$10 Volume X1V, Number 5 January 1993 February

Optimization Considerations

Principles of Metacompilation (Ill)

Embedded Systems Conference

SILICON COMPOSERS INC
FAST Forth Native-Language Embedded Computers

DUP

>R

Harris RTX 2000 16-bit Forth Chip
8 or 10 MHz operation and 15 MIPS speed.
*1-cycle 16 x 16 = 32-bit muitiply.
*1-cycle 14-prioritized interrupts.
«two 256-word stack memories.
+B-channel 1/0O bus & 3 timer/counters.

SC/FOX PCS (Parallel Coprocessor System)
«RTX 2000 industrial PGA CPU; 8 & 10 MHz.
+System speed options: 8 or 10 MHz.
+32 KB to 1 MB O-wait-state static RAM.
+Full-length PC/XT /AT piug-in (6-layer) board.

SC/FOX VME SBC (Single Board Computer)
-RTX 2000 industrial PGA CPU; 8, 10, 12 MHz.
+Bus Master, System Controller, or Bus Slave.
«Up to 640 KB O-wait-state static RAM.
+233mm x 160mm BU size (6-layer) board.

SC/FOX CUB (Single Board Computer)
+RTX 2000 PLCC or 2001A PLCC chip.
«System speed options: 8, 10, or 12 MHz.
+32 KB to 256 KB 0-wait-state SRAM.
+100mm x 100mm size (4-layer) board.

SC32™ 32-bit Forth Microprocessor
+8 or 10 MHz operation and 15 MIPS speed.
+1-clock cycle instruction execution.
+Contiguous 16 GB data and 2 GB code space.
-Stack depths limited only by available memory.
-Bus request/bus grant lines with on-chip tristate.

SC/FOX SBC32 (Single Board Computer32)
«32-bit SC32 industrial grade Forth PGA CPU.
»System speed options: 8 or 10 MHz.
+32 KB to 512 KB O-wait-state static RAM.
+100mm x 160mm Eurocard size (4-layer) board.

SC/FOX PCS32 (Parallel Coprocessor Sys)
+32-bit SC32 industrial grade Forth PGA CPU.
+System speed options: 8 or 10 MHz.
+64 KB to 1 MB O-wait-state static RAM.
Full-length PC/XT/AT plug-in (6-layer) board.

SC/FOX SBC (Single Board Computer)
«RTX 2000 industrial grade PGA CPU.
«System speed options: 8, 10, or 12 MHz.
«32 KB to 512 KB O-wait-state static RAM.
»100mm x 160mm Eurocard size (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

January 1993 February

Forth Dimensions

Comnienis

Features |

6 Optimization Considerations Charles Curley

Smaller is faster, and fasier means smalle—except when it comes to subroutine vs. indirect

threading? The author optimized Forth for the 68000, stating, “Anything one can get by cranking

up the clock speed, one can get by both cranking up the clock speed and by using other |

techniques...” The 68000%s rich instruction set and addressing modes make it ripe for such
improvements. The results is “a JSR/BSR threaded Forth interpreter/compiler.”

| 13 Forth-based Message Service Olaf Meding

The first-place winner in FD's call for articles about “Forth on a Grand Scale,” this paper describes
the largest and most sophisticated messaging system in the telephone answering service industry,
having gained 70% of the market—and growing. It routes thousands of telephone trunks to
operators, and provides all telephony, message handling, database, maintenance, and billing.
Forth—which is used exclusively—is a key ingredient of this success story.

1 6 Graphics & Foating Point in Real-Time Action Mark Smiley
The author wrote Forth routines to enable his mathematics studies, resulting in the rich F-PC
graphics package. He discusses its evolution, and an application that grew with it that requires a
wide range of graphics and floating-point roulines, as well as a menu system. It provides interactive
graphics, more-detailed Mandelbrot and Julia sets, zoom, mini-movies; and supports CGA, EGA,

VGA, and many SVGA boards. Another winning look at “Forth on a Grand Scale.”

Embedded Systems Conference John Rible

23 Forth was represented at this year’'s Embedded Systems Conference, where the promoter offered
a booth to the Forth Interest Group. The goal was to provide information about Forth to people
outside the current user community. At this conference, that meant showing Forth in embedded
applications. Forth vendors provided raffle prizes and product demonstrations; volunteers
coordinated and staffed the outreach event.

2 4 Placing Characters on the Screen C.H. Ting

The second in a series of Forth tutorials, this exercise introduces Forth variables. By means of an

apparently trivial task, the beginner is guided into familiarity with the related operators and uses
them to create a simpler solution than otherwise would have been possible.

Metacompilation represents Forth’s ability to mold itself to the task at hand, sometimes to the point
of defying authorilarian strictures in favor of performance and utility. Tt challenges one’s expertise;
maybe it even threatens those who prefer security over the responsible use of power and freedom.
"I'his series concludes with discussion of compiler directives, defining words, forward referencing,
and gelling a target image into a targel system.

| ﬂ 26 Principles of Metacompilation (1ll) B.J. Rodriguez

| Departments |

4 Editorial Forth on a grand scale; new contest for Forth authors; applying
what you've learned about metacompiling.

5 Letters Wanted: visible Forth; One simple syntax, please;
Fast 32-bit integer square rool.
25 Advertisers Index

36 FastForthward Of modules and librarics; product announcements; and
an ANS Forth update.

43 On the Back Burner .. A lesson in cconomics: PCs in direct control; and Back Burner's
hardware project.

Forth Dimensions @ PRINTED ON RECYCLED PAPLR 3 January 1993 February -

Eelitorial

Forth’s continued recognition—for instance, as a tool of choice for engineers, for
developers of embedded systems, and for scientific instrumentation—is fine, as far as it goes.
But successful efforts on a larger scale may be less appreciated, perhaps not only because
they are fewer, but because they are less discussed or do not fit the Forth stereotypes. Such
applications may be characterized by large amounts of code, multiple programmers, complex
interface requirements, volume of data, etc. The one that first comes 1o mind for many people
is the international airport implemented in Forth in the Middle East; it was talked about at
the conferences a few years back, impressing us all with the scope and prestige of thal
contract. The next one most people think of is—

I'll bet most people draw a blank. Maybe the designers, engineers, programmers, and
managers who work on these things are so absorbed in the next challenge that they aren’t
spending a lot of time bragging. Maybe the reporls are true that some companies think of
Forth as their secret advantage, which would explain their silence on the subject. IFT hadn’t
dined at a certain table at a particular conference, I would never have heard of the telephone
system which, after a few months’ protoyping in Forth, had already outstripped a years-long
effort using other languages.

As a gesture intended to bring atiention to Forth’s reliability, maintainability, and efficiency
in large and/or complex systems, Forth Dimensions and the Forth Interest Group sponsored
a call for articles about “Forth on a Grand Scale.” Printed in this issue are two entries the
referees believed best addressed the theme, albeit in different ways, Olal Meding's first-place
paper discusses Forth’s contribution to the commercially successful EVE messaging system.
Mark Smiley writes about mathematics and fractals in Forth. We thank them , and are pleased
to present their work here. Articles about Forth in big places are always welcome!

With that concluded, Forih Dimensions is able to announce its next contest for Forth
authors. In keeping with the theme of the upcoming FORML conference, we are seeking
articles aboult “Forth Development Environments.” The three articles judged best will be paid
cash prizes, with the first-place author receiving $500. Some specific subjects in keeping with
that theme (e.g., libraries, user interfaces, source and run-time browsers) are given in
FORML’s announcement on the back cover of this issue, although authors should not feel
restricted Lo that list as long as they address the general theme. Deadline for submissions to
this contest is August 1, 1993, (See the ad on page 25.)

Concluding in this issue is Brad Rodriguez’ series of articles on metacompilation. His
structured presentation of the topic is the most complete and comprehensible T can
remember. Still, this is the kind of knowledge that only gets burned into our long-term
memory when we apply it. Besides which, as the author would point out, specific choices
and techniques may be affected by the particular application and environment. So re-read
Brad's three-part series and prepare to take the next step...

...which begins- with this issue’s “On the Back Burner.” Columnist Russell L. Harris
presents a schematic and parts list for a relatively simple device readers can assemble
themselves and use 1o explore the principles of metacompilation and embedded program-
ming, with Harris’ continuing guidance in future columns.

(P.S. Short of taking an E.E. course or bluffing your way in over your head at a new job,
this is an excellent opportunity to get hands-on-hardware experience—make the most of it!
But if you are more interested in programming such devices than in building them, call the
Forth Interest Group to inquire about the availability and prices of partially or completely
assembled boards; parts kits might also be offered.)

Gary Smith served long and well as F[J's “Best of GEnie” columnist, in addition to his Forth
RoundTable duties on that database/communications service. He volunteered much energy
and time tracing the threads of interesting and important on-line discussions for our benefit. Gary
recently retired from this activity, and we wish him the best. Thanks, Gary, for vour contributions!

—Marlin Quverson
Editor
January 1993 February 4

Forth Dimensions
Volume XIV, Number 5
Soplombaer 1002 Oclobor

Published by the
Forth Interest Group

Editor
Marlin Quverson |

Circutation/Order Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the edi-
tor, and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimen-
sionsis included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publica-
tion, the address is: Forth Interest
Group, P.O. Box 2154, Oakland,
California 94621. Administrative
offlices: 510-89-FORTIL. Fax: 510-
535-1295. Adventising sales: 805-
946-2272.

Copyright @ 1993 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not
the code) is copyrighted by the
individual authors of the anicles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repro-
ductions for non-commercial pur-
poses, without the written permis-
sion of Forth Interest Group, Inc. is
a violation of the Copyright Laws.
Any code bearing a copyright no-
tice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designsthat
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and benefits
intended Lo assist each of its mermn-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among |
its activities. '

" Forth Dimensions (IS5N 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, 1330 S, Bascom
Ave., Suite T, San Jose, CA 95128,
Sccond-class postage paid at San
Jose, CA. POSTMASTER: Send ad-
dress changes o Forth Dimensions,
P.O.Box 2154, Oakland, CA 94621."

Forth Dimensions

Letters

Letters to the Editor—and to your fellow readers—are always welcome.
Respond to arlicles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome, butis optional. Letters may be edited for clarity and length. We
want to hear from you!

Wanted: Visible Forth

I read the letter from Mark Martino (“Visible Words & Ugly
Complexity,” FDXIV/4) with interest. As always, Mark’s ideas
are creative and useful. hope he pursues the idea of ereating
a “visible” Forth development environment. I would like to
buy such a beastie from him.

I think Mark’s approach would improve Forth documen-
tation efforts, as well. Using “word boxes” might solve some
of the issues addressed by Mike Elola in the same issue. (By
the way, thanks, Mike.) Possibly, the visual environment can
include Forth help files slaved to the visual word boxes. This
would include parameters required by and output by the
word, examples, etc.

Thanks for your attention.

Gus Calabrese, President
WFET

4555 East 16th Avenue
Denver, Colorado 80220

One Simple Syntax, Please
Dear Mr. Ouverson,

After reading Mike Elola’s article (“Styling Forth to Pre-
serve the Expressiveness of C,” FD XIV/4), 1 just had to
disagree. This is yetanother attempt to improve Forth’s image
by turning it into the popular language of the day. We've
been through this before. Forth as BASIC. Forth as Prolog.
Forth as Lisp. Forth as God knows what.

ment over Forth's single, simple one. It's richer in the same
way that government gobbledegook is richer than a
Hemingway novel,

#57, Sept./Oct. 1992), 1 explored the Shellsort in depth. As
part of the sort engine, I wrote the following code:

SHELL (--)
SETGAP BEGIN DECGAP
ITEMS @ GAP @ DO
I DUP S@ SV !
BEGIN
DUP GAP @ - DUP 0< NOT SWAP
S@ SV @ > AND
WHILE
DUP GAP @ - TUCK S@ SWAP S!
REPEAT
SV @ SWAP S! LOOP
GAP @ 2 < UNTIL ;

Forth Dimensions

In an article recently published in The Computer Journal |

I'was rather proud to have squeezed it into a single screen.
Today, I would have written the same code as:

: SHLMATCH? (i -- i £) \ f=true =nomatch
DUP GAP @ - DUP 0< NOT \ Within array?
SWAP S@ SV @ > AND ; \ Compare 2 array values

SHLGETNEXT (i == 171}
Shift value and get next index
DUP GAP @ - TUCK S@ SWapP S! ;

SHLCOMPARE (i -- i')\ i = array index
BEGIN SHLMATCH? WHILE SHLGETNEXT REPEAT ;

PICKUPITEM (1 --)
S@ sv ! ;

INSERTITEM (i --)
SV @ SWAP S! ;

SHLSHUTTLE (--)

ITEMS @ GAP @ DO
I DUP PICKUPITEM

INSERTITEM LOQCOP ;

SHLCOMPARE

?ENDGAP (—- £)
GAP @ 2 < ;
SHELLSORT (--)

SETGAP BEGIN

DECGAP SHLSHUTTLE ?ENDGAP UNTIL ;

The first example is Forth written like Pascal or C. You
take the pseudocode that outlines the functions and then
transform it into a giant blob of working code.

It is typical of the code 1 wrote before the big “Aha!”
Though I can’t call it a mystical experience, I think I finally

I don’t consider C's three capricious syntaxes an improve- | understand what Charles Moore is driving at as the Forth

Way. In Forth, the pseudocode becomes the Forth words.
These words are then fleshed out in Forth one-liners. The
words describe the problem and the solution.

Leo Brodie, in Thinking Forth, does a good job of
explaining Moore’s philosophy, but prior experience with
Pascal or C definitely screws up the attempt to think Forth,

| Ifany otherlanguage actually helped me tolearn Forth, itwas

assembler. The paradigm of Forth is assembler, not one of the

Backus-Naur Algol derivatives.

I've read complaints that Forth is too primitive, too simple,
too open. These are precisely the reasons I like Forth. In my
mind’s eye, 1 can see the code work. I don't have to pray to
the compiler god and hope things work out.

Let Forth be Forth.

' Yours truly,

Walter J. Rotlenkolber

| P.O. Box 1705

(43}

Mariposa, California 95338

(letters and code continue on page 35.)

January 1993 February

Lire i e FastFoRmy Lane

Optimization
Considerations

Charles Curley
Gillette, Wyoming

This paper describes a 68000-based JSR/BSR threaded |
Forth interpreter/compiler. The compiler compares a vari- |

able and a header field, and either assembles a JSR or BSR to
a called word, or copies its code in line. The definition of ;

is smart enough to replace a BSR/JSR at the end of a word |

with a JMP or BRA, as appropriate. Several words which are
not traditionally immediate become so, such as >R and
constants.

The Forth described herein is FastForth, a full 32-bit Forth
for the 68000. It is a direct modification of the indirect-

threaded Real-Forth. This is, in turn, a direct descendant of

fig-Forth. (Remember fig-Forth?) Vocabularies, among other |

things, retain their original flavor.
For those not familiar with 32-bit Forths, memory operators
with the prefix Woperate on word, or 16-bit, memory locations.

The Implementation

Itis conventional wisdom among Forth gurus that smaller
is faster, and faster means smaller. The commonly accepted
exception to this has been when it comes to subroutine
threading vs. indirect threading. Here, the traditional argu-
ment has been that the two byles per call (say, on a PDP-11)
is worth the overhead, compared to four bytes per call. This
argument is less attractive on an eight-bit processor, such as
the 6502, where a subroutine call is three bytes, and the
interpreter for the indirect threading is some 14 instructions.

“But, if we crank up the clock speed...”
Probably someone at Intel, or with equal imagination.

|
J'

someone said. |

Anything one can get by cranking up the clock speed, one |
can get by both cranking up the clock speed and by using

other techniques, such as better compilers. Or better coding,.

The 68000's rich instruction set and plentiful supply of

addressing modes make it ripe for such improvements.
The traditional Forth compiler looks rather like this:

: INTERPRET
BEGIN -FIND
IF (found) STATE @ <
IF CFA , ELSE CFA EXECUTE THEN
ELSE HERE NUMBER DPL @ 1+

IF [COMPILE] DLITERAL
ELSE DRQP [COMPILE] LITERAL THEN
THEN 7?S8TACK AGAIN STOP

January 1993 February

[T —

Paleoforthwrights' will no doubt recognize this as the fig-
Forth compiler. This system is simple, casy o understand,
and [ast.

Itruns alot fasterif parts of it are written in code, of course.

With a 32-bit data path and 32-bit code ficlds, optimization |
| by assembly language re-coding can go hog wild on the

68000. For example, the word , (comma) becomes:

CODE , OFUSER DP ARQ MOV,
4 # QFUSER DP ADDQ,
' 1 2+ *+ BRA, ;C

(OFUSER is anassembler macro which assembles a displace-
ment from the user area register.)

Even with this scheme, any word called will still occupy |

four bytes for each call, plus the overhead of next and the
return code. But even with this overhead, many words in the
nuclcus become both smaller and faster.

A major step is taken when one moves from indirect-
threaded code to subroutine threading. Whole aspects of
Forth are affected, often in a very subtle manner. The code
interpreter can stay the much the same. However, it now calls
another word to assemble its calls:

: <BSR> 2- HERE - DUP -80 80 WITHIN
IF FF AND 6100 OR
ELSE 6100 W, THEN W, ;
: <SUB>
\ addr -- | compile subroutine to addr
HERE OVER - -8000 7FFF WITHIN
IF <BSR> ELSE 4EBY9 W, , THEN ;
INTERFRET
BEGIN —-FIND
IF (found) STATE @ <
IF <SUB> ELSE EXECUTE THEN

ELSE HERE NUMBER DPL @ 1+

IF [COMPILE] DLITERAL

ELSE DROP [COMPILE] LITERAL THEN
THEN 7?STACK AGAIN STOP

1. "Forthwright” is a term coined by AlKreever The* paleo prafsx is myown
perversion. | also use the term “neologist” for somecne who creates new

words. Forth is, after all, the language for people who like to play with words. |

Forth Dimensions

<SUB> is now a lot more than , is, and we have added
a lot to the dictionary that wasn't already there. <SUB>
calculates whether to use a BSR or JSR instruction, and uses
the appropriate one. <BSR> is smart enough to use a short
or long relative call, as needed.

By making this change, we must also redefine next.

Instead of a three-instruction (six bytes) macro, we now have

a one-instruction (two byte) macro. The instruction is, of
course, RTS.

Now a reference to a called word may be two bytes, four |

bytes, or six, depending on how far away the call is. We have
made next alot smaller. In the nucleus, there are no six-byte

calls, and quite a lot of two-byte calls. We have reduced the |

size of the nucleus considerably, and gained speed.

Another innovation is to get rid of the words 0BRANCH

and BRANCH, which do the work of controlling flow in
conditional branches. These, of course, are replaced with

processor-instruction equivalents. 0BRANCH and BRANCH

occupy six bytes per call, four for the CFA and two for the

displacement if the branch is taken. The processor instruc-

tions occupy four or six bytes each, and run much faster.
The relevant code is:

0BRAN 201B6700

{(s [+ dr0 .1 mov,
, 0 W, HERE 2- ;
BRAN 60000000 (2 *+ bra,)
¥ HERE 2- ;

2 *+ eq bcec,)

RESOLVE HERE OVER - SWAP W! ;
IF
?COMP OBRAN 2 ; IMMEDIATE

: THEN
2COMP 2 ?PAIRS RESOLVE ; IMMEDIATE
ELSE
2 ?PAIRS BRAN
SWAP 2 [COMPILE] THEN 2 ; IMMEDIATE
BEGIN ?COMP HERE 1 ; IMMEDIATE

| : SBKWD 10000 / HERE ROT SWAP -
2= FF AND OR W, ;
| : LBKWD HERE ROT SWAP -

2- FFFF AND OR Y

| : BKWD OVER HERE - 2- ~=7F 7F WITHIN
IF SBKWD ELSE LBKWD THEN ;

UNTIL 1 ?PAIRS

201B W, 67000000 BKWD ; IMMEDIATE
: AGAIN 1 7PAIRS

60000000 BKWD ; IMMEDIATE

: REPEAT

>R >R [COMPILE] AGAIN

R> R> 2- [COMPILE] THEN ; IMMEDIATE

WHILE [COMPILE] IF 2+ ; IMMEDIATE

These words, again, occupy more room in the dictionary
than their predecessors did, but the code compiled by them
is so much smaller and faster that the overhead is worth it.

Forth Dimensions

Because the 68000 has an efficient instruction set, and
calls toa word may be as many as six bytes long, it is possible
to have calls to words which occupy more room than the
word itself. Why not copy the guts of such words in line, and
forget the call? We may or may not save space in the
dictionary, but we can get rid of the overhead of the call and
return instructions. This requires a change in the interpreter:

: <BSR> REL QFF 2- HERE -
DUP -80 80 WITHIN
IF FF AND 6100 OR
ELSE 6100 W, THEN W, ;
: <8UB>
\ addr -- | compile subroutine to addr
HERE OVER - -8000 7FFF WITHIN
IF <BSR> ELSE 4EBY9 W, + THEN ;
: <COMP>
\ addr -- | subroutine or inline?
DUP 2- W@ -DUP
IF LENGTH @ 1+ <

IF HERE OVER 2-
ELSE <SUB> THEN

W@ DUP ALLOT CMOVE

ELSE <SUB> THEN ;
INTERPRET
BEGIN -FIND
IF (found) STATE @ <
IF <COMP> ELSE EXECUTE THEN
ELSE HERE NUMBER DPL @ 1+
IF [COMPILE] DLITERAL

ELSE DROP [COMPILE] LITERAL THEN
THEN ?STACK AGAIN STOP

The word <COMP> looks at a field in the word’s header,
the length field. If the contents of the field is zero, no copy
is made—a subroutine is called instead. If the length field is
less than or equal to the current contents of the user variable
LENGTH, an in-line copy of the target word is made, instead
ofa subroutine call. If the length field is greater than LENGTH,
a subroutine call is made in the normal fashion.

The use of a variable to determine the cutoff for copying

| codeallows the programmer to select the best length for such

copying. For most uses, this is set to six, so dictionary size is
the main consideration. However, it can be set to any value
up to 32K, if the user wants to really go for speed. (None of

| this “We're from Microsoft and we know more about your
| application than you do” stuff here!)

Even if the length value for compiling the nucleus is set
to the reasonable minimum, four, we stll gain. DUP, for

. example, has one two-byte instruction in it. Itshows up about

70 times in the FastForth nucleus, for 140 bytes of savings.
Thus, even though we have overhead in the nucleus to copy
in line, we still come out ahead in nuclear size. Other one-
instruction, two-byte words abound, such as DROP.

The compiler must know the value to which it must set
the length ficld. This valuc is best calculated after the word
is fully compiled, so the logical placeto doitisin ;. That code

January 1993 February

looks as follows:

NXT
HERE LATEST N>C - SETLEN 4E75 W, ;
The code to be copied (and hence the length of the word
for copying purposes) must exclude the return instruction at
the end. So we make the calculation before adding the return.
We may have a problem, however. Are there circum-
stances under which it is inadvisable to make an in-line copy
ofa word? Answer, yes. One circumstance is when the source
word contains a relative reference, such as a program counter
relative offset. Or a BSR instruction, which is often. That is
why the word <BSR> scts the user variable REL (for
“relocatable™ to the off state. Thus, the code called by the
word ; which sets the length field in the head, must examine
REL.

: NXT REL @
IF HERE LATEST N>C -
THEN 4E75 W, ;

SETLEN

This code requires that the length field be set to zero,
which is done by CREATE. And the relocation indicator must
be sel to its default state:

?EXEC !CSP CURRENT @ CONTEXT !
CREATE SMUDGE
REL ON LATEST N>C DP !] ;

The phrase LATEST N>C DP ! is there because CREATE
sets up a code field pointing to the code for variables, and
this must be overwritten by a : definition. This is a by-
product of the decision to modernize the system by having
CREATE produce variables, instead of the ancient fig-Forth
practice of having it produce headers for code definitions.

A gotcha of 68000s is that the 68000 is word-aligned for
word and long-word memory accesses. Thalt s, either @ must
pick up data a byte at a time and assemble the four bytes, or
it cannot be used on odd address cells. The latter alternative
would be incompatible with other Forths running on other
processors, so the former was selected for Real-Forth, the
immediate ancestor of FastForth. The result is as follows:

CODE @ S [ARO .L MOV,
\ avoid byte boundary
ARO [+ S [.B MOV, \ problems
ARO [+ 1 S &[.B MOV,
ARO [+ 2 S &[.B MOV,
ARO [385 &[.B MOV, NEXT :C

Aside from being ugly, the word takes up 16 bytes in
memory. It probably will be referred to a lot by subroutine
call. However, why not provide both types of memory

access? A version of @ requiring word alignment produces a |

four-byte word:

CODE F@
S [ARO MOV,

\ @ from even address only
ARO [S [MOV, NEXT ;C

January 1993 February

_ This word will invariably be copied in line. Furthermore,
| it will get used a lot: all variables, user variables, and word
i or long word arrays are word aligned. Thus, careful editing
| of the nucleus produces a much faster nucleus, using F@
where appropriate. Alas, the nucleus grows—but not much,

references Lo it will produce smaller applications, so the cost
is well worth it.
Similar logic produces F! from !:

CODE F!
S [+ ARO MOV,

\ store to even address only
S [+ ARO [MOV, NEXT ;C

Can we squeeze more room out of the nucleus and still
accelerate things? Well, it seems a bit absurd for the last

Why not force the call to become a jump? Once execution of
the called word ends, the return instruction will force
execution back to the word which called the current word.

word. This saves us an instruction in the dictionary, and two
return stack accesses in execution.

The resulting code gets tricky. There are two circum-
stances under which this trick is inadvisable: when the last

branch within the word refers to where the RTS would be if

THEN is now defined as:

THEN HERE LASTTHEN F'!
2COMP 2 ?PAIRS RESOLVE ; IMMEDIATE

So we know where the last subroutine call was made, the
compiler now maintains a variable, LASTSUB.

<5UB>
\ addr --

| compile subroutine to addr

| HERE DUP LASTSUB F! OVER -
| -8000 7FFF WITHIN
IF <BSR> ELSE 4EBY W, , THEN ;

The code to make it work all operates from ;.

| : DOBSR
= IF 60 LASTSUB F@R C! 0
ELSE 1 THEN ;
| : BSR LASTSUB FR W@ 4EBY
= IF 4EF9 ©LASTSUB F@ W! 0
_ ELSE 1 THEN ;
f
| = 2SR LASTSUB F@ W@ FF00 AND 6100
I DOBSR ;
1l : 45R LASTSUB F@ W@ 6100
| DOBSR ;

The RTS instruction may then be omitted from the end of the |

instruction before the return is not a call, and when a forward |

there were one. To check for the latter condition, we simply |
examine a variable maintained by the compiler word THEN. |

Because this word will be copied in line, application |

instruction in a word (before next) to be a subroutine call. |

Forth Dimensions

\ =—— £1 | 1 indicates failure to change
A\ bsr to bra, etc.
| : LAST? REL F@ 0= HERE
LATEST N>C - LENGTH F@ 1- >
IF HERE LASTSUB F@ -
DUP 2 =
IF DRQOP 2SR
ELSE DUP 4 =
IF DROP 4SR
ELSE 6 =
IF 65R ELSE 1
THEN THEN
ELSE 1 THEN ;

OR

THEN

NXT REL F@
IF HERE LATEST N>C -
4E75 W, ;

SETLEN THEN

; 2COMP
IF LAST?
IF NXT THEN
ELSE NXT THEN
SMUDGE [COMPTLE] [;

?CSP HERE LASTTHEN F@ -

IMMEDIATE

The three words 6SR, 4SR, and 2SR each handle the three

possible subroutine call instructions. They do thisby munging?

the last subroutine call’s opcode into a BRA or JMP opcode,
as appropriate. The word LAST? determines whether to call
one of these words and, if so, which one. It also returns a flag
to indicate whether the final RTS instruction should be added
to the word. Also, the whole process is bypassed if there is

. a forward branch pointing to where the RTS would be.

This has the effect of giving us a free, zero-instruction
return, without having to build a custom processor to do it.

Further Optimizations)

One can make further optimizations along the same lines.
The fig-Forth word LIT goes away entirely, to be replaced
by an in-line literal instruction. For large values, the following
instruction obtains:

<value> # s -[mov,
For smaller values, the MOVQ instruction proves useful:

<value> # dr0 movg, dr0 s -[mov,
LITERAL (stll FIGgishly state smart) is redefined as
follows:

LITERAL STATE F@

IF DUP -80 7F WITHIN
IF FF AND 7000 OR W,
ELSE 273C W, , THEN

THEN ; IMMEDIATE

2700 w,

Constants can be reworked in a major way. We can

2. PDP-11 hacker slang for stomping on the object code directly.
Altributed to Mung the Merciless.

Forth Dimensions

produce a word which is not relocatable, and therefore
requires a subroutine call for each reference. Instead, we
make constants into immediate words () which simply
produce literals as needed:

CONSTANT CREATE IMMEDIATE ,
DOES> F@ [COMPILE] LITERAL ;

Similar surgery may be committed on variables.

: VARIABLE CREATE |,
DOES> LITERAL ;

IMMEDIATE

User variables require a more complex operation at

| compile time, as they must compile an opcode and the offset

from the user pointer (maintained in a register on the 68000).
Inaddition, execution atinterpretation lime is more complex.
The resulting word has a hybrid code and high-level ; CODE
portion.

: USER CREATE W, IMMEDIATE ;CODE
RP [+ ARQ MOV, U AC &[(ofuser state)
TST, NE IF,
DRO CLR, ARO [DRO .W MOV,

DRO S -[MOV, 1] 4lEE W, W,
\ ofuser <n> ar0 mov,
[[ELSE, U DR0O MOV,
ARO [DRO .W ADD,

DRO S -[MoV, THEN,

2708 W,
ar0 s -[mov,

NEXT ;C

The firsttwo lines of the ; CODE portion examines the user
variable STATE to determine whether the system is compil-
ing or interpreting. If the system is compiling, the next two
lines are executed. The offset of the user variable is brought
into aregister, sign extended, and pushed ontothe data stack.
Then high-level words are executed to comma in the first
opcode, 41ee, the offset (an argument to the first opcode),
and then finally the second opcode, 2708. This results in the
assembly in line of the following code fragment:
ofuser <n> ar0 mov, ar0 s -[mov,

If the system is not compiling, the actual address of the
user variable is calculated by adding the offset to the contents
of the user register. The results are pushed onto the data
stack.

In most other languages, a lot of hand coding would be
done to make these compact definitions possible. Fortu-
nately, Real-Forth and FastForth both provide both an

| assembler and a disassembler, so code definitions can be

prototyped and the object values determined rapidly. Such

tools are essential for language development.

Another area of oplimization is to move the indices and
limits of loops into the 68000’ data registers. This will
produce faster and probably more compact code. (Isn't it
nice to have an adequate supply of registers?) Rather

| arbitrarily, data registers five and six were sclected to hold the
| index and the limit, respectively. (DO) pushes these onto the

return stack, and the loop ending operators pop them off,
January 1993 February

ASSEMBLER BEGIN,

Z2DUP >R >R 2 # RRO ADDQ,
RP [+ DR6 MOV, RP [+ DRS5 MOV,
ARO [JMP,

CODE (LOOP)

RP [+ ARO MOV, 1 # DRS ADDQ,

LABEL LP2 DRS DR6 CMP,
R> R> GT UNTIL,
LABEL LP5 ARO [ARO .W ADD,
ARO [JMP, ;C
FIXED
>R >R

CODE (+LOOP)

RP [+ AR0O MOV,
S [+ DRO MOV, DRO DR5 ADD,
DRO TST, PL LP2 *+ BCC,
DR5 DR6 CMP, LT LP5 *+ BCC,

R> R> AGAIN, He! FIXED
A\ dr5: index
dr6: limit
CODE (DO)

RP [AR0O MOV, DRS RP [MOV,
DR6 RP —-[MOV,
S [+ DR5 MOV,
ARO [JMP, ;C

S [+ DR6 MoV,
FIXED

Nuclear gurus are reminded that this is still a fig-Forth
nucleus, and there are differences in how the loop operators
work between fig-Forth and later standards.

(DO) operates by pushing two items from registers onto |

the return stack. In order to do this, it first pops the return
address into ARQ. The loop registers are pushed, and the new
index and limit are popped from the data stack. An RTS is
emulated by jumping indirect through ARO, which holds the
return address.

(LOOP) works by comparing the two data registers. Inall
cases, the return address is first popped into ARO. If the loop
is not exhausted, the offset to return to the beginning of the

loop is added to ARO, and a jump indirect through ARO is |

executed. If the loop is exhausted, execution branches o the
code fragment ahead of (LOCOP). There, the return address
is adjusted to skip over the offset. The two data registers are
popped from the return stack, and execution is resumed with
the usual indirect jump through ARQ.

Since we have moved loop indices and limits from their
traditional places on the return stack, index and limit
operators must also change. T must be recoded:

CODE I DRSS S -[MOV, NEXT ;C

R* can no longer be aliased to T, and must now be a
separate word.

J and other words which access nested loop limits and
indices must also be recoded. J now looks like the old T.

We also nced a way for the Real-Forth hackers to twiddle
the loop index while in a loop. For example, (EXPECT)

3. RE to you mezo- or neoforthwrights.
January 1993 February

| and the one they return. For example, 1o navigate from the

plays with the loop index when it sees a backspace character. |
This is handled by writing the new word 1!, which allows
sufficiendy unstructured code to be an eyesore.

CODE I! S [+ DRS MOV, :C
\ use to play w/ index

NEXT

(EXPECT) OVER + OVER
\ add for Atari/IBM PC keyboard
DO KEY DUP 14 +0ORIGIN W@ =
OVER 16 +ORIGIN WE = OR
IF DROP 08 OVER I pup I 2- + I! -
ELSE DUP 0D =
IF LEAVE DROP BL 0
ELSE DUP THEN

IC! 0 I 1+ C! THEN
EMIT (DROP)
LOOP DROP ;
The Implications

Such drastic surgery on a nucleus has implications
elsewhere in the nucleus, for application coding and for
utility code such as decompilers. Even one’s conceptual view
of Forth is affected.

The most profound shock, especially for those of us
accustomed to fig-Forth-styled dictionaries, is that the con-
cepts of the parameter ficld and code ficld merge and
become one. (This is not, however, an approach toward a
Grand Unified Field Theory.) The most disconcerting thing
for a fig-Forth user is that " and its relatives can no longer
return the parameter field. It may or may not be the same as
the code field; however, the code ficld will always exist. So |
' and its FastForth brethren now return the code field
address.

This changes the family of words used to maneuver in the
header of a word to the point where they had to be renamed.
They now take their names from the field address they expect

code field to the name field, one uses C>N. To go the other
direction, N>C,

This name change has the benefit of aiding conversion of
code from Real-Forth (or other Forths) to FastForth. |

A word in this family is C>P, used 10 get from the code
field to the parameter ficld, if there is one. This word must |
skip over the instruction at the code ficld, which will be onc |
of three possible subroutine calls. This it does by detecting
which instruction is there. It works as follows:

: C>P

({ cfa -—-- pfa | find parameter field)

DUP W@ 6100 = IF 4+ ELSE
DUP W@ 4EBY9 = IF 6 + ELSE 2+
THEN THEN ;
Occasionally one has need to go back the other way. That I
| is stranger: '
: P>C
\ pfa --- cfa | jump from pseudonfa (pfa)
\ of a voc to its code field
Forth Dimensions

10

| DUP 2- W@ FF00 AND 6100 =
IF 2-
| ELSE DUP 4- We 6100 =
! IF 4-
ELSE DUP & - W@ 4EBY =
IF 6 - ELSE ABORT" bad link"

THEN THEN THEN ;

P>C makes guesses about which instruction was used,
and where it would be if it had been used. This word is not
in the nucleus, because it is used so rarely. It was originally

| constructed to allow vocabulary-traversing code to print out

the names of the vocabularies in the system as it traversed the
linked list of vocabularies.

guru or the person who does much assembly language
programming under Forth. This is that the IP and W registers
have moved. The Forth instruction pointer is now the
processor’s instruction pointer—sometimes. Wis now the first
cell on the processor stack. Usually.

intermediate definition of VARIABLE. This was imple-

| mented to act exactly like the indirect-threaded version of

VARIABLE, and requires a call to each variable. It has since

| been replaced by the version given above. Note that the code
| field is set by the word CREATE.

} : VARIABLE

CREATE , ;

ASSEMBLER HERE *VARIABLE* !

RP [+ S -[MOV, NEXT
(CREATE)

FIRST HERE 0OAQ + U< 2 Z2ERROR
?ALIGN -FIND

IF DROP C>N 1ID. 4 MESSAGE SPACE THEN
HERE DUP C@ WIDTH F@ MIN

1+ =CELLS ALLOT

DUP 80 TOGGLE HERE 1- 80 TOGGLE

LATEST , CURRENT F@ F! 0 W,

{ *VARIABLE* F@ } LITERAL <SUB> ;

Since the length field of a variable is never changed from
its initial zero, all references to variables are by subroutine.
This subroutine call places the return address on the stack.
The first instruction in the variable is another subroutine call,
to the working code routine for variables. This instruction
also places a return address on the return stack. But the
second return address points to the variable’s allocated

storage arca, not to code. So all the working code has Lo do
is pop the address off the return stack and push itto the data |

stack. The nextinstruction, the RTS, resumes execution at the

' code which called the variable.

| Theability to copy in-line code into a word means that the
| locations of return stack items get rather fuzzy. An item is
| going to be somewhere on the return stack, but where
depends on whether the calling word copied the target word
in line or not. For example, a subroutine version of R would
have to reach over the return address to get the value on the

Forth Dimensions

| BASE @ >R HEX ...

Another conceptual change will hit the Forth nucleus |

For an example of how this works, let's look at an |

return stack to be copied. An in-line version would not have
to skip the return address.

An in-line version of R is only one instruction, two bytes.
It makes sense to copy it in line wherever possible. Butitisn’t
always possible: some of us use the return stack to store
things at interpretation time:

R> BASE !

The implementor could be bloody-minded about the

| wholethingandtell you notto do things like that. Or he could

have written a set of state-stupid words for use inside
compiled words, and another set of state-stupid words for
use outside of compilation, and he could have expected you,
the user, to remember the difference.

But Allah is merciful. Instead, we have three state-smart
immediate words, R, >R, and R>. For example:

\ rp [s -[mov, => 2717
CODE R OQFUSER STATE TST,
NE IF, 2717 #L S -[MOV,

'NF W, *+ BRA, THEN,
4 RP &[S -[MOV,
NEXT ;C IMMEDIATE

They all work on the same model. If the system is
compiling, the appropriate opcode is assembled in line with

| W, . Otherwise, a subroutine version is executed.

This also means that LENGTH may never be set so that R
is called by subroutine. That is, it may never be less than two.

Execution arrays have also mutated under FastForth. With
indirect threading, all references to words in the array were
the same length. Thus, indexing into the array was easy:
multiply the index by the size of the reference, add it to the
base address of the array, fetch the value there, and execute
it. In 32-bit Real-Forth, EXECIs defined as follows (except that
it is done in code):

EXEC 4* R> + @ EXECUTE ;
The new version is a bit more elaborate. The old EXEC

mutates into:

| CODE <EXEC>

\ index --- |
S [+ DRO MOV,
RP [+ ARO MOV,

index into execution array
2 # DRO ASIL,
DRO ARO ADD,

ARO [ARQO MOV, ARO [JMP, ;C
| And a new compiler directive is added:

: EXEC COMPILE <EXEC> BEGIN -FIND

IF (found) STATE F@ <
IF , ELSE EXECUTE THEN

ELSE 0 ?2ERROR
THEN 7?STACK STATE F@ 0= UNTIL ;
IMMEDIATE

EXEC simply compiles a series of CFAs in line, until it finds that
compilation has been turned off, usually by the word STOP.

January 1993 February

Other Improvements

There is much work one can to do to optimize FastForth.
Most of these suggestions have been done, at least experi-
mentally. Their implementations and implications will be left
as an exercise for the student. There will be a quiz.

Forward-referring branches can be made smart enough to
make two- or four-byte branches, if one cares to write the
code to move the intervening code appropriately at branch
resolution time.

Since the processor has a variety of conditional branch
instructions, why not make the Forth conditional branches
reflect this? The traditional Forth typically compiles two
words: one performs a test, the other does the branch.
Instead, why not make the branch instruction also do the test?
For example, the phrase 0= IF might become two in-line
instructions at compile lime, instead of three or more.

We have seen how to move the indices and limits for
loops into registers. Why nol save more time at run time, and
force (DO) and (LOOP) (and their ilk) to always be copicd
in line? This will require changes in the way DO and LOOP
operale al compile time.

A major improvement can be made in any Forth by
changing the header structure. The traditional fig-Forth
header structure places the link field after the name field in
memory. This requires dictionary searches to traverse each
name field to goto the next word in the dictionary. By placing
the link field before the name field, the traverse loop is
replaced with a single instruction. Since compilation consists
largely of dictionary searches, compilation is greatly speeded.

Interim Results

Thereare plenty of optimizations yetto make in FastForth,

In spite of this, one may make some prelirinary assessments.
The results are not all in, but they are definitcly promising,
For a quick and dirty benchmark, 1 looked to the Eight
Queens problem, as coded by LeVan, Forth Dimensions 11/1,
and modified by Wilson M. Federici (GEni¢ e-mail address
W.FEDERICD. As I am also using an Atari ST, my results
compare dircctly with Mr. Federici’s. However, to speed
things up, I made the arrays byte arrays,
which eliminates a two-place shift, and re-
placed F@ with C@. I also found that the
greatest speed for any given version was
achieved with FastForth’s LENGTH set to 16.
To Federici’s results, I add the final five

MAKE YOUR SMALL COMPUTER

THINK BIG

(We've been doing it since 1977 for 1BM PG, XT, AT, P52,
and TRS-80 models 1,3, 4 & 4P.)

FOR THE OFFICE — Simplify and speed your work
with our outstanding word processing, database handlers,
software. They are easy to use, powerful,
with executive-look print-outs, reasonable site license costs
and comfartable, reliable eu?ﬂ)n Ralpn K Andrist, author/

on my

Integrate with System Disk only what

FORTHCOM - for Communicaticns
GENERAL LEDGER - Accounting System

compiling the FastForth nucleus, approximately 13 kilobytesin |
size, takes about 120 seconds under Real-Forth. Under
FastForth, this improves to under 70 seconds. (As the Atari ST
has a real processor, there is enough room to hold the source
for all this in Forth’s local memory, so speed of disk access is
excluded from consideration.)

Conclusions |

Properly done, conversion of a 68000 32-bit Forth from
indirect-threaded code to subroutine-threaded code will be
rewarding in both speed improvements and in application-
and nucleus-size improvements. The speed improvements |
were expecled when the conversion process was slarled, as
was the smaller nucleus. The improved application size was
a pleasant surprise.

But the key point is this: however snappy compilers or
other tools may help (or hinder), they are no substitute for
competent programming or competent software design.
‘They are especially no substitute for good optimization. And |
those are all stll arts. :

Availability

Persons wishing to experiment with FastForth may imple-
ment these techniques on their own target compilers for
personal use and experimentation. Those who wish to run
the complete FastForth package may obtain a beta site copy
for the Atari ST from the author. The author will also discuss
ports to other 680x0 machines and ports to other processors
with interested parties.

Charles Curley isa I.ong time Forth nuclear guru who lives in Wyoming. He eams |
his living as a paralegal so he can afford necessilies like 68000-based Forth |
systems and luxuries like food and rent. He may be reached at P.O. Box 2071, E
Gilletle, Wyoming 827 17-2071.

FOH PROGRAMMERS — Build IPW FASTER
nd SMALLER with our “Intelligent” MMSFORTH System and

applk.attons modules, plus the famous MMSFORTH continu-
ng support. Most modules include source code, Ferren
Mmlntym. mnogrupher sap “Forth is the language that
p run.” :

SOFTWARE MANUFACTURERS — Efficient soft-
ware tools save time and money. MMSFORTH's flexibility,
compactness al ndspeedhmeresulwd in better products in
m hr“9'r o "E:'cal?em ook indbe %

iton-Tate, Ll Sy 5
Missile and Space Dqum and an'rsodm.
MMSFORTH V2.4 System Disk from $179.95
Needs only 24K AAM compared to 100K for BASIC, C,
Pascal and others. Convert mmmmromm
machine with sophisticated Forth editor and related tools. This
can result in 4 to 10 times greater productivity.

MM—IﬂwamMmMmmva
you need:

EXPERT-2 - System
FORTHCOM - Flexible data transfer $49.95
UTILITIES - Graphics, 8087 support and other facilities.

and a little more!

THIRTY-DAY FREE OFFER — Free MMSFORTH

entries: and general ledger
F32: 8.90 scc. historian, says:
ForST with CALLS: 7.23 scc. Mading o says "’-vﬁeuse
ForST with MACROS: 3.77 sec. the Iestwilin v
morm-l System Disk
Real-Forth 1.3 (ITC): e 1'"*'0
LW cells & 2*2* 7.60 sec. FORTHWRITE - Wordprocessor
LW cells & cell* 7.06 sec. DATAHANDLER-PLUS Batabase
byte cells 5.65 sec.
FastForth 2.0 (J/BTC):
LW cells & 2* 2* 4.87 sec.
byte cells 3.04 sec.

Compilation times improved. Forexample,
compiling the target compiler and then target

January 1993 February

M SFormH

MILLER MICROCOMPUTER SERVICES
61 Lake Shore Road, Natick, MA 01760
(508/653-8136, 9 am - 9 pm)

12

GAMES DISK worth $39 95, with purchase of MMSFORTH
System CRYPTOQUOTE HELPER., OTHELLO, BREAK
FORTH and others,

~ Call for fres brochure, technical Info or pricing details.

Forth Dimensions

ForH on A GrRAND ScaLE

Forth-Based
Message Service

' Olaf Meding

McFarland, Wisconsin

Charles Moore, the inventor of Forth, brought a newspa-
per clipping dated “March Forth” to his keynote address at
this year’s SIG-Forth conference in Kansas City, Missouri.
Whether we “march” or “boldly go,” this paper describes

how Amtelco’s EVE (Electronic Video Exchange) has be- |

came the predominant, largest, and most sophisticated

messaging system [or the telephone answering service (TAS) |
| programmers have worked on EVE software for a total of 38

industry. EVE is used not only in every major urban area in
the United States and Canada, but in Australia and through-

| out Thailand. EVE has gained 70% of the TAS market and is
| still growing. Forth—which is used exclusively—is a key
| ingredient of the success story you are about to read.

System Description
Before focusing on the software architecture, I would like

| to briefly describe EVE. EVE is the center of a telephone

answering service (see Figure One). Thirty-two operators | 2 g
8 (8) Y e | and became very successful in their careers.

take messages by phone from callers, and later deliver those

| messages to the clients. In addition to normal business hours,

messages are frequently taken on weekends, holidays, and

- evenings. ‘I'ypical clients include doctors, small companies,

business managers, and travelling sales personnel. Typical
EVE owners include answering services, mail order houses,

executive suites, and paging services. At Amtelco, we usean |

in-house EVE station to handle all field service calls.
EVE provides all necessary functions needed by a modern

| TAS: telephony functions, paperless message handling, |
client database (10,000 accounts), maintenance, and client |
billing. EVE routes a few thousand telephone trunks to thirty- |

two operators. The operators type and retrieve messages into
the dalabase. EVE is capable of handling well over 12,000
phones calls per day.

Messages can be stored, retrieved, delivered, archived, or |

purged. There are a varicty of ways in which messages can
be delivered, i.e., verbally by the operators, remotely printed
via modems or FAXes, and paged through wircless paging

| terminals. Clients canalso use a personal computerto log into

EVE to get their messages.
An operator can log in as a supervisor (o perform system

{ maintenance. Such tasks include maintaining client account

information, retrieving statistics used for measuring operator
performance, and client billing.
In addition, ficld service personnel can dial into EVE via a

Forth Dimensions

modem to monitor all aspeds of the system, such as locating
hardware, software, and database problems. A number of
software routines are available to field service. Forexample, one
repairs a broken database. Owners of EVE stations throughout
the U.S.A. and Canada have formed a very dynamicusers group,
the National Association of EVE owners (NAEO).

EVE was born len years ago in 1982, Since then, 17

man years. To give the reader an idea of the size of the EVE
application, it is comprised of about 100,000 lines of source
code. The average size of the EVE Software Works program-
ming team is four full-time Forth programmers. It is worth

| noting that none of the programmers employed had any

previous Forth experience. They were hired as full-time
programmers, not consultants. With very few exceptions, all

| the programmers were able to master Forth and EVE code,

Forth’s Contribution

Forth is much more than a computer language. Forth is
a complete programming environment, and even more it is
a philosophy. The concept of simplicity is what makes Forth
so effective and powerful. Interestingly, long after Forth was
invented, the same concept of simplicity was introduced to
microprocessors through RISC (reduced instruction set com-
puter) technology, which increases a CPU’s throughput.

Forthuses words. Words are the equivalent of a subroutine
in C or Pascal. One problem with subroutines is that they tend
to get very large (over a page of source code). A Forth word
is composed on average of five to nine other Forth words.
Because each word has a name, the code becomes highly
readable in itself. Even though the C or Pascal equivalent of
a FForth word is a subroutine, a Forth word acts more like a
constant. A small section of code is given a name; in large
applicalions, it is important 1o use words with descriptive
names rather than a magical scquence of instructions.

'The freedom and flexibility Forth extends to the program-

13

| mer is reflected by the versalility and wide range of possible
EVE station configurations (Figure One). EVE takes full
advantage of many powerful Forth features, such as the
| extremely efficient round-robin multi-tasker and an extraor-
| dinarily efficient database. Rather than depending on the

compiler vendor for enhancements necded to further de

January 1993 February

' Figure One.

! 1,000
| phone
100 phone trunks trunks

PBX

24 FLCs

i three dilfcrent types

single switch
two diffcrent types

! video terminal remote operator

station (PC) |

‘ 5 <& s
| .. 32operators L |
| billing statistics l
| single PC |
|
i |
| EVE 8 data channels .
telephony station |
[statistics |
| single PC |
phone
| trunks i
| voice mail paging terminal remote
1 single station — three different types desktop
i printer |
| live different prolocols |
|
' AmMail 2 v
i terminals |
' personal
computer
i (PC)
i field service console
i modem” printer

*Can be configured as a
ninth dala channel.

@ = modem

I

velop software (as is the case with most non-Forth program-
ming languages), we tailored our Forth environment

(polyForth by Forth, Inc.) to match the underlying hardware |

for maximum code efficiency and execution speed. The
power of Forth should be evident by the fact that the entire
EVE software, consisting of up to 84 independent software

tasks (except for the asynchronous 1/O boards), isrunby a |

single 10 MHz 68000 Motorola microprocessor.

Forth has made it possible to consistently and quickly
respond to the demands of our customers and the TAS
industry. Forth’s combined power ol programming environ-
menl, operating system, database manager, multi-tasking,
complete availability of source code, and striking philosophy
of simplicity are the reasons why a system first developed in
1982 is still number one in the market. Forth truly shines in
rapid prototyping during software development and debug-
ging, which in trn dramatically decreases the tme-to-
market of innovative new EVE software cditions,

A medium-size EVE station costs well over $100,000.
Forth protects the owner’s investment by making it possible

January 1993 February

14

| presented him with a bug in his SCSI drive. He found it hard

| to connect to the EVE station. ‘T'wo benefits of the remote

emulate
desktop
printer

message
FAXing
PC

to continuously expand the software without making the |
hardware investment obsolete.

All software, including firmware and a large number of |
device drivers, is written in Forth. Amtelco was one of the first

| users of SCSI hard drives, but we could not afford a $25,000

SCSI bus analyzer. Forth enabled us to write SCSI device
drivers withoutexpensive bus-analyzing hardware. I remem-
ber the surprised look of a visiling drive engineer when we

1o believe thal we used Forth without a SCSI bus analyzerto |
write device drivers. |

A Challenge—Remote Operator Stations
A recent addition to EVE, remote operator stations consist
of a personal compuler rather than a video terminal. Remote
operators use a pair of high-speed, asynchronous modems

operator are lelecommuting (working athome) and allowing
sales staff to set up new client accounts at the point of sale
with a live demonstration of how their calls will be handled.

Forth Dimensions

Another benefit of remote operalors is that supervisors ¢an

needed. Finally, a muli-lasking remote operator can be
connecled o more than onc EVE station simultaneocusly.
"The development of the remole operator station was one
of our most challenging projects. It was very dificult 1o design
a highly intcractive application asynchronously. We had a
number of problems initially because the remote station would
get stuck waiting for a response from EVE. For example, we
had o develop our own communications protocol because
the connection between the modem and the host would often

| lose data, and the modem did not detect line breaks fast |

| enough. Torth is an ideal environment for this type of
| application because of its powerful multi-tasking capability.
To decrease hardware costs, management decided that
remotc operator station personal computers should operate
[without a hard disk. Again, Forth proved to be the most
| suitable language. Forth made it possible to design very
efficient code that could be booted from floppy disk without
the need for software overlays.

The remote operator was an essential part of the Thailand
project. Forth enabled us to rapidly write a VGA graphics
display driver for the Thai character set, and to streamline
EVE’s message-paging capabilities for our Thai customers.
We heard that even the King of Thailand has paging accounts
on the Bangkok EVE station!

Developing Powerful Software Tools

Forth made it possible to wrile our own software tools. A
goodexample, and one of the first tools we developed, is still
the most powerful. It is called COMPARING. It compares a
range of Forth blocks and highlights the differences in the
code on the screen or printer (variations are printed in bold
simply by printing them twice).

With multiple programmers (at one time we had seven)
working on a major software edition, comparing is used to
print all changes. These comparisons are given to an

monitor the system at home and take action only when |

integrator for integration into the final release. The printouts
are also used to verify all code changes at the end of the
development cycle. ‘This works especially well if a different
programmer (usually the integrator) verifies the changes.

ZEUS is another unique and powerful debugging task
wrillen Lo aid in the development of the remote operator station.
It is a background task running on the remote station. A
programmer canlog ontoa customer’s EVE station (Figure Two)
via modem. The programmer then loads a utility on EVE which
allows scnding actual Forth commands through a second pair
| of modems to the remote operator station. The Forth command
is executed on the remote operator station, and the resultis sent
| back through EVE (0 the programmer’s terminal via the four

modems. The remole operator is undisturbed in its operation
| and continues o take messages while, in the background, a
programmer is debugging the system. The name Zeus is a
reference to the power of this debugging tool.

The power of Forth is limited only by the imagination of
the programmer, and Zeus is a good example of this. Once
the idea for Zeus was born, Forth was the perfect environ-
ment to realize the idea and concept.

The debugging task on EVE is named TRON. Those who
saw the movic know why.

Conclusion
Forth is ncither a low- nor a high-level programming
| environment-—it is both and more. "The highly interactive
i Forth environment greatly stimulates the process of convert-
ing human ideas and thoughts into machine code. For this
reason, [believe that Forth programmers spend most of their
time solving problems rather than trying to work around
restrictions imposed by other, non-Forth programming meth-
ods. This highly productive process of writing Forth software
builds an even higher level of confidence in the programmer,
which in turn significantly reduces the number of errors
(bugs). The programmer’s confidence in error-free code is a
key ingredient of successlul “Forth on a grand scale” projects.

‘ Figure Two.]) e
| New York, NY i
' i
McFarland, WI EVE's back-door San Francisco, CA ‘
| field service EVE :
;_ IX} station
[1200 |

baud
| EVE programmer remote operator, |
taking and
J delivering messages |
! s
All Forth commandads typed by the

J_ progammer are sent (o the remote |
operator station’s ZEUS background .
! task. ZEUS oulput is sent back to the -
| programmer’s screen. X = modem |
B I
Forth Dimensions 15 January 1993 February

Forid on 4 GRaND Scate

Graphics and
Floating Point

in Real-Time Action

Dr. Mark Smiley
Baltimore, Maryland

A Zenith-150 spewing fractal dragons on the screen
introduced me 1o Forth, Articles in Byte and Dr. Dobbs Journal

graphics modes: CGA, EGA, VGA, and many SVGA boards.
Together with the more than 800K of graphics routines,

increased my suspicion that Forthand fractals would wed well. | Juliam comprises well over a megabyte of code.

At the time, I was using Fortran on a mainframe to draw
pictures of the fractals whose mathematical properties [was

studying. I'd drive an hour to reach a site where I had o |
program on a terminal in one building, then walk a good |

distance to another building, where I frequently had to tap on
the window to wake up the operator in order to get the plotter
output from my program. The idea of owning my own
computer, one with video graphics, appcaled o me. 1
purchased a Z-150 and set about learning Forth. Thus began
my relationship with Forth and graphics on MS-DOS machines.

An early bad experience with a Forth vendor, and a desire

to have access to all the source code, led me to public- |

domain Forths. Yet none of them contained graphics rou-
tines. [resolved to create enough routines to enable my
studies. This effort eventually resulted in the F-PC graphics
package currently distributed through the Forth Interest
Group’s software library.

that would make it easy
to express my ideas—for that
I required floating point.

Forth’s interactive nature lends itself to work with graph-
ics. My labors in this area led to a number of applications.
Some I was paid o develop, others helped with my
dissertation, but many 1 wrotc just for fun. This article
discusses the genesis of the graphics routines in the light of
Juliam, anapplication I scll that grew symbiotically alongside
the graphics routines.

Juliam
Juliam craves a rich Forth environment. It requires a wide
range of graphics and floating-point routines, as well as a
professional menu system [or constructing a friendly inter-
face. In addition, the graphics routines allocate large (64K)
buffers outside the Forth system, and support a variety of

January 1993 February

Juliam usces a variety of algorithms to draw both Julia and |
Mandelbrot sets. To get an idea of how thesc sets are defined, |

consider the map: [(z) = 22 + C, where z and C are complex

numbers. For example, suppose C=0 and z=2. Then f(2)=4, |

f()=16, and {(16)=256. 'Thus 4, 16, and 256 are iterates of 2;
they are examples of the output obtained from applying the
map f(z) over and over again, each time plugging the output
back into {(z). Note that the iterates of 2 increase without
bound. In other words, they go towards infinity. On the other
hand, the iterates of 1/2 approach 0. Furthermore, the iterates
of -1 go neither to 0 nor to infinity. This point lies on the
boundary between the points that go to infinity and those that
don’t. Thus -1 represents an element of the Julia set for the
map f(z) = z2. Indeed, the Julia sct for this map is just the circle
of radius 1 centered at the origin,

l

In general, Julia sets take on far more intricate patterns |
| than mere circles. Roughly, the Julia set of the map f(z) = 22 |

+ C consists of those points, z, that lie on the boundary
between the set of points whose iterates go Lo infinity and

those that don’t. (More precisely, to mathematicians, it is the |

closure of the set of repelling periodic points.) Hence Julia
sets reside in z-space. On the other hand, the Mandelbrot set
is the set of all values C for which the Julia set is connected,
so the Mandelbrot set sits in C-space. For a far fuller
discussion of Julia and Mandelbrot sets, sec [2].

The list below presents some of the features of Juliam |

version 5.11. These items may give you an idea of some of
the routines I struggled to implement.

1) Real-time interactive graphics—watch the Julia set change
as you alter the parameters.

2) Milnor/Thurston algorithm for the Mandelbrot sel—more
detail than the common, forward-iteration algorithm.

3) Move a crosshair about on the Mandelbrot set and draw
the corresponding Julia set.

4) Move a resizable rectangle on the screen and zoom in on t

the image.
5) Save images to disk, complete with all pertinent param-
eters.

[

Forth Dimensions

6) Create and watch mini-movies.
7) Support for a variety of graphics cards: CGA, EGA, VGA,
and many SVGA cards.

Graphics

The first public-domain Forth I tried was a version of
MVP-Forth. I used a DOS interrupt to put the computer in
graphics mode, and another to plot a single point. Both used
INTCALL (ax bx cx dx interrupt -- ax). later,
I migrated to Laxen and Perry’s F83 Forth, then the variants
F83S, F83SX, F83Y, Wil Baden's F83X, and finally Tom
Zimmer's FF, F88 and F-PC. On MS-DOS machines, all BIOS
video is handled through interrupt $10 (2 $ means hexadeci-
mal in F-PC). INT$10 below represents a simplified version
of INTCALL for use with F-PC, though the current routines
no longer use anything as general (or as slow).

{

CODE INTS$10 (ax bx cx dx --)
\ call interrupt 510
POP DX POP CX POP BX PQOP AX
PUSH BP INT $10 POP BP

NEXT END-CODE

 VGA320 (--)

\ enter VGA 320x200 256-color mode
513 0 0 0 INTS10 H

: B.DOT.OLD (x y color --)

(column row color --)

$C00 + -ROT 0 -ROT INTS10 ;

Of course it is faster to avoid the stack thrashing of
B.DOT.OLD. Here's the current BIOS version of B.DOT.

{

CODE B.DOT (x y color —--)
(column row color —-)
POFP AX MOV AH, # S0C
\ AH=function, AlL=color
XOR BX, BX \ page
POP DX \ y-coordinate
POP CX \ x-coordinate
PUSH BP \ preserve BP register
INT $10 \ call BIOS
POP BP \ restore BP

NEXT END-CODE
}

Itis even faster to bypass the BIOS and write directly into
video memory. Here'’s an example of a direct screen-writing
version of DOT for VGA mode $13 (320x200 with 256 colors).

Compare it with the slower B.DOT. (One disadvantage of |
direct routines is that nearly every graphics mode requires a |

different version.)

Forth Dimensions

{
\ vga mode $13, 1 pel/byte (320x200)
code v320.dot (x y color ==)
POP DT \ color in di
pop ¢x pop dx \dx =x, cx = vy
push es \ save ES
mov ax, # $a000 \ video seg in memory
mov es, ax \ write directly to memory
xor bx, bx \ base of buffer
mov bx, dx \ ¢x = row, dx = col
mov ax, # 320 \ pixels per row
cwd
mul cx \ rows to our dot
add bx, ax \ bx = offset
mov ax, di \ di = color (0-255)
mov es: 0 [bx], al \ write pixel
pop es \ restore ES
next c;
}
Even back when I worked in the MVP dialect, I taught a

| class in Forth, One of my colleagues, Johnny Graves, audited
| my course and wrote the high-level, line-drawing routine

DLINE. His code stll urns up in public-domain Forth code
| today. Later, I dleaned itup and converted it to assembler for
| speed. A year after Johnny, a talented student named Tim
Smith wrote some line-drawing routines in assembler for F83.
As with VGA320 .DOT above, Tim’s code bypassed the BIOS
and wrote directly 1o video memory. As a result, it ran
significantly faster than the high-level DLINE.

At first, T only had access to CGA systems. Later, when
EGA and VGA became available, Mike Sperl (via the now-
defunctEast Coast Forth Board) helped me portand oplimize
the code further.

Juliam’s accurate Mandelbrot set algorithm requires filled
disks, so I added these, too, along with the aspect ratios
| necessary to achieve circles. This algorithm was first dis-
| cussed in a paper, which languished long unpublished, by
| Milnor and Thurston, each of whom has won the Fields

Medal—the equivalent of the Nobel prize for mathematics.
- Theiralgorithm is an example of a distance estimator method
i (DEM). Tt uses a sophisticated technique to estimate the
distance from a given point to the Mandelbrot set. Then it
draws a disk centered at that point which contains no points
of the Mandelbrot set, and calls itself recursively on four of
the disk’s boundary points. Thus the algorithm fills in all that
is not the Mandelbrot set.

Tosee the difference between the DEM algorithmand the
traditional one that so many other programs use, compare
Figure One (traditional) and Figure Two (DEM). Both depict
the Mandelbrot set.

To speed up the filled disk routines, T added some
i optimized routines for horizontal lines. Later, T wanted to
| include a feature in Juliam that would allow a user to move
a crosshair about on the Mandelbrot set to select a value of
| C to generate a new Julia set. For maximum speed, 1
| implemented optimized horizontal and vertical lines that
| XORed onto the screen. These lines also helped in a feature
that lets users move a resizable rectangle around on animage

17 January 1993 February

i Figure O_ne. _Trac_ii[ignal,

to select a region for zooming.

Some images take several hours to generate, so I needed |
the ability to save them to disk. The key word for implement-
ing a crude (and slow) version of this graphics screen saving
is BIOS-READ-DOT. Given the coordinates of a pixel, it
returns the pixel color. i

{ ;
CODE BIOS-READ-DOT (x vy —— color)
POP DX \ y-coordinate
POP CX \ x-coordinate
XOR BX, BX \ page 0
MOV AX, # $DOO \ BIOS service number |
PUSH BP
INT $10
POFP BP
AND RX, # $00FF \ clear AH to 00, so |
\ that AX=AL is just the color |
1PUSH END-CODE
}

In the current graphics package, all but some new SVGA

modes now have routines that can save an entire image at
once, rather than calling a routine like BIOS-READ-DOT. |
Some routines put the image in memory, [or quickly saving
and restoring a screen during program execution; other
routines save to disk, for permanence.

It's funny how the first words that must be written to
develop a graphics package—words to enter graphics
modes—appear near the end of a completed graphics
package. As the graphics package migrated and grew, I
found that more and more words needed to be deferred, so
each graphics resolution required its own word to set all
these values. Thus, words like VGA320 that controlled
graphics modes, moved from the top of the graphics package |
to the bottom. Furthermore, experience led to separating |
these words into a part like (VGA320) to set all the |
parameters, and another part GRMODE that actually entered
graphics modes. This separation makes it possible to gener-
ale computations based on the graphics mode, without |
actually entering the mode. |

To make things more complicated, some systems de-
mand BIOS graphics, so each graphics resolution required
two words: one to set deferred words like LINE Lo use BIOS
graphics, and the other 1o set the words to use direct screen- |
writing graphics. Typical examples are (VGA320.D) toset |
the direct routines of VGA mode $13, and (VGA320.B) for
the BIOS routines.

The package contains words to facilitate switching be-
tween BIOS and direct techniques. DIRECT GRAPHICS
switches all graphics modes to use the direct routines, while
BTOS GRAPHICS switches them all to use the BIOS ones. |
The BIOS routines retain more compatibility, but signifi-
cantly less speed, than the direct routines.

Floating Point
My studies required not only graphics, but floating point.
True, many calculations could be performed with integer

January 1993 February

!;___ -

18

' Figure 'ifwo. DEM _ |

| arithmetic. After all, pixels have integer screen coordinates. |
| Butlwanted a vocabulary that would make it easy to express |
| my ideas, and for that I required floating point.

At my first FIG conference in 1985, I met Roland Koluvec, |

who kindly provided me with a hardware floating-point
package that a friend of his (Stephen Pollack) had written for
F83S. Later, I gave a copy ofitto the Silicon Valley FIG library.
Since F83 worked with blocks, I put both the floating-point
and graphics routines in one large file that clearly indicated
the authorship of its various parts. Later, others extracted the

Forth Dimensions

| floating-point part and converted it to HFLOAT.SEQ in Tom

| routines. My experiments have helped me catch a variety of

Zimmer's Forths. In the process, some people came to
believe (erroneously) thatI wrote the floating-point package.
‘T'his is not the case: | merely added a few extensions.
Unfortunately, the package had bugs in it and, as far as I
know, some of those bugs persist today in the current
incarnation, though | no longer have access to an 80x87 chip
to test this hypothesis.

Drawing fraclals seems Lo be a good Lest for floating-point

errors in Bob Smith’s SFLOAT.SEQ—bugs which Bob typi- .
cally squashed within hours. Today, SFLOAT is an excellent |
package with no known bugs.

VPSFLOAT is another high-quality, software floating- |

point package for F-PC. It has a litle more accuracy than
SFLOAT, but it is also slower. My work uncovered a minor
bug in it, too, which Jack Brown rapidly quelled. One day,
he has promised 10 convert a good hardware floating point |
to I-PC, too. I look forward to that day. '

After I had a floating point, T developed the first version
of Juliam, which only drew Julia sets in those days, and so
was called JULIA.BLK in FF83, and later JULIA.SEQ in F-PC.
You can gel a version of the latter in the F-PC graphics
package.

Using the Graphics Package
Applications must first select the graphics resolution by
setting the deferred word (RES), which prepares all the
parameters for the graphics mode without actually entering
it. For example:

' (VGA320) IS (RES)
Then the program should utilize either GRMODE or SET-

RES (o enter the graphics mode. Here'’s an example:

testl

['] (VGA320) IS (RES)

\ set current graphics mode, by setting
\ the value of (RES).

set-res \ enter current graphics mode
200 100 15 dot

\ plot a point with coordinates

\ (200,100) and color 15 (white).

key drop \ wait for a key

text \ return to text mode

Better yer, use CHOOSE-RES (or the SVGA version,
RESMENU) to allow the user to select the graphics mode from
a menu of available modes, as in the next example.

test2

choose-res \ set the wvalue of (RES)
1 set-res \ enter current graphics mode
Forth Dimensions

19

200 100 15 dot

\ plot a point with coordinates

\ (200,100) and color 15 (white).
key drop \ wait for a key

text \ return to text mode

I have only scratched the surface of the graphics package
and all that is possible with it. It includes things like turtle

| graphics, VGA sprites, graphics text fonts for positioning text

with pixel-level control, world coordinates, automatic func-
tion plotting, VGA palettes, a flood fill, 3D to 2D transforma-
tions, and much more.

‘The graphics package is an ongoing project. I continually
imagine new features that would improve the package; the
ones I really need, I implement. As you can sce, many people
have contributed to the development of the graphics and
floating-point routines. If you are interested in adding a new

f_ routine or improving an existing one, feel {ree to contact me

and T will work with you to integrate it into the graphics

| package. Here are some ideas: the ability (o save and read

GIF, PCX, PCL, or EPS files; direct support for more SVGA
cards; palette rotation; fast filled polygons; 3D hidden
surfaces with shading; and ray tracing. I am also interested
in any applications you write that employ aspects of the
graphics package. Drop me a line describing them. Better
yet, send me a copy.

References
1. Mandelbrot, Benoit B., The Fractal Geomelry of Nalure, W.
H. Freeman and Co., 2nd edition, New York (1982).

2. Peitgen, Hans Otto, The Beauty of Fractals, Springer-
Verlag.

(Code begins on next page.)

In 7th grade, a friend taught Mark Smiley the essentials of Fortran while they sat
in a Dairy Queen. In 1979, he received a B.5. magna cum laudce in mathematics
from Denison University, whore he first experienced computer graphics via BASIC
on a plotter for a PDP-11. In 1983, he altained an M.S. in mathematics from the
Universily of North Carolina. His thesis, under Dr. Sheldon Newhouse, lics in the
realm of dynamical systems/ergodic theory: Relations betwoen Hausdorff Dimen-
sion, Lyapunov Exponents, and Entropy.

He spent the next four years leaching at Auburn Universily in Alabama, where
he wrole Forlran programs to draw piclures related to his research.. He used the
public-domain version of MVP-Forth to teach Forth for the first time. He and some
of his studenls wrole the first bits of a graphics package, which he later porled lo
FB3, FA3X, FF, Fas, and F-PC.

In 1987, Mark married Cathy (who has an M. S. in mathernalics). In 1990, he
achieved a Ph.D. in mathemalics from Auburn University. His dissertalion is liled

| Metric Dimensions of Fractals. He used F-PC to generate a number of images for

the dissertalion.

He currently is an Assistant Professor in the Department of Mathematics and

| Compuler Science at Goucher College, near Ballimore, Maryland. He has taught

Forth at there, but teaches BASIC more frequently—which led him to write the
textbook Learning QuickBASIC Through VGA Graphics, (Kendall/Hunt Pub. Co.,
1992).

January 1993 February

“Graphics & Floating Point” code.
\ Graphics Variables
variable vres
variable hres
variable color
variable #colors
variable vid.mode
variable palette
variable vchip
variable buf.size
variable vid.seg
$FA00 value bit plane.size

vertical resolution
horizontal resolution

in the range 0 to #colors-1
number of different colors
video mode

the default palette

video card chip set

size of the graphics buffer
video memory segment

number of bytes to read/write
variable bytes/row used by direct graphics routines
64000. POINTER BUF.SEG screen save buffer

\ F-PC uses POINTER to allocate memory from outside Forth.

Pl i i i S

\ Plotting Pixels

defer dot (x vy color ==) \ plot a pixel

defer color-dot (xy --) \ uses value of COLOR for color
defer clip-dot (xy-—) \ uses value of COLOR for color
defer xdot (Xx vy coloxr -—) \ XORs a pixel

defer cdot (color xy ——) \ plot a pixel

defer read-dot ({ x y -— color) \ return the color of a pixel

\ All lines use the variable COLOR as the color.

defer line (x1 y1 x2 y2 --) \ draw a line

defer xline (x1 y1 x2 y2 ==) \ XOR a line

defer hline (%1 x2 y ——) \ draw a fast horizontal line
defer xhline (x1 x2 yv —=) \ XOR a fast horizontal line

defer vline (vl y2 x1 --) \ draws a vertical line

defer xvline (vl y2 x1 --) \ XORs a vertical line

defer nline (xy —-—) \ draws from current point to (x,y)

}

NLINE draws a line from the current point to the point on TOS.

Use MOVETO (x y --) to set the current point before invoking NLINE the
first time.

The following words save and restore graphics screens from video memory
save either to buffer or to disk, depending on the graphics mode

{

defer Savevid

}

Save the current graphics screen to a temporary location. This location may
| be either file or memory, depending on the graphics mode. (To save the

| screen permanently, the graphics package provides BSAVE and "BSAVE.)

{

defer Restvid \ Restore screen from temporary location.
defer TEXT \ enter text mode (i.e. get out of graphics mode)
defer (bsave) \ used by BSAVE and "BSAVE to save to disk
defer (brecall) \ used by BRECALL to view an image on disk
DEFER (RES) \ set graphics parameters
\ resolutions: wvalues for (RES)
DEFER (MED) DEFER (HIGH) DEFER (EGA)
| DEFER (VGA640) DEFER (VGA320)

}

!VMODE stores values for various resolution-dependent variables.
This version of !VMODE assures that the true HRES is stored in
OLD_HRES whether the image is square or not.

{

: !'VMODE (vidmode hres vres #colors vidseg bufsize vchip --)
VChip ! \ chip set
BUF.SIZE ! VID.SEG ! #COLCRS !
VRES !
OLD HRES ! \ save old horizontal resolution

January 1993 February : 20 Forth Dimensions

SQ IMAGE? @ if image is square,

L g

IF make the resolution square
VRES @
ELSE
OLD_HRES @
THEN
HRES ! VID.MODE !
Set-Aspect \ set the ASPECT, based on the current resolution.
Set-Pals \ set deferred palette words for current res

Set-White \ set various values for use in whiting and filling the screen

(vidmode hres vres #colors vidseg bufsize vchip)
: (VGA320.D) (--) 19 320 200 256 $A000 SFAQQ VGA
! VMODE
SFAQ0 !> bit_plane.size
hres @ bytes/row !
1 =: #PLANES
'] v320.dot is dot
'] v320.xdot is xdot
'] v320.cdot is cdot
'] v320.color-dot is color-dot
'] v320.clip-dot is clip-dot
']l bios-read-dot is read-dot
'] 1line320 is line
'] x1ine320 is xline
'] hline320 is hline
'] xhline320 is xhline
'] 256vline is vline
'] x256vline is xvline
'] D.NLINE IS NLINE
'] vid>buf IS SaveVID
'] buf>vid IS RestVID
'] (cga_brecall) is (brecall)
'] (cga_bsave) is (bsave) \ for "BSAVE
'] BUF_BSAVE IS BSAVE
'] WHITE-VGA IS WHITE-SCREEN
'] FILL-VGA IS FILL-SCREEN
'] (CLEAR-SCREEN.D) IS (CLEAR-SCREEN)

e e R B W B e M B e B I e I e T B e B e]

' (VGA320.D) IS (VGA320)

: (>BIOS)
['] B.dot is dot
['] B.xdot is xzdot
B.cdot is cdot
B.color-dot is color-dot
B.clip-dot is clip-dot
bios-read-dot is read-dot
B.line is line
B.HOR_line is hline
B.VER_line is vline
B.xline is xline
B.xhline is xhline
B.xvline is xvline
B.NLINE IS NLINE
SLOW-WHITE-SCREEN IS WHITE-SCREEN
SLOW-FILL-SCREEN IS FILL-SCREEN
Set-Res IS (CLEAR-SCREEN) \ clear screen using INT $10

™ T ™

e et e e e e et e e e b e et

(Code continues on next page.)

Forth Dimensions 21 January 1993 February

-

{
: >VGA BIOS (--)
(>BIOS)
Set_Write Size \ set the Write_Size, #Rows/Write and
\ #Writes/Im for use in saving images
['] SaveVGA BIOS IS SaveVID
['] RestVGA BIOS IS RestVID
['] (file>vga) IS (brecall)
['] (vga>file) IS5 (bsave)
['] COPY_IMAGE IS BSAVE

+

(vidmode hres vres #colors vidseg bufsize vchip)
(VGA320.B) (—--) 19 320 200 256 $A000 SFA00 3
! VMODE
>VGA_BIOS

.

\ ' (VGA320.B) IS (VGA320)

}
DIRECT GRAPHICS makes graphics commands write directly to the screen.
It is deferred, so that other modes may be patched in later.
{
DEFER DTRECT_ GRAPHICS
(DIRECT_GRAPHICS)

['] (MED.D) IS (MED)

['] (HIGH.D) IS (HIGH)

['] (EGA.D) IS (EGA)

['] (VGA320.D) IS (VGA320)

['] (VGAR640.D) IS (VGA640)

(RES) : \ makes changes take effect
l ' (DIRECT GRAPHICS) IS DIRECT GRAPHICS
DIRECT_GRAPHICS

| DEFER BIOS_GRAPHICS
(BIOS_GRAPHICS)

['] (MED.B) IS (MED)

['"] (HIGH.B) IS (HIGH)

['] (EGA.B) IS (EGA)

['] (VGA320.B) IS (VGA320)

["] (VGAR640.B) IS (VGA640)

(RES) 3 \ makes changes take effect
' (BIOS_GRAPHICS) IS BIOS_GRAPHICS

CODE MODE (n --) \ enter graphics mode n
POP AX
INT $10
| NEXT C;

}
The words STATOFF and SLOW below are necessary in F-PC to avoid the text
writing directly to the screen in graphics modes, which would result in
unintelligible garbage.
{
: GRMODE \ enter the current graphics resoclution
STATOFF SLOW
VID.MODE @ MODE ;

: SET-RES \ set appropriate values and enter the
(RES) \ current graphics mode
GRMODE

.

L.

>VGA BIOS sets various deferred words for saving images in VGA and SVGA modes.

January 1993 February 22 Forth Dimensions

La

La

Las

Last

Last

Las

Last 50

Las

Las

*

*

% - These are your most up-to-date indexes for back issues of Forth Dimensions and the FORML proceedings.

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Plcasc cnter your order on the back page of this form and send with your payment 1o the Forth Interest Group.
All items have onc price and a weight marked with # sign. Enter weight on order form and calculate shipping based on location and delivery method.

“Were Sure You Wanted To Know...”

151 - 54 O#
An index of Forth articles, by keyword, from Forth Dimensions
Volumes 1-13 (1978-92).

Forth Dimensions, Article Reference

FORML, Article Reference 152 -54 O#
An index of Forth articles by keyword, author, and date from the
FORML Conference Proceedings (1980-91).

FORTH DIMENSIONS BACK VOLUMES

A volume consists of the six issues from the volume year (May-April)

Volume 1 Forth Dimensions (1979-80) 101 -$15 1#
Bt 50 Introduction to FIG, threaded code, TO variables. fig-Forth.
Volume 3 Forth Dimensions (1981-82) 103 -$15 1#

st 5 Forth-79 Standard, Stacks, HEX, database, music, memory man-

agement, high-level interrupts, string stack, BASIC compiler,
recursion, 8080 assembler.

Volume 6 Forth Dimensions (1984-85) 106 -8$15 2#
100 Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techniques, recursion,
semaphores, simple [JO words, Quickson, high-level packet
communications, China FORML.

Volume 7 Forth Dimensions (1985-86) 107 -520 2#
100 Generic sort, Forth spreadsheet, control structures, pscudo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.

Volume 8 Forth Dimensions (1986-87) 108 - $20 24
100 Interrupt-driven serial input, data-base functions, TT 99/A,
XMODEM, on-line documentation, dual-CFAs, random
numbers, arrays, [ile query, Baicher's son, screenless Iorth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division, DOS file 1JO.

Volume 9 Forth Dimensions (1987-88) 109 -520 2#
100 Fractal landscapes, stack error checking, perpetual date routines,
headless compiler, execution sccurity, ANS-Forth meeting,
computer-aided instruction, local varables, transcendental func-
tions, education, relocatable Forth for 68000.

Volume 10 Forth Dimensions (1988-89) 110 -520 24
dBase file access, string handling, local variables, data structures,
object-oriented Forth, linear automata, stand-alone applications,

8250 drivers, serial data compression.

Volume 1 Forth Dimensions (1989-90)

100 Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, gquaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
scarch, phasc-angle differenuial analyzer, sort contest.

Volume 12 Forth Dimensions (1990-91) 112-520 2#
100 Floored division, stack variables, embedded control, Atari Forth,
optimizing compiler, dynamic memory allocation, smart RAM,
extended-precision math, interrupt handling, neural nets, Soviet
Forth, arrays, metacompilation.

111-320 2# |

FORML CONFERENCE PROCEEDINGS
FORML (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven rp als
intended to benefit Forth, and is an educational forum for dis
sion of the technical aspects of applications in Forth. Proceedin
are a compilation of eﬁapers and abstracts presented at the
annual conference. FORML is part of the Forth Interest Group.

1980 FORML PROCEEDINGS 310 - 530 2#
Address binding, dynamic memory allocation, local variables, L 0
concurrency, binary absolute & relocatable loader, LISP, how to ast 1
manage Forth projects, n-level file system, documenting Forth,

Forth structures, Forth strings. 231 pgs

1981 FORML PROCEEDINGS 311 -845 44
CODE-less Forth machine, quadruple-precision arithmetic, Last 50
overlays, executable vocabulary stack, data typing in Forth,
vectored data structures, using Forth in a classroom, Ipyramid
files, BASIC, LOGO, automatic cueing language formultimedia,
NEXOS—aROM-based multitasking operating system. 655 pgs

1982 FORML PROCEEDINGS 312 - $30 4#
Rockwell Forth processor, virtual execution, 32-bit Forth, ONLY Last 100
for vocabularies, non-IMMEDIATE looping words, number-
input wordset, [/O vectoring, recursive data structures, program-
mable-logic compiler. 295 pgs

1983 FORML PROCEEDINGS 313 - 830 24
Non-Von Neuman machines, Forth instruction set, Chinese | got 100
Forth, F83, compiler & interpreter co-routines, log & exponential
function, rational arithmetic, transcendental funcrions in
variable-precision Forth, portable ﬁlc-sgsmn interface, Forth
coding conventions, expert systems, 352 pgs

1984 FORML PROCEEDINGS 314 - 330 2#
Forth expert systems, consequent-reasoning inference engine,

Zen floating point, portable graphics wordset, 32-bit Forh, Last 100
HP71B Forth, NEON—object-onented programming, decom-
piler design, arrays and stack variables. 9?8 pEs

1986 FORML PROCEEDINGS 316 - $30 24

Threading techniques, Prolog, VLSI Forth microprocessor,
natural-language interface, expert sysiem shell, inference engine, Last 100

multiple-inheritance system, automatic programming environ-
ment. 323 pgs

1987 FORML PROCEEDINGS 317 - 340 3#
Includes papers from "87 euroFORML Conference. 32-bitForth, | 251 30
neural networks, control structures, Al, optimizing compilers,
hypenext, field and record structures, CAD command language,
ogfcect-oricmcd lists, trainable neural nets, expert systems.

463 pgs

1988 FORMIL PROCEEDINGS 318
Includes 1988 Australian FORML, Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,
Erogrammab]c controllers, Prolog, simulations, languaEc topics,

ardware, Wil’s workings & ‘I'ing’s philosophy, Forth hardwarc
applications, ANS Forth session, future of Forth in Al
applications. 310 pgs

1989 FORML PROCEEDINGS 319
Includes papers from 89 euroFORMIL. Pascal to Fonh,
extensible optimizer forcompiling, 3D measurement with object-
oriented Forth, CRC polynomials, F-PC, Harris C cross-
compiler, modular approach 1o robotic control, RTX recompiler
for on-line maintenance, modules, trainable neural nets. 433 pgs

1990 FORML PROCEEDINGS 320 - $40 3#
TForth in industry, communications monitor, 6805 development. L 50
3-key keyboard, documentation techniques, object-oriented ast
programming, simplest Forth decompiler, error recovery, stack
operations, process control event management, control structure
analysis, systems design course, group theory using Forth.

441 pgs

- $40 2#
Last 100

- 540 34
Last 50

Fax your orders 510-535-1295

1991 FORML PROCEEDINGS 321 - 550 3#
Includes 1991 FORML, Asilomar, euroFORML '91,
Czechoslovakia and 1991 China FORML, Shanghai.

ifferential File Companison, LINDA on a Simulated Network,
QSZ: RISCing itall, A threaded Microprogram Machine, Forthin
Networking, Forth in the Soviet Union, FOSM: A FOrth Strin
Matcher, VGA Graphics and 3-D Animation, Forth and TSR,
FForth CAE System, A

lying Forth to Electric Discharge
Machining, MCS96-FO

Single Chip Computer. 500 pgs

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - 890 4#
Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementation
examples in high-level Forth and/or 8086/88 assembler. Useful
commentary given for each entry. 504 pgs

THE COMPLETE FORTH, Alan Winficld 210-%14 1#
A comprehensive introduction, including problems with answers
(Forth-79). 131 pgs

¢FORTH IMPLEMENTATION GUIDE, C.H. Ting 215-825 14
cliorth is the name of a Forth model designed to be portable o a
large number of the newer, more powerful processors available
now and becoming available in the near future. 54 pgs (w/disk)

F83 SOURCE, Ilenry Laxen & Michael Perry 217 - $20 2#

A complete listing of F83, including source and shadow screens.

Includes introduction on getting started. 208 pgs
FORTH: A TEXT AND REFERENCE 219 -831 24
Mahlon G. Kelly & Nicholas Spics
A textbook approach to Forth, with comprehensive references to
MMS-FORTH and the *79 and 83 Forth standards. 487 pgs

THE FIRST COURSE, C.H. Ting 223-825 1#

This tutorial's goal is to expose you to the very minimum set of
Forth instructions so that you can start to use Forth to solve
practical problems in the shortest possible time. "... This tutorial
was developed 1o complement The Forth Course which skims 100
fast on the clementary Forth instructions and dives too quickly in
the advanced topics in a upper level college microcomputer
laboratory. ..." A mnning F-PC Forth system would be very
useful. 44 pgs

THE FORTH COURSE, Richard E. Haskell 225-825 14
This set of 11 lessons, called The Forth Course, is designed 1o
make it easy for you to leam Forth. The material was developed
over several years of teaching Forth as part of a senior/graduate
course in design of embedded software computer systems at

Oakland University in Rochester, Michigan. 156 pgs (w/disk)

FORTH ENCYCLOPEDIA, Mitch Derick & Linda Baker 220 - 330 2#
A detailed look at each fig-Forth instruction. 327 pgs

FORTH NOTEBOOK, Dr. C.H. Ting 232-825 2#

Good examples and applications. Great leaming aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented. 286 pgs

FORTH NOTEBOOK II, Dr. C.H. Ting 232a - 525 2#
Collection of research papers on various topics, such as image
processing, parallel processing, and miscellaneous applications.

237 pgs

F-PC USERS MANUAL (2nd ed., V3.5) 350 - $20 1#
Users manual to the public-domain Forth system optimized for
}Tj‘};{ PC/XT/AT computers. A fat, fast system with many tools.
Pgs

F-PC TECHNICAL REFERENCE MANUAL 351 -830 2#
A must if you need 10 know the inner workings of F-PC. 264 pgs

INSIDE F-83, Dr. C.H. Ting 235-325 24
Invaluable for those using F-83. 226 pgs

LIBRARY OF FORTH ROUTINES AND UTILITIES,
James D. Terry 237 - 823 2#

Comprehensive collection of professional quality computer code
for Forth; offers routines that can be put 1o use in almost any Forth
application, including cxpert systems and natural-language
interfaces. 374 pgs

OBJECT ORIENTED FORTH, Dick Pountain 242 -$35 1#
Implementation of data structures. First book to make object-
oriented programming available tousers of even very small home
computers. [18 pgs

SEEING FORTH, Jack Woehr 243 - 825 1#
"...Iwould like o share a few observations on Forth and computer
science. Thatis the purpose of this monograph. it is offered in the
hope that it will broaden slightly the streams of Forth literature ..."
95 pgs

SCIENTIFIC FORTH, Julian V. Noble 250 - $50 2#
Scientific Forth extends the Forth kemel in the direction of
scientific problem solving. It illustrates advanced Forh
programming techniques with non-trivial applications:
computer algebra, roots of equations, differential equations,
function minimization, functional representation of data (FFT,
polynomials), linear equations and matrices, numerical
mtegration/Monte Carlo methods, high-speed real and complex
floating-point arithmetic. 300 pgs (Includes disk with programs

| and several utilities), IBM

STACK COMPUTERS, THE NEW WAVE
Philip J. Koopman, Jr. (hardcover only)
Presents an altemative 1o Complex Instruction Set Computers
(CISC) and Reduced Instmction Set Computers (RISC) by
showing the strengths and weaknesses of stack machines (hard-
cover only).

244 - 562 24

| STARTING FORTH (2nd ed.), Leo Brodie 245 - 329 24
In this edition of Starting Forth-—the most popular and complete

1 introduction 1o Forth—syntax has been expanded to include the

| Forth-83 Standard. 346 pgs

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
| orman Smith L . 270-515 14
| 'his book 1s about an application language. More specifically, it
is about how to wrile your own custom application language. The
| book contains the tools necessary 1o begin the process and a
complete sample language implementation. [Guess what language!]
Includes disk with complete source. 08 pgs

ACM - SIGFORTH

The ACM SIGForth Newsletter is published quanerly by the
Association of Computing Machinery, Inc. SIGForth’s focus is
on the development and refinement of concepts, methods, and
techniques needed by Forth professionals.

Volume 1 Spring 1989, Summer 1989, #3, #4 911
F-PC, glossary utility, curoForth, SIGForth '89 Workshop
summary (real-time software engincering), Intel 80x8x.

| Metacompiler in cmForth, Forth exception handler, string case

| statement for UF/Forth. 1802 simulator, tutorial on multiple

threaded vocabularies. Stack frames, duals: an allemative 10

variables, PocketForth.

Volume 2 #1, #2, #3, #4 912 - 524 24
ACM SIGForth Industry Survey, abstracts 1990 Rochester conf.,
RTX-2000. BNF Parser, abstracts 1990 Rochester conf., F-PC
Teach. Tethered Forth model, abstracts 1990 SIGForth conf.
Target-meta-cross-: an engineer's viewpoint, single-instruction
computer.

-824 24

Volume 3, #1 Summer '91 913a - 6 1#
Co-routines and recursion for tree balancing, convenient number
handling.

Volume 3, #2 [Fall '91 913b-%6 1#
Postscript Issue, What is Postscript?, Forth in Postscript, Review:
PS-Tutor.

! 1989 SIGForth Workshop Proceedings 931 - 520 1#
| Software_engineering, multitasking, interrupt-driven systems,
object-onenied Forth, error recovery and control, virlual memory
support, signal processing. 127 pgs

| 1990-91 SIGForth Workshop Proceedings 932-820 1#

i
Teaching computer algebra, stack-based hardware, reconfig-
urable processors, real-time operating systems, embedded
control, marketing Forth, devclopment systems, in-flight
monitoring, multi-processors, ncural nets, security control, user
interface, algorithms. 134 pgs

|

|

For faster service, fax your orders 510-535-1295

DISKS: Contributions from the Forth Community

The “Contributions from the Forth Community” disk library contains
author-submitied donations, generally including source, for a variety
of computers & disk formats. Each file is determined by the author as
public domain, shareware, or use with some restrictions. This libra
does not contain “For Sale™ applications. To submit your own contri-
butions, send them to the FIG Publications Coruniltee.

Prices: Each item below comes on one or more disks, indicated in
parentheses after the item number. The price is $6 per disk or $25 for
any five disks. 11020 disks=1#.

FLOAT4th.BLK V1.4 Robent L. Smith C001 - (1)
Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. 1EEE short 32-bit, four standard functions, squarc
root and log. IBM.

Games in Forth €002 -(1)
Misc. games, Go, TETRA, Lifc... Source. IBM
A Forth Spreadsheet, Craig Lindley C003 - (1)

This model spreadsheet first appeared in Forth Dimensions
VII, 1-2. Those issues contain docs & source. IBM

Automatic Structure Charts, Kim Harris C004 - (1)
Tools for analysis of large Forth programs, first presented at
FORML conference. Fu%l source; docsincl. in 1985 FORML
Proceedings. IBM

A Simple Inference Engine, Martin Trac C005 - (1)
f{:lscd on inf. engine in Winston & (Iom's book on LISP,
takes you from pattern variables to complete unification
algorithm, with running commentary on Forth philosophy &
style. Incl. source. IB}

The Math Box, Nathaniel Grossman CO06 - (1)
Routines by foremost math author in Forth. Extended double-
precision arithmetic, complete 32-bit fixed-point math, &
auto-ranging text. Incl. graphics. Utilities for rapid

lynomial evaluation, contnued fractions & Monte Carlo
aclorization. Incl. source & docs. IBM

AstroForth & AstroOKO Demos, LR. Agumirsian C007 - (1)
AstroForth 1s the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a greal demo. AstroOKO, an astronavigation system in
Astrolorth, calculates sky position of several objects from
different earth positions. Demos only. IBM

Forth List Handler, Martin Tracg CO08 - (1)
Ast primitives extend Forth 1o provide a flexible, high-
5 environment for AL Incl. ELISA and Winston &
I-rom‘s micro-LISP as examples. Incl. source & docs. IBM

8051 Embedded Forth, William Payne C050 - (4)
8051 ROMmable Forth operating system. 8086-10-8051
target compiler. Incl. source. Docs are in the book Embedded
Controller Forth for the 8051 Family, IBM

68HC11 Collection C060 - (2)
Collection of Forths, Tools and Floating Point routines for
the 6811C11 controller. IBM

F83 V2.01, Mike Perry & Henry Laxen C100- (1)

The newest version, ported to a variety of machines. Editor,
assembler, decompiler, metacompiler. Source and shadow
screens. Manual available separately (items 217 & 235).
Base for other F83 applications. IB,%[. 83.

F-PC V3.53, Tom Zimmer C200 - (5)
A full Forth system with pull-down menus, sequential files,
editor, forward assembler, metacompiler, [loaling point.
Complete source and help files. Manual for V3.5 available
separately (items 350 & 351). Base for other F-PC
applicatons. Req. hard disk. 1BM, 83.

F-PC TEACH V3.5, Lessons 0—7 Jack Brown C201a - (2)
FForth classroom on disk. First seven lessons on leaming
Forth, from Jack Brown of B.C. Institute of Technology.
IBM, F-PC.

VP-Planner Float for F-PC, V1.01 Jack Brown C202-(1)
Software floating-point engine behind the VP-Planner
spreadsheet. 80-bit (temporary-real) routines with transcen-

ental funcuons, number support, vectors Lo suﬁsun
numeric co-processor overlay & user NAN checking. IBM

F-PC.

F-PC Graphics V4.6, Mark Smiley
‘The latest versions of new graphics routines, including CGA,
EGA, and VGA su n, with numerous improvements over R S=1(e]
earlle'a vl;r.‘:rls_,l{t?'ls created or supported by Mark Smiley. IBM B
DspD, F-PC.

PocketiForth V6.1, Chris Heilman C300 - (1)
Smallest complete Forth for the Mac. Access to all Mac functions, JlITTET]
Events, files, graphics, floating point, macros, create standalone VERSION

applications and DAs, Bascd on fig & Starting Forth. Incl. source
and manual. MAC, System 7.01 Itt'!lﬂ'\ymlah e.

Kevo VO.9b4, Antero Taivalsaari i C360 - (1)
Complete Forth-like object Forth for the Mac. Object-Prototype
access (o0 all Mac functions, files, graphics, floating point, macros, m
create standalone applications. Kemel source not included,

extensive demo files, manual. MAC, System 7.01 Compatable.

Yerkes Forth V3.6 C350-(2)
Complete object-oriented Forth for the Mac. Object access to all
Mac functions, files, graphics, floating point, macros, create
standalone applications. Incl. source, tutorial, assembler &
manual. MAC, System 7.01 Compatable.

JLISP V1.0, Nick Didkovsky C401 - (1)
LISP interpreter invoked from Amiga JForth. The nucleus of the
interpreter is the resultof Marntin Tracy’s work. Extended 1o allow
the LISP interpreter to link to and execute JForth words. It can
communicate with JForth's ODE (Object-Development
Environment). AMIGA, 83.

Pygm/{ V1.4, Frank Sergeant C500 - (1
lean, fast IForth with full source code. Incl. full-screen editor,
assembler and metacompiler. Up to 15 files open at a time. IBM.

KForth, Guy Kelly C600 - (3)
A full Forth system with windows, mouse, drawing and modem
packages. Incl. source & docs. IBM, 83,

ForST, John Redmond CT700 - (1)
Forth for the Atari ST. Incl. source & docs. Atari ST.
Mops V2.2, Michael Horc CT710-(2)

Close cousinto Yerkes and Neon. Very fast, compiles subroatine-
threaded & native code. Object oriented. Uses F-P co-processor
if present. Full access to Mactoolbox & system. Supports System
7 (e.g., AppleEvents). Incl. assembler, docs & source. MAC

BBL & Abundance, Roedy Green CROO - (4)
BBL public-domain, 32-bit Forth with extensive support of DOS,
meticulously optimized for execution speed. Abundance is a

Fublic-domajn database] m}%uagc written in BBL. Req. hard disk.
ncl. source & docs. IBM HD, hard disk reequire

WE HAVE CHANGED THE
WAY YOU CALCULATE
YOUR ORDERS.

1) We have leveled the pricing for FIG
items to all members.

2) We have removed the cost of shipping
from the price of the items.

3) We have given you a better choice of
shipping methods and rates.

Back issues of Forth Dimensions
and FORML Conference Proceedings
are going out of Print!!

For faster service, fax your orders 510-535-1295

fig-FORTH ASSEMBLY LANGUAGE SOURCE

MORE ON FORTH ENGINES

Listings of fig-Forth for specific CPUs and machines with compiler security and \rolllnR‘li!T’l(D Jnnunr)f 1989 1988 Roch Forth Conf " 810-$15 1#
= ! = rints from ochester Forth Conlerence, object-
variable-length names (see fmuﬂafmn Man Wm), S15 14 oriented cmForth, lesser Forth engines. 87 pgs
’ 19 - March 51 Volume 11 July 1959 811-$15 14
m Apple IT 521 - August 81 suppH_ml:nl. o Footsteps in an Empty Valley, SC32, 32-bit
ember 79 hmh engine, RTX interrupts utility. 93 pgs
fig-FORTH INSTALLATION MAN{Hcha! 501-$15 14y, tume 12 Apil 199 812-$15 14
Glossary m cdpy = ‘r’ﬁ_’l‘ N’T urchase this ¢ architecture and instructions, Neural Computing
manu ch y d#the’scurce code listings above. MoeNCATS532 pigForth, binary radix sort on 80286, 68010,
61 pg and RTX2000. 87 pgs
N"Y 308-325 1# yolume 13 October 1990 813-815 14
T T dal | PALs of the RTX2000 Mini-BEE, EBForth, AZForth, RTX-
vy Bill Ragsdale, intema 2101, 8086 cForth, 8051 eForth. 107 pgs
Yolume 14 814 -515 1#
RTX Pocket-Scope, eForth for muP20, ShBoom, cForth for CP/
M & 7.80, XMODEM for cForth. 116 pgs
MISCELLANEOQOUS
T- ‘T»HIRT “May the Forth Be With You” -S12 1# Volume 15 815-315 1#
fys1ge Small, Medium, Large, Extra-Largeon ordcrfonn) Moore: New CAD System for('hIEDcﬂgn A portrait of the P20;
Wﬁgdcslgn on a dark bluc shirt. Rible: QS1 Forh Processor, Q52, RISCing it all; P20 eForth
Soliware Simulator/Debugger. 94 pgs
POSTER (Oct., 1980 BYTE cover) bLast 10 602 - 55 1#
. Volume 16 816 - 515 1#
FORTH-83 HANDY REFERENCE CARD 683 - frec OK-CAD System, MuP20, eForth Sysicm Words, 386 cForth,
80386 Protected Mode Operation, FRP 1600 - 16Bit Real Time
FORTH-83 STANDARD 305 - 815 1# Processor. 104 pgs
Authoritative description of Forth-83 Standard. For reference, not
e DR. DOBB’S JOURNAL
BIBLIOGRAPHY OF FORTH REFERENCES 340 - 3518 2# Annual Forth issue, includes code for various Forth applications.
3rd ed., January 1987) Sept. 1982 22-85 1#
r 1900 references to Forth anicles throughout computer Sept. 1983 423 -55 14
literature. /(4pgs Sept. 1984 424 -35 1#
P.O.BOX 2154 OAKLAND, CALIFORNIA 94621 510-89-FORTH 510-535-1295 (FAX)
Name _———— Phone
Compamy —0o —_— Faki——— U.S. Domestic Postage Rates | s;r;;" I kasp:.‘;ra?
Street R e eMail International Postage Rates --S“;;'“:;—:-i gﬁﬁ”ﬂ?ﬂ‘
City . ~ S Canada, Mexico $1.00 5 _ 8130 |
5 | Other Western emisphe: 100 $3.25 §2.25
State/Prov. le Enm;r- a $1.00 $6.00 §4.50
Country o o o . Other International $1.00 $8.00 | $600
Ttem # Title Quy. Unit Price Total E i
— |
-
!
[C] CHECK ENCLOSED (Payable to: FIG))) e Sub-Total |
[VISA (] MasterCard 10% Member Discount, Member # () | s times zate
Card Number **Sales Tax on Sub-Total (CA only)
Signature Postage: R Rate — x#s
- *Membership in the Forth | Inlcrt,sl Grouwp [|
Expiration Date MEMBERSHIP == CiNew © LlRenowal S40/4 6;;3

*MEMBERSHIP IN THE FORTH INTEREST GROUP

The Forth Interest Group (FIG) is a world-wide, non-profit, member-supported organization with over 1,500 members and 40 chapters. Your membership includes asubscription tothe bi-monthly magazine
Forth Dimensions. FIG also offers its members an on-line data base, a large selection of Forth lterature and other services. Cost is $40 per year for U.S.A. & Canada surface; $46 Canada air mail;
all other countries $52 per year. This fee includes $36/42/48 for Forth Dimensions. No sales tax, handling fee, or discount on membership.

When you join, your first issue will amive in four 1o six weeks; subsequent issues will be mailed to you every other month as they are published—six issues in all. Your membership entities you to a 10%
discount on publications and functins of FIG. Dues are not deductible as a charitable contribution for U.S. federal income tax purposes, but may be deductible as a business expense.

MAIL ORDERS:

Forth Interest Group PAYMENT MUST ACCOMPANY ALL ORDERS

P.O. Box 2154

QOakland, CA 94621 PRICES: All orders must be prepaid. Prices are POSTAGE:

PHOME ORDERS: subject to change without notice. Credit card orders Al orders calculate postage as

will be sent and billed at current prices. Chacks must
be in U.S. dollars, drawn on a U.S. bank. A $10

510-89-FORTH Credit card
otders, customer service.

Hours: Mon-Fri, 9-5p.m. _charge will be added for returned checks.

number of #s times selected
postage rate. Special handling
available on request,

** CALIFORNIA SALES TAX BY COUNTY:
7.5%: Sonoma; 7.75%: Fresno, Imperial,
Inyo, Madera, Monterey, Orange, Riverside,
Sacramento, San Benito, Santa Barbara, San
Bernardino, San Diego, and San Joaqguin;
8.25%: Alameda, Conira Costa, Los Angeles
San Mateo, Santa Clara, and Santa Cruz;
8.5%: San Francisco; 7.25%: other counties,

SHIPPING TIME:

Books in stock are shipped
within seven days of receipt of
the order. Please allow 4-6
woeks for out-of-stock books
(deliveries in most cases will be
much sooner).

~ For faster service, fax your orders 510-535-1295

XIV-5

]
]

FIG Debriefing:

Embedded

Sysitems
Conference

John Rible
Santa Cruz, California

FIG was offered a booth at this year's Embedded Systems
Conference “as an experiment” by the promoter, Miller-
Freeman Publications. T ook on the challenge to make it
successful and succeeded, learning a lot in the process.
We've been invited back next year, when it will be even
better! What follows is an account of the process, in the hopes
that other chapters will decide to do the same at conferences
in their area.

The goal of our participation was to provide information
about Forth to people outside the current user community.
To achieve that at this conference meant showing Forth in
embedded applications. Since F-PC and eForth don’t address
this area directly, I wanted to include vendors as much as
possible, to show non-Forth users what was possible. To
increase the excitement, T wanted a raffle and demonstra-
tions. And I needed people to staff the booth. We also wanted
to let chapter members know that they could get into the
exhibits (and the parties!) free. No selling is allowed at this

I wanted to include vendors
and show non-Forth users
what was possible.

show, so there would be no piles of disks and books to worry
about.

So 1 called all the vendors I could think of who did cross-
compilers or boards, abouta dozen in all. I'was overwhelmed
by the enthusiasm! All of them wanted to participate, and in
some cases were surprised that 1 didn’t want to charge them.
Three vendors (AM Research, New Micros, and Vesta) agreed
to donate a board in return for the names of the entrants.
Three vendors (AM Research, Forth Inc., and Mosaic Indus-
trics) agreed to demonstrate their systems, one each day. 1
arranged to have the literature sent to me the week before the
show, guessing that 200-300 copies of brochures would be
about right, ten per cent of the expected number of
attendees. Since table space was limited, they were restricted
to just one or two items each.

The people at Miller-Freeman were wonderfully support-

Forth Dimensions

23

ive, and sent us, on very short notice, the “free pass” mailers
to go outin our newsletter. At our chapter meeting the month
before the conference, 1 signed up people to staff the booth,
‘ThenI called each of them the week before to confirmit. Most
everybody showed up, some even for much more than
they'd agreed to: it was fun! I got the Forth Interest Group
office (they're local for us) to donate a couple of books for
the raffle, make copies of FIG membership applications, and
help out at the booth some, too. I made up business-card
sized name-address-phone cards for people without busi-
ness cards who wanted to enter the raffle, along with a sign
for the jar.

I went the whole first day and half of the last day, to
coordinate setup and cleanup. ‘The hall had strict labor union
requirements, so all the brochures were carried in and out by
hand (orelse theydo it at $45/hour, one hour minimum) and
the booth was set up without tools (same “or else”). We used
wire racks to display vendor literature at one end; had FIG
info, the EE Times “Forth in Space” article, “A Brief Intro (o
Forth” by Phil Koopman, Jr., and the raffle jar in the middle;
and the vendor demo at the other end. We usually had two
chapter members in the booth, with one or two vendor folks
as well. The aisles were generally full, with people stopping
almost continuously. It was very relaxed, though: people
took breaks as desired and the staffing schedule was revised
as each day went on.

After the show, I drew the winners from the raffle jar,
packaged up the systems and sent them off. UPS was
cheapest in the United States, and the U.S. Postal Service for
England! The winners were:

Monday’s FIG book:
Tuesday’s FIG book:
Wednesday’s FIG book:
Vesta system:

NMI system:

AM Research system:

lan David, London, U.K.

Gary W. Dow, San Jose, CA
Dovle Kisler, San Jose, CA
Ron Palmieri, Daly City, CA
Lennart Suurik, Sunnyvale, CA
Richard Tobias, San Jose, CA

Al Mitchell of AM Research volunteered to enter the raffle
names on disk. I contacted a couple of vendors to arrange the
return of a lot of their expensive brochures. When the disk
with the names arrived, I made copies and sent them to FIG
and the donating vendors. I sent thank you letters to all the
vendors as well.

Next time, I won't be so optimistic about how many
copies to have: although there were 150 cards in the raffle jar,
only 50-100 copies each of the various brochures were
taken! I'll also collate the vendor brochures and slip them into
a 17x11 folded sheet with FIG, local chapter, and the Intro
to Forth information on it, so there’s just one pile of info and
more room for books and demonstrations. [hope that, by
starting earlier, we'll be able to get the “free pass” out with
Forth Dimensions. There won't be an X3J14 meeling to
interfere with getting thank-you’s out to the vendors, And |
won't mistakenly have my home address embossed on the
exhibitor badges!

See you there.

January 1993 February

Form+ TutoriaL, [Esson #2

Placing Characters

on the Screen

C.H. Ting
San Mateo, California

[The last tutorial demonstrated how to define new commands
and how to use the string-printing funciion .™ lo generate
block letters on the display —FEd.]

In this lesson, we will try to wrile block characters

anywhere on the screen. The screen displays characters in
25x80 format, that is, 25 lines with 80 characters perline. The

following instructions allows us to position the cursor before
writing characters:

dark Clear screen and put cursor at top-left corner.
at Move the cursor to specified screen location,
40 12 at e.g,putthe cursoratthe center of the screen.

The following instruction puts a block-letter F at the
center of screen:
newBar ;T HRRRaGw
newbPost Lo "o

new-F

dark
38 10
38 11
38 12
38 13
38 14
32 15
¥

at
at
at
at
at
at

newBar
newPost
newBar
newPost
newPost
newPost

’

But it is very awkward to place a character by specifying
the location of each of its separate elements. A more general
way to place characters is to usc variables to store the
location, so that information isn’t mixed in with the instruc-
tions that generate the character itself.

variable x
variable vy

newLine
x @ v @ at \ move cursor to x,y location
\ increment y for next line

1 v +!

January 1993 February

24

newline newBar

newline newPost
newBar
newPost
newPost

newrPost

newlLine
newLine
newLine
newLine

; |

Now to place F on the screen, we first specify its location: |
30 x ! 10 v ! F

We have just used several more Forth instructions:
variable <name> Define a variable where numbers |
can be stored and retrieved. |

@ (var -- data) Fetch the number stored in a |

variable.

' (data var --) Store a number into a variable.

+! (data var --) Addanumber to the value stored

in a variable.

: F-demo !
dark i
0x 10y !F §
70 x ' 10y ! F 1
10x ! 18 y ! F

15y ' F

40 = !

]

Exercise One. Define a new instruction to clear the screen and
put the message FORTH at the center of the screen in block
characters.

: bar LM kkkkkT .
: post Lo "o
H triadl w *kk M ;
: sides IR w5
: tetra LI o EkkEx M.
: duol LU 2 " e
duoz LI " : :
: duo3 ok oxow l
: center R ke W i

Forth Dimensions

: 0 newLine triadl
newLine sides New Contest Announcement
| newlLine sides = = =
| newlLine sides '
newLine sides Call for Papers!
newline triadl
; Forth Dimensions is sponsoring a
: R newlLine tetra ;
| e Eifas contest for articles about
newLine tetra
newLine duo2 “Forth Development Environments”
| newlLine duo3
newLine sides

g Write about:
: T SRR bas libraries, source management, user interfaces,
| newlLlne center) .
newlLine center platform/machine/kernel independence,
_ newlLine center other topics suggested for this year's FORML
| newlLine center) -)
' newLine center conference, or issues not specified here which,

nevertheless, relate to the general theme.

: H newLine sides
newLine sides
newLine bar
newLine sides
newlLine sides
newlLine sides

Entries will be refereed. Papers to be presented at FORML
are eligible, but must be completed and received at our
office by the contest deadline.

Mail a complete hard copy and a diskette

| ‘ {Macintosh 800K or PC preferred) to the:
| : FORTH dark
25 x ' 10y ! F Forth Interest Group
32 x 110y !0 P.0. Box 2154 +» Qakland, California 94621
39x ! 10y !' R
46 x ' 10y ' T
53x ! 10y ! H
: Cash awards to authors:
i -
: demo FORTH 20 8 62 17 box 0 21 at ; 1St p’ace' $5oo
| -
| Exercise Two. Design a message yourself and display it at the 2nd p ’ace' $25o
| center of the screen. 3rd p’ace: $1 00
|
| ons b Fonm and fos Tt Milaroon Gt E4a St ‘arhca it SR 4 Deadline for contest entries is August 1, 1993
| succeeding issues of Forth Dimensions.
Don’t Explre! - Advertisers Index
: : |
. . . ' | The Computer Journal 35 |
Goodthingsare coming, and your continued FORMLg ; 44
participationasa readerof Forth Dimensions | | PRI e s s s e n s i
is important to us. Please take a moment to | | FOHI IS YD mr e s 25 IESE
renew or to extend your subscription. Mailor | | FaVard SOWOIKS ..o 42 |
fax the mail-order form in this issue, or call | | Laboratory MiCrosystems 35
the Forth Interest Group at 510-893-G784. | Miller Microcomputer Services 12 i
Your comments are welcome, Silicon COMPOSENS............ccovveviveiiaeaaaaeaaaaan, 2 |

Forth Dimensions 25 January 1993 February

Moving FortH, CONCLUSION

Principles of

Metacompilation

B.J. Rodriguez
Hamilton, Ontario, Canada

J. Compiler Directives (IMMEDIATE words)

Most of Forth’s control structures are implemented as
compiler directives: IF ... ELSE ... THEN, BEGIN ...
UNTIL, BEGIN ... WHILE ... REPEAT, DO ... LOOP. These
words are executed, rather than compiled, at compile time,
and are known in Forth as IMMEDIATE words.

Forth also allows the programmer o create new compiler
directives by defining words with the ITMMED IATE attribute.

1. Use

The Forth compiler directives are used in the same
manner when metacompiling as when compiling “nor-
mally”. For example:

rname

word word IF word word THEN ;

However, the definition of a compiler directive—an
IMMEDIATE word—is somewhat different in the meta-

compiler. This is because two sets of actions need to be |

defined. First, the word’s action when executed in the
Target system, as part of the metacompiled application.
Second, the action the metacompiler must take when it
encounters the word.

Consider the IF ... THEN example. Suppose a new
Forth kernel is being metacompiled. The result of the
metacompiler is a dictionary of words, including a com-
plete Forth compiler, that will run on the Target system.
Later, the programmer using the Target system will write
programs with IF ... THEN. So, a “Target” action for IF and
THEN must be part of the Forth kernel.

But the Forth kerncl itself contains many IF ... THEN |
constructs! These must be recognized by the metacompiler |

while the kernel is being compiled, and the appropriate
branches and branch offsets for the Target machine must
be compiled into the Target image. So, a “Host” effect on

the Target image must also be defined for IF and THEN. |

The same holds true for any IMMEDIATE word in the
Target application.

a) Defining the Target action
This is straightforward. The Target's action is defined

January 1993 February

b)

o)

just as any other Forth word to be executed in the
Target, i.c., as a colon or CODE definition. The only
difference is that the “precedence bit” in the name
must be set, to indicate that the word is TMMEDTATE.

The metacompiler’s IMMEDIATE (in the HOST vo-
cabulary) will set the precedence bit of the last word
defined in the Target image.

So, the Target action is written:

name

word word word ; IMMEDIATE
Defining the Host action

The Host action must be defined, in words known to
the Host, describing what operations are to be per-

formed on the Targel image.

This is specitied alter the Target word is defined, using
the word ACTS : to specify the Host action, and the
word IMPERATIVE (o indicate that it is a compiler
directive.

. name

word word ... word ; IMMEDIATE
HOST ACTS:
host-word host-word ... ; IMPERATIVE

Generally, the “host-words” will be words from the
metacompiler lexicon, which act on the Target image.

Defining a Target action only

Itis possible to envision a case where a Target version
of a compiler directive must be metacompiled, but the
Host action is not needed.

For example, suppose a new Forth kernel is to be |

created which includes the unsigned loop word

/LOOP. The eventual user of the Target Forth will want i
to use this word. But this word is used nowhere within |

the Forth kernel, so a Host action for /LOOP is nol

Forth Dimensions

needed—the metacompiler will never be called upon
| Lo use il

In this case, the HOST ACTS : ... IMPERATIVE clause |

may be omilted.

d) Defining a [Host action only

compiler directive.

For example, consider an embedded, “sealed” appli-
cation, such as a microwave oven wrilten in Forth and
burned into PROM. Obviously, the end application
will have no terminal, no programmer, and no means
of extending the program. In such a case, the sizable
part of the Forth kernel which implements the com-
piler canbe omitied. And, with no means of compiling,
there is no need for compiler directives.

What is needed is merely a word which executes in the
Host. Such a word is defined with the “native” : (colon).

HOST
name host-word host-word ... ;
(The word IMPERATIVE is not required.) This word
will be defined in the “mirror” vocabulary which has
last been selected for DEFINITIONS, amidst all of the
| mirror words. So, although this word will reside in the
: Host’s memory, it will appear in the Target's
search order—exactly the desired effect!
|

|
|

It is also possible to cnvision a case where a [lost |
action, but not a Target action, is required for a |

compiling environment is:

IF COMPILE OBRANCH HERE 0 , ;
IMMEDIATE
: THEN HERE OVER - SWAP ! ; IMMEDIATE

First, the expilicil instructions to the Host, to have this
effect in the Targel image, must be defined.

IF in the Host must compile the Targel's 0BRANCH.
Assuming, for the moment, the existence of a word such as
TCOMPILE:

| TCOMPILE OBRANCH

The target’s Dictionary Pointer must be stacked:
HOST HERE (recall that this is the Target DP)

Then the empty cell must be left for the offset:
0T,

The branch will be resolved when THEN is encountered.
The Target address of the offset cell is still on the stack. The
current Dictionary Pointer is oblained:

HOST HERE

Then the offset is calculated in the Host. ..
OVER -

...and the resultis stored in the Target imagge, at the address
of the offset cell:
SWAP T!

| Figure Eight. Compiling IF ... THEN (compiler directives). |

[2. Implementation

Building a compiler directive which will be used
by the Target is straightforward. An ordinary colon
or CODE definition is compiled in the Target image.
Then, a special version of IMMEDIATE is cxecuted

In “normal” Forth... '

by the Host whose function is to set the precedence
bit in the Target image, in the last defined Targel
word. This is, of course, found from the LATEST

which is maintained for the Target. i
Building the compiler directive which will be
used by the metacompiler is somewhat more in-

Usually done by:

IF FQO BAR THEN

P e,
CFA of offset CFA of | CFA of .
OBRANCH to skip FOO BAR |

volved. Bearing in mind the First Rule of Metacompiler
Design, this discussion will focus on the concrete
example of compiling the Forth phrase

IF FOO BAR THEN

Figure Eight shows the data which must be
compiled into the Target image by this phrase. IF
must compile the Targel's 0BRANCH, a CODE word,

| and leave space for an offset. FOO and BAR, being
ordinary Forth words, compile normally. THEN
resolves the branch by patching the correct offset

| after the 0BRANCH.

| ‘The Forth code 1o accomplish this in a resident

Forth Dimensions

IF (-— a) COMPILE OBRANCH
HERE 0 , ; IMMEDIATE

: THEN (a) HERE QVER -
SWAP ! ; IMMEDTATE

The Forth word IMMEDIATE means, when in
compiling state, to execute this word instead

| of compiling its CFA.

To compile for the target...
...we would like the compile-time action to be like:
TCOMPILE 0BRANCH

T-HERE 0 T,

27

January 1993 February

The problem of writing a TCOMP ILE was glossed over ’ 3. Alternatives

in this discussion. Its function is to compile the following |
word—which is a Target word—into the Target image. But |
this is exactly the action of a mirror word. So the metacom- |
piler need only ensure that the mirror word 0BRANCH is |
executed, and not the Host's “native” 0BRANCH. This is
done:

TARGET 0BRANCH

When does the Host perform these actions? When it |
attempts to “compile” the words IF and THEN into the
Target—i.e., when the metacompiler parses the words IF
and THEN and attempls to execule their mirror words.
(Recall that mirror words, when executed, compile their
Target equivalents.) All that is necessary Lo change these
words from “words which are compiled” into compiler
directives, is a change in the run-time action of their mirror
words in the Hosl.

Forth provides a mechanism for changing the run-time
action of a word: DOES>. This implementation uses the
Forth-79 DOES>, which acts by changing the CFA of the
word in question. The new CFA points Lo a short machine
code subroutine (DODOES>), which re-centers the Forth
interpreter for the high-level code which follows.

So the Host word ACTS : should immediately execute
DOES> 1o change the CFA of the latest word—a mirror
word-—and compile
the DODOES> machine l

Figure Nine. Compiling IF ... THEN.

a) The absence of executable mirror words

As noted, some metacompilers do not execute their
mirror words, or don’t maintain a mirror vocabulary at
all. In these metacompilers, the aclions of all the Target
compiler directives must be explicitly coded as part of
the metacompiler (usually in the TARGET vocabulary,
or its equivalent).

Some of these metacompilers have difficulty adding new
compiler directives, once the metacompiler is completely
loaded.

K. Defining Words

Onc of Forth’s most powerful featurcs is the ability to
create new classes of words. A new class is described by a
Forth “defining word,” so named because it will be used to
creale the new Forth words which are members of the class.

Defining words are among the most powerful tools of
the skillful Forth programmer, so it is a pity that many
metacompilers provide litle or no means of including them
ina metacompiled application. Not so the Image Compiler.

1. Use

A brief refresher on defining words is in order here.
Defining words use the <BUILDS ... DOES> construct in
fig-Forth; CREATE ... DOES> in Forth-79 and Forth-83. '

code. [t then enters the

compiling state in the I HOST
Host to compile the |
words which describe ‘ DODQES> address of address of ot
the Host's action for machine code TCOMPILE 0BRANCH '
that mirror word. _
The result, for the | ‘.%___
word IF is shown in %
Figure Nine. 2| z1r| 1inkx | CFA % _ address of
The advantages of /% iargels- 1=
metacompiling by ex- e
ecuting mirror words | e
should now be appar- | TARGET IMAGE L - !
ent! pr
This is not exactly
how the Image Com- | . |2 | 1F | 1ink | CFA addlress of tar- adgress of tar- adcliress of tar-
piler handles compiler | get's coMPILE | get's OBRANCH get's HERZ
directives. The prob- L
lem of Defining Words Y | address of address of address of
(I'ICX[SCCli()n) will in- "_‘ Iarget's 0 target‘s 5 targel's ;s
troduce some new A

twists into the action of
mirror words, and this
will be reflected in the
handling of compilcr
directives.

TARGET
HERE 0 , ;

prebedence bit is set in the target |

IF COMPILE OBRANCH
IMMEDIATE

HOST ACTS: TCOMPILE OBRANCH

HERE 0 T, ;

January 1993 February

28

We need an IF to run in the target, and one for the host. ‘

Forth Dimensions

_ Figure Tenh. Defining words.

CONSTANT

<BUILDS DOES> @ ;

r

64 CONSTANT C/L
C/L 16 * CONSTANT B/BUF

.LINE C/L TYPE ;

FIELD DUP + CONSTANT ;

In general, we need to code:

1. a <BUTLDS action for the host to use
2. a DOES> action for the host to use

3. a DOES> action for the target to use

4. a <pUTLDS action for the target to use

1. Host uses CONSTANT fo
define a word in the target.

2. Host uses a defined word
(c/L) interpretively.

3. Host compiles a defined word
into a definition in the target.

4, The word CONSTANT is
compiled into a target definition,
for later execution by the target.

Definition of consTanT for
target machine to use. j

I Of course, in this example
of a new Forth kernel, the
eventual user of the Target
system will need all the com-
ponents of the defining word.

To coverall contingencics,
the metacompiler mustbe able
to define:

a) a <BUTLDS action for
the Host to use;

b) a DOES> action for the
Host to use;

¢) a <BUILDS action for
the Target to use; and

d) a DOES> action for the
larget 1o use.

The Image Compiler syntax
for all of these operations is:

Three “sequences” are involved in their creation and use [71:

Sequence One is when the defining word is itself built.
This happens once.

Sequence Two is when the defining word is executed.
This causes a “defined word”—a member of the class—to
be built. This may happen many times, each time adding
a word to the dictionary. The action (o be taken during
Sequence Two is specified by the <BUILDS clause.

| The action which is taken during Sequence Three—the
common action of the new class—is specified by the
DOES> clause.

An example of a defining word is CONSTANT (Figure
Ten). CONSTANT is itself a colon definition (Sequence
One). Fach time CONSTANT is executed (Sequence Two)
it defines a new word, a named constant. The action of a
named constant (Sequence Three) is to put its integer value
on the stack.

Observe, in Figure Ten, the many ways a defining word
and its “children” may be used while metacompiling a
Forth kernel:

‘ a) The Host may perform the defining action, e.g., to
create a CONSTANT which is in the kernel.

b) The Host may need to execute a defined word, e.g.,

’ togetthe value of one of the Target kernel’s CONSTANTS.

¢) 'I'ne Host may need to compile a defined word into a
Target colon definition.

d) The Host may need to compile the defining word itself

into another colon definition. (This is notuncommon; |
| many classes are built using CONSTANT and specify- |

ing a different DOES> clause.)
i
Forth Dimensions

Sequence Three is when a defined word is exccuted. |

29

name <BUILDS word word word (c)

DOES> word word word ; (d)
HOST ACTS: word word word (a)
HOST DOES> word word word ; (b)

Any of these clauses may be omitted. Particular in-
stances where this would be useful are:

a) The Host <BUTLDS is not nceded if this defining word
will not be used during the metacompilation. For
example, 2CONSTANT could be included in the ker-
nel; but it is not used during the compilation of the
kernel.

The Host DOES> aclion is not needed if no defined
word will be used interpretively during the metacom-
pilation. For example, C/L is defined in the fig-Forth
kernel, but its only use is when it is compiled into
Target colon definitions.

The Target <BUILDS action is frequently omitted in
embedded applications. No compilation takes place
in the Target system; all deflined words are created
during the metacompilation.

It is possible, though rather pointless, to omit the
Target DOES> action. (Why build a word in the Target
image that only the Host can use?)

b)

9]

D

The defined word action in the Target may also be
written in machine code, as:

name <BUILDS word word word (c)

;CODE assembly code (d)
HOST ACTS: word word word (a)
HOST DQES> word word word ; (b)

January 1993 February

There is no provision to specify the Host's DOES> action
in machine code; blinding speed is not usually required

during metacompilation. Should it be necessary, a separate |

CODE definition can be made in the Hosl, and used in the
DOES> clause.

2. Implementation
Nole, from the examples given above and in Figure Ten,

that the Host must be able to compile or o exccute both

defining and defined words.

Compiling a word into the Target image is done by
execuling ils mirror word. Both the defining and the
defined words will have corresponding mirror words. But
giving a Target word an executable behavior—as in the
case of compiler directives—involves changing the run-
time action of the mirror word.

The solution is to give the mirror words both a
compiling action and an executing action, both of which
can be altered.

This, of course, requires some means of distinguishing
between the metacompiling and meta-executing states.
Thus the variable STATE is resurrected.

Figure 11 illustrates the form now taken by the mirror
word. (The reason for reserving a cell should now be
clear.) The compiling action is specified by the code
address of the word; this points to machine code in the
Host, and is changed with DOES> (see the previous
section). The execculing action is specified by a common
Forth execution vector, which points to a Forth word in the
Host. This difference is because the former is invoked by
the Forth interpreter, while the latter is invoked by the
phrasc @ EXECUTE .

The final definition of CONSTANT is given in Figure 11;
the resulting code in IMost and Target—including one
instance of a defined word—is shown in Figure 12. A step-
by-step analysis of the process follows.

Sequence 1: When the code is metacompiled,

CONSTANT
Builds the colon definition header (8 CONSTANT link cfa)

inthe Target, and the mirror word named CONSTANT inthe |

Host. The compile action of the mirror word is the default;
the execute action is an error word.

<BUILDS ,
Are compiled into the Target image.

DOES>
Compiles the l'arget (; CODE) and the DODOES> machine
code into the Targel image.

e ;
Are compiled into the Targel image.

HOST ACTS:

Changes the exccute vector of the mirror word (o point 1o
the following code; builds a headerless colon definition in
the LHostby compiling the address of the (:) machine code.
January 1993 February

' puts it on the Host stack.

[interpretive action in the Host,

30

CREATE T,
Are compiled into the Host

DOES> ‘
| Compiles (DCES>) (described below) and ; S to end the

| colon definition in the Tost. Then begins a new headerless
definition, which will be the execution action (in the HosU)
of the “children.” l

T@ ;
Are compiled into the Host (; compiles ; S).

Sequence 2: When 64 CONSTANT C/L is executed
interpretively, control is transferred to the first headerless
definition described above.

CREATE

The metacompiler's CREATE—it builds a header in the
Target image, and a mirror word of the same name (C/L) |
is built in the Host. |

T,
Compiles the constant value (64) into the Target image.

(DOES>) i
Which was compiled “invisibly” into the Host by DOES>,
changes the execute vector of the new mirror word (C/ L),
to point to the second headerless definition described
above. It also changes the code address of the new word
in the Target image, Lo point to the DODOES> portion of the
Target's CONSTANT. '

Sequence 3: When C/L is execuled interpretively, control
transfers to the second headerless definition. (It is entered
with the address of the mirror word on the stack.) |

T@
Fetches the constant value (64) from the Target image, and

Finally, observe that the Target image has exactly the
form required by the <BUILDS ... DOES> construct (with
the Forth-79 enhancement). Both CONSTANT and C/L can
be used in the new Forth kernel.

3. Alternatives

This implementation, having distinct and separate com-
piling and execuling actions for the mirror words, is unique
to the Image Compiler.

L. Compiler Directives Revisited
1. Implementation

Figure 11 also alludes 1o a fringe bencfit of this |
approach. Since cach mirror word has a separate exceculing
vector, any word in the Target image can be given an

For example, the mirror word DUP normally compiles '
the address of the corresponding CODE word in the Target
image. It may be desirable to use DUP interpretively—

Forth Dimensions

| Figure Eleven. Improved mirror word in the Host. l

number of times.

d) 'T'he first definition having that name
will be the definition used to resolve
any forward references.

The usual logic of search order in

e)

s
Action to take
when in compiling

target's DuP.

The host must keep a metacompiler STATE!

What we would like to write:

TARGET CONSTANT <BUILDS , [4]
DOES> @ ; [3]
HOST <BUILDS T, [1]

DOES> T@ ;

(2]

code CFA of address of
3 | puP| 1link | address a word this named word
in host in host in the image
A S
.-"'-"'.. "'q\."
; o

Action to take
when in interpretive

Forth vocabularies does not apply to
forward referencing. For safety, for-
ward-referenced words should be
uniquely named, and forward refer-
ences should not cross vocabularies.

mode. .. mode. .. D.oing otherwise may lead Lo unpre-
. dictable results,

e.g., compile the e.g., execute the f) All forward-referenced words must

address of the host's pup! '

eventually be defined!

While forward refcrencing is active,
there is no such thing as an undefined
word—words are either defined, or are
expected 1o be defined later. When for-
ward references are not being used, this
will deprive the programmer of useful
diagnostic information. So, forward refer-
encing can be enabled and disabled with

| affecting the Host stack, of course—during metacompila-

| tion. By setting the executing vector of the mirror word to

l point to the Host DUP, this is achieved.

i There are so many cases like this, where a mirror word’s

[execution is vectored to a single Host word, that a special
version of ACTS : is defined:

| HOST ACT word
Changes the execution behavior of the latest mirror word,
to the single Forth word in the Iost

M. Forward Referencing

Forth as a language provides no formal support for
| forward references. All words must be defined before they
[are used. So it is paradoxical that the Forth kernel itsell
depends on the use of forward references. This problem
must be considered in the metacompiler.

1. Use

Forward referencing is automatic in the Tmage Com-
piler. A word which is to be forward referenced may be
used in a colon definition just like any other word:

name word fwd-word ... word ;
The Image Compiler will compile an empty cell in the

place of fwd-word. Later, when fwd-word is defined, its

address will automatically be placed in this definition.

The following rules and restrictions apply:

definitions.

b) Compiler directives and other IMMEDIATE words
may not be forward referenced.

c) The same word may be forward referenced any

Forth Dimensions

a) Forward references can only be made within colon |

31

FORWARD ON and FORWARD OFF

| 2. Implementation

The Image Compiler handles forward references by
having the Host remember the location of all references to
an unknown word. When that word is later defined, all the
remembered locations can be patched with its address.

First reference. Figure 13 illustrates the Host's process-

ing the first time a word is forward-referenced. When the
' word is encountered in the input stream, the Host will
attempt to find and execute the mirror word of that name
in the TARGET vocabulary (or sub-vocabulary). Failing
this, the Host will attempt to convert it as a number. Failing
this, the word is considered undefined, and the Host
presumes this to be a forward reference.
. An empty cell is compiled into the Target image, where
| the address of this unknown word belongs. Then the Host
creates a dictionary entry, in the CURRENT mirror vocabu-
lary, using the name of the unknown word. This is how the
Host remembers the name of this word, so that it will be
recognized when it is defined later. This dictionary entry—
a forward-referencing mirror word—contains a pointer to
the Target location to be patched.

Second and subsequent references. 'The next time that
word is used, it will be found in the dictionary! What is
found is not the normal, self-compiling mirror word, but
the forward-referencing mirror word described above. This
word is given a special compile-lime action:

| a) Reserve anempty cell in the target, to be patched later.
! b) Storetheaddress ofthe previous location-to-be-patched
[(as found from the mirror word) in this reserved cell.
| © Change the mirror word to point to this new reserved
r cell.

January 1993 February

'Figure Twelve. Defining words—the result.]

64 CONSTANT C/L

HOST

s - '_W the links.
; Finally, a normal sell-com- |
| piling mirror word is created |
for the new definition.
| Note that any Forth word '

host's
compile
action

8 CONSTANT link

host's
interpret
action

address of ‘ may be forward-referenced in |
target's | this manner: colon definitions, |
CONST ' CODE definitions, data struc-

e

o
k

-

| tures, or defined words.
| Later “backward” refer-

| address of
(:) code

address of | address of
TCREATE 7, ;S

address of

ences. Thanks to the search
order of Forth, all dictionary
searches for this word will now

address of | address of | address of
(:) code T@ 'S

-

v,
.,
-

stop at the new, normal, mirror
word. To all appearances, the
normal mirror word completely
replaces the prior, forward-
referencing mirror word.
Thus, when the word is
next encountered in the meta-

addr of
interpret
action

addr of
3| c/L link compile
i action

addr of
target's
c/L

compilation, the normal mirror
word corresponding to its defi-
nition will be found and

i TARGET IMAGE

executed, compiling its Target
address. No other forward ref-
erences will be made for this
word.

Which is exactly the de-

8 | CONSTANT link CFA

address of
target's <BUILDS

sired result.
address of

target's ,

| 3. Issues

a) Disabling forward refer-

addr of
target's
(; CODE)

DODQES>
machine
code

addr of
target's

encing

In most application pro-
gramming, an undefined
word is an error condition

addr of
target's
s

64

3 C/L link CFA

and should be reported
as such. Forward refer-
encing interferes with this.

; Forward referencing is |

The effect of these actions is to build, in the Target

image, a linked list of all cells to be patched with the |

address of this unknown word. The forward-referencing
mirror word contains the pointer to the head of the list.
Fach different forward-referenced word (i.e., each un-

known name) will have a separate linked list. See Figure |

14,

Definition of the word. When the word is finally de-
fined, TCREATE will find its name is already in use. Before
reporting this as a duplicate name (a Forth re-definition),
TCREATE checks to see if the prior use is a forward-
referencing mirror word. (This test is performed by checking
the execution vector, since forward-referencing mirror
words have a specific and unique action.)

If there is a forward reference, the head of the linked list
is fetched from the mirror word. The address of the new
delinition is patched into all the entrics of the list, replacing

January 1993 February

o disabled by setting a flag.
This flag must be tested in two places: to prevent a
forward-reference mirrorword frombeing constructed |
on the first occurrence; and within that mirror word,
to prevent subsequent occurrences from being linked
into the list. Forward referencing can be turned onand
off many times within the metacompilation.

4. Alternatives
a) F83
The Laxen-Perry F83 metacompiler uses a forward-
referencing scheme similar to that of the Image
Compiler, except that it is manual instcad of auto-
malic.

Each word which will be forward referenced mustbe |
declared prior to its first appearance, by the phrasc

Forth Dimensions

| Figure Thirteen. Forward references (first occurrence). |

How unrecognized words are handied
in INTERPRET
Must be a

try to convert __pot~

it as a number

valid

look up name o
in dictionary >

found

HOST

forward reference!

Create a forward-
referencing mirror
word in the Host.

Compile a zero cell
in the Target.

N. Getting the Image into the Target

The Image Compiler is now complete. It is
capable of metacompiling programs ranging
from a few hundred bytes of embedded applica-
tion code, to a full Forth kernel, to a complex
. Forth application with multiple vocabularies and
| user-created defining words. What remains is the
problem of getting this metacompiled code into
the Targel system!

1. Via bex file

Perhaps the most useful method in the IBM
PC environment is to create an MS-DOS file with
the Target's binary image in some generally
recognized format.

The Intel hex format is widely accepted.
Many operaling sysltems can converl Intel hex
| files to executable files. Most EPROM program-
| mers, and many resident monitor programs (e.g.,

address

FOO | 1link CFA

patch location
in target

of the Zilog Super8 Monitor) will accept the Intel
hex format.

, The word HEXFILE (screen 43) will copy a

TARGET

DEFER name

DEFER builds a word in the Host which maintains a
linked list of forward references, in essentially the
same manner as the Image Compiler. After the for-
ward-referenced word is actually defined, the forward
references must be explicitly resolved by the phrase

' defined-name RESOLVES reference-name

which has the unfortunate consequence of requiring
the name used for forward references to be different
than the name used in the eventual definition.
b) Metaforth
Metaforth and many similar metacompilers require all
forward references 1o be explicitly patched by the
programmer. This usually means knowing the loca-
tion to be patched as a byte offset within a colon
definition. If the definition is changed, the patch offsct
must be edited accordingly. Normally, all of the

of metacompilation.

To reserve the empty cell which will be patched, a
metacompiler directive (often called GAP) is used.

Forth Dimensions

palches are performed, ina load screen, asthe laststep |

| range of Target memory to an MS-DOS file, in the
Intel hex format:

address length HEXFILE name

The starting address is the origin of the
metacompilation—set in the source file, before
the first definition, by the phrase:

address HOST DP !

It is frequently convenient to define an EQUate to
contain this address, so that it may be referenced by some
easily remembered name (like ORIGIN) after the compi-
lation is finished.

At the end of the compilation, the first unused address
in the Target dictionary can be obtained with:

i' HOST HERE

and thus the length of the image can be found with:
HOST HERE ORIGIN -

(It would be a simple exercise to write this as a Forth word;

but so far, it’s been advantageous Lo know these addresses
before doing the download.)

2. Direct download to 1arget or EPROM

It would be possible to wrile a program, in Forth, which
communicates directly with the Target system (via its
| resident monitor program) or an EPROM programmer.
% The difficulty is that every target system and cvery
EPROM programmer has a slightly different protocol for
communication over a serial link. So a different download
program is necessary for each different piece of target

33 January 1993 February

Figure Fourteen. Forward references (subsequent). E

—

| Metacompilation code, conclusion. |

Forward-refarencing mirror word
is executed in the Host,

|

\ |
Compile a cell in the Target, which |
links to the previous reference. |
i

Save the address of this cell in
the mirror word.

| wost =

TARGET

address of
first in 1list
to be patched

‘;

addr of
previous
reference

hardware. (When hex files are used, these differences are
handled by the manufacturer-supplied host software.)

Still, for a frequently used target device, the time savings
in being able to download directly from Host memory
would make a Forth download program useful.

3. Metacompiling to Target memory
Carrying this logic one step further, if the Target system
has a resident monitor program which allows memory to

be examined and altered over a serial link, and if this |
system is connected to the Host at the time of the

metacompilation, it would be possible to metacompile
directly into the Target’s memory!

This obviously would necessitate rewriting the Target
memory words (T@, T!, etc.) to transmit commands and
parse responses over the serial link. A slight speed penalty
is involved, but since memory transfers are not the critical

element in compile time, the degradation may not be |

noticed.
This leads to possibilities of fully interactive metacom-

pilation, where words can be compiled one at a time in the |

Target, tested individually, forgotten, and redefined...
making the metacompiler environment cvery bit as inter-
active as a normal Forth system!

O. References
METAFORTH is a trademark of John J. Cassady.
Target Compiler is a trademark of FORTH, Inc.

1. Rodriguez, B.], “B.Y.O. Assembler,” The Computer
Journal #52 (Sept/Oct 1991).
2. Rodriguez, B.], “B.Y.O. Assembler: A 6809 Forth Assem-

January 1993 February

| I—screen § 87

34

e

{ Super8 [compile] () HEX | 8 688 bjr 12:39)

TARGET : [COMPLLE] =FIND 0= O 7ERRCR DROP CFA , ; IMMEDIATE
HOST ACTS: DROP —-FIND O= O ?ERROR DROP 2+ @ T, ; IMPERATIVE
TARGET : (29 WORD ; IMMED |
HOST ACTS: DROP 20 WORD ; [
;s

screen § 88 J
(Super8 do loocp if else then) (8 6 88 bjr 12:29
TARGET : BACK HERE - , ;
TARGET : DO COMPILE (DQ) HERE 3 ; IMMEDIATE
HOST ACTS: DROP TARGET (DO} HOST HERE ; IMPERATIVE
TARGET : LOCP 3 ?PAIRS COMPILE (LOOP) BACK ; IMMEDIATE
HOST ACTS: DROP TARGET (LOOP} HOST HERE - T, ; IMPERATIVE
TARGET : +L0O0P 3 ?PAIRS COMPILE (+LOCP) BACK ; IMMEDIATE
HOST ACTS: DROP TARGET (+LOCP) HOST HERE - T, ; IMPERATIVE
TARGET : IF COMPILE OBRANCH HERE 0 , 2 ; IMMEDIATE
HOST ACTS: DROP TARGET OBRANCH HOST HERE 0 T, ; IMPERATIVE
TARGET : THEN 2COMP 2 2?PAIRS HERE OVER - SWAP ! ; IMMEDIATE
HOST ACTS: HERE OVER - SWAP T! ; IMPERATIVE
TARGET : ELSE 2 ?PAIRS COMPILE BRANCH HERE 0 ,
SWAP 2 [COMPILE] THEN 2 ; IMMEDIATE
HCOST ACTS: DROP TARGET BRANCH HOST HERE 0 T,
HERE OVER - SWAP T! ; IMPERATIVE

DROP

SWAP
;5

screen § 89
{ Super8 begin - repeat) {
TARGET : BEGIN ?COMP HERE 1 ; IMMEDIATE
HOST ACTS: DRCP HERE ; IMPERATIVE
TARGET ; UNTIL 1 ?PAIRS COMPILE {BRANCH BACK ; IMMEDIATE
HOST ACTS: DROP TARGET ODBRANCH HOST HERE - T, ; IMPERATIVE
TARGET : AGAIN 1 ?PAIRS COMPILE BRANCH BACK ; IMMEDIATE
HOST ACTS: DROP TARGET BRANCH HNHOST HERE - T, ; IMPERATIVE
TARGET : WHILE [COMPILE] IF 2+ ; IMMEDIATE
HOST ACTS: DROP TARGET OBRANCH HOST HERE 0 T, ; IMPERATIVE
| TARGET : REPEAT >R >R [COMPILE] AGAIN R> R> 2-
[CCMPILE] THEN ; IMMEDIATE
HOST ACTS: DROP SWAP TARGET BRANCH
HERE OWER - SWAP T! ; IMPERATIVE

8 6 88 bjr 12:28)

HOST HERE - T,

75 : END
: ENDIF

S

f bler,” The Computer Jorirnal #54 (Jan/Feb 1992).]
| 3. Ewing, Martin S., The CalTech Forth Manual, a Technical

Report of the Owens Valley Radio Observatory, California

Institute of Technology, Pasadena, CA 2nd ed., June 1978).

| 4. Laxen, Henry, “Techniques Tutorial: Meta Compiling 1,”
Forth Dimensions TV/6 (Mar-Apr 1983). Discussion of
host and target memory spaces.

S. Laxen, Henry, “Technicues Tutorial: Meta Compiling 11,”
Forth Dimensions V/2 (July-August 1983). Compilation of
CODE and colon definitions.

| 6. Laxen, Henry, “Techniques Tutorial: Meta Compiling I11,”

Forth Dimensions V/3 (Sept/Oct 1983). Forward refer-

_ ences and compiler directives.

| 7. Derrick, Milch and Baker, Linda, FORTH Encyclopedia,
Mountain View Press, Mountain View, CA (Ist ed., 1982).

8. Cassady, John J., METAFORIII, Mountain View Press,
Mountain View, CA (1Ist ed., 1980).

9. Walker, Ray and Rather, Elizabeth, polyFORTI1 Il Reference
Manual, FORTH, Inc., Manhattan Beach, CA (dthed., 1983).

10. Ragsdale, William F., “The ‘ONLY’ Concept for Vocabular-
ics,” 1982 FORML Conference Proceedings, Forth Intercst
Group, San Carlos, CA (1982).

11. Rodriguez, B. J., “Interactive Embedded Metacompilation,” |
Proceedings of the 1990 Kochester Forth Conference, Insti-
tute for Applied Forth Research, Rochesler, NY (1990).

Forth Dimensions

(Letters, continued from page 5.0

l Fast 32-bit Integer Square Root
Dear Marlin, '

This is a simple—even primitive—contribution, but it
may be useful to some Forth users.

I have been writing an application in JForth (Delta
Research) and, for space reasons, | did not want to use JForth’s
floating-point library. I derived integer trigonometrical func-
tions from the article by Phil Koopman, Jr. (FD 1X/4), but I
also needed a 32-bit integer square root function. Delta
Research supplies a Newtonian successive approximation
square root utility which is credited to R.L. Davies (/D VII/4).
Despite an added convergence test, the result is relatively
slow, averaging over three milliseconds per rool.

Back inthe days when the Intel 8080 represented the state
| of the art, I derived a direct compulation square root
‘ algorithm. ‘This I have disinterred and converted to Forth.
! Though italways execules aloop 16 times, ituses no divisions.
On my standard Amiga 500, it computes the root of a 32-bit
number in under a millisecond. It should not prove too
difficult to extend it to 64 bits.

Since it lies in an inner loop in my application, I plan to
implement this algorithm in 68000 machine language. How-
ever, its incarnation in Forth may be of use to others as a
program speed-up device. As shown here, it returns both the
root and the remainder. The later is the difference between
the input number and the square of the root., It may be used
to round up the root, or can be dropped, as the users wishes.
A zero root and a negative remainder indicate that the input
number was negative.

Kind regards,

Tom Napier
One Lower State Road
North Wales, Pennsylvania 19454

32 blt Integer Square Root
SQRT (32-bit number -- root remainder)
Root square plus remainder equals input
In comments, P is the processed input,

Q is the result, and S is a power of two
which steps by 1/4 per loop

P]

DUP 0< \ test for negative input
IF DROP 0 -1 \ flag negative input

ELSE 0 \ initial Q
SWAP 1073741824 \ initial S, 2731
BEGIN >R \ keep S on return stack
DUP 2 PICK - R@ - (Q P P'" ==
DUP 0< \ is P' (= P-Q-S) negative?
IF DROP \ restore P
SWAP 2/ \ Q :=0Q/2
ELSE NIP \ use P’
SWAP 2/ RE@ + \ Q :=Q/2 + §
THEN SWAP R> 2/ 2/ \ 8§ :=8/4
DUP 0= \ is S zero yet?
UNTIL DROP \ dump S
THEN H

Forth Dimensions

Total control

with LM/ FORTH

For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:

Interactive Forth-83 Interpreter/Compilers

for MS-DOS, 0OS/2, and the 80386

* 16-bit and 32-bit implementations

* Fuli screen editor and assembler

* Uses standard operating system files

* 500 page manual written in plain English

 Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler

* Unique table-driven multi-pass Forth compiler

¢ Compiles compact ROMable or disk-based applications

* Excellent error handling

* Produces headerless code, compiles from intermediate states,
and performs conditional compilation

* Cross-compiles to 8280, Z-80, 8088, 68000, 6502, 8051, 8096,
1802, 6303, 6803, 68HC11,34010, V25, RTX-2000

* No license fee or royalty for compiled applications

¥ [aboratory Microsystems Incorporated

Post Office Box 10430, Marina del Rey, CA 90295

Phone Credit Card Orders to: (213) 306-7412
FAX: (213) 301-0761

FM/@! Trial
Subscription

There are whole other worlds in micro computers
than DOS and Windows. If embedded controllers,
Forth, S100, CP/M or robotics mean anything to you,
then you need to know about The Computer Journal.

Hardware projects with schematics, software
articles with full source code in every issue. And you
can try The Computer Journal without cost or risk!
Call toll [ree today to start your trial subscription and
pay only if you like it.

Rates: 318/year US; 324/year Foreign. You may
cancel your subscription without cost if you don’t feel The
Computer Journal is for you. Published six times a year.

(800) 424-8825
TCJ

The Computer Journal

The Spirit of the Individual Made This Industry
Socrates Press
PO Box 535
Lincoln, CA 95648

January 1993 February

Exploring Forth Issues and Promoting Forth| 2 programmer-supplied componen) has high code-reuse |

| significance, then a more granular partitioning can lead to]

[FEaIST
FORTEward

Mike Elola
San Jose, California

To gain acceplance, a programming language nceds to
satisfy many needs. Two of these needs are interrelated and
lead to increased programmer productivity.

First, a programming language should offer native func-
tions that impart as much utility as possible. The uniform
delivery of this functionality is of keen importance so that
source code portability is maximized and so that language
dialects are minimized.

Language uniformity is partly a function of how well the
language implementors breathe life into a language. None-

theless, a clear and well-understood language specification |

offers the best hope of establishing uniformity amongst
implementations. It is in the best interests of everyone that
agreement is reached over the language and that the

language specification is elaborated in one document. (The |

ANS Forth specification offers the best hope for Forth to make
progress regarding this critical first step (o programming
language acceptance.)

By dclivering uniform and widely useful functions, a

programming language synchronizes application code toa |

single, consistent processing model. This is an important
advantage that high-level languages have over assembly
language—particularly for the porting efficiencies that are
possible,

Code relocatability and
intermodule routine calling are
the thorny lssues...

When application code is written in a high-level lan-
guage, at least two layers of functionality exist. Low-level
functionality is consolidated in the language kernel, which is
not dependent on the application. Even this gross partition-
ing reaps a reuse benefit that cannot be obtained in assembly
language. Most of the porting effort for such an application
will be the creation of a language compiler for a new
processor. However, the language port has great reuse
potential, so that work is likely to be amontized across many
projects. Moreover, most of the routines developed in a high-
level language are readily reusable—regardless of the plat-
form they were developed for originally. In these ways, a
high-level language can fuel efficiencies that cannot be
equaled by any assembly language.

A programming language takes a second big stride

toward acceptance by providing a facility to subdivide |
programs into modules with distinct interfaces. If even gross |

partitioning of an application (into a kernel component and

January 1993 February

36

| greater opportunities for code reuse.

', You should be able to create these modules in a uniform

! way. You should have a uniform way to engage code
purchased from a library vendor. Furthermore, you should
have a oornpiler that can determine when the module’s

| interface is not being honored properly. These measures
hclp you reuse code written by others. The efficiencies that
can be gained through such combinations of measures is
widely acknowledged. Look at the advertisements in other

‘ programming journals as well as the growing number of

| articles discussing the creation and use of libraries.

Languages designed with consideration for such needs
will include a formal lexicon for declaring the interface (or
usage rules) for newly developed routines or modules.
Besides establishing the beginning and end of a module, you
may also need a way to hide elements that are not part of the
module’s visible interface, such as instances of data struc-
tures.

As a library user, you do not necessarily need to sce
source code. For the sake of writing portable code, you
should not have to be concerned with the implementation
details of cither the language or any libraries you might be
using. Offering libraries in a precompiled form suits that
purpose. Only the source code that defines the interface has
. lo be offered to enable you to correctly use the module,
| The source code that sets up the interface for a module
also provides information the compiler can use to help
ensure that the interface is used properly. Many languages
can verify that you are using the correct names for the
precompiled routines as well as using the correct number
and type of parameters.

Enhanced support for modules (or code reuse) helps
create the commerce that library vendors enjoy. The library
vendor becomes preoccupied with porting the same module
to various platforms and with assuring that a uniform
interface is scrved to cach application despite any platform
differences.

Adding support for modules does not automatically
dictate that we transform modules into libraries. Without
adding all the trappings of a library, separate or redundant
declaration of the module interface is still possible: (1) in the
central location where the complete source code for the
module lives, and (2) as many client locations where source
| code must be compiled that exercises the module interface.

The inability to precompile shared modules may not be
a siginificant concern. However, the ability to independently
compile modules does become a big concern when projects
require more than one programmer. Code relocatability and
intermodule routine calling are probably the thorny issues to
deal with here, not module precompiling itself. T predict that
| dynamic libraries will be extremely popular; so when Forth’s

include a means for late binding of a routine inside a module
Lo its callers outside the module.

By making it casier to reuse code across many different
| projects, module support that stops short of library support
still offers a valuable boost—even for a solitary programmer.
At the very least, such support should involve a uniform
. lexicon for declaring the interfaces for routines,

are precompiled and made accessible through its declared

| [ull-blooded support of modules finally arrives, it should |

Implementation hiding occurs whether functions arc |
standardized as a native component of a language or if they |

Forth Dimensions

interface (for which the compiler can check client code for
compliance). Either way the programmcr need not be con-

cemed with how the function is actually coded, just how it is
engaged Lo suit the syntax requirements of the language or to
suit its explicitly declared interface.

Furthermore, the portability of vast amounts of application
code is improved, due to the uniform functions of a standard
language or the frequent use of functions that serve as a
module interface. 'That uniformity can help commit us to more
uniform ways of specilying certain functions, reducing the
amount of gratuitous diversity exhibited by our collective
application code. A dircctly related cffect is the improved
readability of all application code that makes use of popular
modules. The contemplated increase in the readability of Forth
applications can only come aboutin such a way—no substitute
approach appears to exist that comes anywhere near having
the desired effect.

This discussion has not paid adequate homage to Forth'’s
virues in areas related to program partilioning and code reuse.
I have offered a viewpoint slanted towards the perceptions and
understanding of the larger programming community. Per-
haps another essay will be written to offer an opposing, or
| Forth-centric, point of view.
| Nonetheless, mainstream programming languages and

| mainstream programming practices recognize the need for

separate declaration of interfaces. C now has function proto- |

| types to add to the long-standing practice of using header files
for ease of reuse of data type declarations. Those reused data
type declarations help synchronize the structure of any data

that must remain visible to client routines—or synchronize the | A . . .
Y i and utilities for source code maintenance. Also included in

data structures for which pointer references must be passed,
as parameters to client routines or as return values from client
routines.

language, we need to transform stack comments into a formal,
standardized mechanism for interface declaration that can be
scaled up to the module level.

If only to counter the perception of Forth as an outdated

ANS Forth Update

The X3J14 commitiee convened in Oclober 1992 to
respond to comments resulting from the two-month public
| review ending in August of that year. That review period was
| necessary due to substantive changes made after the first
| four-month public review period ending in February of 1992,
Because a few substantive changes were made at the
October meeting, there will be yet another two-month public
review in early 1993,

A January meeting is taking place in Los Angeles,
California to contemplate a reorganized and reformatied
version of the current draft proposal.

Mitch Bradley reports fewer comments (15) received in
the second public review cycle, and fewer substantive
changes made in its afiermath. Accordingly, committee
members are optimistic about the prospect of obtaining ANS
approval for a Forth standard sometime in 1993

Among the substantive changes that came about as a result
of the second review period are the obsolescence of TIB and
| #TIB (theyare notimmediately eliminated, butare among the

replacement. SOURCE returns an address and a length. A new

word, SLITERAL, was added to compile strings. Also, anewly |

added clarification requires that an interpretive mode be
| present before compliance with ANS Forth is satisfied.

i conurolled extensions). The single word SOURCE is their |

-

| Event Management and Control System for process

=] 1 I-“ .’“ 1
CI,,-_\ =~ 4}',...,-..--; 1
Proclicitaiy
SEPTEMBER 1992
Laboratory Microsystems announced WinForth, a Forth-
83 implementation of Forth that takes advantage of the |
graphical user interface provided by Microsolt Windows
(version 3.1) in protected mode. It supports all Windows
API functions, such as callbacks, dialogs, menus, and ‘

o | [1- |
aLCh ’

{ icons. Traditional command-driven applications are also

supported through words such as KEY and EMIT in
tandem with a resizable console window. No royalty or |
licensing fee is required to distribute Windows applica- |
tions that you create with WinForth. Prices range from |
$100 for the basic version (on-line hyperext documenta-
tion only), to $495 for a professional version that supports
DLL creation and includes source code for supplied
utilities. For users of the professional version, the complete
source code— including C, MASM, and Forth code—is :
also available for an additional premium. Upgrade prices
arc offered to registered uscrs of UR/Forth and PC/Forth. |
The prices of the upgrades range from nothing to $250.

FORTH, Inc. announced a new rclease of its 32-bit
polyFORTH software development system. Besides mn-
ning in protected mode with DOS 5.0, it works with XMS
aswellas VCPI servers. This release sports enhanced editors

the $1,495 price is a multitasking real-time executive,
documentation, complete source code, and the ability to
link to subroutines written in C and other languages.

OCTOBER 1992
FORTH, Inc. announced a new release of its EXPRESS |

control and factory automation applications. Besides
enhancements and new 1/0 drivers, a historical trend
recording feature is added. New driver support is added
for OPTO-22 Optomux and Modicon V984.

ExpressLite, a $195 demonstration version of FEX-
PRESS now supports limited (digital and analog) inputs |
as well as up to 256 simulated inputs. Use a PC to control
simple experiments or devices through a graphical
display that you can tailor for a simple apparatus
controllable by one analog outputand two analog inputs,
or eight digital outputs and inputs. EXPRESS retails for
$6,875, while Expresslite retails for $195. Both systems |
require 80386/486 computers with 4 Mb of RAM and VGA
graphics display.

Companies Mentioned

Laboratory Microsystems Inc.
12555 W. Jefferson Bivd.,
Suite 202

Los Angeles, California 90066
Fax: 310-301-0761

BBS: 310-306-3530

Phone: 310-306-7412

Forth Inc.

111 N. Sepulveda Blvd.
Manhattan Beach,
California 90266-6847
Fax: 213-372-8493
Phone: 800-55-FORTH

Forth Dimensions

37

January 1993 February

("Back Bumer,” from page 43.) ‘.
Back to the Future |

Sometimes the path of advance is a seeming regression. l
For many applications, the proper solution to the problems |
of real-time control and instrumentation lies not in the
application of faster computers addressing more memory
but, rather, in simplification of directly interfaced hardware
and software. In an interrupt-driven environment, even a
slow eight-bit processor may prove more effective than a fast
386 PC-compatible.

When designing a computer system for control and
instrumentation, maintainability demands that the critical
portion of the system consist of components designed and
standardized for industrial service. Such components may be
in the form of standalone boards or they may be bus oriented.
The most widely used industrial bus is the STD bus. With
support from a large number of domestic manufacturers, an
installed base sccond only to the IBM-PC, and a history of
approximately 15 years, the STD bus allows assembly of
systems which will be maintainable for years to come.

At some sacrifice in reliability and maintainability of the
system, non-crilical portions, such as a graphical user
interface, may be relegated to an IBM-PC/BIOS/MS-DOS
platform which communicates with the embedded system
via a serial link. Such a compromise may be necessary to
satisfy customer demands within a reasonable time frame
while staying within budget. To insure against downtime in
case the PC-hosted interface goes south, the embedded
software can be written to accommodate a substitute inter-
face, such as a video terminal, a printing terminal, or a laptop
running a terminal emulation program.

Training Wheels

As promised, the accompanying schematic [pages 40411
and parts list document a reproducible, low-cost single-
board computer (SBC) which will serve as a trainer for our
investigation of metacompilation and embedded program-
ming techniques.

Some readers may prefer to utilize one of the numerous
8051-family SBCs advertised in computer and electronics
magazines. The advantage of the SBC presented here is that
it provides for software development apart from use of |
EPROM programmer or ROM emulator, while making avail- |
able an unfettered 64 Kbyte address space. (Well, almost
unfettered. The uppermost eight bytes of the address space
are dedicated to a parallel interface.)

The Scheme of Things i
The 8051 family supports what is termed a Harvard
architecture in which the 64K read-only code space (ROM)
and the 64K read/write data space (RAM) are distinct. The
spaces may, however, be combined into a single 64K region
by means of external hardware. In our SBC, a pair of 32K
RAMs are mapped from 0000 to FFFF in the data space, and
a single ROM is mapped starting at 0000 in the code space.
Processor port pin P1.2 (“switch enable” line SWEN) and the
74153 data selector control the memory map. Line PSEN- is
the processor read strobe for external ROM; line RD- is the
January 1993 February

38

processor read strobe for external RAM. Note that a signal |
| name designates the active (i.e., asserted) state; thus, PSEN-
, is low when asserted, whereas SWEN is high.

The ROM is accessed only while RDP- is low, which
occurs only when the data selector routes SWEN- to RDP-

| while SWEN- is asserted. (Note that asserting SWEN asserts i

SWEN-.) SWEN- is routed to RDP- only when PSEN- is low |

and RD- is high; this combination of PSEN- and RD- also
routes SWEN to RDM- but, if SWEN is asserted, the active-low
output enables of the RAMs and the active-low read enable
of the 8255 do not respond. Thus, a processor read-from-
ROM instruction accesses code space of our SBC only if P1.2
is high.

If SWEN and PSEN- are low and RD- is high, then SWEN

is routed through the data sclector and RDM- is asserted, so |

that processor read-from-ROM instructions access the data
space of our SBC. In this manner, code and data spaces are
effectively combined into a single 64 Kbyte address space.
Note that processor read-from-RAM instructions assert RD-
rather than PSEN-, with the result that the data selector routes
VCC (logic high) to RDP- and GND (logic low) to RDM-,
Thus, the output enables of the RAMs and the read enable of
the 8255 are asserted, whereas the output enable of the ROM
does not respond.

Since 8051 instructions which write to memory do not
assert PSEN- (i.e., writes are possible only to data space), it
is a simple matter to create a routine which, while running
from ROM in code space, downloads to RAM in data space.

Upon power-up, processor port pins are high. Thus, the
power-up entry point is address 0000 in ROM. Initialization
code in ROM can branch to a simple monitor which provides
serial download capability. Once download is complete, the
downloader need only wrile a zero to port pin P1.2 in order
to ransfer execution from ROM to RAM. Note that, with this
scheme, the entry point for code in RAM is nof 0000; rather,

itis the RAM address equal tothe ROM address following the |

instruction which writes a zero to port P1.2.

To Wrap or Not to Wrap,
That is the Question
Doubtless there are a few brave souls who will, as did the
author, underntake construction of a wire-wrapped version of
the beast. The best prophylactic available to the wire-wrap

builder is a board which provides a ground plane and is |

liberally furnished with bypass capacitors. Connect a 0.1 mf
ceramic bypass capacitor directly between the VCC and

ground terminals of each IC socket; keep the leads short. |
| Distribute over the board several electrolytic capacitors
(preferably tantalum, in the range 1 to 50 mf) between the |

VCC bus and ground. Verify capacitor polarities before
applying power.
The less adventuresome will welcome the efforts of FIG

- member Ed Sisler of Santa Cruz, California who is designing

a printed circuit board for the device. He plans to offer any
combination from a bare board (o an assembled and tested
unit. Ed also can provide EPROMs containing the downloader,
If there is sufficient interest, he has expressed willingness Lo
design and market an inexpensive ROM emulator. Ed can be
reached through the author, or on GEnie (address E.SISLER).

Forth Dimensions

A Shopping List

When shopping for parts, notc that loading problems can
| result unless the specified logic family (i.e., I1C or HHCT) is
used; make substtutions only if you understand the conse-
quences. The crystal can be virtually any 11.0592 MHz rock,
regardless of raled load capacitance and design circuit
configuration (i.e., serics resonance or parallel resonance).
C1 and C2 are disk ceramics. Bypass capacitors C3 through
| C8 can be either ceramic disk or multilayer ceramic. Discrete
| resistors can be used instead of resistor packs; the smallest

| typically available are 1/8 watt, which is more than ample. D2 |

| can be a garden-variety LED; it serves as a convenient

diagnostic tool to facilitate software development. Q1 iso-
| lates port 1 from the loading effects of D2. D1 can be a
-F garden-variety switching diode. D3 provides reverse-polarity

protection, and can be a garden-variety power diode. C8 is |

to guarantee stability of the 7805 regulator; for this purpose,
C8 should be located within an inch of the 7805. A suitable
| power source is a wall-mount supply furnishing 9 to 15 volts
| DC ata few hundred milliamperes (the 7805 requires an input
| ofatleast 7 volts). The author’s prototype draws less than 100
‘The slowest commonly available EPROMs have a maxi-
| mum access time of 250 nanoseconds; this is more than
| adequate for an 8051 running at or below 12 MHz. Although
| a 32K x 8 (27256) EPROM is shown on the schematic (U9),
| an 8K x 8 (2764) can be used by a simple wiring change:
disconnect Al4 from pin 27 of U9 and tie pin 27 to VCC.
l EPROMs should be CMOS (i.e., 27C256 or 27C64).
i The DB25S connector facilitates connection 1o external
devices, including Centronics printers. Since each pin is
{ connected (o a programmable 1/0 line, the parallel port is
software configurable.

The bare necessities for construction and checkout are a
logic probe of the $15 variety, an inexpensive ($20 to $30)
VOM (volt-ohm-milliampere meter, digital or analogue, used
mostly to verify polarity and continuity), a soldering iron and
tip-cleaning sponge (a damp rag will serve), miniature
diagonals (for cutting component leads), and a few feet of
rosin-core solder. Miniature needle-nose pliers, a solder
sucker, and a magnifying lens are not essential, but will be
found to be more than useful.

Miscellany
Readers using another SBC as a trainer, and thosc working
with other processor familics, will have need of a ROM
emulator or the combination of EPROM programmer and
ultraviolet EPROM eraser. FIG member [rank Sergeant
markets an inexpensive EPROM programmer (sce his article
in the September/October 1992 issue). The author recently
purchased from Digi-Key a Dataerase 1T ultraviolet eraser
with timer, manufactured by Walling Company of Tempe,
Arizona. T am extremely pleased, both with the design and
performance of the eraser and with the manufacturer’s
service policy. The instruction manual contains a tutorial
| covering EPROMs and the production of ultraviolet light
| The circuitry of the trainer was designed by FIG member
Mike Foley of Houston, Texas who also compiled the parts
list. Mike proposed the scheme of transferring execution
Forth Dimensions

from ROM to RAM. The author wire-wrapped and tested the
prototype. '

Initialization/downloader code will be posted on GEnie,
' and will be available directly from the author; kindly include
an SASE or a postage stamp.

The preliminaries being now complele, the next episode
will begin our exploration of metacompilation. Mcanwhile,
contact your local Siemens, Signetics/Phillips, or Intel sup-
I plier for an 8051-family handbook.

" RS.V.P.

Russell Harris is an independent consultant providing engineering, program-
ming, and technical documentalion services to a variety of industrial clients. His
main interests lie in wriling and leaching, and in working with embedded systems
in the fields of instrumentation and machine control. He can be reached by phone
i at 713-461-1618, by mail at 8609 Cedardale Dr., Houston, Texas 77055, or on
i GEnie (address RUSSELL.H).

- [Schematic appears on next pages.]

Parts list. | .

i The following components are available from the Digi-Key \
| Corporation, 701 Brooks Avenue South, Post Office Box 677, |
Thief River Falls, Minnesota 56701-0677, telephone 800-344- |
4539. \

Ul CD74HCT132E [

U2 CD74HCT373E ;
| U4 CD74HCT244E !

U6 CD74HCTI153E '
[Us MM74HC133N !
LUl ICL232 or MAX232CPE
| R1,R4,RS 10KQ [

RP1 Q9103 |

R2 33Q

R3 150Q i
[Y4 X426 |

D1 IN4148PH

D3 INSQQ9PI1

D2 P3063

Q1 VN10LP

PB1 P8030S

The following components are available from JDR Micro-
devices, 2233 Samaritan Drive, San Jose, California 95124,
telephone 800-538-5000 or 408-559-1200.

U3 8031

u10 82C55-5

7,08 HM43256LP-10

U9 27C256 or 2764 (see text)

REG1 7805T

C1,C2 SM-30 .
| €3,C4,C5,C0,C7,C8 T10-25 }

P1 DB25S
39 January 1993 February

—— -

i) 11 RES
L S N 13| Wb Ve 3
x SKEN <
74HCT132 GND 4
o1 74L5132 e VoG v
-t * Abo 300 a0 -2 a0
1Nd148 " AlL 41p: ail=5 Al ™
A02 71p2 a3 |6 Rz N
GND %<3 Ab3 81p3 oz -2 Az N
e AD4a I1oa o 12 A4 N
| | louF A0S alod se[ds Ac
| < —fos £{0s 06 Mg as \
mmmm. Rz 07 a7
33 GND 1], .
_ H.T ALE 1198°
_ 7AHCT373
|
)
4 -
| A =
| @LF{OO (ﬁ\ Aara, . 169 =
| : I._m_”_.% - QMQ% / AL, . 153
| DN _pano oo ot
_ - 11.0592MHz
n 121y, x2 8 -
_ vee 40| e iR wﬂm GND N mw w .
5 EA- R BN R
" 2 SHEN U4 A7 &
! ~2—SHE - " - U
E melm 820 221p0.0/600 P2.0/A8 55 fial 1vy 28 AN A0 © _
3 - : 3 1
i A BR2 221 PO, 1/AD1 P2.1/A9 | 5% 2102 1v2 HE—3AAZ L] us
_ MBS AN ADs 26 P0-2/AD2 P2.2/A10 H53 g{163 1v3 Ha—aas s R1s o| uth
AA—S—LE2 aR—S2{P0.3/MDZ P2.3/A11 |52 104 1v4 HE—l B o — Y
7 At A ADs 341 PO 47404 P2.4/A12 |52 3] 2AL 2Y1 —=—3% TR 7TAHC133 il
AN—5—aEe— A Abe 23] PO-5/ADS P2.5/A13 53 £ 282 272 —t—397 ATr—aLsiss 74HCT 132
AN—TTabT AN "Ab? S5 FO.6/ADE P2.6/A14 55 m 2A3 2Y3 —5—ogn AE—ye745132 TALS132
| AN £1p0.7/6D7 P2.7/A15 204 2Y4 2
g <TEAL=
ALE 30|, ¢ ND _w 12 CEHI-]
{ H 26
_ PSEN- 7aRCT 244
-l
P3.0/RXD P1.0/T2 w E _w
| PI.L/TXD PL.1/T2EX -$—C3o2 1.
_ PZ.2/INTO- P1.2 -—wt-] —
_ P3.3/INT L— P1.3 |-a—F15 T e
| B AT Ple [E—PLo 7415132
n PZ.6/WR— N e P FLLo.. 73>
. P3.7/RD~ P1.7 NOTE: SSI POHER & GROUND PINS
_ —— ARE AS FOLLOWS UNLESS
. EXPLICITLY SHOWN
_ B071,/9032
m DEVICE +5 GND
DZ - .
” INTe- R R !\z\‘ 14 PIN ! 14 t 7
5 Al + +
_ Pn._mx 130 LED a1 16 PIN | 16 ! 8
INti- RS vee YN LOKM G P1.3 T

_ 10K

GND

Forth Dimensions

40

January 1993 February

P e s I U P
A el N i Printer Functions
a0 10 11 ADD ADO__ 34 4 Pao 1 _PCO_ STROBE-
e S 4 FLY =
v 1 | e 1 5100 PASZ Al aurro- PG g 145)
y TR z 2 ' 2 _PAO__ DATAD
FETTET =klueadsd Rz 71R2 DZEe—apr ~J/—aps _51]0% PA2 — 1 —Fn3 ERR— _Pca 15 7])
N a4 6193 D31ME—Apa Apa___30] 03 PA3 0 Fad =10 1z Pal _ DATAL
e e pe L7ADs A0S 29) Fhe [Eo_pac T~ _pey 16l OT
DE 28 35 PAe === 4 _paz__ oATA2
4 é D6 2
A e Ders—ary V/apr 27|08 Fht [37_par serr- _pez 170,
3 L/ TO |& paz__ oatas
a9 —24]A8 u? 18 PEQ eNo _PBL 1| 9
raLE B A P80 HE—EE Lo n i
A0 2linio [e22s6 10 -1 PN pB1 A2 FBL X o6 ER4__ DATA4
ALLT23 21 s y - e Pz [20FE2 oND _PB2 19|
2 21" RAM “T° |z pas__ patas
ALs 76 Alz |«soo0-FFEF) Fos [22_Fea ano _pe3 200 _
e ROM=-__ 5|~ Pbs [23Fes o0 g 21| OfE-BaE DATAG
. _ _ _ o PBE] —FBa 24 .
e C‘_ER%I_ %E_.'C_C_ vee |28 vee WR— 36 | o Poo [25__PB? IV — 22“3&9 PA7__ DATA?
___....._._....._._C — e taiE L
WE= 279 9& oo |14 GND XEN=__ 6| == peo [L14__Pco 1o _Feo_ ack-
B Ees [bol eNo _pBe 23 (T
RES 35| peopy poz A6 0C2 o poo o] OfLL-ECS BUSY
A0 10 1_Aapo PC3 M3 —FCq N Ho lip pee pe
- — At By 2 AL VCC 26 |yee boe [1Z_PCS GND _6ND a5
\ A CS T Fce 13 PC? SLCT
RIS 7172 D2 HE—apT A GND__ 7 PCe MO Pcr ot Fcz. SLCTO
—3—{a3 03 02— GND FCT F1
___a5__c|he DinT—aps 4 B2C55 enp | DB25S
s a|p7 0% (15 ADE
83 a7 o7 5 _Ab7 /]
A9 24 us vee
a9 C _—~=m
a1 2llpio lez2ss =
piz 2] Rl |Rav .
! TG (0000-7FFF) ——<GND]
alae 1943
AL4 YIN+ | 1
1S 204 == yoc |28 VCC w
[RCH- R 359 0E 14__GND X SO
—HR— 273 GF gnp L9 GND ~IXD _1llyriTTy | e
=7
us 10| 272 T2 RIA _4'_
_80 __ 10[0 po Ll aDo RXD_ 12, O/
AL 918 59 [H2_api R RAK TXDA 5 m—
e He—Fo: oz [lE g IMI0- % cre po |0 I8 e
ie s q<R RXDA__ 6
[FES Aa €lhs D lle_aDa A 16 O’
AG Slhe De[lz_aDS is
XEN— 52 3{R6 D& [{S—ps ;
PEN=_—=—o) == A7 D7
A 24 A€
Al0_ 21 2?0
All 23 ROM Vel \|LOuF
ALz 21013 6.3V v ce
ALs 76| h12
L\ Ald 271 013
VEE 1905, onp |44__GND
27356PC

Forth Dimensions

January 1993 February

41

HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE !!!

¢ Use subroutine libraries written for
other languages! More efficiently!

¢ Combine raw power of extensible
languages with convenience of
carefully implemented functions!

¢ Faster than optimized C!

¢ Compile 40,000 lines per minute!
(10 Mhz 286)

* Totally interactive, even while
compiling!

¢ Program at any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!

* Alter routines without recompiling!

¢ Source code for 2500 functions!

¢ Data structures, control structures
and interface protocols from any
other language!

* Implementborrowed features, more
efficiently than in the source!

* An architecture that supports small
programs or full megabyte ones
with a single version!

¢ No byzantine syntax requirements!

* Qutperform the best programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS - The only
full multiple inheritance
interactive object oriented
language under MSDOS!

Seeing is believing, OOL’s really are
incredible at simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL’s provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HS/FORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY

HAS> ARM RightArm

HAS> ARM LeftArm
If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin ’s RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
The painful OOL learning curve
disappears when you don’t have to
force the world into a hierarchy.

WAKE UP!!!

Forth need not be a language that
tempts programmers with ‘great
expectations”, then frustrates them
with the need to reinvent simple tools
expected in any commercial language.

HS/FORTH Meets Your Needs!

Don’t judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth’s basics, they

" fail to show its true potential. Not to

mention being s-1-o0-w.

We dont shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
Forths. We won’t throw in the towel,
but the drain on resources delays the
introduction of even better tools that
could otherwise be making your life
easier now! Don’t kid yourself, you are
not just another drop in the bucket,
your personal decision really does
matter. In return, we’ll provide you
with the best tools money can buy.

The only limit with Forth is your
own imagination!

You can’t add extensibility to fossilized
compilers. You are at the mercy of
that language’s vendor. You can easily
add features from other languages to
HS/FORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well as and often
better than in the parent language.

Speaking of assembler language,
learning it in a supportive Forth
environment virtually eliminates the
learning curve. People who failed
previous attempts to use assembler
language, often conquer it in a few
hours using HS/FORTH. And that
includes people with NO previous
computer experience!

HS/FORTH runs under MSDOS or
PCDOS, or from ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.

NEW! Fast direct to video memory text
& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device /O;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;

C data structures & struct+ compiler;
MetaGraphics TurboWindow-C library,
200 graphi¢/window functions, PostScript
style line attributes & fonts, viewports.

ONLINE GLOSSARY $ 46.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.

TOOLS & TOYS DISK $79.

286FORTH or 386 FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit address/operand range with 386.
ROMULUS HS/FORTH from ROM § 99.

Shipping/system: US: $9. Canada: $21.
foreign: $49. We accept MC, VISA, & AmEx

 ©@m the Baeck Burner #5
|

|
|

A Lesson in
Economics

Conducted by Russell L. Harris

|
|
|
[

Houston, Texas

| Ed Zem relates the tale of the ill-fated manufacturer, |

| Tates, which attempted to branch out into the production of
I magnetic compasscs of the sort used by hunters, fishermen,

i and Boy Scouts. Unfortunately, Tates had no prior experi- |

ence in the manufacture of compasses. Being unaware of the
‘ pitfalls and design subtleties inherent in this ficld of endeavour,

Tates management poured millions into production and
| marketing, butalmost nothing into research and engincering,.
| In appearance, the Tates compass was a thing of beauty. It
| was nicely proportioned, and appeared to be well-crafted

and ruggedly built. Nevertheless, for reasons now lost in the
| annals of history, the design was flawed. Sometimes the
| device worked perfectly, giving an accurate indication; other
| times, without warning or indication that things were amiss,

the compass would give readings seriously in error.
! Outdoorsmen soon learned from personal experience that

the Tales compass was not to be trusted, thus giving rise to
| the saying, “He who has a Tates is lost.”

A Matter of Misfeasance
The IBM-PC family, running under PC BIOS and MS-
DOS, has become perhaps the most widely misapplied
! component in the ficld of real-time instrumentation and
{ control. Direct control of machinery by a PC is a practice
| fraught with many perils and considerable difficulty.
| Whether in ignorance or in deliberate disregard of the
| body of facts and documented experience presented by
‘ a multitude of authors in a variety of engineering publi-
‘ cations, programmers and newly emerging systems houses
| daily foist upon their clients systems in which the PC is
| directly interfaced with “the real world.” Often, it is not
' until a project has passed the point of no return that the
l full consequence of matters such as indeterminate inter-
| rupt latency, bugs in BIOS, and bugs in DOS become
I apparent.
Sometimes the PC is disguised by means of packaging.
[It seems that hardly a day goes by without the introduc-
| ion of another PC-compatible single-board computer
‘ targeted at the embedded control market. Although such
| systems may utilize solid-stale memory instead of a
| mechanical disk drive, they nonetheless possess the basic
| liabilities of the desktop PC.

Forth Dimensions

| Penny-Wise, Pound-Foolish
{ The IBM-PC/BIOS/MS-DOS environment lures the un-
| suspecting real-time user with the siren call of cheap
| hardware, inexpensive software, and a seeming abundance
of capable programmers. Not until one makes a detailed cost
analysis, taking into account system lifetime, does the true
cost become apparent. Moreover, industrial experience
continues to demonstrate that commodity-grade C program-
mers armed with mass-marketed software packages are
generally inept in the realm of real time.

Aside from illusory economies in the area of hardware,
the basic impetus toward the IBM-PC/BIOS/MS-DOS envi-
ronment is the elusive goal of automatonistic software
creation. Viewing the variety of inexpensive mass-marketed
MS-DOS software, one finds appealing the possibility of
creating customized software for a system simply by blindly
combining a number of off-the-shelf programs. However,
‘ projects laking this approach repeatedly demonstrate that (1)
| the expense incurred in atlempting lo integrate general-
| purpose programs {or which one is lacking the source code

can easily exceed the cost of a tailor-made program, and (2)
the resulting hodgepodge tends 1o be unreliable and full of
arcane idiosyncrasies, in addition to aberrations inherent in
the IBM-PC/BIOS/MS-DOS platform.

It is virually impossible for a programmer to have
complete control of a system based on the IBM-PC/BIOS/
MS-DOS platform, for it is virtually impossible for a program-
mer to gain access 1o the source code for all the pertinent

. software and firmware modules. Morcover, the complexity
of the platform precludes accurate prediction of system
response to real-time stimuli. The situation is exacerbated
when commercial software packages are integrated into the
system.

When one commits himself to the IBM-PC/BIOS/MS-
DOS platform, he enters an environment of continual
change. Whether from the standpoint of hardware or that of
software, the window of availability in the PC world is short
compared with the service life of typical industrial systems.
The high sales volume which drives down the cost of PC
hardware and software both permits and encourages fre-
quentredesign, in order to reduce manufacturing costand to
enhance performance. By comparison, common industrial
components, such as relays, valves, and transducers, generally
continue in production without change for dozens of years.

The problem is maintainability: after a system incorporat-
ing a PC has been in service a year or two, it may be very
difficult to find replacement components which are compat-
ible with the original PC hardware. Even if such components
are available, they may not be compatible with the original
software, apart from reconfiguration or modification of the
software. If the original software cannot accommodate the
available hardware, extensive software modification may be
required. If the software has been integrated from a number
of commercial software packages and one or more of these
musl be updated, the programmer must again deal with the
same problems of software/sofltware and sofiware/hardware
compatibility he faced in patching together the original
system.

("Back Burner” continues on page 38.)

43 January 1993 February

CALL FOR PAPERS

for the fifteenth annual and the 1993

FORML CONFERENCE

The original technical conference
for professional Forth programmers, managers, vendors, and users.

November 26 - November 28, 1993
(following Thanksgiving)
Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean
Pacific Grove, California U.S.A.

Theme: Forth Development Environment |

|

l

| Papers are invited that address relevant issues in the establishment and use of a Forth Development |
| Environment. Some of the areas and issues that will be looked at consist of Networked Platform

| Independence, Machine Independence, Kernel Independence, Development System-Application

. System Independence, Human-Machine Interface, Source Management and Version Control, Help

l Facilities, Editor-Development Interface, Source and Object Libraries, Source Block and ASCII Text |
| Independence, Source Browsers (including Editors, Tree Displays and Source Database), Run-Time

Browsers (including Debuggers and Decompilers), Networked Development-Target Systems.

| Additionally, papers describing successful Forth project case histories are of particular interest.
| Papers about other Forth topics are also welcome.

I EEEE—————————————— S

Mail abstracts of approximately 100 words by September 1, 1993.
Completed papers are due November 1, 1993.
We anticipate a full conference this year.
Priority will be given to participants who submit papers.

John Hall, Conference Chairman Robert Reiling, Conference Director

Information may be obtained by phone or fax from the
Forth Interest Group, P.O. Box 2154, Oakland, California 94621. 510-893-6784, fax 510-535-1295
This conference is sponsored by FORML, an activity of the Forth Interest Group, Inc. (FIG).

The Asilomar Conference Center combines excellentmeeting and comfortableliving accommodations
withsecluded forests onaPacificOcean beach. Registration includes use of conference facilities, deluxe
rooms, all meals, and nightly wine and cheese parties.

