadvantages.

In my opinion, the use of Forth as a mainstream language
is hampered by the fact that programmers not accustomed to
the Forth philosophy are loath to give up the tools with which
they are comfortable long enough to learn how to be
productive in Forth. Additionally, some of Forth's best tools
are very difficult to learn, and even harder to modify.
Furthermore, there is Forth's perennial standards debate,
various gross and subtle inconsistencies between different
implementations of the same standard, and a lack of some
tools that a UN'X programmer would take for granted. When
these points are taken altogether, Forth appears more and
more limited. I hasten to add that this is not to say that Forth
has to be limited, or limiting, but that Forth doesn't have the
tools integrated into it that most non-Forth programmers
expect in a development environment.

My number-one priority is
merging the capabilities and
strengths of Forth and UN*X.

These observations lead me to an inevitable conclusion:
the most extensible (in some senses, the only extensible)
computer language in the world needs to be extended again,
to include the tools that other programmers have come to
expect. In the process, I hope to include tools that Forth
programmers will find usehl.

The FSAT project (which stands for Forth Systems/
Applications Tools) breaks down into several categories.
Since the ultimate goal of the project is to have a complete,
UN'X-like operating system, complete with the tools that a
UN'X user has come to expect, along with the tools unique
to Forth, and some tools that, hopefully, will emerge at the
interface, I feel it would be logical to decompose the articles
into articles about the tools, and articles about the functioning
of the operating system and system internals.

(At this point I feel compelled to explain at least part of
the title for this article. When I first described the concept of

Forth Dimensions

this series of articles to the edtor, he said that some would
probably feel that the articles wouldn't be politically correct.
My response to this is twofold: the weaselly response is that
I'm trying to meld a mainstream OS with Forth in such a way
that a person comfortable in either would be comfortable
with my work. The other-possibly more accurate-re-
sponse is that if I were worried about being politically correct,
I'd be programming in C.)

In this series of articles, I will attempt to describe the
variety of tools that I am using to develop the project. For the
core Forth system, I'll be primarily using a macro processing
language in tandem with an assembler. Once I have the Forth
up and running, I'll be using it to write the device drivers and
some of the tools for the Operating System. The one system
utility that I will be writing with tools other than Forth is the
C-to-Forth compiler.

When the bits settle, the system will include these tools:
a C-to-Forth compiler
several utilities to create and manipulate relocatable object
modules and object code libraries
a shameless copy of every FSF (Free Software Foundation,
an admirable group) utility

I will be using the UN*X utilities m4(1), yacc(l), and
l e ~ (~) extensively in the project. (Note: the numeral one in
parentheses refers to the section of the UN'X man pages
where the description of the programs may be found.) I will
introduce the important features of these utilities in a separate
article. Remember, however, that this is a series of articles on
a Forth operating system, and not a tutorial on UN'X utilities,
so the descriptions will be somewhat brief.

When I am done, I hope to achieve a few goals. My
number-one priority is the merging of the capabilities and
strengths of my two favorite environments: Forth and UN'X.
From time to time, the pursuit of this goal will lead to some
bizarre choices on my part. Closely paralleling this first
priority is the goal to make the system POSIX (Portable
Operating System Interface) compliant. Because I am using
Forth for a major portion of the development, of course it is
reasonable to expect that the finished product will be fully
as extensible and mutable as Forth itself. This flexibility will
be a recurring theme throughout the system. The user
interface is going to be a full implementation of ANS Forth, with

9 July 1993 August

allow the user to enable certain non-standard behaviors.
On a more concrete level, the Operating System itself will

provide standard OS services, including multi-tasking, multi-
threaded operations, demand paging, and device-indepen-
dent I/O services. The Forth model (and, indirectly, the entire
0s) is based on indirect-threaded code with separate address
spaces for the dictionary, headers, data, and stacks. Although
I am writing the OS with portability in mind, my first target
platform will be the Intel i386/i486 processor family. The
operating system will be isolated from user programs by
using the protection features of the platform, and entry to the
system through a single entry point will be enforced. On the
Intel platform, this will be accomplished by making the OS
run at a higher privilege level (CPL 1) than user tasks (CPL
3). The OS procedures themselves will interact through a
monitor that has a single entry point, and has a higher
privilege level than the OS procedures (CPL 0).

In short, I envision a single-user multi-tasking operating
system, with the flavor of UN'X, and the power of Forth and
UN'X I hope to enable programmers familiar with either Forth
or C to be immediately productive. My hope is that when the
C programmer stops writing code long enough to realize what
a pain in the butt it is to write C, he (or she) will be pleasantly
surprised to find that they are in an environment where they
can be immediately comfortable being more productive (using
Forth, of course-I can't see any way a C programmer can gain
the benefits of Forth without using Forth).

At this point, I think I should mention some caveats:
This system will be a development system, conforming to

my (sometimes quirky) needs. As such, trying to write the
Great American Payroll Cruncher on it will probably be a waste
of resources. The system will support some security, but a truly
dedicated hacker with a single password on the system can
probably find a way to get into everything on the system.
Because the system uses cooperative multi-tasking, use as a
timesharing multi-user operating system is not advised.

As a large part of these articles will discuss the tools I
developed to enable me to do this project, I figure it's only
fair to start with a few tools. The source code accompanying
this article is a short selection of the Forth tools I've built over
the years. Some of the tools will be used in the articles and
some won't be. The tools that I'm not using in the articles are
there because I'm an irrepressible tool builder, and I like to
have complete, symmetrical sets of related tools (sets I call
orthogonal-the only reason for the existence of C+ ! , etc.,
in my toolkit). One toolset, in particular, is a kludge I used
trying to manage large libraries of source code (and not very
successfully, since it relies on absolute block addresses, and
I move source code fairly freely). By the way, I use the UN'X
convention of letting the vertical bar (1) stand for "or" in a
list of choices. Thus, if a Forth word could return a value and
a true flag or a false flag, I would diagram its stack effect like:
(-- val \ true I -- false)

and if it left either a value or zero, I would diagram it like:
(-- val l 0)

certain extensions to allow an interface to certain structures that
are placed off limits in the standard, and other extensions that

Enjoy.

About Jim Schneider...

It has been pointed out to me that some may find my background interesting.
Well, you asked for it, Marlin.

I've been programming in Forth for about ten years now, and programming in
C for about eight. I consider myself to be an expert in both (i.e., if I were given
sufficient time and motivation, I could write a compiler for eithar). I find it
noteworthy that I achieved expert status in Forth without benefit of formal
instruction, but I've taken 18 weeks (120 hours) of classes on C. I also consider
myself to be fairly well versed in UN'X-like operating systems (after about three
years of interaction with them, and 120 hours of instruction). Recently, I started
looking intoC++, a language in which I expectto receive an additional 120 hours
of instruction, and in which I'll probably be somewhat less than competent.

For thoseofyou interested in why I have such diverse exposure, I have only my
father to (blame I thank, pickone). For several years, my father would find a really
neat way of doing something (programming a computer, selecting music, what
have you), and run straight out to tell someone. Since I lived with him at the time,
I was something of a captive audience. He would go straight to me, interrupt
whatever I was doing, and tell me all about the neat little trick he'd discovered.
Since I was usually playing "Caverns of Mars," or doing something equally as
important, I resented the interruptions. However, he persevered in his quest, and
showed me %hat : STAR ASCII * EMIT ; did. When I replied, "That's nice, but
what else can it do?" he handed me a copy of Leo Brodie's Starting Forth and told
me to go to it. I promptly put the book away, and went back to playing "Caverns
of Mars." (This was during the summer I spent more time at the computer than I
would spend in my state-mandated secondary school classes for the next three
years.)

One day (during the same summer), after I'd spentall morning trying to figure
out how to get the computer I was working on (an Atari 800) to divide a 10,000-
digit number by a 1,000-digit number (and most of the afternoon, and the
preceding night, and.. .), I noticed I hadn'teaten in, oh, 36 hours or so. I went into
the kitchen and fixed something toeat. Whileen route to my customaryeating site,
I chanced to glance at the previously mentioned tutorial. Since I was (and still am)
in the habitof reading while I eat, I picked itup and thumbed through it. I was struck
by the fact that it looked like it would be a lot easier to solve my problem in Forth
than in BASIC. I spent the next two weeks figuring out enough about Forth to do
it, after which I was hooked. During this time, my father was rapidly acquiring a
sizable library of Forth tutorials, manuals, and essays. (He was working in Atari's
Coin-Op division, which was very interested in Forth at the time.) Over the next
couple of years, I read and reread every thing he had on Forth.

During that couple of years, he was laid off from Atari, went to work for a small
company named Buscom (which went under), and went to work for Zilog. Near the
end of the couple of years, I was recompiling my Forth kernel about once a week,
and using it to hack save files for a game. My father, who had shown so much
interest in my masteryof Forth up tothat point, came to meoneday and said, "Well,
nobody uses Forth anymore. Everyone's programming in C now. Here, let me
show you how to get C to print out 'Hello, World!"'This was typical of his attitude.
As soon as I was able to discuss one of his areas of expertise intelligently, he
decided thsarea wasn't importantafter all, and tried to makeme lookat something
else. This doesn't just hold in computers: he only listens to opera, Irish folk, and
country, because I like rock, classical, and jazz.

Anyway, he interrupted a crucial hack of a game file (I was trying to give one
of my characters in a Dungeons & Dragons-type game extremely high abilities)
without so much as an "Excuse me." When I asked him if it was wssible to aet C
to do anything more profound than printout larneexclamations, he put on a &ug
smile.and handed meaco~v of K&R (Brian Kerniahan's and Dennis Ritchie's The
~ ~ r o ~ r a r n r n i n g ~ a n g u a ~) ~ ~ ~ prompt& set it down-and went back to hacking OUB
save files. Eventually (primarily becauseof my father's nagging), I looked through
the book, and discovered that there was a class of problems that are trivial (or
nearly trivial) in C thatare difficult in Forth. (Of course, theopposite is more usually
true.) I worked with either C or Forth for the next several years (with a four-year
intermission for the army), using whichever seemed to make the most sense for
a given application at the time. I was also exposed to the UNIX operating system
(BSD 4.1) during this time, and discovered that it had lots of interesting games.

When I got back from the army, my father was primarily doing UN'X shell
programming for Novell. Since this was the first time I had continuous access to
a UN'X-like operating system (he had SCO XENlX on a box at home), I figured I'd
give it a whirl. Imagine my surprise when I discovered that it was almost exactly
what I'd ask for in a development environment if I were restricted to C. The system
is well integrated, and it makes a lot of sense (for a programmer).

Now my poor father, after having shown his son Forth, C, and UNIX, is writing
Microsloth Windows apps in C++. Well, Dad, after looking at both Windows and
C++, I have to tell you, you're safe. I don't think God Himself could persuade me
to take either of them seriously.

July 1993 August 10 Forth Dimensions

1 Glossary
& ! (v a l \ addr --)

Logically AND val with the value at the address addr on
the stack. The result is stored at addr. Pronounced "and-
store". Included to make t ! a member of an orthogonal set.

CELL+ (n -- n')

The constant value CELL is added to the item on the top
of the stack.

CELL- (n -- n')

The constant value CELL is subtracted from the item on
the top of the stack. These two words are primarily used for
addressing of adjacent fields.

- I . (v a l \ addr --)

The value val is subtracted from the value at the address
addr.

-- (--)
Reads and discards the remainder of the input line. The

same as the dpANS standard word \. -- is an immediate
word.

?NUMBER (addr -- double \ t r u e I f a l s e)

Attempts to convert the string at addr into a double-
precision number in the current base, if possible, and leaves
a flag on the stack to signal its success or failure.

AUTOLOAD (n --)

If the next word in the input stream is not found in the
dictionary, the block number n is loaded. This is an example
of a (not very successhl) kludge used in managing libraries
of source code.

AUTOLOAD FROM (n --)

If the next word in the input stream is not found in the
dictionary, the block number n is loaded from the screen file
named in the second next word in the input stream. This is
an example of another kludge used to manage libraries of
source code. Both of these kludges suffer from the fact that
blocks can be inserted between existing blocks on most
block-oriented Forth file systems (and thus causes references
to the wrong blocks).

C&! (v a l \ a d d r - - 1
Logically AND the character value val with the value at

address addr. This is another function to build a complete set
of operators analogous to t ! .

C-! (v a l \ addr --)

Subtract the character value val from the value at address
addr.

C t ! (v a l \ a d d r - -)
Add the character value val to the value at address addr.

A character-oriented analog of t ! .

CELL (-- n)

A constant value corresponding to the number of address
units in a word. On most 16-bit Forth systems the value is 2,
while on most 32-bit systems the value is 4.

Forth Dimensions 11

CELL/ (n -- n')
The constant value CELL is lv ided into the value on the

top of the stack. This word is used primarily to determine the
number of cells an object will occupy.

CELL/MOD (n -- rem \ quot)

An alias for CELL /MOD. Depending upon the implemen-
tation, can be faster than the actual code fragment. For
example, on a 16-bit system, this can be implemented as DUP
1 AND SWAP 2 / , which is faster because 2 / is implemented
as a shift, and not a true divide.

CELLS (n -- n')

The constant value CELL is multiplied by the value on the
top of the stack. Used to determine the number of address
units occupied by a multi-cell object, or to access a field n
cells from the beginning of a record.

CA! (va l \ addr --)

Logically XOR the character value val with the value at
addr.

C I ! (v a l \ addr --)

Logically OR the character value val with the value at addr.

A ! (v a l \ addr)

The value val is logically XORed with the value at addr.

c?num (double \ addr \ s ign \ f l a g -- double
\ t r u e I -- f a l s e)

Cleans up the output of ?NUMBER

s?num (addr -- double 0 \ addr' \ -1 \ t r u e
\ s ign f l a g)

Sets up the BEGIN ... WHILE ... REPEAT loop of ?NUMBER.

wl?num (double \ addr -- double \ addr' \
decimal place \ f l a g)

The WHILE loop portion of ?NUMBER.

wt?num (double \ addr \ decimal place \ f l a g
-- double' \ addr' \ t r u e I -- doubler \ addr'
\ [t r u e I f a l s e I \ f a l s e

The WHILE test portion of ?NUMBER

1 ! (v a l \ addr --)

The value val is logically ORed with the value at addr.

July 1993 August

Bibliography and Suggested Reading
Be advised: most of the works I will cite are either documentation
for products, or out of print, or documentation for products that are
no longer available. If the work is the documentation for some-
thing, you may be able to obtain it from the vendor. They will
probably sell the documentation for a substantially smaller sum
than the actual product. The books that are out of print, or the
documentation for unavailable products, will be harder to come
by. In most cases, the documentation for the later products will
suffice. If this is not the case, I will be sure to point it out. The out-
of-print books will probably be found in secondhand bookstores,
or by asking small volume publishers to reprint a very few copies.

PC FORTH v1.26 Reference and User Manual
The documentation provided with Laboratory MicroSystems Inc.'s
PC/FORTH, version 1, release 26 (this is no longer available).
Contact LMI at P.O. Box 10430, Marina del Rey, California 90295.

fig-Forth Cross-Compiler
The documentation for version 1.0 of the Nautilus Systems cross-
compiler

Dr. Dobb's Toolbook of Fortb, vols. 1 & 2
A fairly wide-ranging treatment of various topics related to Forth.
Volume 1 was edited by Marlin Ouverson (and deals with more
"nuts and bolts"). Volume 2 was edited by the editors of Dr. Dobb's
Journal

Fortb Encyclopedia
A detailed description of each fig-Forth word, with source code for
all high-level words. By Mitch Derick and Linda Baker, and
surprisingly still available from Mountain View Press.

its description of the C language (in the Cto-Forth compiler), and
for the heapmanagement functions found in the last few chapters.

SCOXENIXSystem VReke2.3 .2 , Programmer's ReferenceManual
and Guides
The documentation provided with the SCO XENIX development
system, now in release 4. The description of the Intel relocatable
object module format is used as a model for the design of
relocatable Forth object modules. The programmer's guides'
entries are used for the descriptions of the XENIX/UN0X utilities
used in the project.

lex and yacc
A tutorial on the complementary UN'X utilities lex and yacc. A
nutshell handbook by O'Reilly and Associates.

Compilers: Principles, Techniques, and Tools
The second edition of the "Dragon Book." A very dense, basic
reference on all aspects of compiler theory, from lexical analysis
and parsing to sophisticated optimization strategies. By Alfred Aho,
Ravi Sethi, and Jeffrey Ullman (names that figure prominently in the
history of UN'Y).

80386. A Programming and Design Handbook
Covers all aspects of using an 80386 microprocessor. By Penn and
Don Brumm.

386s.x Microprocessor, Programmer's Reference Manual
Basically what the title says. Published by Intel.

EGANGA: A Programmer's Reference Guide
Used as a reference in the article about character device drivers. By

Forth Dimensions, vols. 1-12 I Bradley Kliewer.

7he CProgramming Language
The standard reference for the C programmer. Used primarily for

A forum for exploring things Forth. Several volumes are out of
print.

American National Standardfor Infomu3tion Systems -Program-
ming Language - C
Used as a reference in the articles about translating C to Forth

Operating Systems
An overview of OS functions and design issues. By H.M. Deitel.

ATBIOS KIT: 7he Comprebensi~e Guide to Creating an ATBIOS in
C
Used as models for the device drivers. By John 0 . Foster and John
P. Choisser, published by Annabooks (12145 Alta Carmel Ct., Suite
250, San Diego, California 92128).

-- s c r # 1 0
(Basic t o o l s 0 4 / 0 9 / 9 3)

BASE @ DECIMAL
. -- (comment t o end of l i n e)

BLK @ IF I N 64 OVER @ OVER MOD - SWAP + ! ELSE
0 DUP T I B @ ! I N ! THEN ; IMMEDIATE

-- Now t h e word -- w i l l comment t o t h e end of a l i n e e i t h e r
-- i n t e r p r e t i n g from a block f i l e o r t h e terminal
-- Notes: t h i s w i l l not work on a FORTH 83 system
-- This implementation has a misfeature: i f t h e word -- i s
-- i n t e r p r e t e d a t t h e exact end of a l i n e i n a block, it w i l l
-- s k i p t h e e n t i r e next l i n e ! This i s l e f t i n because t h e code
-- t o ca tch t h e spec i a l case would be warty
-->

July 1993 August 12 Forth Dimensions

-- scr # 11
(Basic tools 04/09/93)

: AUTOLOAD -- autoload a dependant word from a block
(block# --
-FIND IF DROP 2DROP ELSE LOAD THEN ;

-- Used in this idiom
-- -> 27 AUTOLOAD FOO
-- will load screen 27 if the word FOO is not on the default
-- search path.
-- This word probably also won't work unmodified on a FORTH83
- - system. It is included here only as an example of a kludge

-- that is sometimes used in maintaining libraries of source
-- code in a single block file. The following variant is
-- PC/FORTH (tm) specific.
: AUTOLOAD-FROM -- autoload a word from a different file

(block# --)

-FIND IF DROP 2DROP ELSE LOAD-USING THEN ; -->

-- scr # 12
(Basic tools 04/16/93)
2 CONSTANT CELL : CELL+ 2+ ; : CELL- 2- ; : CELLS 2* ;
: CELL/ 2/ ;
-- These words need to be changed for various implementations
-- If you are using a 32 bit FORTH, the definitions would be
-- 4 CONSTANT CELL : CELL+ CELL t ; : CELL- CELL - ;
-- . . CELLS CELL * ; : CELL/ CELL / ;

-- scr # 13
(?NUMBER 04/23/93)

-- Used to convert a number if possible, return a flag
-- stack effect -> (address -- double \ true I -- false)

HIDDEN DEFINITIONS
: s?num -- do miscellaneous setup for ?number

(Address -- 0 \ 0 \ addr' \ -1 \ true \ sign flag)

0. ROT DUP 1t C@ ASCII - = DUP >R IF 1t THEN -1 -1 R> ;
: wt?num -- set up for the while test of ?number

(double \ address \ dpl \ flag -- ...)

(-- double' \ address' \ true I)

(-- double' \ address' \ [true I false] \ false)

IF DPL ! (NUMBER) DUP C@ BL - IF -1 ELSE -1 0 THEN
ELSE DROP 0 0 THEN ;

-->

-- scr # 14
(?NUMBER 04/23/93)
: wl?num -- Code for the while loop

(double \ addr -- double \ addr \ dpl \ flag)

DUP C@ ASCII . = 0 SWAP ;
: c?num -- Clean up the output of the loop

(double \ addr \ sign \ successf -- double \ true)

(I -- false)

IF SWAP DROP IF DMINUS THEN -1 ELSE 2DROP 2DROP 0 THEN

I

I
Forth Dimensions 13 July 1993 August

FORTH DEFINITIONS
: ?NUMBER -- T h e actual w o r d

(addr of number -- double \ t r u e I -- f a l s e)

HIDDEN s ? n u m >R BEGIN wt?num WHILE wl?num REPEAT R>
SWAP c?num ;

FORTH ; S

-- scr # 15
(E x t e n s i o n s t o +!
: C+! -- C h a r a c t e r p l u s store

SWAP OVER C@ + SWAP C! ;
: I ! -- OR store

SWAP OVER @ OR SWAP ! ;
: C I ! -- C h a r a c t e r OR store

SWAP OVER C@ OR SWAP C ! ;
: & ! -- AND s t o r e

SWAP OVER @ AND SWAP ! ;
: C & ! -- C h a r a c t e r AND s t o r e

SWAP OVER C@ AND SWAP C! ;
: ^ ! -- XOR store

SWAP OVER @ XOR SWAP ! ;
: C A ! -- C h a r a c t e r XOR store

SWAP OVER C@ XOR SWAP C! ;
-->

-- scr # 1 6
(E x t e n s i o n s t o +!
: -! -- M i n u s store

DUP @ ROT - SWAP ! ;
: C-! -- C h a r a c t e r m i n u s store

DUP C@ ROT - SWAP ! ;
; s

0 4 / 2 3 / 9 3)

(va l \ addr --)

(v a l \ addr --)

(v a l \ addr --)

(v a l \ addr --)

(v a l \ addr --)

(v a l \ addr --)

(v a l \ addr --)

0 4 / 2 3 / 9 3)

(v a l \ addr --)

(va l \ addr --)

-- scr # 17
(CELL/MOD 0 4 / 2 3 / 9 3)

-- F a s t e r t h a n 'CELL /MOD1
: CELL/MOD -- D i v i d e t h e v a l u e on t h e t op o f t h e s t a c k by t h e

-- ce l l s i z e , leave r e m a i n d e r
(va l -- r e m \ quot)

DUP 1 AND SWAP 2 / ;
-- On a 3 2 b i t m a c h i n e , t h i s w o u l d be:

1 -- ' : CELL/MOD DUP 3 AND SWAP CELL/ ;

AM Research .. .35
Computer Journal .. 16
Forth Interest Group centerfold, 44
Harvard Softworks ... 27
Laboratory Microsystems8
Miller Microcomputer Services23
Silicon Composers ... - 2

July 1993 August 14 Forth Dimensions

Mixed Integer
Arithmetic
Walter J. Rottenkolber
Mariposa, California

In symmetrical division, the more commonly used, the
quotient is rounded toward zero. This leads to a discontinuity
in which there are both positive and negative zero quotients,
and an inversion of the remainder cycling as the dividend
passes from a positive to a negative value. Both the quotient
and the remainder track the sign of the dividend.

Floored division rounds toward negative infinity. The
sign of the quotient follows a rule similar to that of

1 multiplication, i.e., positive if the signs of the dividend and

Forth follows the assembler paradigm. As a result, data is
not typed internally, and the programmer must keep track of
what the data on the stack means. In addition, operators are
not overloaded, so different functions must be specified for
different data types. For example, single and double integers
require two separate words for addition, i.e., t and D t .

In Starting Forth, Leo Brodie lists a number of mixed
arithmetic operators, not part of the Forth-83 Standard, that
deal with a combination of double and single integer
arithmetic (Table One). Since I occasionally come across

Table Four. I
dividend divisor s&&&n.t ~mainder

+4000 +27 -- +I48 +4
-4000 +27 -- -149 +23
+4000 -27 -- -149 -23
-4000 -27 --- +I48 -4

Table One. 1
M t (d n - - d)
M- (d n - - d)
M* (d n - - d)
M/MOD (d n -- n r nq)

M/ (d n - - n q)
MMOD (d n - - n r)
M*/MOD (d n n -- n r nq) triple intermediate
M* / (d n n -- d) triple intermelate

Forth Dimensions 15 July 1993 August

source code that uses these functions, I thought it would be
handy to have them predefined rather than scurry about
patching up something at the last moment.

I use the Laxen & Perry version of Forth-83 since I still run
my ancient 280 system. This Forth includes an eclectic group
of mixed and double arithmetic functions, both as part of the
Forth-83 Standard and as extensions to it (Table Two). I
happily discovered that most of the work had been done
already, and only simple extensions were required. Only
M*/MOD and M*/ required more extensive coding, and I
thank Tim Hendtlass and the Forth Interest Group for the
code in UT* and UT/.

All these mixed functions are signed, and no run-time
error checking is done. You are obliged to keep both the
starting and intermediate values of the signed integers within

Table 1
D+ (d d - - d)
D- (d d - - d)
UM* (u u - - u d)
U*M (u u -- ud) same a s UM*
*D (n n - - d)
UM/MOD (u d u - - u r u q)
MU/MOD (ud u -- u r udq
MIMOD (d n -- n r nq)

range (Table Three).
I've noticed, in the programs I use, that almost all division

is of positive integers. As a result, I rarely deal with the
peculiarities of signed integer division (Table Four). No, T ~ M ~ T , , ~ ~ ~ . 1
nothmg is broken. Forth-83 uses floored integer division.
When it was implemented in the early 1980s, a great debate
ensued b e m n the use of "symmetricaln and "floored"

= = -32768 <- 0 -' '32767
32-bit = d = -2,147,483,648 <- O -> +2,147,483,647

division.

divisor are the same, and negative if they are not the same.
The sign of the remainder follows that of the divisor. As a
result, zero applies only to a positive quotient, and the
remainder cycles through the same values as the dividend
passes from a positive to a negative value.

All this may seem to be nit-picking, but since Forth is
widely used in embedded systems, a smooth and consistent
transition through the zero point was considered valuable in
programming such things are plotters and robot arms.

So, a warning. When translating programs from other
languages to Forth, you should be aware that not all signed
integer divisions are the same, and that computed data must
be compared to expected values.

References
Berkey, Robert. "Positive-Divisor Floored Division," Forth
Dimensions XIV1, May/June 1990, p. 14.

Hendtlass, Tim. "Math-Who Needs It." Forth Dimensions
XIV/6, MarcNApril1333, p. 27 (part one of a two-partseries).

1
0 .\ Mixed-length Operators - W etc.
1
2 : W (d n - d s u r) S)DD+;
3 : #- (d n - d d i f f 1 S)D D- ;
4
5 : M I n n - d - p r o d) * D ;
6
7 : WMID (d n - n-wr rrquot \ f n f83.m
8 ?W IF W)R W X O R) R)R
9 DCIBS Re RBS LMIEIOD W R) ?NGFITE

10 SWCTR)0(IF NEWTEWER
11 IF 1- Re ROT - w THEN THEN
12 R) DROP THEN ;
13 -)

14
15

Smith, Robert L. "Signed Integer Division," Dr. Dobb's
Journal #83, September 1983, pp. 6-88.

FORTH and Classic
Computer Support

For that second view on FORTH appli-
cations, check out The Computer Journal. If you
run a classic computer (pre-pc-clone) and are
interested in finding support, then look no
further than TCJ We have hardware and soft-
ware projects, plus support for Kaypros, S 100,
CP/M, 6 8 0 9 ' ~ ~ and embedded controllers.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run
on any system. We also feature Kaypro items
from Micro Cornucopia. All this for just $24 a
year! Get a FREE sample issue by calling:

(800) 424-8825

TC zh".zr JourDa'
Lincoln, CA 95648

July 7993 August

2
0 .\ Mixed-length Operators - W etc.
1
2 : M I (d n - nquot #/HOD NIP ;
3 : W l D (d n - n m) Ml1IM)DRUP;
4
5 : UTc (ud un - ut \ ut= unsigned t r i p l e
6 W R O T W) R) R u n + 0 R) R) D+;
7
8 : UTIHOD (ut un - ur udq 1
9)RR@Un/EIODSklFLPROT8WUn/MDSWCT

10 ROT R) MIHOD W) R
11 E l ~ ~ D + R) - ~ ;
12
13 -)
14
15

3 . \ Mixed-length Operators - H+ etc.

: W/MD (d n n - nr dq 1 \ t r i p l e intermediate product
?DI# IF W) R 3WP XOR XOR) R)R
RBS)R DM R) UT* Re f@S UTIMD
@T R) ?NEWTE -ROT
R) 0(IF ME4TE 2 PIW IF -1. D+
ROT Re SWIY, - -ROT MEN TEN R) DROP THEN ;

: MI (d n n - d \ t r i p l e intermediate product
?W IF 3DUP XOR XOR)R RBS)R
RBS -m m ROT UT* R) UT1m
R l 8(IF DNEMTE ROT IF -1. D+
THEN ELSE ROT DROP THEN THEN ;

16 Forth Dimension

Natural Language
1 Programming
/ First steps towards programming in natural language style in the object-oriented Forth natOOF.

Markus Dahm
Aachen, Germany

Forth is often used as the basis of an application language,
e.g., for instrumentation, image processing, or device con-
trol. Many users of application languages do not want to be
experts in programming but want to concentrate on their
application. Here Forth offers interactivity, extensibility, the
use of arbitray names, and dedicated language constructs.

At the Lehrstuhl fir MelStechnik at the Aachen University
of Technology, we have developed image processing hard-
ware, such as high-speed digital filters and transformation
processors. In an interdisciplinary group of another project,
we strive to design digital workplaces for radiologsts.
Furthermore, student laboratory work for image processing
is carried out. In some of these applications, Forth was or is
used. However, the unusual, sometimes quite cryptical,
syntax of Forth hinders a quick acceptance of the program-
ming system, especially with non-experts, such as the

inheritance and multiple polymorphism, plus the security
of strong typing.

These main buzzwords of object-oriented languages are
explained briefly below. natOOF makes use of these features
to enable the programmer to program in a way that closely
resembles natural language. An appropriate terminology
leads to a different view of source code:

The basic command is a sentence consisting of nouns,
prepositions, and at most one verb, where

nouns carry the data,
pqmsitions make the sentences more readable and select
between verbs,
verbs specify the action at a position within the sentence
where the natural language would place it, and
the sentence ends at the end of the line.

students, radiologists, and psychologists on our interdiscipli-
nary research team. AsteP towards usability and accePrance
of an application language is to make the programming style
resemble the nam~QllQngWi?eofthe Programmer as much

Since the verb (operator) may be placed anywhere within
the sentence, the notations p o s f ~ , infii, or prefi are only

cases of this general concept and can be used (and
muted) in the pepnal way of programming in natOOF.

/ This enables ~ O ~ S X P ~ H S t0
For our various applications, we need a programming

system that is usable in rapid prototyping for all kinds of -
concentrate On a solution~ rather
than on a Computhg syntax.

Forth Dimensions 17 July 1993 August

users-experts, casual users, and novices. For this purpose,
the object-oriented Forth 00, has been developed. Figure
One gives a summary of the basic concepts.

as possible.
natOOF offers a first step in this direction to overcome the

described restrictions. It was designed to enable non-experts
to program their application in a style that is close to their
natural language, so they can concentrate on their solution
rather than on the syntax of a computer language. This shall
be supported in as many mother tongues as possible, since
this is the language we all speak best.

The base is the object-oriented Forth OOF, which was
introduced in issue XIV/1 of Forth Dimensionsin 1 9 2 . Here
is a short recap of its essential features:

It provides Forth's interactivity and extensibility, and the
possibility to tailor an application language free of any
syntactical constraints.
It is enhanced with features of object-oriented languages,
such as a hierarchical structure of classes and methods,

What's Object Orientation About?
The fundamental concepts and benefits of object-ori-

ented languages shall be described shortly before diving into
natOOF.

Following the paradigm of object-oriented languages in
a strict manner, everything that exists in OOF is an object.
There are integer objects (or, in other words, objects of the
class integer) as well as word objects. In fact, words are not
quite fashionable in the object-oriented world, since they run
on their own, without being linked to an object. The normal
executable object is a method. A method is invoked when a
message is sent to an object, e.g., the message d r a w is sent
to a rectangle object. This object knows how to draw itself,
and calls the appropriate method that paints a rectangle on
the screen. When, on the other hand, the message d r a w is
sent to a circle, the circle object calls a different method to

Figure One. Basic principles of natOOF. 1
1 home when giving commands I

The basic command of natOOF is a sentence consisting of
nouns, prepositions, and at most one verb, where:

nouns carry the data ... nouns relate to objects

prepositions make the sentences more
readable and select between verbs prepositions relate to keywords

verbs specify the action at a position
within the sentence where the
natural language would place itverbs relate to methods

or writing programs in their
mother tongue than in an En-
glish-based computer lan-
guage.

These examples illustrate
the basic style ideas of pro-
gramming in natOOE

Use verbs to specify the
action at a position within
the sentence where the natu-

L ral language would place it.

paint a circle on the screen.
So we see that each object itself knows best what to make

of messages sent to it. There is no need for the programmer
to provide various i f s or cases for each new class of objects,
they are all built into the run-time system. This feature is
called polymorphism. When a special class of shaded rect-
angles shall be defined, we define ShadedRectangle as a
subclass of the class Rectangle and inherit all methods
defined for ordinary rectangles, e.g., setcoordinates .
Only the method draw, of course, must be redefined such
that it paints a shaded rectangle on the screen. So, a hierarchy
of classes is built, where each subclass inherits and refines
(if necessary, redefines) the properties of its parent.

As far as polymorphism is concerned, W F goes a step
further: the method that is to be invoked not only depends
on the class of the object the message is sent to, but depends
also on the number and classes of additional parameters. This
is called multiplepolymotphism and will be described in
more detail later.

All these features enforce a structured approach towards
programming. They support a strategy of stepwise refine-
ment, and relieve the programmer of many burdens, such as
taking care of special cases. Additionally, OOF's strong
typing makes sure that as many errors as possible are
detected at compile time, such as sending the message draw
to an integer. Thus, run-time errors are kept to an absolute
minimum, e.g., hardware errors or buffer overflows.

natOOF Comes Natural
Since natWF is supposed to be close to a natural

language, commands are given in the form of a sentence. A
sentence contains one verb at most, and any number of
noum and/or prepositions. Examples of valid sentences are:
t u r n on Motor
bu i ld Histogram of Image
f u l l e 50 Gram Pulver i n den Behalter
Cursor loschen

According to the basic structure of imperative sentences
in most European languages, a sentence mostly starts with a
verb. But in natOOF, the vetb may beplaced at anyposition
in the sentence. Thus, this concept can be transferred to
languages other than English which require or enable a
different syntax. This might appear negligble, but in many
applications, especially nonexpert users feel much more at
July 1993 August

Use prepositions to make
the sentences more readable.

That sounds pretty simple and is easy to understand.
However, this concept is powerful enough to change the
style of programming such that programs tend to look like
the pseudo-code many people write to describe what the
program is supposed to do. But here it is the actual code, both
readable and executable; no translation to a computer
language is needed.

In the examples above, commands were given in the form
of sentences typical for on-line commands in control appli-
cations. They made use of predefined verbs. The next
sections describe the underlying W F , show how to define
verbs, and give more details of natWF's features.

natOOF is an Evolution of OOF
There is a direct correspondence between the syntax

elements shown above and the structures of the object-
oriented Forth OOF.

The nouns can be interpreted as objects that hold data
(e.g., ~ u f f er). Forth is an untyped language; W F , on the
other hand, is strongly typed. Every object belongs to a class
(type). Its class determines what data the object contains and
which methods (functions) are defined that work on the
object. When an object is called, it pushes itself onto the
stack. E.g., Valve pushes the object valve onto the stack.

The verbs are method that are applied to objects,
optionally taking other objects as parameters (e.g., read).
Methods are not called directly (words in Forth are) but are
searched for at run time in the list of methods available for
the object that lies on TOS.

The prepositions can be interpreted as objects of special
classes that help to distinguish between similar sentences by
means of OOF's multiple polymorphism.

These are the fundamentals that support the basic realiza-
tion of natOOF. They make an implementation of verbs,
prepositions, and nouns in W F straightforward. The next
step is the switch from the classic postfm notation of Forth to
the more natural notation of natWF, which is mostly, but not
necessarily, prefm.

From Postfix to An*
The standard notation in Forth, and OOF, is postfix, i.e.,

first push all operands onto the stack and, finally, apply the
operator. Expressed in W F terms, the method follows a

18 Forth Dimensio~

Figure Two. The lists that OOF's i n t e r p r e t searches. I
SO, the only thing missing is

EXECUTE state COMPILE state
.I. local objects and parameters
methods for object on TOS (if any) methods for object on TOS (if any)
global objects global objects
global words global words
literal (number, char, or string) literal (number, char, or string) ~

a way to determine the end of
the sentence. One way is to
end it explicitly with a period,
which sets EndOf Sentence
to True. Although this is close
to other computer languages
where a statement is terrni-
nated by a semicolon, it is

number of objects, where the last object in the sentence is the
object to which the method is applied. In natWF, the objects
shall be treated as usual in W F : when they are encountered,
they are pushed onto the stack. The only problem that
remains is the treatment of the method within, rather than at
the end, of the sentence. Surprisingly, this requires only a
minor change in W F ' s i n t e r p r e t . First, the normal
i n t e r p r e t of OOF will be described:

Like Forth, OOF's i n t e r p r e t reads words separated by
blanks in the input stream. Then the word is searched for in
several lists, and is executed or compiled when found,
depending on the system's state. Forth searches vocabular-
ies, W F searches the lists shown in Figure Two.

As explained above, the methods are searched in the list
of methods defined for the class of the object on TOS. All
methods of the given name are found whose input objects
match the objects currently on the stack. Of all methods
found, the one with the most input-parameters is chosen.
This ensures that
1 2 Degrees Valve open

invokes another method than
Valve open

Both methods open are defined as methods of the class
of v a l v e but they execute different pieces of code. This is
an example of polymorphism; and since the difference here
lies also in the number of parameters, it is also an example
for multiple polymorphism.

In order to allow the operator to appear anywhere within
a sentence, the treatment of words that were not found or
could not be converted to a literal is modified. In Forth and
W F , in this case, an error message is displayed. natWF's
i n t e r p r e t , on the other hand, memorizes the first word
that could not be found and proceeds interpreting the input
stream.

In a regular sentence, the nouns and prepositions are
either parameters or local objects of a method or global
objects. In either case, they are found and are compiled or
pushed onto the stack. But the verb is neither a parameter,
a local, nor a global object, and will, therefore, not be found.
Its name will be memorized as the potential name of a
method. When all operands are given, the sentence is
finished and the verb can be evaluated.

Enter the global logical variable EndOf Sentence. When
this variable is m e , i n t e r p r e t tries to interpret the
memorized name in the way described above. When the
verb is the name of a valid method, the method is found and
compiled or executed. That's all it takes to place the verb
somewhere within the sentence.

Forth Dimensions

tedious and a source of errors. So, by default, a sentence is
terminated at the end of the line. In this case, <CR> is read
from the input stream and a word of that name is executed,
which sets EndOf Sen tence to True. On the other hand,
the characters . . . extend the sentence to the next line, if
necessary.

If the verb is not found after the sentence is finished, an
error message is displayed and the interpretation is termi-
nated. The same reaction takes place if one of the nouns or
prepositions of the sentence is not found.

This strategy is illustrated in Figure Three by the code of
natOOF's i n t e r p r e t , which is written in natOOF itself to
demonstrate its use. The example also shows how to define
a method by supplying its name, the input parameters, the
output parameters, and local objects. The syntax
((i n p u t -- o u t p u t I I l o c a l))

is derived from Forth's stack comment
(b e f o r e -- a f t e r)

Note that all objects are typed, they are defined as objects
of a class. The colon definition was generalized to define
objects of any class in the format
c lassname : objectname ;

For a detailed description, see Forth Dimemions May/
June 1332 or the euroFORML 91 Proceedings for the paper
describing the object-oriented Forth W F .

The assignment statement has now become the verb : =

which is explained later. The implementation, use, and
definition of prepositions and special words, such as o f ,
from, i n t o , is, and t h e is explained in the next section.

Prepositions and Other Keywords
Most of natWF's special features are based on OOF's

multiple polymorphism. i n t e r p r e t makes a lot of deci-
sions, based on the classes of objects that are passed as
arguments for a method, which in most other languages the
programmer has to do himself in the form of i f . . . e l s e or
c a s e clauses, or with extensive use of flags. na tWF uses
keyuards to differentiate between methods of the same name
and arguments. Keywords are just normal objects, if of
special classes:

Prepositions, such as f rom, i n t o , o f , on to , under, etc.
are implemented as objects of the classes -from, - in to ,
-of, -onto, -under, etc., respectively. They can be used,
e.g., in
readword i n t o Inword from I n s t ream

where they have no function except to make the sentence
19 July 1993 August

Figure Three. natOOF's i n t e r p r e t , written in natOOF. 1
I differentiate between : meth- /

more readable. Or they can differentiate methods of the same
name but different meanings, as in
l a y windowl onto window2

I m : interpret \ def ine method ' i n t e r p r e t
((stream : Instream ; -- \ input -- output
I I s t r i n g : Inword , Verb ;)) \ l o c a l ob jec ts

EndOfSentence := FALSE

repeat

i f EndOfSentence
EndOfSentence := FALSE
i f (t h e Verb i s empty)

readword i n t o Inword from Instream \ sentence w/o verb
e l s e

Inword := Verb \ sentence with verb
endif

e l s e
readword i n t o Inword from Instream \ within sentence

endif

i f OOF-COMPILE \ global l og ica l var iab le f o r system s t a t e
compileContents of Inword \ re turn True i f Inword not found

e l s e
executecontents of Inword \ re turn True i f Inword not found

endif

i f \ Inword is unknown
i f (t h e Verb is empty)

Verb := Inword \ keep f i r s t unknown a s p o t e n t i a l verb
e l s e

OOFErrorCode := NotFoundError \ second unknown found
endif

endif

u n t i l ((end of Instream) or ...
(OOFErrorCode <> OOFnoError) 1

end
, \ end of t h e d e f i n i t i o n of t he method ' i n t e rp re t '

as opposed to
l ay windowl under window2

ods for global objects, and
input, output, and local ob-
jects of a method. Classically,
a global state flag is used
which a single : would test.
In OOF, for each of these
cases, a special : method
exists which creates the ap-
propriate kind of object. The
methods ((, --,and I I push
associated keywords onto the
stack which automatically
cause i n t e r p r e t to find
and call the correct :,

This concept follows the
tradition of Forth, in that it
offers small dedicatedfunc-
tional blocbwhich are called
in their spewfic circumstances,
rather than one big general
function with a lot of deci-
sions and cases. Thus, special
functions and the associated
keywords can be added eas-
ily. Another advantage is that
it comes forfree. It makes use
of the existing features of
OOF; no special mechanism,
such as lots of global flags or
local switches, need be used.
It is completely independent
of the other significant qual-
ity of natOOF, the variable
notation, and can therefore
be used in normal, postfix-
oriented OOF, too.

New keywords can be
defined at any time just by
defining a new class and an

Because onto and under belong to different classes,
i n t e r p r e t is able to differentiate between the two methods
called lay. In the first sentence, objects of the classes
window-onto and window lie on the stack, when a method
of the name l a y shall be found. If a method l a y for objects
of the class window with exactly these input parameters
exists, it is found and executed or compiled, depending on
the system's state. In the second sentence, the presence of
objects of the classes window -under and window on the
stack cause a different l a y to be found.

Incidentally, in the same manner OOF is able, e.g., to

object of ths new class. In order to make this process even
easier, a class keyword is predefined.

The definition
keyword : with ;

creates both a new class with and the object with of b s
new class, plus a method with which is used wihn the
definition of input parameters of a method. As an example,
the method connect shall be &fined that connects a device
with a port:
I m : connect

((device : source ;
with
por t : t a r g e t ;

--
I))

1 It can then be used, e.g., in the sentence

July 1993 August 20 Forth Dimensions

connect p r i n t e r w i t h coml

Note that, in this example, there are now two objects
called w i t h in the system. One is a global object of the class
- w i t h and the other is a method. But i n t e r p r e t finds the
method w i t h only within the definition of input parameters,
due to the stack effect of the method with. When it is found,
i n t e r p r e t stops searching and, thus, the global object
w i t h is not found-because the list of global objects is only
searched if no method was found (see the search order stated

1 above). The global object w i t h is found in all other
i circumstances.

readable.
The parentheses (and) are used to nest sentences, e.g.:
r e a d i n t o (n e x t B u f f e r) from I n s t r e a m

or, as shown above in the examples, for nested arithmetic
expressions. Here, the object that follows B u f f e r in a list is
fetched first; then this buffer is filled from the I n s t ream The
implementation is simple: (is a slightly modified i n t e r -
p r e t that is terminated by the immediate word) .

The pronoun it may be used to refer to the object that was
on TOS at the beginning of the sentence. Example:
next Buffer . r ead i n t o it from Instream .

Mthmetic and Logical Expressions
For non-experts, especially, arithmetic and logical ex-

pressions are easier to read and write when the "normal" infix
notation is used. These expressions are special because
everyone has learned a way of writing them, whereas few
people actually have to handle function calls in everyday life.
Any deviation from the schoolday notation is likely to cause
irritation and errors.

The arithmetic expression
a + b

in natOOF consists of two integers a and b, and the arithmetic
operator +, as usual. The operator may be placed anywhere
in the sentence: a + b, a b +, even + a b are valid sentences
and may be used according to the programmer's preferences.

The assignment operator is : =, which is used in the form:
a := c

If a compound expression shall be assigned, it must be
evaluated as nested sentences, as in:
a := (b + c)

or
a : = ((3 + b) * (c - d))

Logical expressions and comparisons are evaluated and
assigned similarly.

However, in applications, where many calculations must
be made, this is still too cumbersome. An entirely different
concept would implement := as a parser that interprets the
sentence separately. This parser could also implement
operator precedence, such as * and / before + and -. This
approach turns away from Forth's idea of single smart tools
rather than one complex function, but on the other hand
promises to provide the easiest, i.e., the usual, syntax for
compound expressions.

Special Words the, is, it, ' s
and the Parentheses

Some special words make programming easier and
improve readability. They will now be introduced: - The article t h e can be added anywhere in a sentence. It

is a word with no function but to make the sentence look
more natural.
The auxiliary verb i s was defined for the same reason; it
may be used anywhere within a sentence to make it more

Forth Dimensions

does the same as
r e a d i n t o (n e x t B u f f e r) f rom I n s t r e a m

in the example above, it can therefore be used to separate
sentences without stackrobatics such as swap or r o t . it
changes the order of the stack entries by moving, not
copying, the referred object to TOS.

An object in OOF may consist of other objects. E.g., a string
object contains the maximum length (max), the actual
length (length), and the text of the string (text) . These
may be accessed only in methods for strings, a feature
called aizta encapsulation. The actual length of the string
name is accessed by
name -> l e n g t h

In natOOF, ' s does exactly the same as ->but looks more
natural:
name ' s l e n g t h

Extended and Uniaed Loop Structure
The object-oriented nature of natOOF, especially its

multiple polymorphism feature, makes it possible to redefine
the loop control structure such that the programmer always
uses the same set of control words, regardless of the kind of
loop. The idea here is to make looping structures more
readable and easier to write. Incidentally, this concept was
triggered by Gordon Charleton's talk on this topic at
euroF0RTI-I in October 1992 in Southampton, Englad (see
also his article "One-Screen Unified Control Structures" in
Forlh Dimmiom XIV/~).

The basic frame of a loop is
r e p e a t

. . . s e n t e n c e s . . .
end

which is an endless loop. The s e n t e n c e s (remember:
natOOF slang for commands or statements) between re-
p e a t and end will be executed until the CPU goes to sleep.

If the loop shall be terminated under one condition or
shall continue depending on another condition, this con-
struct is extended to:
r e p e a t

... s e n t e n c e s ...
u n t i l (l o g i c a l e x p r e s s i o n t o t e r m i n a t e)

. . . s e n t e n c e s . . .
21 July 1993 August

whi le (l o g i c a l e x p r e s s i o n t o c o n t i n u e)

. . . s e n t e n c e s . . .
end

In these cases, r e p e a t and e n d are words, they can
appear without messages being sent to an object. The end of
the construct is always marked by end. Therefore, in the
following loopings, only the r e p e a t statement is men-
tioned. In every loop that will be described, u n t i l and
w h i l e statements can be used, increasing both the flexibility
of the construct and the programmer's control.

The next case is the loop which shall be executed a
specific number of times. Hence, the repeat clause looks like:
r e p e a t 3 t i m e s

If the looping index shall be used within the loop, we
must define a local integer, e.g., Index, and use it as the
index:
r e p e a t w i t h Index 6 t i m e s

Now Index is the loop count, starting at zero and ending
at five. Calling Index anywhere within the loop will yield the
current loop count. If the boundaries of the loop shall be
defined, use
r e p e a t w i t h Index from 3 t o 8

which will cause Index to run from three to eight. The most
evolved counted-loop repeat statement is
r e p e a t w i t h Index from 3 t o 8 s t e p 2

introducingthe increment of the loop count. This is natOOF's
form of Forth's do.. .+loop, which in this case would look
like
8 3 do ... s t a t e m e n t s ... 2 +loop

where the loop count is returned by the predefined word i .
It goes without saying that the start and end indices, as

well as the step increment, may be any integer, global
objects, results, or local objects, not just literals.

t imes , wi th , from, t o , and s t e p are keywords, as
described above. These repeat clauses are defined as meth-
ods of the class I n t e g e r . As an example, here is the head
of the definition of the last-described repeat clause:
Im : r e p e a t

((w i t h
I n t e g e r : Count ;
f rom
I n t e g e r : S t a r t ;
t o
I n t e g e r : End ;
s t e p
I n t e g e r : Increment :

- -
1)

In addition to the ordinary loop, it is possible to link a loop
to an object that contains a number of elements. One
example is an array:
r e p e a t f o r e v e r y Index i n t o A

July 1993 August

initializes Index to zero and quits when Index reaches the
maximum index into A, i.e., size of A - 1.

Another example is a collection. A collection is basically
a list of objects. Normally, the elements of a collection are not
accessed via an index but sequentially, one after the other.
A typical collection contains all objects that are displayed on
the screen. If you want to find an object by a coordinate (e.g.,
because you happened to click the mouse at this coordinate),
a collection of display-objects must be traversed, i.e., every
display-object must be examined. This is greatly simplified
by the basic r e p e a t statement for collections. In order to
refer to the current display-object, we must define a local
shallow display-object, here called CurrentDO. Before
every looping, CurrentDO is updated to refer to the next
display-object in the collection, which can thus be manipu-
lated. Figure Four shows how to define the search.

Figure Five shows an overview of all r e p e a t structures.

Caveats and Proposed Conventions
There are always gremlins hidden somewhere behind a

concept. In natOOF, the major sources of irritation are objects
that are forgotten on the stack, e.g., return parameters of
methods which are not used. They may lead to misinterpre-
tations of the following code because they can be mistaken
as arguments, resulting in either a different method being
invoked or no method being found at all. But since the code
for methods tends to be short and concise (an inheritance
from Forth's well-known and proven strategy of factoring),
it is mostly very easy to find the error.

Less important is when verbs and nouns, or prepositions,
have the same name. Although this is not very likely for
semantic reasons--verbs do something, nouns are some-
thing-the convention below can avoid this error:

Nouns start with a capital letter and
verbs and prepositions start with a lower-case letter.

This will also improve readability, since these visual clues
help to tell objects and methods apart (see the code of
i n t e r p r e t above as an illustration).

Future Work
There is a major project coming up where the software

will be written in natOOF. This will provide experience and
insight into this way of programming, and into its implemen-
tation. The integrated environment of OOF will be adapted
to natOOF.

natOOF is currently based on the operating system OS9
but will be ported to other hosts, such as Apple Macintosh,
PCs, and UNIX workstations. Therefore, the virtual machine,
currently written in 68020 assembly language, will be
redefined in C with modifications to optimize execution
speed.

The portability of natOOF to (European) languages will
be evaluated, involving research on the linguistics of natural
languages and its significance for natOOF. This shall lead to
the definition of more complex sentences. Perhaps the most
ambitious goal is to break down a sentence into individual
elements which may be used in any order. E.g., if a sentence
was defined as

22 Forth Dimensions

Figure Four. Exam~le of a r e ~ e a t - e n d structure Over a collection. 1
Im : f i n d ((Point : P ; i n

Col lec t ion of Display-Object : D O s ;
- - * Display-Object : FoundDO ;

\ shallow Display-Object t o r e tu rn t o t h e found Object
I I A Display-Object : CurrentDO ;

\ l o c a l shallow Display-Object t o r e f e r t o t h e cu r r en t DO

) 1

repea t f o r every CurrentDO of DOs
i f (P l ies i n CurrentDO)

FoundDO -> CurrentDO
\ r e f e r t o t h e found Display-Object

endif
end

Figure Five. Overview of repeat-end structures. I
repeat

... while ... u n t i l ... end
\ The body of every repeat-end s t r u c t u r e can
\ conta in any number of while and u n t i l s ta tements .
\ The following shows only t h e repeat-clauses:

repeat N t i m e s
repeat with Index N t i m e s
repeat with Index from S t a r t t o End s t e p Inc

repeat f o r every Index i n t o Array

repeat f o r every Element of Col lect ion

Markus Dahmearned his Dipl.lng. (elec-
trical engineering) in 1987 at the Univer-
sity of Technology, Aachen, Germany;
and his M.Sc. (computing science) in
1988 at Imperial College, London, U.K.
He has been a research assistant since
1989 at Lehrstuhl fur Messtechnik in
Aachen, working on user interfaces for
medical image workstations and natural
language programming for nonexperts.

copyNbytes fromsource
t o Dest inat ion

it shall be possible to call it by
typing
fromSourcecopyNbytes
t o Dest inat ion

without redefining the sen-
tence. This will hopefully lead
to fewer necessary references
to manuals and to fewer errors.
It will be no mean feat to
achive this without resorting to
megabytes of artificial "intelli-
gence." Stay tuned.

We hope our wo& will not
be misused for

military pu'poses.
We will not take pa* in
any militay project.

References
"OOF, an Object-Oriented
Forth, " M. Dahm, eumFORML
91 Proceedings, Forth Interest
Group.
"Object-Oriented Forth," M.
Dahm, ForthLIimensions, May/
June '92 (XIV/l), Forth Inter-
est Group.
"One-Screen Unified Control
Structures," G. Charleton, Forth
Dimensions, Jan/Feb 1993
(XIv/6), Forth Interest Group.

Forth Dimensions 23 July 1993 August

FORTH TUTORIAL, k S . 5 0 ~ #5

More on Numbers

C. H. Ting
San Mateo, California

Sines and Cosines
Sines and cosines of angles are among the most often

encountered transcendental functions, useful in drawing
circles and many other different applications. They are
usually computed using floating-point numbers for accuracy
and dynamic range. However, for graphics applications in
digital systems, single integers in the range from -32768 to
+32767 are sufficient for most purposes. We shall study, using
single integers, the computation of sines and cosines.

The value of the sine or cosine of an angle lies between
-1.0 and +1.0. We choose to use the integer 10000 in decimal
to represent 1.0 in the computation so that the sines and
cosines can be represented with enough precision for most
applications. Pi is, therefore, 31416, and a !%-degree angle is
represented by 15708. Angles are first reduced into the range
from -90 to +90 degrees, and then converted to radians in the
ranges from -15708 to +15708. From the radians we compute
the values of sine and cosine.

The sines and cosines thus computed are accurate to one
part in 10,000. See Figure One. (This algorithm was first
published by John Bumgarner in Forth DimensionsIV/l.) To
test the routines, type:
90 SIN . (9999)

45 SIN . (7070)

30 SIN . (5000)

0 SIN . (0)
90 COS . (0)
45 COS . (7071)

0 COS . (10000)

Random Numbers
Random numbers are often used in computer simulations

and computer games. See Figure Two. This random-number
generator was published in Leo Brodie's Starting Forth. To
test the routine, type:
100 CHOOSE .
100 CHOOSE .
100 CHOOSE .

and verify that the results are randomly distributed between
zero and 99.

Exercise One. Remember Chinese fortune cookies? Write
July 1993 August

a program which will dispense fortune cookies by selecting
a fortune randomly from a fortune database. (You have to
build the database first.)

Square Root
There are to take the square root of an integer.

The routine shown in Figure Three was first discovered by
Wil Baden. Wil used this r~ut ine as a programming challenge
while attending a FORML Conference in Taiwan (1984).

This algorithm is based on the fact that the square of n+l
is equal to the sum of the square of n plus 2n+l. You start
with a 0 on the stack and add to it 1,3,5,7, etc., until the sum
is greater than the integer whose root YOU wish to know. The
number when You stop is the square root.

The definite loop structure:
(l i m i t i n d e x) DO < r e p e a t - c l a u s e > (i n c)

+LOOP

is Very similar to the DO.. .LOOP sructure in repeating the
repeat clause. The difference is that +LOOP increments the
index by the number on top of the data stack. It thus allows
the loop index to be incremented or decremented by an
arbitrary amount computed at run time. +LOOP terminates
the loop when the incremented index is equal to or greater
than the limit.

Wil uses +LOOP in an unconventional way. Here the
index is used as an accumulator, adding the sequence (2n+l)
until the sum exceeds n l . At this point, n2, left on the stack,
is the square root of nl .

Exercise Two. Newton's method to find the square root is
a very common method used in programming computers. If
r l is an approximation to the square root of n, then a better
approximation is:
r2 = (r l + n/rl)/2

See if you can write a program to find the square root this
way.

Exercise 7bree. The cubes and powers of four of integers
can run out of the single-integer range very quickly. It is,
therefore, not a bad idea to find the cubic roots or power-of-
four roots by raising consecutive integers to the third or
fourth power, and compare them to the integer whose root
you want. Write a new instruction CubicRoot to find the

24 Forth Dimensions

cubic root of any positive integer. Try the same for the root
of the fourth power as well.

Fiaure Two. Brodie's random-number aenerator. 1

two numbers m and n was, according to the ancient
mathematician Euclid:

The Greatest Common Divisor
The greatest common divisor (GCD) of two integer

numbers is the largest number which can fully divide both
the numbers. The most famous method to find the GCD of

VARIABLE RND
HERE RND !

If m>n, find GCD(n,m)
If m=O, GCD(m,n)=n
Otherwise, GCD(m,n)=GCD(m,MOD(m,n))

Translating the algorithm to Forth, we have the code

(seed)

(i n i t i a l i z e s e e d)

: RANDOM (-- n, a random number w i t h i n 0 t o 65536)

RND @ 31421 * (RND*31421)

6927 + (RND*31421+6926, mod 65536)
DUP FWD ! (r e f r e s h t h e seed)

,

Figure One. Bumgarner's sine and cosine routines. (
31415 CONSTANT P I
10000 CONSTANT 1 0 ~ (s c a l i n g c o n s t a n t)

VARIABLE XS (s q u a r e o f s c a l e d a n g l e)

: KN (n l n2 -- n3, n3=10000-nl*x*x/n2 where x is t h e a n g l e)

XS @ SWAP / (x*x/n2)

NEGATE 10K * / (-nl*xxx/n2)

10K + (10000-nl*x*x/n2)

: (SIN) (x -- sine*lOK, x i n radian*lOK)

DUP DUP 10K * / (x*x s c a l e d by 10K)

XS ! (s a v e it i n XS)

10K 72 KN (l a s t term)

42 KN20 m 6 K N (t e rms 3, 2, and 1)

10K * / (t i m e s x)

I

: (COS) (x -- cosine*lOK, x i n radian*lOK)

DUP 10K * / XS ! (compute and s a v e x*x)

10K 56 KN 30 KN 12 KN 2 KN (s e r i a l expans ion)

,

: SIN (d e g r e e -- sineXIOK)
P I 180 */ (c o n v e r t t o r a d i a n)

(SIN) (compute s i n e)

: COS (d e g r e e -- cosine*lOK)

P I 180 * /
(COS)
,

: CHOOSE (n l -- n2, a random number w i t h i n 0 t o n l)

RANDOM UM* (nl*random t o a doub le p r o d u c t) ~ SWAP DROP (d i s c a r d lower p a r t)

I
(i n f a c t d i v i d e by 65536)

shown in Figure Four. This is
an excellent example to illus-
trate the use of an indefinite
loop:

BEGIN < repea t - c l ause>
(f) WHILE
< t r u e - c l a u s e > REPEAT

whch repeats the repeat clause
and the true clause if the flag
tested by WHILE is true. When
that flag is zero; the loop is
terminated.

You may want to test the
routine by typing:

123 456 GCD .

Exercise Four. The Least
Common Multiple (LCM) of
two numbers canbe computed
by dividing the product of these
two numbers by their GCD.
Write a new instruction LCM
which returns the least com-
mon multiple of two integers.

The Fibonacci Sequence
Fibonacci was the pseud-

onym of the great mathemati-
cian Leonardo of Pisa in the
Middle Ages. He posed a prob-
lem dealing with the offspring
generated by a pair of rabbits:

Forth Dimensions 25 July 1993 August

tirely surrounded by a wall. / 0 (i n i t i a l roo t) 1

A man puts one pair of
rabbits in a certain place en-

How many pairs of rabbits can I SWAP 0 (set n l a s t h e l i m i t) 1

Figure Three. Baden's square-root routine. I
: SQRT (n l -- n2, n2**2<=nl)

be produced from that pair in
a year, if the nature of these
rabbits is such that every month

DO 1 + DUP
2* 1 +

+LOOP

(r e f r e s h roo t)

(2n+l)

(add 2n+l t o sum, loop i f)

each pair bears a new pair / , (less than n l , else done) 1
which, from the second month I
on, becomes productive?

The sequence will be:

series, and its members are:
1, 2 ,4 ,8 , 16, 32, 64, 128, 256,
512, 1024 ...

1,1,2,3,5,8,13,21,34,55,89,
144, 233, 377.. .

I propose two equivalent
solutions in Figure Five. To
test the routines, uy:

F ib l
10000 Fib2

Write a new instruction
BinarySeries todisplay this
series of numbers.

Figure Four. Greatest common divisor. /
: GCD (m n -- gcd)

BEGIN 2DUP > (i f m>n, exhange m and n)

IF SWAP THEN
OVER (i f m=O, e x i t loop)

WHILE OVER MOD (else, rep lace n by mod [m, nl)
REPEAT (repeat u n t i l m=O)

SWAP DROP (d i sca rd m, which i s 0)

,

Dr. C.H. Ting is a noted Forth authority
who has made many significant contri-
butions to Forth and the Forth Interest
Group. His tutorial series will continue in
succeeding issues of Forth Dimensions.

July 1993 August

Fib l is a routine using -
explicit instructions to add the

Forth Dimensions

two previous Fibonacci num-
ben to get the next one. ituses
the indefinite loop structure:

BEGIN
<repeat-clause>
(f) UNTIL

which repeats the repeat clause
until the flag becomes true.
UNTIL terminates the loop
when it detects that the top
item on the stack is not zero.

Fib2 uses the implicit ad-
dition property of +LOOP to
compute the next Fibonacci
number and compare it to the
range limit n. This method is
similar to Wil Baden's method
for computing the square root
of an integer number.

Exmise Five. The binary
series is similar to the Fibonacci

Figure Five. Fibonacci sequence routines. 1
: F i b l (-- , p r i n t a l l Fibonacci numbers less than 50000)

1 1 (two i n i t i a l F ib numbers)

BEGIN OVER U . (p r i n t t h e smaller number)

SWAP OVER + (compute next F ib number)

DUP 50000 U> (e x i t i f number t oo l a rge)

UNTIL (else repeat)
2DROP (d i sca rd t h e numbers)

,

: Fib2 (n -- , disp lay a l l Fibonacci numbers smaller than n)

1 (i n i t i a l number)
SWAP 1 (set up range)

DO DUP U . (p r i n t cur ren t number)

I (t h e next Fibonacci number)

SWAP (prepare t h e next t o come)

+LOOP (add cu r r en t t o index, i f t h e)

(repeat u n t i l surn>n)

U . (p r i n t t h e l a s t F ib)
,

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

You already know HSIFORTH gives more speed,
power, flexibility and functionality than any other
implementation. After all, the majority of the past
several years of articles in Forth Dimensions has been on
features first developed in HS/FORTH, and many major
applications discussed had to be converted t o HS/FORTH
after their original dialects ran out of steam. Even
public domain versions are adopting HS/FORTH like
architectures. Isn't it time you tapped into the source as
well? Why wait for second hand versions when the
original inspiration is more complete and available
sooner.

Of course, what you really want to hear about is
our SUMMER SALE! Thru August 31 only, you can
dive into Professional Level for $249. or Production Level
for only $299. Also, for each utility purchased, you may
select one of equal or lesser cost free.

Naturally, these versions include some recent
improvements. Now you can run lots of copies of
HSIFORTH from Microsoft Windows in text and/or
graphics windows with various icons and pif files
available for each. Talk about THE tool for hacking
Windows! But, face it, what I really like is cranking up
the font size so I can still see the characters no matter
how late it is. Now that's useful. Of course, you can run
bigger, faster programs under DOS just as before.
Actually, there is no limit to program size in either case
since large programs simply grow into additional
segments or even out onto disk.

Good news, we've redone our DOCUMENTATION!
The big new fonts look really nice and the reorganization,
along with some much improved explanations, makes all
that functionality so much easier to find. Thanks to
excellent documentation, all this awesome power is now
relatively easy to learn and to use.

And the Tools & Toys disk includes a complete
mouse interface and very flexible menu support in both
text and graphics modes, Update to Revision 5.0,
including new documentation, from all 4.xx revisions is
$99. and from older systems, $149. The Tools&Toys
update is $15. (shipping $5.US, $lO.Canada, $22.foreign)

HS/FORTH runs under MSDOS or
PCDOS, or from ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

HWORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.
NEW! Fast direct to video memory text

& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device YO;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperhlics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;
C data structures & struct+ compiler;
MetaGraphics TurboWindow-C library,
200 graphic/window functions, Postscript
style line attributes & fonts, viewports.

ONLZNE GLOSSARY $45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $ 79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available; 32
bit addreadoperand range with 386.
ROMULUS HS/FORTH from ROM $99.

Shippinglaystem: US: $9. Canada: $21.
foreign: $49. We accept MC, VISA, & AmEx

An H-P Laserjet/
Deskjet Driver
Charles Curley
Gillette, Wyoming

A driver for Hewlett-Packard PCL Level 111 in Forth is
shown. Forth's CREATE.. .DOES> facility and numeric text
output are illustrated.

Historical Note
The version of Forth used here is fastForth, a 68000 JSW

BSR-threaded Forth described in Curley, "Optimization Con-
siderations, " Forth Dimensions XIV/5.

The code specific to fastForth is related to VO vectoring,
vocabulary manipulation, and compilation, which will be
illustrated below. Implementation on other Forths should be
fairly easy. Being figForth in style, variables are initialized at
compile time by a value on the stack. F@ is a fast, word-
boundary-only, version of @, as F ! is a fast, word-aligned
version of ! . Users of other Forths will have to adjust the code.

ASCII control characters (hex 0 to 10 will be indicated by
name, in brackets: <esc>, <If>, etc.

Background
Hewlett Packard has offered the PCL printer control

language in their laser printers for some years. The H-P
Deskjet series offers less expensive inkjet technology with
much the same printer control language. Although the PCL
language is very flexible, drivers for it can be implemented
in Forth readily.

H-P PCL
PCLcomes invarious levels. The higher the level number,

the more recent and, generally, the more extensive the
abilities of the printer. Each level is supposed to be a proper
superset of the previous level.

The generic PCL command string is begun with an escape
character, hex l b or <esc>. This is followed with a punctuation
character which indicates a broad category of the command.
Commands which control the printer in general are indicated
by the ampersand (&) character. These include the nature of
the underscore to be used, the page orientation, margins, etc.
Font characteristic commands are indicated by the left paren-
thesis for the primary character set, andby the right parenthesis
for the secondary character set. These commands influence
such things as bold, italic, point, and pitch. Graphcs and font-
download commands are indicated by an asterisk.

The next character is usually a letter, indicating a s u b
July 1993 August

category of command. This is not always the case, as with the
character-set selection commands.

The next character is always one or more decimal
numeric characters (0-9), indicating a number. In some
cases, such as vertical- or horizontal-movement commands,
the value is interpreted literally, and may be signed. In other
cases, the numbers are rather arbitrary, such as proportional
spacing on (1) or off (0).

A leading minus sign is permitted. This is meaningful in
some commands, such as horizontal- and vertical-movement
commands. Some commands take the numeric value liter-
ally, but a negative value is meaningless, such as pitch or
points. In these cases, the result of sending a negative
number is unknown, and probably silly.

A leading plus sign is optional where all values are
assumed to be positive, such as a point-size command.
Where the value may be positive or negative, such as a
cursor-movement command, the plus sign is required.

The numeric value is always followed by a letter. If the
letter is upper case, the command is ended. If it is lower case,
another command in the category follows immediately.

Printer commands that have the same category and
subcategory may be chained. The first command is sent with
its last character lower case. In subsequent commands, the
escape, category, and subcategory characters are omitted. In
the last command, the last character is sent upper case. For
example, the three commands <esc>(QT, <esc>(s3B, and
<esc>(s2Q may be combined into one command:
<esc>(s3b3t2Q. (Note that the periods and commas are
punctuation, not part of the commands.) This facility can be
used to build custom printer commands.

This suggests that the key to H-P PCL is a sequence of
numbers, values of some sort, followed by letters which
indicate commands. Hmm.. . value, command, value, com-
mand. Sure sounds familiar to me. Somehow, I don't think
we're in BASIC any more, Toto.

Two control character commands select the primary and
secondary fonts. This means that two fonts may be defined
once in a document, and the user may select between them
merely by issuing either <si> or <so>. This is useful if one
wishes to switch between two different fonts. For example,
one might write an article on H-P Deskjet drivers with the text
in proportional CG Times 12 pitch, and the sample code in

28 Forth Dimensions

Rather than re-write the word
processor, the implementor
chosetoc0nvertfr0m48ths0f
an inch to decipoints within
the driver (see >VERTICAL
infra). With the Deskjet 500, a
48thof an inch movement com-
mand is now available. A line
feed would move the print
head 8/48ths of an inch to
achieve six lines per inch,^^
LNFD is initialized to eight at
compile time.

On lines four and five, we
define a word to allow us to
follow which font is active, the
primary or the secondary.
Commands to the two fonts
are differentiated by the pres-
ence of a left or right paren-
thesis in the command, so
FONT? returns the appropri-
ate character. Note that this
works because of a peculiarity
of the ASCII character set.
'Ikose using EBCDICorother
character sets may have to re-
write this as as
P~~~~~~~~~~~~~~~~~~~~~
their character set to ASCII for
the printer's benefit.

There are some commands
which insist on an embedded
plus sign. The Forth word
SIGN is used to insert a minus
sign into a string indicating a
negative value. However, it
inserts nothing into a string if
the value is positive. Hence,
we provide the word D JS IGN
on line eight.

On the next screen, we
write two defining words for

sequences of
ters to the current output de-
vice. In both cases, we compile
a string in-line to be sent to the
output device. At run time, the
code examines the current
output device (with ?PRINT)
to see if it is the printer. If it is,
we send the escape character;
otherwise, we do not send it.
This allows us to debug by
printing to the screen.

The difference between the
two defining words is this:
FSEQ is used to send font
command sequences. These
July 1993 August

Sc, # 1752
0 \ deskjet: font designators (9 4 88 CRC 9:58
1 \ FSEQ PC-8
2 \ FSEQ ROMAN8 8 ~ "
3
4 \ FSEQ pC-8DENMARK
5 \ FSEQ LA TIN^ ON"
6
7 \ FSEQ ISO-UK 1 ~ "
8 \ FSEQASCIIO~ 0 ~ "
9
10 \ FSEQ ASCII14 OK"
11
12
13
14
15

scr # 17 53
0 \ deskjet: font designators (21 2 93 CRC 17:35)

1 FSEQ COURIER S ~ T "
2 FSEQ CGTIMES s4101~v
3
4 : PRIMARY SECOND OFF \ select primary font.
5 ?PRINT IF CTL 0 (shift in) EMIT THEN ;
6
7 : SECONDARY SECOND ON \ select secondary font.
8 ?PRINT IF CTL N (shift out) EMIT THEN ;
9
10
11
12
13
14
15

Scr # 1754
0 \ deskjet: subscripts italics bold (23 2 93 CRC 10: 44)

1 FSEQ SUBSCRIPT s - l ~ ~
2 FSEQ -SCRIPT SOU"
3 FSEQ SUPERSCRIPT SlU"
4
5 FSEQ PROPORTIONAL SIP "
6 FSEQ FIXED
7
8 F S ~ Q (ITALIC) s l ~ : ITALIC (ITALIC) ITAL ON ;

9 FSEQ (-ITALIC) s ~ ~ w : -ITALIC (-ITALIC) ITAL OFF ;
10
11 FSEQ (BOLD) s3~w : BOLD (BOLD) BLD ON ;
12 FSEQ (-BOLD) s ~ ~ u : -BOLD (-BOLD) BLD OFF ;
13
14
15

fastForth on Atari ST (c) 1985-92 by Charles Curley
Monday 8/ 3/93 10:12:56

30 Forth Dimensions

S c r # 1 7 5 5
0 \ d e s k j e t : c h a r a c t e r h e i g h t (2 3 2 9 3 CRC 1 1 : 3 9)

1 : BUILDCMD \ n c h r l c h r 2 c h 3 --- s t r i n g t y p e d
2 OUT F @ >R ?PRINT I F L I EMIT THEN BASE F @ >R DECIMAL
3 >R >R >R DUP S->D DABS
4 <# R> HOLD #S DJSIGN R> HOLD R> HOLD #>
5 TYPE R> BASE F! R> OUT F ! ;
6
7 : POINTS \ pts --- I set f o n t h e i g h t i n p o i n t s , 7 2 n d of i n c h
8 ASCII V ASCII s FONT? BUILDCMD ;
9

1 0 : POINTER CREATE W, DOES> W@ POINTS ;
11
1 2 2 4 POINTER 24POINT
1 3 1 2 POINTER 12POINT
1 4 6 POINTER 6POINT

S c r # 1 7 5 6
0 \ d e s k j e t : c h a r a c t e r p i t c h (9 4 8 8 CRC 1 0 : 4 8)

1 : PITCH \ p t s --- I set f o n t p i t c h , i n c h r s / i n c h
2 A S C I I H ASCII s FONT? BUILDCMD ;
3
4 : PITCHER CREATE W, DOES> W@ PITCH ;

5
6 DECIMAL
7 5 PITCHER 5PITCH
8 1 0 PITCHER lOPITCH
9 1 6 PITCHER 16PITCH

1 0 2 0 PITCHER 20PITCH
11
1 2
1 3
1 4
15

S c r # 1 7 5 7
0 \ d e s k j e t : u n d e r s c o r e s , (9 4 8 8 CRC 1 3 : 1 6)

1 DJSEQ (1FIXUL) & d l D V
2 DJSEQ (2FIXUL) &d2D"
3 DJSEQ (1 F M U L) &d3D"
4 DJSEQ (2FLOUL) &d4DU
5 DJSEQ (-UL) &d@"
6
7 ' (1FIXUL) VARIABLE 'UNDER
8 : LINER CREATE [COMPILE] ' , DOES> F @ 'UNDER F ! ;
9 LINER lFIXUL (1FIXUL)

1 0 LINER 2FIXUL (2FIXUL)
11 LINER lFLOUL (1FLOUL)
1 2 LINER 2FLOUL (2FLOUL)
1 3 : -UL (-UL) UL OFF ;
1 4
1 5 : UNDERLINE UL ON 'UNDER @EXECUTE STOP

f a s t F o r t h on A t a r i ST (c) 1985-92 b y C h a r l e s C u r l e y
Monday 8 / 3 / 9 3 1 0 : 1 3 : 0 0

Forth Dimensions 3 1

vords send commands that
:ontrol either the primary or
he secondary font. All other
,equences should be defined
with DJSEQ, which does not
;end any special characters of
ts own.

In either case, the string
aid down at compile time is
hen sent to the current output
levice.

These two defining words
ire useful for defining com-
nands where the numeric
falue is fmed, such as those
which set bold or normal
weight, italic or upright style,
3r which select character sets.

These could also have been
used to define fmed pitch and
point sizes, but a different route
was selected for that (see
screens 1755 and 1756).

On screen 1752, there are
defined several character-set
selectors. As I don't use these,
I see no reason to have them
occupy dictionary space, and
so have them commented out.

I do, however, use both
Courier and CG Times type-
faces, so these are compiled
on screen 1753. Others may be
defined ad libitum.

Below these, on lines four
through eight, are two words
to select between the primary
and secondary fonts. These
two words maintain the vari-
able SECOND, which indicates
the font currently in use.

On the next screen, several
words to control font charac-
teristics are defined. These
control super- andsubscripting,
bolding, proportional or fmed
spacing, and italicizing. Where
variables are defined, these
words maintain the relevant
variables.

Thus far, we have dealt
only in commands in which
the numeric portion is fured.
We now look at commands
where the numeric field may
be influenced by external fac-
tors. An example of this is
cursor movement. A word pro-
cessor may deal in multiple

July 1993 August

columns, and may wish to
start each column at a precise,
futed, horizontal position. The
word processor will have to
calculate this value and feed it
to the driver. It is then up to
the driver to embed the value
into the appropriate command.
On screen 1755, we begin to
dealwithcommandsofthis
nature.

Forth Numeric Output
At this point, a brief digres-

sion into Forth's numeric out-
put system is in order.

Forth stores all numbers
internally as binary data. Bi-
nary Coded Decimal (BCD) is
not used. Integer values may,
thus, range the full storage
capability of the data word (or
cell, in dpANS Forthese) on a
given implementation.

The typical Forth system
for numeric output converts
binary values to text by a
process of dividing by the
contents of the variable BASE.
Thus, the output string is writ-
ten into memory a character at
a time, from right to left. Typi-
cally, a double-precision value
is placed on the stack. It may
be tested for sign, if signed
output is desired.

Conversion is commenced
with the word <# ("begin
sharp"), which initializes the
relevant variables. One digit
maybeconvefiedandadded
to the string with the word #
("sharp"). The value under
conversion may be rendered
into text until it is exhausted
by the word #S ("sharps").
Singlecharaaersma~beadded
to the string with the word
HOLD. SIGN CCXSUmes the
single-precision value under
the double-precision value
being converted to insert a
minus sign if needed into the
suing under construction. Con-
version is ended with the word
#> ("end sharp"), which con-
sumes a double-precision
value from the stack (presum-
ably, the detritus of conver-
July 1993 August

scr # 1 7 5 8
0 \ d e s k jet : paper s i z e s mi (2 3 2 9 3 CRC 1 1 : 3 7)

1 D JSEQ 8 . 5 ~ 1 1 &12A"
2 D JSEQ 8 . 5 ~ 1 4 & 1 3 ~ "
3 D JSEQ A4 & 1 2 6 ~ "
4 D JSEQ EWL & 1 8 1 ~ "
5 D JSEQ DEFAULTPAPER & ~ O A "
6
7 : >VERTICAL \ n --- I move p r i n t h e a d 4 8 t h of i n v e r t i c a l y
8 1 5 * (4 8 t h -> 7 2 0 t h o f i n)

9 ASCII V ASCII a ASCII & BUILDCMD ;
1 0
11
1 2
1 3
1 4
1 5

S c r # 1 7 5 9
0 \ d e s k j e t : l p i paper feed d r a f t / l q (2 1 2 9 3 CRC 1 7 : 3 8)

1 D JSEQ (8 L P I) & 1 8 ~ "
2 D JSEQ (6 ~ p I) & 1 6 ~ "
3
4 : 8 L P I (8 L P I) 6 LNFD F ! ;
5 : 6LP1 (~ L P I) 8 LNFD F! ;
6
7 DJSEQ EJECT & ~ O H "

8 D JSEQ PAPER & 11~"
9 D JSEQ ENVELOPES & 1 3 ~ "

1 0
11 FSEQ DRAFTQ SOQ"

1 2 FSEQ LETTERQ 3 2 ~ "
1 3
1 4
1 5

scr # 1 7 6 0
0 \ d e s k j e t : t o p m t l e n perf -perf (2 3 4 8 8 CRC 9 :00)

1 : TOPM \ I n s --- I set top m a r g i n i n l i n e s
2 ASCII E ASCII 1 ASCII & BUILDCMD ;
3
4 : TLEN \ I n s --- I set t e x t l e n g t h i n l i n e s
5 ASCII F ASCII 1 ASCII & BUILDCMD ;
6
7 DJSEQ +PERF' &11LW \ e n a b l e p e r f o r a t i o n s k i p
8 DJSEQ -PERF' &10LW \ disable p e r f o r a t i o n s k i p
g

1 0 : WPSETUP +PERF 3 TOPM 6 3 TLEN ;
11
1 2
1 3
14
1 5

f a s t F o r t h o n A t a r i ST (c) 1985-92 b y C h a r l e s C u r l e y
Monday 8 / 3 / 9 3 1 0 : 1 3 : 0 2

.
32 Forth Dimensions

Scr # 1 7 6 1
0 \ d e s k j e t : margin s e t u p (2 0 5 88 CRC 1 0 : 2 8)

1 : LMARGIN \ c o l --- I set l e f t margin i n columns
2 A S C I I L A S C I I a A S C I I & BUILDCMD ;

3
4 : RMARGIN \ c o l --- I set r i g h t margin i n columns
5 A S C I I M A S C I I a A S C I I & BUILDCMD ;

6
7 DJSEQ -MARGINS 9 " \ d i s a b l e margin s e t u p
8
9 DJSEQ L->R &kOW" \ p r i n t l e f t t o r i g h t only

1 0 DJSEQ B I &klW" \ swing both ways
11
1 2
13
1 4
15

Scr # 1 7 6 2

0 \ d e s k j e t : output device (2 9 7 88 CRC 1 7 : 5 0)

1 8 VARIABLE VERT \ s i n g l e space it
2 : VERTICAL CREATE W, DOES> W@ VERT F ! ;
3
4 : DJCR VERT F @ DUP >VERTICAL LNCTR + !
5 PRINTER LNCTR F@ LN/PG F@ > IF PPAGE

6 ELSE CTL M EMIT LMRGN THEN ;
7

DECIMAL FORTH DEFINITIONS DESKJET
8 VERTICAL SINGLESPACE 1 6 VERTICAL DOUBLESPACE

1 2 VERTICAL 1 .5SPACE 2 0 VERTICAL 2.5SPACE
: [PRINT] LNCTR OFF OUTPUT> PRINTER (PNT) (TYPE) 2DROP

PPAGE NLIST DESKJET DJCR STOP
: PRINT EDITOR FLUSH [PRINT] DESKJET +PERF ;
: VTAB DESKJET ?PRINT I F VERT F @ * DUP >VERTICAL LNCTR + !

ELSE VTAB THEN ;

sion) and leaves an address and count ready for TYPE or
other text output words. The location where the string is built
is system specific, not re-entrant. The system may guarantee
the buffer to be valid only between <# and #> or shortly
thereafter. This possibility encourages the programmer to
use the string as quickly as possible.

Conversion to any reasonable number base, and some
unreasonable ones, may be done by changing the contents
of the variable BASE. This may be done during or before text
conversion.

To illustrate how this all works, we will examine the
fastForth word D . R, identical to the fig-Forth version. It is
used to place the signed output of a double-precision value,
right justified, in a field of given size:

: D.R
\ d f ld --- I type s i g n e d d i n f i e l d of
\ s i z e f l d

>R SWAP OVER DABS <# #S S I G N #>
R> OVER - SPACES TYPE ;

1 >R places the field size onto the return stack for later use.

The phrase SWAP OVER gives
us a sign flag on the stack,
below the double-precision
value for conversion. This sign
flag will later be consumed by
SIGN. We then convert our
value to an unsigned value,
ready tobe converted. Conver-
sion is started with <#. The
entire value is converted to a
string using #S, leaving a
double-precision value of 0 on
the stack. S I G N does its thing,
optionally adding a minus sign
to the string, and eating the
signed value left earlier. We
end conversion with #>, which
eats the double-precision 0,
and leave the address and count
of the string on the stack. We
now recover the field size from
the return stack, subtract the
length of the suing from it, and
print the appropriate number
ofspaces. Finally, we TYPE the
string out.

Numeric Commands
With that understood, we

are prepared to build the code
needed toembed numbers into
commands. This is done with
the word BU ILDCMD, on screen
1755. This word takes as its
arguments three ASCII charac-
ters and a single-precision num-

' ber. These will be built into a
suing, and the string TYPE^ to the current output device.

On line two, we save two variables to the return stack.
OUT is used to count text outp;t in a line. These commands
should be transparent to text output, so we fake it by
prese~ving its contents, for restoration on line five. Similarly,
we must be in decimal, regardless of the current base. On the
same line, if the current output device is the printer, we emit
an escape to indicate the start of a command.

On line three, we save the three characters to the return
stack. This is to allow the code to manipulate the numeric
argument, which we do immediately. The DUp places a copy
of the number on the stack. The lower copy will be used by
D J S I G N at the end of numeric conversion. The upper copy
is sign-extended to a double-precision value and converted
to an absolute value, ready for numeric conversion.

Line four begins string construction. The phrase R> HOLD

adds character one to the suing under construction. #S then
converts the number value to a string, leaving a double-
precision 0 on the stack, to be removed by #> later. D J S I G N
is executed in order to force either a plus or a minus sign into
the string. Twice more we execute the phrase R> HOLD to add
the remaining two characters to the string. #> consumes the

Forth Dimensions 33 July 1993 August

double-precision 0 and leaves
the address and count of the
string, ready for TYPE on line
five. We then restore our vari-
ables from the return stack,
and away we go.

Because string constfuc-
tion is from right to left, the
end-of-commandcharacteris
the right-hand0neinthestack
diagram* and the cat-
egory character is On the left*

This makes for very
as

by On line seven
the same screen. The charac-
ters are in the reverse
order of their positions in the
output string. In the case of
the points command, the syn-
tax is <esc> (s # # # v for the
primary font.

The defining
POINTER lets the user define
point sizes he might wish to
use routinely. Alternatively, he

''INTS
oddball point sizes, subject to
the printer's limitations.

On screen 1757, we make
arrangements to allow a con-
sistentunderline style through-
out a document. The printer
syntax is to have to set the
underline type each time the
user wants to add underlin-
ing. This requires that the user
remember which flavor of
underlining he wants. Instead,
we remember it for him with the

Scr # 1 7 6 3
\ desk jet : (9 4 88 CRC 1 1 : 3 5

FORTH DEFINITIONS
2 : D j BL WORD HERE COUNT UPPER
3 HERE [' DESKJET C>P] LITERAL F @ (FIND) O= 0 ?ERROR
4 STATE F@ < I F <COW> ELSE EXECUTE THEN ;

IMMEDIATE ; S
6 A l l o w s i n s t a n t access t o a d e s k j e t w o r d .
7 It f i n d s t h e w o r d i n t h e d e s k jet v o c a b u l a r y , and e i t h e r
8 c o m p i l e s it or e x e c u t e s it, a c c o r d i n g t o i t s i m m e d i a t e
9 b i t a n d t h e c o n t e n t s of STATE .

1 0 N.B. W i l l a l s o f i n d w o r d s i n t h e FORTH v o c a b u l a r y .
11 T h i s i s a specific v e r s i o n of B r a d R o d r i g u e z ' FROM , w h i c h
1 2 i s u s e d t o get a w o r d f r o m a d e s i g n a t e d v o c a b u l a r y , e. g.
13 FROM EDITOR -TEXT
1 4 Instead, u s e it as f o l l o w s
15 . . . D J BOLD D J -BOLD ...

Scr # 1 7 8 0
0 \ d e s k j e t c A 2 (2 0 1 0 88 CRC 1 5 : 5 5)

1 DESKJET FORTH DEFINITIONS FORGET TASK
2 (: TASK ;) BASE @ DECIMAL >R

4 : CA2 ?PRINT ? o U T F I L ~ OR \ p r i n t c A 2 logo o n d e s k j e t
5 I F DESKJET 5PITCH A S C I I C EMIT lOPITCH
6 SUPERSCRIPT 6POINT A S C I I 2 EMIT 12POINT -SCRIPT
7 ELSE . " CA2" THEN ;
8

: TASK ;
R> BASE ! EDITOR FLUSH

11
12
13
14

variable UNDER. Daughter
words of the defining word LINER allow the user to specify
his preference for underline style, and the words UNDER-
LINE and -UL turn underlining on and off, respectively.

The next several screens are straight definitions ofvarious
PCL commands.

On screen 1762, we handle the need to track our position
on the paper during printing. This capability allows applica-
tions to stop printing a document, print footers, go to the next
page, print headers, and then resume printing the document.
It also allows an application to force text onto the next page
in order to preserve a section intact. It also allows proper
handling of footnotes.

The key to a Deskjet carriage return is to move the printer
vertically with the word >VERTICAL followed by paging, if
necessary, and then moving the carriage to the left margin.
Paging and moving to the left margin are handled in a raw
printer driver in the ~~INTERvocabu la ry , and are not shown
here.

We then establish the defining word VERTICAL and use

that to make several spacing options available in the FORTH
vocabulary.

Almost the last thing to do is to establish a method of
hooking the driver into fastForthls I/O system. In fastForth,
the words EMIT, TYPE, GOTOXY, PAGE, L I S T , and CRare all
vectored through the user area. The word OUTPUT> allows
the programmer to construct a list of words to fill those
vectors. This is done in the word [PRINT] on line 11. The
run-time code associated with OUTPUT> stuffs the execution
vectors and then returns execution to the calling word. This
means that ifwe want to condition the printer after setting the
vectors, we must do that in a calling word. Th~s is done in
PRINT on line 13. Other printing conditioning could be
added after the call to +PERF.

Finally on this screen, we define a word for vertical
tabbing. When the printer is the active output device, we
simply command vertical movement; otherwise, we use the
native vertical tabbing word.

It would be convenient to be able to reach into the
DESKJET vocabulary from time to time without playing

July 1993 August 34 Forth Dimensions

games with vocabularies. One could implement Brad
Rodriguez's word FROM, whch reaches into a given vocabu-
lary for a one-time access. (e.g., FROM EDITOR -TEXT)
Instead, we provide a one-shot word for the DESKJET
vocabulary alone.

This access word is defined on screen 1763, and has some
fastForth-specific features. On line two, it grabs the next word
name to be found, and conditions it at HERE. The code on
line three searches for it in the DESKJET vocabulary. As
fastForth has fig-Forth style vocabularies, this will also search
the FORTH vocabulary. The syntax on line three is specific to
fastForth and will have to be modified for other Forths.

If the word isn't found, the code errors out with ?ERROR.
On line four, we examine the compile state, and compile or
execute, as appropriate. The word <COMP> is specific to
fastForth and handles compilation. Indirect-threaded Forths
should use the word , (comma) instead.

Sample Application
To illustrate how this code can be used, a simple

application will be shown. As my initials are C.C., I use the
figure of a large C with a superscript 2, indicating C squared,
for my return address on envelopes and elsewhere. This
monogram is easily coded, as seen on screen 1780.

If the current output device is the printer or an output file,
we implement the fancy logo. Otherwise, on line seven, the
proof-text string C A 2 is printed.

We enter the DESKJET vocabulary to have access to its
drivers. We set the printer to a pitch of five (five characters
per inch). We then print the upper-case C. We then go to ten
characters per inch. We then set up for a six-point (6/72nds

of an inch high) superscript. The superscript 2 is then printed.
We then return to our normal 12-point text. Then we restore
printing from the superscript line to the base line.

Further Enhancements
One thing not done here is to track more variables. The

driver could track, and make available to the application, the
current horizontal position (in, say, decipoints), the current
pitch and point size, and other variables. One of the
problems with the application word Cn2 is that it leaves the
printer in 12 point and 10 pitch. Point and pitch could have
been saved going in, and then restored at the end.

Horizontal movement is dealt with crudely: all type is
assumed to be monotype. This is fine for the Courier
typeface, but doesn't work in CG Times, a proportional
typeface. A proportional typeface might require some look-
ahead to determine where to break lines. To get right
justification, we would have to add a variable to hold padding
values for characters and word gaps.

Another thing not implemented here is cursor movement.
Vertical movement is present in 48th~ of an inch increments.
A re-write to give decipoint and character cursor movement
would make multi-column printing and precise placement of
graphics from a word processor very easy.

Availability
The code shown here is released to the public domain.

Enjoy it in good health, and raise a toast to those who
contribute to the public domain from time to time.

Charles Curley, a long-time Forth nuclear guru, lives in Wyoming.

Low Cost, Next Generation, 8051 Microcontrollers
With over two decades of Embedded Systems experience, AM Research is the only

source of single-chip development systems which manufactures hardware and writes the
development language. AM Research provides the tools necessary to get your design to
market fast. The fullv intearated h/w and s/w svstems have standard features such as:

8 channel 8 , l dor 1 2 b i AID input.
All CMOS construction for low power.
Real Time Clock and EEPROM.
2 line by 40 column alphanumeric LCD.
16 button hermetically sealed Keypad.
RS-2321485 serial communications.
Dual PIS, cabling, connectors.
240 page manual and much more.

Complete and ready to go right out
of the box, your application can be running in days, not months. A complete high-level
language, FORTH, allows easy debugging because it runs interactively like Basic but operates
10 or more times faster because it is compiled like 'C'. A full-screen editor, in-line assembler,
communications tools, disassembler and decompiler are built in, not extra cost options. An
extensive library of hardware drivers and programming examples are provided with all
Developer's Systems or sold separately. Other stacking PCB's available. Low cost 806451
and 80C552 systems starting at only $100.

Move up to the Engineer's Language for productivity, ease of maintenance and
comprehensibility. Simulate most members of the extensive 805118052 family. Speeds to
30Mhz, up to 176 110 lines, AID'S to 12 bit with 12c interface and Pulse Width Modulators.

AM Research
The Embedded Controller Experts

4600 Hidden Oaks Lane Loornis, CA 95650
1-800-949-8051

Forth Dimensions 35 July 1993 August

A Forum for Exploring Forth Issues and Promoting Forth

The Impact of Open Systems

Mike Elola
San Jose, California

To better understand why open systems are of such key
importance to the future of computing, you may wish to read
UNE, POSE and Open Systems (Addison-Wesley). Here is
how John S. Quarterman and Susanne Wilhelm describe the
market's motivation to acquire open systems:

"Users want to move programs among machines, and
employers want to move users among machines. Vendors
want to sell applications for a variety of platforms, and
platforms for many applications. Everybody wants applica-
tions that can communicate and systems that can exchange
data and information.. ."

Programmers enjoy the benefits of an open development
environment whenever they use debuggers, compilers,
editors, and libraries from a variety of vendors in tandem on
one project. But the path that interoperability has traveled has
been a haphazard one. I'll examine some of the changes in
the course of computing that helped guide the market and
software developers towards open systems.

Some thirty years ago, higher-level programming lan-
guages were thought to hold great potential as the founda-

Now is the time to use Forth
as a labor-saving, service-
generating engine that fits
into open systems models.

tion upon which applications could take form. Algol, BASIC,
and Fortran were among the programming languages thought
to be able to displace non-portable assembly language
programming. The application programmer wouldbe trained
to use a high-level programming language. That training and
an acquired understanding of an application domain should
lead to a successful application.

About twenty years ago, timesharing multi-user operating
systems became commonplace for mainframes and mini-
computers. These operating systems absorbed many of the
services once provided by early programming languages, job
control languages, and computer operators.

As integrated circuits became more dense, RAM memory
devices and microprocessors reshaped the industry. As part

of a memory-resident kernel of services, an application
service routine could rapidly gain control of the computer.
As processor performance and memory increased, the
overhead of a co-resident operating system eventually
became a moot objection.

Presently, single-user PC operating systems are heavily
laden with services too, often making PCs very memory-
hungry. Graphical user interfaces are fueling this growth, as
well as other services with end-user appeal, such as network-
ing.

Evolving tools and software architectures are making it
easier for new layers of software to be introduced. Libraries
have long provided a tool for isolating software into layers.
Now, dynamic linking adds yet another tool for layering
software.
(I recently dropped asystem extension intomy Macintosh's

system folder, which expanded my system's services to
include support for DOS file systems on 3.5" disks. This was
achieved so easily due to the Mac's layering of software.
Without changing any of my applications, I can now issue
commands from them to read or write a DOS-formatted
floppy.)

In our present situation, it is hardly likely that a trend
towards downsized operating systems will develop. Today,
the construction of applications takes place upon a substrate
of operating system services, GUI services, and a number of
other specialized API services.

A key to the success of system software involves satisfying
the desire of computer users for consistent services. Users
don't want to learn six different ways to establish a network
cocnection or three different ways to print within three
different applications.

These APIs have continuously eroded the role of the
programming language down to a lesser role: that of
enabling communications and coordination of the more
important services provided outside the language itself.

Microsoft has become one of the most profitable and most
admired companies within the U.S. economy. DOS and
Windows are the royal jewels of this industry because of the
ever-increasing value of the markets they created. To ensure
more open access to the royal jewels of the future, open
specifications for system services are anxiously awaited.

July 1993 August 36 Forth Dimensions

written by third By thlrd parties, they mean standard-
ization committees. Under the guidance ofISO, ANSI, or IEEE
rules, such committees use a formal and open process to
arrive at open specifications. An open process allows all
interested parties to provide input and allows for updates to
standards to track innovations in hardware and software.

What does this all mean to the average Forth programmer?
It means that now is the time to use Forth as a labor-saving,

Microsoft wants its applications to be among the first to reach
any newly opened markets.

Open systems will inevitably grab a large share of the
operating systems market. Plug-and-play layers of software
will delight users through the system extensibility they afford.

Besides providing the consistency users want, API ser-
vices are labor savers. For example, graphical applications
are no longer directly responsible for drawing window
frames, or for closing, resizing, or relocating windows. When
you consider that half of an application's code supports the
human interface, a GUI API represents a very large reduction
in effort for application programmers. Cross-platform GUI
APIs will soon lead to much more code reuse and labor
savings.

Labor-saving concerns may override programmer con-
cerns over the choice of language. Fourth generation data-
base languages can also lead to labor savings, but they tend
to be monolithic systems. The granularity of software layers
(APIs) has more potential than 4GLs to open up new markets.
This is because of the broad range of applications areas that
layers of software can address.

A large volume purchaser of computers and software
wants to avoid specifying a particular vendor's make and
model. Why discourage competition? So the federal govern-
ment specifies interfaces describing how unbundled soft-
ware pieces should fit together, then asks several vendors to
bid on the development of each piece. To help establish
software components that use the same interfaces and
protocols, vendors are now proactively seeking open speci-
fications.

"Interface specifications are the key to open systems
Open specifications are clearly needed for network Proto-
cols, so that various vendors can produce products that will
interoperate. They are also important for interfaces to those
protocols, s o application writers can write applications that
will be portable to vendors' systems. Open specifications for
interfaces to basic operating system facilities are just as
important for portability. User interfaces also require open
specifications, if users are to be able to use more than one
vendor's products. Open specifications are the key to
distributed computing."

The authors also say that the best open specifications are

MicroProcessor Engineering, Ltd.
133 Hill Lane
Shirley, Southampton SO1 5AF
England
Telex: 474695 FORMAN G
Fax: 0703 339391
Phone: 0703 631441

MARCH 1993
J. Perham announced the availability of EuroForth 1992

Conference Proceedings (L17.50 plus postage and pack-
ing) from MicroProcessor Engineering Ltd.

MicroProcessor Engineering announced PINC
PowerForth, a complete Forth system written in C. To
compile the Forth system from C source, use any K&R or
proposed ANS C compiler. It is supplied with support for
the SunOS CGI and PIXWIN interfaces. The cost is L%0.

MicroProcessorEngineeringakoannouncedMPEModu-
lar ~01th version 3.6 for real-time applications on PCs,
including embedded PCs (80x86, Forth-83). It features a
windowmanager, interrupt-drivenserial drivers, filebrowser,
and on-line help system. To break the limit of ten 64K
maximum-size modules, its dynamic linker can be used as
an overlay manager. Source code is provided for the
windows and serial driver packages, for the menuing
package, for the on-line help system, and for the graphcs
package. Finally, the standard DOS linker can be used to link
to any package that creates a DOS standard .OBJ file, to help
support mixed language programming. The price is g25.

FORTH, Inc. announced an add-on GUI option for its
polyForth for 80386/486 systems with VGA. The option is
an OSF/Motif-style GUI toolkit. It offers low-level support
in the form of liwidgets," as well as high-level support for
dialog boxes and menus. With the toolkit comes a new
version of a full-screen Forth editor. Source code for the
toolkit is included.

Companies Mentioned
FORTH, Inc.

N, Sepulveda Boulevard
Manhattan Beach, California w266-6847
Fax: 213-372-8493
Phone: 800-55-FORTH

service-generating engine that fits into open systems models.
I

To meet industry standards, it will mean adding conventional
library tools to Forth.

If Forth is proven suitable for implementing many ser-
vices, we can ensure that Forth has a place at the ground
level, if not also at the application level of future computing
and development environments. Forth has to become a
client of standard system services as well as retain the ability
to be a generator of such system services to enter the main

stream of software development.
It would be a compelling demonstration of Forth's

breadth of utility to use it in a service-generating role. For
example, Forth could efficiently and effectively generate the
file manipulation and file VO services that the POSIX
standards deem necessary, amounting to forty or more
routines. (POSIX refers to Portable Operating System Inter-

(Continues on page 42.)

Forth Dimensions 37 July 1993 August

One-Screen bit case only; if your Forth has a different cell width (as mine
does), please change the numbers accordingly.

If one wishes to use more than 64K, we will use 6 4 ~

Virtual
pages. 64K chunks will cause us fewer problems than 1K
chunks. In fact, we will turn them, as far as we can, to our
advantage by allowing not just 64K chunks, but any multiple
of lK, u p to 64. These we will refer to by name, as well as
by a unique identifier, one cell long, to allow them to be
manipulated under program control. This makes them very tionary much like vocabularies.

Gordon Charlton
Hayes, Middlesex, U. K.

I do not feel comfortable with files. Forth is a static
language, at least with reference to its memory allocation
routines, and from this it derives much of its simplicity. Files,
on the other hand, use I s k space in a dynamic fashion. They
are, consequently, rather more complex, both in the amount
of code required to implement them and in the complexity
of code in programs that use them.

Blocks are simple, in comparison, being merely 1K
windows into a larger virtual memory. Although this prob-
ably resides on disk, it need not. All that is required of BLOCK
is that it will accept a number and return a 1K chunk of data
that corresponds to that particular number. What BLOCK
does not provide is any means of organizing this secondary
memory system.

I have seen some attempts to structure block space using
dynamic allocation schemes, but on the whole they tend to
be overly complex and, in trying to satisfy every possible
need, end up not meeting any. Ifwe chose a static allocation
system, however, we already have a good model to work
from: the Forth dictionary.

The first word I define is the constant B/BLK (bytes per
block), although in fact it remains a "magic number," even
though named, as I make much use of the fact that it is a
power of two and consequently allows certain bit rnanipu-
lations which simplify the math required. I make no excuse
for th~s, as blocks are infrequently, if not never, any other
length-and even when they are, they tend to be some
power of two bytes in length.

At any time, one page will be addressable, and its
identifier available in the variable ACTIVE. A page is
declared using V . PAGE. V . PAGE takes a block number as an
argument. This is the base block for the page. At instantiation,
the dictionary pointer for that particular page of virtual
memory is set to zero. A page is made active by mentioning
its name, or by storing its identifier into the variable ACTIVE.

The base block for the currently active page is available
at the address returned by V. BASE. This, in practice, turns
out not to be terribly useful. It could be used in calculating
the last block a page occupies, but I usually have a fair idea
how large my data structures are anyway, so have not
implemented that function. It would be quite simple, if
required. V . BASE is included because I habitually try to
name fields in composite data structures rather than deal
directly with offsets. More usefully, V . DP gives us access to
the dictionary pointer for the active page, although generally
this should be addressed by V . HERE and V . ALLOT. These
are analogous to HERE and ALLOT, hence the names.

It is often forgotten that 1 Aligning Within ~10c.k~ 1
blocks represent a
window into virtual memory...

Addressing a datum that lies completely within one block
is easier than addressing one that straddles one or more block
boundaries. This probably goes without saying. Therefore,
whatever we can do to encourage entries into the virtual

The program presented here allows just that, and it is
simple. In fact, it is simple enough to fit into one screen,
although for reasons not entirely unconnected with readabil-
ity, it is presented on three.

The only thing about BLOCK that will cause us problems
is its insisteilce in slicing memory into monotonously similar
1K portions. This we can compensate for, and end up with
a system which is, for me, perfectly adequate for most
situations.

Addressing Virtual Memory
Rather than dealing with 1K chunks, we will treat virtual

memory as far as possible as contiguous, and addressable
within the same range as the host Forth's real memory. This
means that for a 16-bit Forrh we can address 64K of virtual
memory, and for a 32-bit Forth 4 megs. I will refer to the 16-

dictionary to fit neatly within blocks should be done.
V . ALIGN and V . ALIGNED are used for this. V . ALIGNED
takes an offset in bytes (again I make an assumption about
your Forth, that its address units are bytes) and increases it
to the next power of two, unless it is a power of two itself,
in which case it does not alter it. (Do not pass it an argument
of zero, it does not like it.) Objects whose lengths have been
aligned pack neatly into 1K blocks with no gaps. Equally,
they do not cross block boundaries, provided that they start
at an appropriate position.

To illustrate, assume I have an array of 200 items, each 12
bytes long. If I align them, I will be dealing with an array of
items 16 bytes long, four of which will not be used. For the
cost of this wasted space, I gain the advantage of them fitting
neatly, 64 to a block. Of course, when I declare the array the
virtual dictionary pointer may be at some inconvenient

July 1993 August 38 Forth Dimensions

position within a block, so some of our 16-byte items will end
up straddling block boundaries. To avoid this, we must align
the dictionary pointer, using V. ALIGN. This shifts the
dictionary pointer, if necessary, so that it is an exact multiple
of the argument passed to it from the block boundary. The
offset passed to it must be itself aligned. (This simplifies the
code, and there is no good reason to pass it anything other
than aligned offsets.)

Once we have a data structure established in the virtual
dictionary that observes the aligning conventions, we can
access itverysimply usingV>ADDR, which converts avirtual
address into a real address. This it does by turning the virtual
address into a block number and offset. It adds the block
number to the active base block, loads that block, and adds
the offset to the address returned by BLOCK. It is worth
rememberingthat addresses within blocks are of the moment
only, and should be used immediately, or the datum copied
to some safer buffer. You also need to UPDATE when
modifying data.

For what it's worth, I believe blocks should be updated
automatically, unless specifically inhibited. Thatway, instead
of being in real danger of losing new data by forgetting to
update, you run the less likely risk of losing old data, in the
event that having modified a block you decide against
keeping the changes and forget to inhibit updating. And,
finally, as my mother used to say, don't forget to FLUSH when
you have finished.

Addressing Larger Structures
Not every data item will be conveniently less than 1024

bytes long. Equally, you may not be able to afford the wasted
space that aligning implies, and it can get pretty horrendous
when, say, an item is 513 bytes long and you lose almost half
of every block. This can be overcome at the cost of loss of
speed (this is one of those classic speed/memory dilemmas
that occur almost everywhere in computing).

V@ and v! can be used to access data items that do not
observe the block disciplines and are a little more complex.
They are, however, very similar. With the exception of a little
stack manipulation at the start, they are, in fact, identical but
for one word, which in the case of V ! needs to be UPDATE^,
and for V@ needs to be Sw~pped.

Such an unusual circumstance requires unusual factoring,
particularly since it is in the middle of a control structure and,
as I require good access to four stack items, it is optimal to
keep some on the return stack. The route I chose was to
effectively patch V! during execution, using the execution
vector FIX, which has either UPDATE or SWAP assigned to
it, as required.

V ! takes three parameters: a source address, a virtual
destination address, and a length in bytes of the data to be
stored in virtual memory. It then divides the length into
handy bite-sized pieces to MOVE into the block buffer. With
a large structure, the first and last pieces may not be exactly
1K long, so the first line of code after the WHILE calculates
the correct length for each piece. The next line does the
MOVE, the third increments the source and destination
addresses by the size of the piece that was MOmd, and the
fourth line decrements the remaining length by a similar

Forth Dimensions

amount.
Ideally, this would have been done inside a DO.. .LOOP,

except for certain problems with Forth's counted loops. To
be specific, v ! is best codedwith the length as the loop index.
Thls implies a negative-going loop. Furthermore, it should be
reasonable to pass a length of zero as an argument, which
implies a zero-tripping loop. Unfortunately, zero-tripping
loops with a decrementing index do not work correctly.
Consider the following definition:
: EXAMPLE (n)

0 ?DO . " just once" -1 +LOOP ;

Those who doubt my assertion may wish to work out
what argument should be passed to EXAMPLE to cause it to
print the string "just once" just once.

V ! is used to move data from real to virtual memory. V@

fetches data from virtual to real memory. It takes as argu-
ments a virtual source address, a real destination address, and
a length. It returns the address of the buffer to which the data
was moved. Sometimes, the most difficult part of coding a
word is deciding on its stack effect. This was the case with
V@, which accepts arguments like MOVE but returns an
address which points to the requested data, sort of like @. This
means it does not consume its arguments, as is generally
accepted to be good style; but, in practice, this turns out to
be a useful arrangement.

Using Virtual Memory
Although we have done what we can to make disk

memory look like RAM, it should be borne in mind that this
is not RAM, and behaves differently in some respects. In
particular, access times can vary. Given, say, a two-dimen-
sional array of integers that is stored on disk in row major
format, attempting to index through the array down a column
will be a lot slower than traversing along a row, as all the
elements in a given row are likely to be on the same block,
whereas elements in a given column will be spread over
several blocks. Fortunately, as Forth programmers we are in
control of our environment, so can anticipate the effects of
how our data is organized.

How significant this effect is will vary from Forth to Forth,
depending on how many block buffers there are, and what
algorithm is used to decide which buffer is written to next.
In my case, I have a measly single-block buffer, which is
probably the worst of all possible setups; but given one meg.
of flat RAM, 1 seldom use the disk for anything other than
saving data at the end of a session.

Those who endure a segmented memory may wish to
consider modifying BLOCK so that a range of block numbers
refers to chunks of extended memory rather than to dlsk
sectors. This seems a simple way of adapting to an inconve-
nient architecture.

There is no reason that the virtual dictionary could not
contain executable code as well as data. However, this tends
to be non-portable, and requires as a minimum the facility to
produce headerless words. This means that it is rather
beyond the scope of this article, so I simply mention it as a
possibility.

39 July 1993 August

Error Handling
The code published here does not contain error-handling

routines. This is not idleness, it is a design decision. This
decision is made for several reasons, which I will mention in
no particular order. Firstly, in published code it distracts from
the intention of the article. Secondly, error-handling routines
serve two distinct purposes. During program development,
they point out the position of bugs in faulty code. It is my
experience that faulty code is written because of inadequate
understanding of the problem. In this situation, the time
spent isolating a bug, once detected, is time well spent,
because I come to understand the underlying causes of the

data so that program execution
can be maintained, or to bomb the 7 p

vs. Blocks debate, that blocks are not some sort of poor man's
file system, but represent a window into a virtual memory.
They are, admittedly, underdeveloped as a system, but then
so are many aspects of Forth. This is not a limitation, but
rather allows the programmer to create tools specifically
suited to the task at hand, rather than relying on general-
purpose tools that cannot be ideal for every situation. Here
we have seen one possible way of developing the block
system, by mimicking the Forth dictionary-allocation scheme.
I doubt that the constraints of a file-basedsystem would allow
such an extension to be coded so simply and directly.

problem, which is necessary if I am to rewrite the code
correctly rather than just patching a duff routine, F ~ ~ ~ ~ I ~
incremental environment makes detecting bugs easy.

During program execution, error handlers are to trap bad

program with some fairly useless
message such as "Division By Zero
Error!" Forth is often used in cir-
cumstances where the latter o p
tion is not appropriate. The former
is best solved by prevention rather
than cure. Trapping bad data is
best done at the earliest possible
opportunity, before it does any

Gordon Charlton is the Events and Meetings Secretary of FIG-UK, andcontributes
regularly to that chapter's newsletter, Forthwrite. His last major project was a
string-pattern matcher which was presentedateuroFORML'91 and '92. If anyone
can providea rigorous description of the Ratcliffe-Obershelp algorithm, he would
be pleased to hear from them.

\ Virtual -- ACTIVE V.PAGE V.BASE V.DP V.HERE V.ALLOT
1024 constant B/BLK
variable ACTIVE

: V.PAGE (blk) CREATE , 0 ,
() DOES> active ! ;

: V.BASE (--addr) active @ ;

ing up the pieces. Certainly there : V . HERE (--Vaddr) v. dp @ ;
are times when it is not possible to

damage, rather than letting the
inevitable happen and then patch-

: V.DP (--addr) active ;

appropriate to use THROW in a low-
level routine.

However, what I regard as
toolbox routines (I maintain a li-
brary of routines I have coded
which are applicable to more than
one project, such as this code) are
developed without error handlers,
which I add for particular projects
as required. Generally, this is quite
easy and means that the error
handlers can be tailored to the
application in which they will be
used.

Finally, I prefer to program

trap dangerous combkations of
data until the error, and then it is

without a net, s o to speak. I write
code just as responsibly without a
nagging compiler-such as those
that other languages appear to
insist on-as with one. Perhaps
even more so, as I know it is down
to me to get it right, rather than
relying on a crutch.

: V. ALLOT (len) dp + ! ;

Summarv
It is often forgotten, in the Files

July 1993 August

\ Virtual -- V.ALIGN V.ALIGNED V>ADDR
: V-ALIGN (len) b/blk min 1- v.here 2dup and

IF or 1+ v.dp !
ELSE 2drop
THEN ;

: V.ALIGNED (len--1en)
0 swap 2* 1 DO drop i dup +LOOP ;

: V>ADDR (vaddr--addr)
0 b/blk um/mod v.base @ + block + ;

\ Virtual -- V! V@
variable 'FIX ' update 'fix ! : FIX 'fix @ execute ;

: V! (addr vaddr len)
>r BEGIN r@
WHILE b/blk 2dup 1- and - r@ min

>r 2dup v>addr fix r@ move
r@ + swap r@ + swap
r> r> swap - >r

REPEAT r> drop 2drop ;

: V@ (vaddr addr len--addr)
[' I swap 'fix ! >r dup rot r> v! [' I update 'fix ! ;

40 Forth Dimensions

("Back Burner, "continued frornpage 43.)
interpreter is sometimes called the inner interpreter, in
contrast to the textinterpreter, which is sometimes called the
outer interpreter.

The code field of a Forth word is a pointer. The parameter
field of a word defined with : contains at least one pointer,
and may consist of nothing more than a string of pointers.

Although pointers are basic to programming, I never
cease to be amazed (likewise, amused) by the treatment of
pointers in the C programming language. In that overrated
and specious environment, the combination of ill-chosen
symbology and convoluted rules makes the application and
manipulation of pointers a matter of Byzantine complexity,
fraught with peril for tyro and adept alike.

The Ups and Downs of Stacks
The stackpointer s holds the address of the top of the

parameter stack, i.e., the address at which the most recent
stack entry resides. The application programmer typically
has no need to access the stack pointer; should, however, the
occasion arise, the word ' S has been defined to push the
pointer onto the stack.

User variable S 0 holds the address of the cell immediately
beneath the baseof thestack Conveniently, the same address
marks the start of the terminal input buffer, sometimes called
the input message buffeer. When execution of a word such as
QUIT calls for the parameter stack to be cleared, the address
in SO is copied into the stack pointer, whereupon the value
z m i s pushed onto the stack. Thus, in the condition that the
stack is empty, the stack pointer addresses the cell immedi-
ately above the cell addressed by SO. An attempt to "dotn the
empty stack produces the display

. 0 . stack empty

Words (such as DEPTH) which access the stack pointer
take into account the fact that the empty stack actually has
one enuy, namely, the buffer cell containing the value zero.
Presence of a buffer cell containing a known value ensures
a predictable and repeatable response to the action of
popping or "dotting" an empty stack. The arrangement
reflects the fact that the user in the development environment
has free access to the parameter stack. Predictable and
repeatable responses for erroneous operations reduce con-
fusion and facilitate diagnostics. Note that, although opera-
lions performed with erroneous data obtained from stack
underflow may cause a system crash, underflow of the
parameter stack does not, of itself, corrupt the system.

To see the action of the parameter stack buffer cell, define
a word such as

: FIZZLE CR 4 0 DO . SPACE M O P ;

Upon entering
1 2 3 FIZZLE

. . .the response will be
3 2 1 0 FIZZLE stack empty

Forth Dimensions

... the zero being the content of the buffer cell. The entry
1 2 FIZZLE

. . .produces (on my system) the response
2 1 0 82 41 FIZZLE stack empty

... the zero being the content of the buffer cell and the value
8241 being the content of the cell below the buffer cell.

In embedded applications, the need to conserve RAM
generally dictates that the buffer cell be omitted. However,
in such an environment, the application program typically
guards against stack underflow, making the cell superfluous.

Up the Down Staircase
Now that you see how all this works, allow me to toss in

a monkey wrench. Technically, the terms beneath and
bottom are misnomers, considering that, by convention,
stacks grow downward, i.e., toward low memory. Thus,
physically, the terminal input buffer is at a higher address
than the buffer cell at the base of the parameter stack. The
rationale for implementing a stack such that it grows
downward is the ease with which the address of a stack item
may be developed: one need only add a positive integer to
the stack pointer.

At this point, you should pencil a diagram in the margin
or turn to the diagrams in Starting Forth to ensure you
understand the arrangement. Incidentally, if you don't al-
ready have a copy of Starting Forth, by all means obtain one
ASAP; a better investment you seldom will make.

Inasmuch as underflow of the return stack is not a
contingency for which one makes provision (other than a
reset button, which should be a part of euery system), no
buffer cell is provided for the return stack. Thus, the first user
variable resides immediately below the first cell of the return
stack, and the return stack pointer Ris initialized to the value
residing in the user pointer U. Again, note that, since the
return stack grows downward, the physical address of the
first user variable is higherthan the address of the base of the
return stack.

The reason no provision is made for underflow of the
return stack is akin to the reason airlines provide no
parachutes for the passengers: underflow of the return stack
is a catastrophic event, the result of a fatal programming error
creating a system condition from which recovery is all but
impossible.

A copy of the top item of the return stack is returned by
the word I; a copy of the second item on the return stack is
returned by the word J.

Your Pad or Mine?
The pad ("scratch pad") is of indeterminate size and is

located at a fmed offset from the top of the dictionary. Thus,
the pad resides in the region between the parameter stack
(which grows downward) and the dictionary (which grows
upward). The region between the pad and the dictionary is
used for formatted numeric output conversion.

The address of the pad is returned by the word PAD,
which is defined in terms of the dictionary pointer H.

(Continued.)

41 July 1993 August

Necessary Appurtenances
In order to metacompile, at least two additional pointers

are required. Obviously, we need a dictionary pointer for the
future application dictionary which will reside in read-only
memory (ROM). Additionally, during compilation we need
a pointer for the future application read/write memory
(RAM), so we can assign RAM for application variables,
arrays, etc., and for system functions (stacks, buffers, etc.).

Curiously, it is not necessary to have a pointer for the
virtual application dictionary which is being built within the
development system hardware: the physical addresses within
the development system can be computed "on the fly" from
the corresponding addresses in the future application dictio-
nary.

We need words to set, to advance, and to read each of the
application pointers. We also need a word to transform a
future application ROM address into the corresponding
address in the virtual application dictionary residing on the
development system. Finally, for diagnostic purposes, we
require a word to compute the inverse transformation, i.e.,
a word to deduce the application ROM address from the
virtual dictionary address.

In a later column we will choose appropriate names for
each of the pointers and for each member within the set of
support words.

In Retrospect; a Preview of
Coming Attractions; et cetera

A number of these columns may appear to be simply a
review of material which has been presented in books such
as Starting Forth. However, what I am trying to do is
illuminate obscure aspects of Forth for which I have found
the available documentation to be either incomplete or non-
existent. These aspects must be thoroughly understood if one
is to attempt his own Forth implementation. Moreover, it is
not sufficient merely to know what another implementor has
done; you must understand why he did it in the manner in
which he did it. Your environment may call for a different
technique, or you may be able to devise a superior scheme.

Meanwhile, has anyone attempted to take the assembler
presented in column #4 from working prototype to final
form? Has anyone built the trainer presented in column #5?

("Fast Forfbwarrl, " confinued fm page 3 7.)
face for Computing Standards.)

Once those and the other POSIX services have been
shown to be robust and efficient whengenerated from Forth,
Forth can more readily support the many applications that
are part of UNIX.

Furthermore, it would be a first step towards open-
systems compliance. These POSIX-conformant routines should
be incorporated into Forth through a linker's editing of
previously compiled, relocatable object modules. Besides
following the industry standard for layering software regard-
less of its source, this would help encourage the POSE work
to be reused across Forth platforms, and would encourage
Forth implementations to be more conversant with linkers.

(Forth source code for POSIX routines would also
support code reuse, but only if Forth systems have suitable
and standard routines for implementation of specific POSIX
services. This is not currently possible for services such as
process management. Where Forth systems don't address a
POSIX feature, the source code is likely to be targeted to a
particular Forth rather than the underlying machine on which
the Forth is running. By producing precompiled object
modules, we make use of a more common, machine-
language denominator for code, ultimately leading to more
code-reuse potential.)

POSIX services are, ultimately, operating system services.
As such they are expected to reside in memory in a machine-
language format. The programs that are clients of these
services need not be affected by the language of origination.
The process of generating POSIX services from Forth will
provide us with an opportunity to learn to write code in terms
of a more language-independent, layered-software model.

Meanwhile, this installment of the Product Watch @age
3 7lmentions two fascinating Forth systems. One is written in
C, and therefore could offer the code reuse potential
associated with an open development system. Another Forth
system sports a GUI that imitates WMotif. Someone may
even want to use it as the basis of development of a display
server, in accord with the X Window System client/server
protocol.

R.S.V.P.

Are there any intelligent and attractive single women who
would like to date a Forth Dimensions author? Does anyone
out there understand the abbreviation R.S. VP.?

Russell Harris is an independent consultant providing engineering, program-
mina, and technical documentation services to a varietv of industrial clients. His

Publicity help offered
In the Spring 1993 edition of the Microprocessor Engi-

neering catalog, we learn of the promotion of Nigel Charig

maininterests lie in writing and teaching, and in wrkinhith embedded systems
in the fields of instrumentation and machinecontrol. Hecan be reached bv ohone

as their Sales and Marketing Manager. MPE focuses on its
former customers as the primary readers of this catalog, so
the offer on page two may or may not apply to you. In any
case, an inquiry wouldn't take much effort. (Refer to the
Product Watch section for MPE's address.)

Here's the context in which the offer was made:
"One of Nigel's comments about Forth has been that

many people are not using Forth because they don't know
about it. Consequently we are planning a series of Forth
awareness articles for the electronics and computing press.
If you have an application that your company wants free

at 713-461-1618, by facsimile at 713-461-0081, by mail at 8609 cedardale Dr.,
Houston, Texas 77055, or on GEnie (address RUSSELL.H).

publicity for, contact Nigel so that he can feature it in one of
these articles."

July 1993 August 42 Forth Dimensions

Dead Reckoning

Conducted by Russell L. Harris
Houston, Texas

The collection, cataloging, preservation, and dissemina-
tion of knowledge is a matter of concern to all. Even the most
cursory investigation is sufficient to reveal that the store of
man's knowledge is not nearly as secure as one would expect
or desire. On the whole, our knowledge exists, as it were, in
fragments residing in scattered modules of battery-backed
volatile RAM.

Occasionally we suffer the irretrievable loss of a portion
of man's knowledge. At times, financial constraint or negli-
gence allows one of the figurative batteries to expire. On
other occasions, duress, sabotage, warfare, or natural disaster
results in destruction or deactivation of a memory module.
All too often we discover we have no comprehensive backup
from which the lost data may be restored.

Lest you think this phenomenon is confined to our
present age, consider the testimony of that most authoritative
of sages, Solomon:

That which hath been is that which shall be; and that which
hath been done is that which shall be done: and there is no
new thing under the sun. Is there a thing whereof it may be
said, See this is new? it hath been long ago, in the ages
which were before us. There is no remembrance of the
former; neither shall there be any remembrance of the latter
that are to come, among those that shall come after.

-Ecclesiastes 1:9-11

Out of Sight, Out of ~ i n d
The event which set my mind onto this train of thought

was the reading of an article announcing the closing of what
was described as the foremost engineering library in the
world. Located in New York city, the library suffers from
inadequate funding. The vast collections of the library are
being dissipated throughout the land, to other libraries and
organizations. It is almost certain that such a comprehensive
collection will not again be assembled in one location.

After knowledge is collected and catalogued, there
remains the matter of preservation. I recall several years ago
reading of a technique developed by NASA to arrest the
deterioration of books printed on acid-base paper. It seems
that even the portion of man's store of knowledge which, for
the purpose of preservation, has been typeset, printed, and
bound, is slowlv being obliterated as atrnos~heric moisture

activates the acid residue from the paper-making process.

An Obiter Dictum
Regarding the

Obfuscation of Abbreviation
In every phase of its existence, from initial recording to

ultimate retrieval, knowledge is subject to corruption. One
mechanism by which knowledge is obscured and obliterated
is the insidious and damnable practice of abbreviation. As an
example, consider the term dead reckoning. Even Webster,
apparently, is unaware that the term is actually an abbrevia-
tion: the lexicon only indirectly sheds light on the etymology,
defining deadn?ckoningas "determination without the aid of
celestial observations of the position of a ship or aircraft
deduced from the record of courses sailed or flown, the
distance made, and the known or estimated drift." The fact
is that the word dead in the term dead reckoning is simply
a mispronunciation of the abbreviation ded. Thus, indolence
and carelessness, expressed through abbreviation and mis-
pronunciation, respectively, have given birth to the nonsen-
sical term dead reckoning.

Having survived this brief lamentation and etymological
digression, the astute reader will recall that we are in the
process of examining metacompilation, an activity which, as
you by now may have deduced, calls for a considerable
amount of dead reckoning. Whereas navigators reckon in
terms of geographical coordinates, programmers reckon in
terms of addresses within the address space of a computer.
Navigators deal with speeds and headings; programmers
deal with quantities of data and directions of increment.

Addressing the Matter of Pointers
Forth is a language of pointem In the following para-

graphs, by pointer I mean simply a register or a memory
location which holds an address. However, it is not uncom-
mon to see the word pointer used for the address itself.
Context usually makes clear the usage.

The pointer of which most programmers are first aware
is the dictionatypointer H, which holds the address of the
next available byte in the dictionary of the development
system. The value in H is returned by the word HERE.

The virtualForth machineis basedupon a set of pointers,
which are as follows:

U the user pointer; holds the base address for user
variables for the current user (i.e., task)

S the parameter stack pointer
R the return stack pointer
I the address interpreterpointer; holds the address of

the code field of the next word to be executed
w the address interpreter word pointer; holds, upon

entry to executable code, the address of the param-
eter field of the word being executed

Although variables are frequently used for pointers, this
particular group of pointers is typically implemented in
processor registers, in order to minimize access time and thus
maximize speed of the Forth machine. Note that the addms

Forth Dimensions
(Continues on page 41 .)

July 1993 August

CALL FOR PAPERS
for the fifteenth annual and the 1993

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users

Following Thanksgiving
November 2GNovember 28,1993

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S.A.

Theme: Forth Development Environment
Papers are invited that address relevant issues in the establishment and use of a Forth development
environment. Some of the areas and issues that will be looked at consist of networked platform
independence, machine independence, kernel independence, Development System/Application
System Independence, Human-Machine Interface, Source Management and version control, help
facilities, editor development interface, source and object libraries, source block and ASCII text
independence, source browsers including editors, tree displays and source data-base, run-time
browsers including debuggers and decompilers, networked development-target systems.

Additionally, papers describing successful Forth project case histories are of particular interest.
Papers about other Forth topics are also welcome.

Mail abstracts of approximately 100 words by September 1.1993.
Completed papers are due November 1,1993.

We anticipate a full conference this year.
d Priority will be given to participants who submit papers.

/ I / Earlier papers will be given preference in choosing longer presentation periods

John Hall, Conference Chairman Robert Reiling, Conference Director

Information may be obtained by phone or fax from the
Forth Interest Group, P.O. Box 2154, Oakland, CA 94621.510-893-6784, fax 510-535-1295

This conference is sponsored by FORML, an activity of the Forth Interest Group, Inc. (FIG).

The Asilomar Conferencecenter combinesexcellent meeting and comfortableliving a ~ ~ ~ m o d a t i o n s
with secluded forests on a Pacific Ocean beach. Registration includes use of conference facilities,
deluxe rooms, all meals, and nightly wine and cheese parties.

