
$10 Volume XIV, Number 5 January 1993 Februz

January 1993 February

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000''" 16-bit Forth Chip SC32'm 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. -8 or 10 MHz operation and 15 MIPS speed.
1 -cycle 16 x 16 = 32-bii multiply. 1 -clock cycle instruction execution.
1 -cycle 14-prioritized interrupts. -Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. *Stack depths limited only by available memory.
*&channel I/O bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. -System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. 032 KB to 512 KB 0-wait-state static RAM.
*FulClength PC/XT/AT plug-in (&layer) board. -100mm x 160mm Eurocard size (4-layer) board.

SCIFOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
-RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
-Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.

-233mm x 160mm 6U size (&layer) board. *Full-length PC/XT/AT plug-in (6-layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
*32 KB to 256 KB 0-wait-state SRAM. -32 KB to 512 KB @wait-state static RAM.
-1 Wmm x 1 Wmm size (&layer) board. *1Wmm x 160mm Eurocard size (&layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (41 5) 322-8763

-

Forth Dimensions
d

Features
-- -7

I Optimization Considerations Charles Curley 6 smaller is fzster, and fzser means smaller--except when it comes to subroutine vs. indimt
threading? The author optimized Forth for the 68000, stating, "Anything one can get by cranking
up the clock speed, onc can get by both cranking up the clock speed and by using other
techniqu es..." The 68000's rich instruction set and addressing modes make it ripe for such
improvements. The results is "a JSRIBSR thrcadcd Forth interpreter/compiler."

Forthbased Message Service Olaf Meding , first-plae winner in FDs call for articles about "Forth on a Grand Scale," this paper describer
the largest and most sophisticated messaging system in the telephone answering service industry,
having gained 70% of the market-and growing. It routes thousands of telephone trunks to
operators, and provides all telcphony, message handling, database, maintenance, and billing.
Forth--which is used exclusively-is a key ingredient of this success story.

Graphics & Foating Point in Real-Time Action Mark Smiley f 6 The author wrote nth roulines to enable his mathematics studies, resulting in the rich F-PC
graphics package. He discusses its evolution, and an application that grew with it that requires a
wide range of graphics and floating-point roulines, as well as a menu system. It provides interactive
graphics, moredetailed Mandelbrot and Julia .sets, zoom, mini-movies; and supports CGA, EGA,
VGA, and many SVGA boards. Another winning look at "Forth on a Grand Scalc."

Embedded Systems Conference John Rible 23 Forth was represented at this year's Embedded Systems Conference, where the promoter offered
a booth to the Forth Interest Group. The goal was to provide information about Forth to people
outside the current user community. At this conferene, that meant showing Forth in embedded
applications. Forth vendors provided rame prizes and product demonstrations; volunteers
coordinated and staffed the outreach event.

Placing Characters on the Screen C.H. Ting 24 The second in a series of Forth tutorials, this exercise introduces Foxth variables. By means of an
apparently trivial task, the beginner is guided into familiarity with the related operators and uses
them to create a simpler solution than otherwise would have been possible.

Principles of Metacompilation (111) B. J. Rodriguez 26 Metacompilation represents Forth's ability to mold itself to the task at hand, somclimes to the point
of defying authoritarian strictures in favor of performance and utility. It challenges onc's expertise;
maybe it even threatens those who prefer security over the responsible use of power and freedom.
'Ihis series concludes wih discussion of compiler directives, defining words, fotward referencing,
and getting a target image into a target system.

4 Editorial Forth on a grand scale; new contest for Forth authors; applying
what you've learned about metacornpiling.

5 Letters Wanwd: visible Forlh; Onc simple syntax, please;
Fast 32-bit integer square root.

Advertisers lndex

.Of modules and libraries; product announcements; and
an ANS Forth update.

43 On the Back Burner ... A lesson in economics: PCs in direct control; and Back Buwteys
hardware project.

Forth Dimensions PRINTED ON RECYCLED PAPER 3 January 1993 February

Forth's continued recognition-for instance, as a tool of choice for engineers, for
developers of embedded systems, and for scientific instrumentation-is fine, as far as it goes.
Rut successful efforts on a larger scale may be less appreciated, perhaps not only because
they are fewer, but because they are less discussed or do not fit the Forth stereotypes. Such
applications may be characterized by large amounts of code, multiple programmers, cornplex
interface requirements, volume of data, etc. The one that first comes to mind for many people
is the international airport inlplemented in Forth in the Middle East; it was talked about at
the conferences a few years back, impressing us all with the scope and prestige of that
contract. The next one most people think of B--

I'll bet most people draw a blank. Maybe the designers, engineers, programmers, and
managers who work on these Lhings are so absorbed in the next challenge that they aren't
spending a lot of time bragging. Maybe the reports are true that some corrlpanies think of
Forth as their secret advantage, which would explain their silence on the subject. If I hadn't
dined at a certain table at a particular conference, I would never have heard of the telephone
systern which, after a few months' protoyping in Forth, had already outstripped a years-long
effort using other languages.

As a gesture intended to bring attention to Forth's reliability, maintainability, and efficiency
in large and/or complex systems, ForthDimmions and the Porth lnterest Group sponsored
a call for articles about "Forth on a Grand Scale." Printed in this issue are two entries the
referees believed best addressed the theme, albeit in diflerent ways. Olaf Meding's first-place
paper discusses Forth's contribution to the commercially successful E m messaging system.
Mark Srnilcy writes about mathematics and fractals in Porth. We thank them , and are pleased
to present their work here. Articles about Forth in big places arc always welcome!

*
With that concluded, Forlh Dimensions is able to announce its next contest for Forth

authors. In keeping with the theme of the upcoming FORMI, conference, we are seeking
articles about "Forth Development Environments." The three articles judged best will be paid
cash prizes, with the first-place author receiving $500. Some specific subjects in keeping with
that theme (e.g., libraries, user interfaces, source and run-time browsers) are given in
FORML's announcement on the back cover of h s issue, although authors should not feel
restricted to that list as long as they address the general thcmc. Dcadlinc for subnlissions to
this contest is August 1, 1993. (See the ad on page 25.)

* *

Concluding in this issue is Brad Rodriguez' series of articles on rnetacompilation. His
structured presentation of the topic is the most complete and comprehensible I can
remember. Still, this is the kind of knowledge that only gets burned into our long-term
memory when we apply it. Resides which, as the author would point out, specific choices
and techniques may be affected by the particular application and environment. So re-read
Brad's three-part series and prepare to take the next step.. .

... which begins with thts issue's "On the Back Burner." Columnist Kussell L. Harris
presents a schematic and parts list for a rclatively simple device readers can assemble
themselves and use to explore the principles of rnetacompilation and embedded program-
ming, with Harris' continuing guidance in future columns.

(P.S. Short of taking an E.E. coursc or bluffing your way In over your hcad a1 a ncw job,
his is an excellent opportunity to get hands-on-hardware experience-make the most of it!
But if you are more interested in programming such devices than in building them, call the
Forth Interest Group to inquire about the availability and prices of partially or completely
assembled boards; parts kits rnighl also be offered.)

* * *

Gary Smith served long and well as FDs "Best of GEnie" columnist, in addition to his Forth
RoundTable duties on that database/communications service He volunteered much energy
and time tracing the threads of interesting and important on-line discussions for uclr benefit Gary
recently retired from this activity, and we wish him the best 'I'hanks, Gary, for your contributionsf

-Madzn Ouuenon
Edttor

January 1993 February 4

Forth Dimensions
Volume XIV, Nurnber 5

Soaluiiitii'r 1002 Ocbiior

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forth J) i m i o n s welcomes
editorial material, letters to the edi-
tor, and comments from its readers.
No responsibility is assumed for
accuracy of subrnissiom.

Subsuip~ion to Forth Dimen-
s i m i s included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
mcmbcrship, change of address,
and to submit items for publica-
tion, the address is: Forth Interest
Group, P.O. Box 2154, Oakland,
Calilornia 94621. Administrative
ofliccs: 510-89-PORTII. Fax: 510-
535-1295. Advertising sales: 805-
946-2272.

Copyrigtit 62 1993 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but nor
the cucie) is copyrighted by the
individual authors of the articles
and by Fortti Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repro-
ductions for non-commercial pur-
poses, without the written permis-
sion of Forth Interest Group, Inc. is
a violation of the Copyright Laws.
Any code bearing a copyright no-
tice, however, can be used only
wirh permission of the copyright
holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, mdn-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and benefits
intended lo assis1 each of ils mern-
bers. Publications, conferences,
seminars, tclccommunications, and
area chapter meetings are among
its activities.

"Forth Dimensions (ISSN 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Intcrcst Group, 1330 S. Uascom
Ave., Suite TI, San Jose, CA 95128.
Sccond-dass postagc paid at San

Jose, CA. POSTMASTER: Send ad-
dress changes LO Forth D i r m i o n s ,
l'.O. Box 21%,OaWand, CA94621."

Forth Dimensions

Letters to the Editor-and to your fellow readers-are always welcome.

J wa3 rather proud to have squeezed it into a single screen.
Today, I would have written the same code as:

: SHLMATCH? (i -- i f) \ f = t r u e = no match
Respond to articles, describe your latestprojects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity andlength. We
want to hear from you!

Wanted: Visible Forth
I read the letter from Mark Martino ("Visible Words &Ugly

Complexity," FDXIV/4) with interest. As always, Mark's ideas
are creative and useful. I hope he pursues the idea of creating
a "visible" Forth development environment. I would like to
buy such a beastie from him.

I think Mark's approach would improve Forth documen-
tation efforts, as well. Using "word boxes" might solve some
of the issues addressed by Mike Elola in the same issue. (By
the way, thanks, Mike.) Possibly, the visual environment can
include Forth help files slaved to the visual word boxes. Thls
would include parameters required by and output by the
word, examples, etc.

Thanks for your attention.

Gus Calabrese, President
WFT
4555 East 16th Avenue
Denver, Colorado 80220

One Simple Syntax, Please
Dear Mr. Ouverson,

After reading Mike Elola's article ("Styling Forth to Pre-
serve he &pressiveness of C,,, FD XIV/4), I just had to
disagree, This is yet another attempt to improve Forth,s image
by turning it into the popular language of the day, We've
been through this before. Forth as BASIC. ~ o r t h as Prolog.
Forth as Lisp. Forth as God knows what.

I dollll collsider hree syntaxes an improve-
merit over Forth's single, simple one. It's richer in the same
way [hat is richer than a
Herningway novel.

In an article rcccnCly published in The ComwterJmmal
(#57, Sept,/Oct, 1992), 1 explored the Shel]sorl in depth. As
part of the sort engine, I wrote the following code:

: SHELL (--)

SETGAP BEGIN DECGAP
ITEMS @ GAP @ DO
I DUP S@ SV !
BEGIN

DUP GAP @ - DUP 0.: NOT SWAP
S @ SV @ > AND

WHILE
DUP GAP @ - TUCK S@ SWAP S!

REPEAT
SV @ SWAP S! LOOP
GAP @ 2 <UNTIL ;

Fort17 Dimel ~slons

 up @ - up O< NOT \ wi th in array?
SWAP Se SV > AND ; \ array values

: SHLGETNEXT (i -- i1 1
\ Shift va lue and g e t next index
DUP GAP @ - TUCK S @ SWAP S ! ;

: SHLCOMPARE (-- ') \ i = a r r a y index
SHLMATCH? SHLGETNEXT REPEAT ;

: PICKUPITEM (i --)

'@ SV ! ;

: INSERTITEM (--)

SV @ SWAP ! ;

: SHLSHUTTLE (--)

ITEMS @ GAP @ DO
I DUP PICKUPITEM SHLCOMPARE

INSERTITEM LOOP ;

: ?ENDGAP (-- f)

GAP @ 2 < ;

: SHELLSORT (--)

SETGAP BEGIN
DECGAP SHLSHUTTLE ?ENDGAP UNTIL ;

The first example is Forth written like Pascal or C. You
take the pseudocode that outlines the functions and then
'ansfOrm it into a giant of working code.

It is typical of the code I wrote before the big h ha!"
Though I can't call it a mystical experience, I think I finally
understand what Charles Moore is driving at as the Forth

In Forth, the pseudocode becomes the Forth words.
These words are then fleshed out in Forth one-liners. The
words describe the problem and the solution.

Leo Brodie, in ninking ~or th , does a good job of
Moore's philosophy, but prior e x ~ r i e n c e with

Pascal or C definitely screws up the attempt to think Forth.
If any other language actually helped me to learn Forth, itwas
assembler. The paradigm of Forth is assembler, not one of the
Rackus-Naur Algol derivatives.

I've read complaints that Forth is too primitive, too simple,
too open. These are precisely the reasons I like Forth. In my
mind's eye, I can see the code work. I don't have to pray to
the compiler god and hope things work out.

Let Forth be Forth.

Yours truly,
Wailer J. Rotlenkolber
P.O. Box 1705
Mariposa, California 95338

(Zettcrs and code continue on page 35.)

5 January 1993 February

Charles Curley
Gillette, Wyoming

'l'his paper describes a 68000-based JSWBSR threaded
Forth interpreter/con~piler. The compiler compares a vari-
able and a header field, and either assembles a JSR or BSR to
a called word, or copies ils code in line. The definition of ;
is smart enough to replace a BSWSR at the end of a word
with a JMP or BRA, as appropriate. Several words which are
not traditionally immediate become so, such as >R and
constants.

The Forth described herein is FastForth, a full 32-bit Forth
for the 68000. It is a direct modification of the indirect-
threaded Real-Forth. This is, in turn, a direct descendant of
fig-Forth. (Remember fig-Forth?) Vocabularies, among other
things, retain their original flavor.

For those not familiar with 32-bit Forths, memory operators
with the prefixwoperate on word, or IBbit, memorylocations.

The Imp~entation
It is conventional wisdom among Forth gurus that smaller

is faster, and faster means smaller. The commonly accepted
exception to this has been when it comes to subroutine
threading vs. indirect threading. Here, the traditional argu-
ment has been that the two bytes per call (say, on a PDP-11)
is worh Oic overhead, compared to four bytes per call. This
argument is less attractive on an eight-bit processor, such as
the 6502, where a subroutine call is three bytes, and the
interpreter for the indirect threading is some 14 instructions.

"But, if we crank up the clock speed.. ." someone said.
Probably someone at Intel, or with equal imagination.

Anything one can get by cranking up the clock speed, one
can get by both cranking up the clock speed and by using
other techniques, such as bcttcr compilers. Or better coding.
The 68OOO's rich instruction set and plentiful supply of
addressing modes makc it ripe for such improvements.

The traditional Forth compiler looks rather like this:

: INTERPRET
BEGIN -FIND
I F (found) STATE @ <

I F CFA , ELSE CFA EXECUTE THEN
ELSE HERE NUMBER DPL @ 1t

I F [COMPILE] DLITERAL
ELSE DROP [COMPILE] LITERAL THEN

THEN ?STACK AGAIN STOP

Paleoforthwrights' will no doubt recognize this as the Gg-
Forth compiler. This system is simple, easy to understand,
and fast

It runs a lot faster if parts of it are written in code, of course.
With a 32-bit data path and 32-bit code Gelds, optimization
by assembly language re-coding can go hog wild on the
68000. For example, the word , (comma) becomes:

CODE , OFUSER DP ARO MOV,
4 # OFUSER DP ADDQ,

' ! 2+ *+ BRA, ;C

(OFUSER is an assembler macro which assenlbles a displace-
ment from the user area regisler.)

Even with this scheme, any word called will still occupy
four bytes for each call, plus the overhead of next and the
return code. But even with this overhead, many words in the
nucleus become both smaller and faster.

A major step is taken when one moves from indirect-
threaded code to subroutine threading. Whole aspects of
Forth are affected, often in a very subtle manner. The code
interpreter can stay the much the same. However, it now calls
another word to assemble its calls:

: <BSR> 2- HERE - DUP -80 80 WITHIN
I F FF AND 6100 OR
ELSE 6100 W, THEN W, ;

: <SUB>
\ addr -- I compile subrou t ine t o addr
HERE OVER - -8000 7 F F F WITHIN
IF <BSR> ELSE 4EB9 W, , THEN ;

: INTERPRET
BEGIN -FIND
I F (found) STATE @ <

I F <SUB> ELSE EXECUTE THEN
ELSE HERE NUMBER DPL @ 1+

I F [COMPILE] DLITERAL

ELSE DROP [COMPILE] LITERAL THEN
THEN ?STACK AGAIN STOP

-. - - .- -- - --. -. ---

1. "For!hwrightW is a termcoined by Al Kreever. The "paleo" prefix is myown
perversion. I also use the term "neologist" for someone who creates new
wrds. Forth is, after all, the language for people who like to play with words.

January 1993 February Forth Dimensions

<SUB> is now a lot more than , is, and we have added
a lot to the dictionary that wasn't already there. <SUB>
calculates whether to use a BSR or JSR instruction, and uses
the appropriate one. <BSR> is smart enough to use a short
or long relative call, as needed

By making this change, we must also redefine next.
Instead of a three-instruction (six bytes) macro, we now have
a one-instruction (two byte) macro. The instruction is, of
course, RTS.

Now a reference to a called word may be two bytes, four
bytcs, or six, depending on how far away the call is. We have
made next a lot smaller. In the nucleus, there are no six-byte
calls, and quite a lot of two-byte calls. We have reduced the
size of the nucleus considerably, and gained speed.

Another innovation is Lo get rid of the words OBRANCH
and BRANCH, which do the work of controlling flow in
conditional branches. These, of course, are replaced with
processor-instruction equivalents. OBRANCH and BRANCH
occupy six bytes per call, four for the CFA and two for the
displacement if the branch is taken. The processor instruc-
tions occupy four or six bytes each, and run much fasler.

The relevant code is:

: OBRAN 2 0 1 B 6 7 0 0
(s [+ drO -1 mov, 2 *+ eq bcc,)

, 0 W, HERE 2- ;

: BRAN 6 0 0 0 0 0 0 0 (2 *+ bra,)

, HERE 2- ;
: RESOLVE HERE OVER - SWAP W! ;

: I F
?COME' OBRAN 2 ; IMMEDIATE

: THEN
?COW 2 ?PAIRS RESOLVE ; IMEXDIATE

: ELSE
2 ?PAIRS BRAN
SWAP 2 [COMPILE] THEN 2 ; IMMEDIATE

: BEGIN ?COMP HERE 1 ; IMMEDIATE

[: SBKWD 1 0 0 0 0 / HERE ROT SWAP -
2 - FF AND OR W, ;

I : LBKWD HERE ROT SWAP -
2- FFFF AND OR ., ;

I : BKWD OVER HERE - 2- -7F 7 F WITHIN

I F SBKWD ELSE LBKWD THEN ;

: UNTIL 1 ?PAIRS
2 0 1 B W, 6 7 0 0 0 0 0 0 BKWD ; IMMEDIATE

: AGAIN 1 ?PAIRS
6 0 0 0 0 0 0 0 BKWD ; IMMEDIATE

: REPEAT

>R >R [COMPILE] AGAIN
R> R> 2- [COMPILE] THEN ; IMMEDIATE

: WHILE [COMPILE] I F 2+ ; IMMEDIATE

These words, again, occupy more room in the dictionary
than their predecessors did, but the code conlpilcd by them
is so much smaller and laster hat the overhead is worth it.

Fortt~ Dimensions

Because the 68000 has an efficient instruction set, and
calls to a word may be as many as six bytes long, it is possible
to have calls to words which occupy more room than the
word itself. Why not copy the guts of such words in line, and
forget the call? We may or may not save space in the
dictionary, but we can get rid of the overhead of the call and
return instructions. This requires a change in the interpreter:

: <BSR> REL OFF 2 - HERE -
DUP -8 0 8 0 WITHIN
I F F F AND 6 1 0 0 OR
ELSE 6 1 0 0 W, THEN W, ;

: <SUB>
\ addr -- I compile sub rou t ine t o addr
HERE OVER - - 8 0 0 0 7FFF WITHIN
I F <BSR> ELSE 4EB9 W, , THEN ;

: < C o r n >
\ addr -- I subrou t ine o r i n l i n e ?
DUP 2 - W@ -DUP
I F LENGTH @ 1+ <

I F HERE OVER 2- W@ DUP ALLOT CMOVE
ELSE <SUB> THEN

ELSE <SUB> THEN ;

: INTERPRET
BEGIN -FIND
I F (f o u n d) STATE @ <

I F <COMP> ELSE EXECUTE THEN
ELSE HERE NUMBER DPL @ 1+

I F [COMPILE] DLITERAL
ELSE DROP [COMPILE] LITERAL THEN

THEN ?STACK AGAIN STOP

The word <COMP> looks at a field in the word's header,
the length field. If the contents of the field is zero, no copy
is made-a subroutine is called instead. If the length field is
less than or equal to the current contents of the user variable
LENGTH, an in-line copy of the target word is made, instead
of a subroutine call. If the length field is greater than LENGTH,
a subroutine call is made in the normal fashion.

The use of a variable to determine the cutoff for copying
code allows the programmer to select the best length for such
copying. For most uses, this is set to six, so dictionary size is
the main consideration. However, it can be set to any value
up to 32K, if the user wants to really go for speed. (None of
this "We're from Microsoft and we know more about your
application than you do" stuff here!)

Even if the length value for compiling the nucleus is set
to the reasonable minimum, four, we still gain. DUP, for
example, has one two-byte instruction in it. It shows up about
70 times in the FasiForth nucleus, for 140 bytes of savings.
Thus, even though we have overhead in the nucleus lo copy
in line, we still come out ahead in nuclear size. Other one-
instruction, two-byte words abound, such as DROP.

?'he compiler must know the value to which it must set
the length Geld. This value is best calculated after the word
is fully compiled, so the logical place to do it is in ; . l'hat code

7 January 1993 February

looks as follows:

: NXT
HERE LATEST N>C - SETLEN 4375 W, ;

The code to be copied (and hence the length of the word
for copying purposes) must exclude the return instruction at
the end. So we make the calculation before adding the return.

We may have a problem, however. Are there circurn-
stances under which it is inadvisable to make an in-line copy
of a word?Answer, yes. One circumstance is when the source
word contains a relative reference, such as a program counter
relative offset. Or a BSIi instruction, which is often. That is
why the word <BSR> sets the user variable REL (for
"relocatable") to the off state. Thus, the code called by the
word ; which sets the length field in the head, must examine
REL.

: NXT REL @
IF HERE LATEST N>C - SETLEN
THEN 4375 W, ;

This code requires that the length field be set to xro,
which is done by CREATE. And the relocation indicator must
be set to its default state:

. . . . ?EXEC !CSP CURRENT @ CONTEXT !

CREATE SMUDGE
REL ON LATEST N>C DP !] ;

The phrase LATEST N>C DP ! is there because CREATE
sets up a code field pointing to the code for variables, and
this must be overwritten by a : definition. This is a by-
product of the decision to modernize the system by having
CREATE produce variables, instead of the ancient fig-Forth
practice of having it produce headers for code definitions.

A gotcha of 68000s is that the 68000 is word-aligned for
word and long-word memory accesses. That is, either @ must
pick up data a byte at a time and assemble h e four bytes, or
it cannot be used on odd address cells. The latter alternative
would be incompatible with other Forths running on other
processors, so the former was selected for Real-Forth, the
immediate ancestor of FastForth. The result is as follows:

CODE @ S [ARO .LMOV,
\ avoid by te boundary

ARO [+ S [.BMOV,
ARO [+ 1 S & [.B MOV,
ARO [+ 2 S & [.BMOV,
ARO [3 S & [. B MOV, NEXT ; C

\ problems

Aside from being ugly, the word takes up 16 bytes in
memory. It probably will be referred to a lot by subroutine
call. However, why not provide both types of memory
access? A version of @ requiring word alignment produces a
four-byte word:

CODE F@ \ @ from even address only
S [ARO MOV, ARO [S [MOV, NEXT ; C

This word will invariably be copied in line. Furthermore,
it will get used a lot: all variables, user variables, and word
or long word arrays are word aligned. Thus, carehi editing
of the nucleus produces a much faster nucleus, using F@
where appropriate. Alas, the nucleus grows-but not much.
Because this word will be copied in line, application
references to it will produce smaller applications, so the cost
is well worth it.

Similar logic produces F ! from ! :

CODE F! \ s t o r e t o even address only
s [+ ARO MOV, s [+ ARO [MOX', NEXT ;C

Can we squeeze more room out of the nucleus and still
accelerate things? Well, i~ seems a bit absurd for the last
instruction in a word (before next) to be a subroutine call.
Why not force the call to becomc a jump? Once execution of
the called word ends, the return instruction will force
execution back to the word which called the current word.
The RTS instruction may then be omitted from the end of the
word. This saves us an instruction in the dictionary, and two
return stack accesses in execution.

The resulting code gets tricky. There are two circum-
stances u ~ d e r which this trick is inadvisable: when the last
instruction before the return is not a call, and when a forward
branch within the word refers to where the RTS would be if
there were one. To check for the latter condition, we simply
examine a variable maintained by the compiler word THEN.
THEN is now defined a,:

: THEN HERE LASTTHEN F!
?COW 2 ?PAIRS RESOLVE ; IMMEDIATE

So we know wherc the last subroutine call was made, the
compiler now- maintains a variable, LASTSUB.

: <SUB>
\ addr -- I compile subrout ine t o addr
HERE DUP LASTSUB F! OVER -
-8000 7FFF WITHIN
IF <BSR> ELSE 4EB9 W, , THEN ;

The code to make it work all operates from ;.

I : DOBSR
= IF 60 LASTSUB F@ C! 0
ELSE 1 THEN ;

I : 6SR LASTSUB' F@ W@ 4EB9
= IF 4EF9 LASTSUB F@ W! 0
ELSE 1 THEN ;

I : 2SR LASTSUB F@ W@ FFOO AND 6100
DOBSR ;

I : 4SR LASTSUB F@ W@ 6100
DOBSR ;

January 1993 February Forth Dimensions

\ --- f l I 1 i n d i c a t e s f a i l u r e t o change
\ b s r t o bra, etc.
I : LAST? REL F@ O= HERE

LATEST N>C - LENGTH F@ 1- > OR
I F HERE LASTSUB F @ -
DUP 2 =

IF DROP 2 S R
ELSE DUP 4 =

IF DROP 4SR
ELSE 6 =

I F 6SR ELSE 1 THEN
THEN THEN

ELSE 1 THEN ;

: NXT REL F@

IF HERE LATEST N>C - SETLEN THEN

4 3 7 5 W, ;

. . , . ?COMP ?CSP HERE LASTTHEN F @ -
I F LAST?

I F NXT THEN
ELSE NXT THEN
SMUDGE [COMPILE] [; IMMEDIATE

The three words 6 SR, 4 SR, and 2 S R each handle the three
possible subroutine call instruction.. They do this by munging2
the last subroutine call's opcode into a BRA orJMP opcode,
as appropriate. The word LAST? determines whether to call
one of these words and, if so, which one. It also returns a flag
to indicate whether the final RTS instruction should be added
to the word. Also, the whole process is bypassed if there is
a forward branch pointing to where the RTS would be.

This has the effect of giving us a free, zero-instruction
return, without having to build a custom processor to do it.

Further Optimizations
One can make further optimizations along the same lines.

The fig-Forth word L I T goes away entirely, to be replaced
by an in-line literal instruction. For large values, the following
instruction obtains:

<value> # s - [mov,

For smaller values, the MOVQ instruction proves useful:

<value> # drO movq, drO s - [mov,

LITERAL (still FIGgishly state smart) is redefmed as
follows:

: LITERAL STATE F@
I F DUP -80 7 F WITHIN

I F FF AND 7 0 0 0 OR W, 2700 W,

ELSE 273C W, , THEN
THEN ; IMMEDIATE

Constants can bc reworked in a major way. We can

2. PDP-1 1 hacker slang for stomping on the object code directly.
Attributed to Mung the Merciless.

Forth Dimensions

produce a word which is not relocatable, and therefore
requires a subroutine call for each reference. Instead, we
make constants into immediate words (!) which simply
produce literals as needed:

: CONSTANT CREATE IMMEDIATE ,
DOES> F@ [COMPILE] LITERAL ;

Similar surgery may be committed on variables.

: VARIABLE CREATE , IMMEDIATE
DOES> LITERAL ;

User variables require a more complex operation at
compile time, as they must compile an opcode and the offset
from the user pointer (maintained in a register on the 68000).
In addition, execution at interpretation time is more complex.
The resulting word has a hybrid code and high-level ;CODE

portion.

: USER CREATE W, IMMEDIATE ;CODE

RP [+ ARO MOV, U AC & [(ofuser s ta te)

TST, NE I F ,
DRO CLR, ARO [DRO .W MOV,
DRO S - [MOV,] 1 41EE W, W, 2 7 0 8 W,
\ o f u s e r <n> arO mov, arO s - [mov,
[[ELSE, U DRO MOV,

ARO [DRO .W ADD,
DRO S - [MOV, THEN, NEXT ;C

The first two lines of the ; CODE portion examines the user
variable STATE to determine whether the system is compil-
ing or interpreting. If the system is compiling, the next two
lines are executed. The offset of the user variable is brought
into a register, sign extended, and pushed onto the data stack.
Then high-level words are executed to comma in the first
opcode, 41ee, the offset (an argument to the first opcode),
and then finally the second opcode, 2708. This results in the
assembly in line of the following code fragment:

o f u s e r <n> arO mov, arO s - [mov,

If the system is not compiling, the actual address of the
user variable is calculated by adding the offset to the contents
of the user register. The results are pushed onto the data
stack.

In most other languages, a lot of hand coding would be
done to make these compact definitions possible. Fortu-
nalely, Real-Forth and FasWorth both provide both an
assembler and a disassembler, so code definitions can be
prototyped and the object values determined rapidly. Such
tools are essential for language development.

Another area of optimization is to move the indices and
limits of loops into the 68000's data registers. This will
produce faster and probably morc compact code. (Isn't it
nice to have an adequate supply of registers?) Rather
arbitrarily, data registers five and six werc selected to hold the
index and the limit, respectively. (DO) pushes hesc onto the
return stack, and the loop ending operators pop them off.

9 January 1993 February

ASSEMBLER BEGIN,

2DUP >R >R 2 # ARO ADDQ,
RP [+ DR6 MOV, RP [+ DR5 MOV,

ARO [JMP,

CODE (LOOP)
RP [+ ARO MOV, 1 # DR5 ADDQ,

LABEL LP2 DR5 DR6 CMP,
R> R> GT UNTIL,

LABEL L P 5 ARO [ARO .W ADD,
ARO [J M P , ;C

FIXED
>R >R

CODE (+LOOP)
RP [+ ARO MOV,

S [t DRO MOV, DRO DR5 ADD,
DRO TST, P L LP2 *t BCC,
DR5 DR6 CMP, LT L P 5 *+ BCC,
R> R> AGAIN, ;C FIXED

\ dr5: index
d r 6 : l i m i t
CODE (DO)
RP [ARO MOV, DR5 RP [MOV,

DR6 RP - [MOV,
S [+ DR5 MOV, S [+ DR6 MOV,
ARO [JMP, ;C FIXED

Nuclear gurus are reminded that this is still a fig-Forth
nucleus, and there are differences in how the loop operators
work between fig-Forth and later standards.

(DO) operates by pushing two items from registers onto
the return stack. In order to do this, it first pops the return
address into ARO. The loop registers are pushed, and the new
index and limit are popped from the data stack. An RTS is
emulated by jumping indirect through A m , which holds the
return address.

(LOOP) works by comparing the two data registers. In all
cases, the return address is first popped into ARO. If the loop
is not exhausted, the offset to return to the beginning of the
loop is added to ARO, and a jump indirect through ARO is
executed. If the loop is exhausted, execution branches to the
code fragment ahead of (LOOP). There, the return address
is adjusted to skip over thc ofkt. The two data registers are
popped from the return stack, and execution is resumed with
the usual indirect jump through ARO.

Sincc wc have moved loop indices and limits from their
traditional places on Ole return stack, indcx and limit
operators must also change. I must be recoded:

CODE I DR5 S. - [MOV, NEXT ;C

R' can no longcr be aliased to I, and must now be a
separate word.

J and other words which access nested loop limits and
indices must also be recoded. J now looks like the old I.

We also need a way for the Real-Forth hackers to twiddle
the loop indcx while in a loop. For example, (EXPECT)

3. R@ to you mezo- or neoforthwrights.

plays with the loop index when it sees a backspace character.
This is handled by writing the new word I ! , which allows
su6ciently unstruc~ured code to be an eyesore.

CODE I ! S [+ DR5 MOV, NEXT ;C
\ use t o play w/ index

: (EXPECT) OVER + OVER

\ add f o r ~ t a r i / I ~ ~ PC keyboard
DO KEY DUP 1 4 +ORIGIN W@ =

OVER 1 6 +ORIGIN W@ = OR
IF DROP 08 OVER I = DUP 1 2 - + I! -
ELSE DUP OD =

I F LEAVE DROP BL 0
ELSE DUP THEN

I C! 0 I 1+ C ! THEN
EMIT (DROP)
LOOP DROP ;

The Implications
Such drastic surgery on a nucleus has implications

elsewhee in the nucleus, for application coding and for
utility code such as &compilers. Even one's conceptual view
of Forth is affected.

The most profound shock, especially for those of us
accustomed to fig-Forth-styled dictionaries, is that the con-
cepts of the parameter field and code ficld merge and
become one. (This is not, however, an approach toward a
Grand Unified Field Theory.) The most disconcerting thing
for a fig-Forth user is that ' and its relatives can no longer
return the parameter Geld. It may or may not be the same as
the code field; however, the code field will always exist. So

and its FastForth brethren now return the code field
address.

This changes the family of words used to maneuver in the
header of a word to the point where they had to be renamed.
They now take their names from the field address they expect
and the one they return. For example, to navigate from the
code field to the name field, one uses c>N. To go the other
direction, N>C.

This name change has the bencfit of aiding conversion of
code from Real-Forth (or other Forths) to FastForth.

A word in this family is C>P, used to get from the code
field to the parameter field, if there is onc. This word must
skip over the instruction at the code ficld, which will be one
of thrcc possible subrouline calls. This it does by detecting
which instruction is there. It works as follows:

: C>P

(c i a --- p i a I f i n d parameter f i e l d)

DUP W@ 6100 = IF 4+ ELSE
DUP W@ 4EB9 = IF 6 + ELSE 2+
THEN THEN ;

Occasionally one has need to go back the otherway. That
is stranger:

: P>C
\ pfa --- c f a I jump from pseudonfa (pfa)
\ of a voc t o i t s code f i e l d

January 1993 February Fort17 Dimensions

DUE' 2- W@ FFOO AND 6 1 0 0 =

I F 2-
ELSE DUP 4- W@ 6 1 0 0 =

I F 4-
ELSE DUP 6 - W@ 4EB9 =

I F 6 - ELSE ABORT" bad l i n k "
THEN THEN THEN ;

P>C makes guesses about which inslruction was used,
and where it would be if it had been used. This word is not
in the nucleus, because it is used so rarely. It was originally
constructed to allow vocabulary-traversing code to print out
the names of the vocabularies in the system as it traversed the
linked list of vocabularies.

Another conceptual change will hit the Forth nucleus
guru or the person who does much assembly language
programming under Forth. This is that the IP and W registers
have moved. The Forth instruction pointer is now the
processor's instruction pointer-somelimes. w is now the first
cell on the processor stack. Usually.

For an example of how this works, let's look at an
intermediate definition of VARIABLE. This was imple-
mented to act exactly like the indirect-threaded version of
VARIABLE, and requires a call to each variable. It has since
been replaced by the version given above. Note that the code
field is set by the word CREATE.

: VARIABLE CREATE , ;

ASSEMBLER HERE *VARIABLE* '
RP [+ S - [MOV, NEXT

: (CREATE)
F I R S T HERE OAO + U< 2 ?ERROR
?ALIGN -FIND
I F DROP C>N I D . 4 MESSAGE SPACE THEN
HERE DUP C@ WIDTH F @ MIN
1+ =CELLS ALLOT
DUP 80 TOGGLE HERE 1- 80 TOGGLE
LATEST , CURRENT F@ F! 0 W,
{ "VARIABLE* F @ } LITERAL <SUB> ;

Since the length field of a variable is never changed from
its initial zero, all references to variables are by subroutine.
This subroutine call places the return address on the slack.
The Grst instruction in the variable is another subroutine call,
to the working code routine for variables. This instruction
also places a return address on thc rchlrn stack. But the
second rcturn address poinls to the variable's allocated
storage arca, not to code. So all the working code has to do
is pop the address off the return stack and push it to the data
stack. The next instruction, the RTS, resumes execution at the
code which called the variable.

The ability to copy in-line code into a word means that the
locations of return stack items get rather hzzy. An item is
going to be somewhere on the return stack, but where
depends on whether the calling word copied the target word
in line or not. For example, a subroutine version of R would
have to reach over the return address to get the value on the

return stack to be copied. An in-line version would not have
to skip the return address.

An in-line version of R is only one instruction, two bytes.
It makes sense to copy it in line wherever possible. But it isn't
always possible: some of us use the return stack to store
things at interpretation time:

BASE @ >R HEX ... R> BASE !

The implementor could be bloody-minded about the
whole thing and tell you not to do things like that. Or he could
have written a set of state-stupid words for use inside
compiled words, and another set of state-stupid words for
use outside of compilation, and he could have expected you,
the user, to remember the difference.

But Allah is merciful. Instead, we have three state-smart
immediate words, R, >R, and R>. For example:

\ rp [s - [mov, => 2717
CODE R OFUSER STATE TST,

NE I F , 2 7 1 7 #L S - [MOV,
'NF W, *+ BRA, THEN,

4 FW &I S - [MOV,
NEXT ;C IMMEDIATE

They all work on the same model. If the system is
compiling, the appropriate opcode is assembled in line with
w, . Otherwise, a subroutine version is executed.

This also means that LENGTH may never be set so that R
is called by subroutine. That is, it may never be less than two.

Execution arrays have also mutatedunder FastForth. With
indirect threading, all references to words in the array were
the same length. Thus, indexing into the array was easy:
multiply the index by the size of the reference, add it to the
base address of the array, fetch the value there, and execute
it. In 32-bit Real-Forth, EXECis dcfined as follows (except that
it is done in code):

: EXEC 4 * R> + @ EXECUTE ;

The new version is a bit more elaborate. The old EXEC
mutates into:

CODE <EXEC>
\ index --- I index i n t o execut ion array

S [+ DRO MOV, 2 # DRO ASL,
RP [+ ARO MOV, DRO ARO ADD,
ARO [ARO MOV, ARO [J M P , ;C

And a new compiler directive is added:

: EXEC COMPILE <EXEC> BEGIN -FIND
I F (found) STATE F@ <

I F , ELSE EXECUTE THEN
ELSE 0 ?ERROR
THEN ?STACK STATE F@ O= UNTIL ;
IMMEDIATE

EXEC simply compiles a series of CFAs in linc, until it finds that
compilation has been turned off, usually by the word STOP.

January 1993 February Forth Dimensions

Other Improvements
There is milch work on@ can to do to optimize FastForth.

Most of these suggestions have been done, at least experi-
mentally. Their implementations and implications will be left
as an exercise for the student. There will be a quiz.

Forward-referring branches can be made smart enough to
make two- or four-byte branches, if one cares to wiite the
codc to move the intervening code appropriately at branch
resolution time.

Since the processor has a variety of conditional branch
instructions, why not make the Forth conditional branches
reflect this? The traditional Forth typically compiles two
words: one performs a test, the other does the branch.
Instead, why not make the branch instruction also do the test?
For example, the phrase O= IF might become two in-line
instructions at compile time, instead of three or more.

We have seen how to move the indices and limits for
loops into registers. Why not save more time at run timc, and
force (Do) and (LOOP) (and their ilk) to always be copicd
in line? 'lhis will require changes in thc way DO and LOOP

operate a1 compile time.
A major improvement can be madc in any Forth by

changing the header structure. ' f ic traditional fig-Forh
header structure places the link field after thc name ficld in
memory. This requires dictionary searches to traverse each
name ficld to go to the nextword in the dctionary. Ry placing
the link field before the name field, the traverse loop is
replaced with a single instruction. Since compilation consists
largely of dictionary searches, compilation is greatly speded.

Interim Results
There are plenty of optimizations yet to make in FastForth.

In spite of this, one may make some preliminary assessmcnts.
The results are not ail in, but they are definitciy promising.
For a quick and dirty benchmark, I lookcd to the Eight
Queens problem, as coded by LcVan, Forth Dimions II/l,
and modified by Wilson M. Fcderici (GEnic e-mail address
W.ITDERIC1). As I am also using an Atari ST, my results
comparc directly with Mr. Federici's. However, to speed
things up, I made the arrays byte arrays,
which eliminates a two-place shift, and re-
placed F@ with C@. I also found that the
greatest speed for any given version was
achieved with FastForth's LENGTH set to 16.

To Federici's results, I add the final five
entries:

F32: 8.30 scc.
ForST with W T S : 7.23 scc.
ForST with MACROS: 3.77 sec.

Real-Forth 1. j (ITC):
1,W cells & 2'2. 7.60 sec.
TAW cells & cell* 7.06 sec.
bytc cells 5.65 sec.

FastForth 2.0 u/BTC):
1.W cells & 2* 2* 4.87 sec.
byte cells 3.04 sec.

Compilation times improved. For example,
compiling the target compiler and then target

compiling the FmtForth nucleus, approximately 13 kilobytes in
size, rakes about 120 seconds under Real-Forth. Under
FastForth, this improves to under 70 seconds. (As the Atari ST
has a real processor, there is enough room to hold the source
for all this in Forth's local memory, so speed of disk access is
excluded from consideration.)

Conclusions
Properly done, conversion of a 68000 32-bit Forth from

indirect-threaded code to subroutine-threaded codc will be
rewarding in both speed improvements and in application-
and nucleus-size improvements. 'l'hc spccd improvements
were expected when the conversion process was started, as
was the smaller nucleus. l'hc irnprovcd application size was
a pleasant surprise.

But the key point is this: however snappy compilers or
other tools may help (or hinder), thcy are no substitute for
competent programming or cornpctent software design.
'13cy are especially no substitute for good optimi7ation. At~d
those are all still arts.

Availability
Persons wishing to cxperimentwiLh FastForth may imple-

mcnt these techniques on their own target compilers for
pcrsonal use and experimentation. Those who wish to run
the complete FastForth package may obtain a beta site copy
for the Atari ST from the author. The author will also discuss
ports to other 680x0 machines and ports to other processors
with interested parties.

Charles Curley is a long-time Forth nuclear guru who lives in Wyoming. He earns
his living as a paralegal so he can afford necessities like IjtlMM-based Forth
systems and luxuries like food and rent. He may be reached at P 0. Box 2071,
Gillettc, Wyoming 827 17-207 1.

and TRS.tU) models 1,3 4 4 4P t

THIRTY-DAY FREE OFFER - Free MMSFORTH
GAMES DISK worth $39 95, wlth purchase of MMSFORTH
System CRYPTOQIIOTE HELPER OTHELLO. BREAK
FORTH dnd others

January 1993 February 12 Forth Dimensions

1 Fonm ON a GRAND Scar r

Forth-Based
Message Service

I
: Olaf Meding
I McFarland, Wisconsin
I

Charles Moore, the inventor of Forth, brought a newspa-
per clipping dated "March Forth" to his keynote address at
this year's SIG-Forth conference in Kansas City, Missouri.
Whether we "march or "boldly go," this paper describes
how Arntelco's EVE (Electronic Video Exchange) has be-
came the predominant, largest, and most sophisticated
messaging system for the telephone answering service (TAS)
industry. EVE is used not only in every major urban area in
the United States and Canada, but in Australia and through-
out Thailand. EVE has gained 70% of the TAS market and is
still growing. Forth-which is used exclusively-is a key
ingredient of the success story you are about to read.

System Description
Before focusing on the software architecture, I would like

to briefly describe EVE. EVE is the center of a telephone
answering service (see Figure One). Thirty-two operators
take messages by phone from callers, and later deliver those
messages to the clients. In addition to normal business hours,
messages are frequently taken on weekends, holidays, and
evenings. 'lypical clients include doctors, small companies,
business managers, and travelling sales personnel. Typical
EVE owners include answering services, ma11 order houses,
executive suites, and paging services. At Arntelco, we use an
in-house EVE station to handle all field service calls.

EVE provides all necessary functions needed by a modem
TAS: telephony functions, paperless message handling,
client database (10,000 accounts), maintenance, and client
billing. EVE routes a few lhousand telephone trunks to thirty-
two operators. The operators type and retrieve messages into
the database. EVE is capable of handling well over 12,000
phoncs calls per day.

Messages can bc stored, reuicvcd, delivered, archived, or
purged. There are a variety of ways in which messages can
be delivered, i.e., verbally by the operators, remotely printed
via modems or PAXes, and paged through wlreless paging
terminals. Clients can also use a personal computer to log into
EVE to get their messages.

An opcrator can log in as a supervisor to perform system
maintenance. Such tasks include maintaining client account
information, retrieving statistics used for measuring operator
performance, and client billirlg.

In addition, field service personnel can dial into EVE via a

modem to monitor all asjxds of the system, such as locating
hardware, software, and database pmblems. A number of
software routines are available to fieldservice. For example, one
=pairs a broken database. Owners of EVE stations throughout
the U.S.A. andCanada have formeda very dynamicusers group,
the National Association of EVE owners (NAEO).

EVE was born ten years ago in 1982. Since then, 17
programmers have worked on EVE sofiware for a total of 38
man years. '1.0 give the reader an idea of the size of the EVE
application, it is comprised of about 100,000 lines of source
code. The average size of the EVE Software Works program-
ming team is four full-time Forth programmers. It is worth
noting that none of the programmers employed had any
previous Forth experience. They were hired as full-time
programmers, not consultants. With very few exceptions, all
the programmers were able to master Forth and EVE code,
and became very successful in their careers.

Forth's Contribution
Forth is much more than a computer language. Forth is

a complete programming environment, and even more it is
a philosophy. The concept of simplicity is what makes Forth
so effective and powerf~~l. Interestingly, long after Forth was
invented, the same concept of simplicity was introduced to
microprocessors through RISC (reduced instruction set com-
puter) technology, which increases a CPUs throughput.

Forthuses words. Words are the equivalent of a subroutine
inC or Pascal. One problem with subroutines is that they tend
to get very large (over a page of source code). A Forth word
is composed on average of five to nine other Forth words.
Because each word has a name, the code becomes highly
readable in itself. Even Lhough tlie C or Pascal equivalent of
a 170nh word is a subroutine, a Forth word acLs more like a
constant. A small section of code is given a name; in large
applications, it is important to use words with descriptive
names rather than a magical sequence of ~nstructions.

?he freedom and flexibility Forth extends to the program-
mer is reflected by the versatility and wide range of possible
EVE station configurations (Figure One). EVE takes full
advantage of many powerhl Forth features, such as h e
extremely efficient round-robin multi-taskcr and an extraor-
dinarily eficient database. Rathcr than depending on the
compiler vendor for enhancements necdcd to further de-

Forth Dimensions January 1993 February

velop software (as is the case with most non-Forth program-
ming languages), we tailored our Forth environment
(p01yForth by Forth, Inc.) to match the underlying hardware
for maximum code efficiency and execution speed. The
power of Forth should be evident by the fact that the entire
EVE software, consisting of up to 84 independent software
tasks (except for the asynchronous I/O boards), is run by a
single 10 MHz 68000 Motorola microprocessor.

Forth has made it possible to consistenlly and quickly
respond to the demands of our customers and the TAS
industry. Forth's combined power of programming environ-
ment, operating system, database manager, multi-tasking,
complete availability of source code, and striking philosophy
of simplicity are the reasons why a systcrrl first developed in
1982 is still number one in the market. Forth truly shines in
rapid prototyping during software development and debug-
ging, which in turn dramatically decreases thc time-to-
market of innovativc ncw EVE software editions.

A mcdiurn-size EVE station costs well over $100,000.
I'orlh protecLs ole owncr's investment by making it possible

to continuously expand the software without making the
hardware investment obsolete.

All software, including firmware and a large number of
device drivers, is written in Forth. Amtelco was one of the first
users of SCSI hard drives, but we could not afford a $25,000
SCSI bus analyzer. Forth enabled us to write SCSI device
drivers without expensive bus-analyzing hardware. I remem-
ber the surprised look of a visiting drive engineer when we
presented him with a bug in his SCSI drive. He found it hard
to believe that we used Forth without a SCSI bus analyzer to
write device drivers.

A Challenge+Rernote Operator Stations
A reccnl addition Lo EVE, rcniote operator stations consist

of a personal cornpuler rathcr than a video terminal. Remote
operators use a pair of high-speed, asynchronous moderns
to comcct to thc EVE station. Two bcnefits of h e remote
operator are telecommuting (working at homc) and allowing
sales staff to set up new clicnl accounts at the point of sale
with a live demonstration of how their calls will be handled.

January 1993 February Forth Dimensions

Another benefit of remote operators is that supervisors can
monitor Lhc system at home and take action only when
needed. I:indlly, a rnulti-lasking remote operator can be
connected to more than one EVE station simullaneously.

I'hc development of the rcmotc opcrator station was one
of our most challcnging projects. It was very dificult to design
a highly inlcraclive applicauon asynchronously. We flad a
numbcr of problems initially because th1e remote station would
get stuck waiting for a response from EVE. For cxample, we
had to develop our own conrnunications protocol because
the connection between the modem and thc host would often
lose data, and the modem did not detcct linc brcaks fast
enough. Forth is an ideal environment for this type of
application t~cause or its powerrul multi-tasking capability.

To decrease hardware costs, management decided that
remote operator station personal computers should operate
without a hard disk. Again, Forth proved to bc the most
suitable language. Forth made it possible to design very
efficient code that could be booted from floppy disk without
the need for software overlays.

The remote operator was an essential part of the Thailand
project. Forth enabled us to rapidly write a VGA graphic.
display driver for the Thai character set, and to streamline
~ I k ' s message-paging capabilities for our Thai customers.
We heard that even the King of Thailand has paging accounts
on the Bangkok EVE station!

Developing Powerful Software Tools
Forth made it possible to wrile our own software tools. A

goodexample, and one of the first tvols we developed, is still
the most powerful. It is called COMPARING. It compares a
range of Forth blocks and highlights the dfferences in the
code on the screen or printer (variations are printed in bold
simply by printing them twice).

With ~nultiple programmers (dl one time we had seven)
working on a major software edition, comparing is used to
print all changes. Thesc comparisons are given to an

integrator for integration into the final release. The printouts
are also used to verrfy all code changes at the end of the
development cycle. 'l'his works especially well if a different
programmer (usually the integrator) verifies the changes.

ZEUS is another unique and powefil debugging task
written to aid in the development of the remote operatar station
It is a background w k rumng on the remote station. A
programmer can log onto a customer's EVE station @igureTwo)
via modem. 'Ihe programmer dlen loads a utility on EVE which
allows sending aclual I'orth commands Lhrough a second pair
of modems to the rernotc operator station. Ihe Forth command
is execukd on h e remote operator station, and the result is sent
back through D'E to the programmer's terminal via the four
modems. 111e remote opcrator IS undisturbed m its operation
and continues to take messages while, in the backgroun4 a
programmer is debugging Lhc system. Thc name Zeus is a
reference to Lhc power of this debugging tool.

The power of Forth is limited only by the imagination of
the programmer, and Zeus is a good example of this. Oncc
the idea for Zeus was born, Forth was the pcrfect cnviron-
mcnt to reali~a the idea an3 concept.

The debugging task on EVE is named TRON. Those who
saw the movie know why.

Conclusion
Forth is ncither a low- nor a high-level programming

environmenk-it is b o h and more. '111~ highly interactive
Forth environment greatly slimulales the process of convert-
ing human ideas and thoughts into machine code. For this
reason, 1 believe that Forth programmers spcnd most of their
time solving problems rather ban trying to work around
restrictions imposed by other, non-Forth programming meth-
ods. Thi. highly productive process of writing Forth software
builds an even higher level of confidence in the programmer,
which in turn significantly reduces the number of errors
(bugs). l'he programmer's confidence in error-free code is a
key ingredient ofsuccessf~l "Forth on a grand scalc" projects.

New York. NY

baud

E VE's back-door
field sewice

baud

EVE programmer

All Forth commands typed by the
progammer are sent to the remote
operator station's ZEUS background
task. ZEUS output is sent back to the
programmer's screen.

EVE
station - -

baud
9600
baud

San Francisco. CA

remote operator,
taking and

delivering messages

[XI = modem -
Fsrth Dimensions 15 January 1993 February

Graahics and
FIoating Point

in ReaCTime Action
DL Mark Smiley
Baltimore, Maryland

A Zenith-150 spewing iiactal dragons on thc screen
introduced me to Forth. Articles in Byte and Dr. Dobbs Journal
increased my suspicion that Forth and fiactals would wed well.

At the time, I was using Fortran on a mainframe to draw
pictures of the lractals whose ma~hematical properties I was
studying. I'd drive an hour LO reach a site where I had LO

program on a terminal in one building, then walk a good
distance LO another building, wherc I frequently had to tap on
the window to wake u p the operator in order to get the plotter
output from my program. The idea of owning my own
computer, one with video graphics, appcaled to me. I
purchased a Z-150 and set aboul learning Forth. Thus began
my relationship with Fonh and graphics on WS-DOS machines.

An early bad experience with a Forth vendor, and a desire
to have access to all the source code, led me to public-
domain Forths. Yet none of them contained graphics rou-
tines. I resolved to create enough routines to enable my
studies. This effort evenlually resulted in the F-PC graphics
package currently distributed through the Forth Interest
Group's software library.

I wanted a vocabulary
that would make it easy
to express my i d e a f o r that
I required floating point.

graphics modes. CGA, EGA, VGA, and many SVGA boards.
Together with thc more than 800K of graphic$ routines,
Juliam comprises well over a megabyte of code.

Juliam uses a variety of algorithms to draw both Julia and
Mandelbrot sets. To get an idea of how these sets are defined,
consider the map: f(z) = 7.2 + C, wherc z and C are complex
numbcrs. For example, suppose C=O and z=2. Then f(2)=4,
f(4)=16, and f(l6)=256. Thus 4, 16, and 256 are iterates of 2;
they are examples of the output obtained from applying the
map Kz) over and over again, each time plugging the output
back into f(z). Note that the iterates of 2 increase without
bound. In other words, they go towards infinity. On the other
hand, the iterates of 1/2 approach 0. Furthermore, the iterates
of -1 go neither to 0 nor to infinity. This point lies on the
boundarybetween the points that go to infinity and those that
don't. Thus -1 represents an element of the Julia set for the
map f(z) = 22. Indeed, the Julia set for this map is just the circle
of radius 1 centered at the origin.

In general, Julia sets take on far more intricate patterns
than mere circles. Roughly, the Julia set of ole map f(z) = 22
+ C consists of those points, z, that lie on the boundary
between the set of points whose iterates go LO infinity arld
those that don't. (More precisely, to mathematicians, it is the
closure of the set of repelling periodic points.) Hence Julia (
sets reside in z-space. On the other hand, the Mandelbrot set
is the seL of all values C Tor which the Julia set is connected,
s o the Mandelbrot set sits in C-space. For a far hller

-

Forth's interactive nature lends itself to work w i h graph-
its. My labors in his area led to a of applica~ons.
Some I was paid LO develop, others helped wilh my
dissertauon, but many I wrote just for fun. This article
discusses genesis of the graphics roulines in the light of
Juliam, an application1 sell that grew symbiotically alongside
the graphics routines.

Juliam
Juliarn craves a rich Forth environment. It requires a wide

range of graphics and floating-point routines, as well as a
professional menu system for construc2ing a friendly intcr-
Face. In addition, the graphics routines a l l o c a ~ ~ large (6 4 ~)
buf ' r s outside thc Forth systcrn, and support a variety of

discussion of Julia and Mandelbrot sets, see [21.
list below presents some of the features of Juliam

version 5.1 1. These items may give you an idea of some of
the routines I to imp1ement.

1) Real-time interactive graphic.cwatch the Julia set change
You the parameters.

2) Milnor/Thurston algorithm for the Mandelbrot set-more
detail than the common, forward-iteration algorithm.

3) Move a crosshair about on the Mandelbrot set and draw
the Julia set.

4) Move a resi7able rectangle on the screen and zoom in on
the image.

5) Save images to disk, complete with all pertinent param-
eters.

January 1993 February 16 Forth Dimensions

6) Create and watch mini-movies.
7) Support for a variety of graphics cards: CGA, EGA, VGA,

and many SVGA cards.

Graphics
The first public-domain Forth 1 tried was a version of

MVP-Forth. I used a DOS interrupt to put the computer in
graphics mode, and another to plot a single point. Both used
INTCALL (ax bx cx dx i n t e r r u p t -- ax) . Later,
I migrated to Laxen and Perry's F83 Forth, then the variants
Fg3S, F83SX, F83Y, Wi1 Baden's F83X, and finally Tom
Zirnmer's FF, F88 and F-PC. On MS-DOS machines, all BIOS
video is handled through interrupt $10 (a $ means hexadeci-
mal in F-PC). I N T S 1 0 below represents a simplified version
of INTCALL for use with F-PC, though the current routines
no longer use anything as general (or as slow).

{
CODE I N T $ 1 0 (ax bx cx dx --)

\ c a l l i n t e r r u p t $ 1 0

POP DX POP CX POP BX POP AX
PUSH B P I N T $ 1 0 POP BP

NEXT END-CODE

: VGA320 (--)

\ e n t e r VGA 3 2 0 x 2 0 0 2 5 6 - c o l o r m o d e

$ 1 3 0 0 0 I N T S 1 0 ;

: B .DOT .OLD (x y c o l o r --)

(c o l u m n r o w c o l o r --) /
$COO + -ROT 0 -ROT I N T S 1 0 ;

1

Of course it is faster to avoid the stack thrashing of
B .DOT. OLD. Here's the current BIOS version of B .DOT.

I
CODE B.DOT (x y co lo r --)

(c o l u m n r o w c o l o r --)

POP AX MOV AH, # $OC
\ A H = f u n c t i o n , A L = c o l o r

XOR BX, BX \ page
POP DX \ y - c o o r d i n a t e
POP CX \ x-coordinate

PUSH BP \ preserve BP register
I N T $ 1 0 \ c a l l B I O S

POP BP \ restore BP

NEXT END-CODE

1

It is even faster to bypass the BIOS and write directly into
video memory. Here's an example of a direct screen-writing
version of DOT for VGA mode $13 (320x200 with 256 colors).
Compare it with the slower B .DOT. (One disadvantage of
direct routines is that nearly every graphics mode requires a
different version.)

Forth Dimensions

I
\ vga m o d e $ 1 3 , 1 pe l /by te (3 2 0 x 2 0 0)

code v 3 2 0 . d o t (x y c o l o r --)

POP D I \ co lor i n d i
pop cx pop dx \ dx = x, cx = y
push es \ save E S

m o v ax, # $ a 0 0 0 \ video seg in m e m o r y

m o v es, ax \ w r i t e d i rec t ly t o m e m o r y

xor bx, bx \ base of b u f f e r
m o v bx, dx \ cx = r o w , dx = c o l
r n o v ax, # 320 \ pixe ls per r o w

c w d

m u 1 cx \ r o w s t o our dot
add bx, ax \ bx = offse t
m o v ax, d i \ d i = color (0 - 2 5 5)

m o v es: 0 [b x] , a 1 \ w r i t e p ixe l

P O P es \ restore E S

next c;
1

Even back when I worked in the MVP dialect, 1 taught a
class in Forth. One of my colleagues, Johnny Graves, audited
my course and wrote the high-level, line-drawing routine
DLINE. I-Iis code still turns up in public-domain Forth code
today. Iater, I cleaned it up and converted it to assembler for
speed. A year after Johnny, a talented student named Tim
Smith wrote some line-drawing routines in assembler for F83.
As with VGA32 0 .DOT above, Tim's code bypassed the BIOS
and wrote directly to video memory. As a result, it ran
significantly faster than the high-level DLINE.

At first, I only had access to CGA systems. Later, when
EGA and VGA became available, Mike Sperl (via the now-
defunct East Coast Forth Board) helpcd me port and optimize
the code further.

Juliam's accurate Mandelbrot set algorithm requires filled
disks, so I added these, too, along with the aspect ratios
necessary to achieve circles. This algorithm was first dis-
cussed in a papcr, which languished long unpublished, by
Milnor and Thurston, cach of whom has won the Fields
Medal-the equivalent of the Not~el prize for mathematics.
Their algorithm is an example of a distance estimator method
@EM). It uses a sophisticated technique to estimate the
distance from a given point to the Mandelbrot set. Then it
draws a disk centered at that point which contains no points
of the Mandelbrot set, and calls itself recursively on four of
the disk's boundary points. Thus the algorithm fills in all that
is not the Mandelbrot set.

To see the difference between the DEM algorithm and the
traditional one that so many other programs use, compare
Figure One (traditional) and Figure Two (DEM). Both depict
the Mandelbrot set.

To speed up the filled disk routines, I added some
optimized routines for horizontal lines. Inter, I wanted to
include a feature in Juliam that would allow a user to move
a crosshair about on the Mandelbrot set to select a value of
(; to generate a new Julia set. For maximum speed, 1
implemented optimized horizontal and vertical lines that
XOKed onto the screen. These lines also helped in a feature
that lets users move a resizable rectangle around on an image

17 January 1993 February

to select a region for zooming.
Some images take several hours to generate, so I needed

the ability to save them to disk. The key word for implement-
ing a crude (and slow) version of this graphic5 screen saving
is BIOS-READ-DOT. Given the coordinates of a pixel, it
returns the pixel color.

I
CODE BIOS-READ-DOT (x y -- color)

POP DX \ y-coordinate
POP CX \ x-coordinate
XOR BX, BX \ page 0
MOV AX, # $DO0 \ BIOS service number
PUSH BP
INT $10
POP BP
AND AX, # SOOFF \ clear AH to 00, so

\ that AX=AL is just the color
l P U S H END-CODE

Figure Om. Traditional. I
-. - . -

January 1993 February

1 I
In the current graphics package, all but some new SVGA

modcs now have routines that can save an entire image at

Forth Dimensions

once, rather than calling a routine like BIOS-READ-DOT.
Somc routines put the image in memory, for quickly saving
and restoring a screen during program execution; other
routines save to disk, for permanence.

It's funny how the first words that must be written to
develop a graphics package-words to enter graphics
modes-appear near the end of a completed graphics
package. As the graphics package migrated and grew, I
found that more and more words needed to be deferred, so
each graphics resolution required its own word to set all
these values. Thus, words like VGA320 that controlled
graphics modes, moved from the top of the graphics package
to the bottom. Furthermore, experience led to separating
these words into a part like (VGA320) to set all the
parameters, and another part GRMODE that aclually entered
graphics modes. This separation makes it possible to gener-
ate computations based on lhe graphics mode, without
actually entering the mode.

To make things more complicated, some systems de-
mand BIOS graphics, so each graphics resolution required
two words: one to set deferred words like LINE LO use BIOS
graphics, and the other LO set the words to use direct scrcen-
writing graphics. Typical examples are (VGA32 0 . D) to set

- Fgum TWO. ' E M ! -- -

*3 r .

k - --I
" E

4

Y
h

"E

. ---

--pi
- - - -- . -- -

the direct routines of VGA mode $13, and (VGA320. B) for
the BIOS routines.

The package contains words to facilitate switching be-
tween RIOS and direct techniques. DIRECT-GRAPHICS
switches all graphics modes to use the direct routines, while
BIOS GRAPHICS switches them all to use the BIOS ones.
The %S routines retain more compatibility, but signifi-
cantly less speed, than the dired routines.

Floating Point
My studies required not only graphics, but floating point.

True, many calculations could be performed with integer

arithmetic. After all, pixels have integer screen coordinates.
But I wanteda vocabulary that would make it easy to express
my ideas, and for that I required floating point.

At my first FIG conference in 1385, I met Roland Koluvec,
who kindly provided me with a hardware floating-point
package that a friend of his (Stephen Pollack) had written for
F83S. Later, I gave a copy of it to the Silicon Valley FIG library.
Since F8'3 worked with blocks, I put both the floating-point
and graphics routines in one large file that clearly indicated
the authorship of its various parts. Later, others extracted the

floating-point part and converted it to HFIXIAT.SEQ in Tom
Zimmer's Forths. In the process, some people came to
believe (erroneously) that I wrote the floating-point package.
?'his is not the case: I merely added a few extensions.
Unfortunately, the package had bugs in it and, as far as I
know, some of those bugs persist today in the current
incarnation, though I no longer have access to an 80x87 chip
to test his hypothesis.

Drawing fractals seems to be a good test for floating-point
routines. My experiments have helped me catch a variety of
errors in Bolo Smith's SFLOAT.SEQ-bugs whch Bob typi-
cally squashed within hours. Today, SFLOAT is an excellent
package with no known bugs.

VPSFLOAT is another high-quality, software floating-
point package for F-PC. It has a little more accuracy than
SFLOAT, but it is also slower. My work uncovered a minor
bug in it, too, which Jack Brown rapidly quelled. One day,
he has promised to convert a good hardware floating point
to F-PC, too. I look forward to that day.

After I had a floating point, I developed thc first version
of Juliam, which only drew Julia sets in those days, and so
was called JUL.IA.BLK in F83, and later JULIA.SEQ in F-PC.
You can get a version of the latter in the F-PC graphics
package.

using the Graphics Package
Applications must first select the graphics resolution by

setting the deferred word (R E S) , which prepares all the
parameters for the graphics mode without actually entering
it. For example:

Then the program should utilize either GRMODE or SET-
RES to enter the graphics mode. Here's an example:

I
: t e s t 1

[' I (VGA320) I S (RES)
\ set c u r r e n t g raph ic s mode, by s e t t i n g
\ t h e va lue of (M S) .
set-res \ e n t e r c u r r e n t g raph ic s mode
200 100 1 5 d o t
\ p l o t a p o i n t w i th coord ina t e s
\ (200,100) and c o l o r 15 (white) .
key d rop \ wai t f o r a key
t e x t \ r e t u r n t o t e x t mode

1

Better yet, use CHOOSE-RES (or the SVGA version,
RESMENU) to allow the user to select the graphics mode from
a menu of available modes, as in the next example.

{
: t e s t 2

choose-res \ set t h e va lue of (RES)
s e t - r e s \ e n t e r c u r r e n t g raph ic s mode

200 100 15 d o t
\ plot a p o i n t with coord ina t e s
\ (200,100) and c o l o r 15 (white) .
key drop \ wai t f o r a key
t e x t \ r e t u r n t o t e x t mode

I have only scratched the surface of the graphics package
and all that is possible with it. It includes things like turtle
graphics, VGA sprites, graphioi text fonts for positioning text
with pixel-level control, world coordinates, automatic h c -
tion plotting, VGA palettes, a flood fill, 3D to 2D transforma-
tions, and much more.

The graphics package is an ongoing project. I continually
imagine new features that would improve the package; the
ones I really need, I implement. As you cansce, many people
have contributed to Lhe development of the graphics and
floaling-point routines. If you are interested in adding a new
routine or improving an existing one, feel free to contact me
and I will work with you to integrate it into the graphics
package. Here are some ideas: the ability to save and read
GIF, PO(, PCL, or EPS files; diect support for more SVGA
cards; palette rotation; fast filled polygons; 3D hidden
surfaces with shading; and ray tracing. I am also interested
in any applications you write that employ aspects of the
graphics package. Drop me a line describing them. Better
yet, send me a copy.

References
1. Mandelbrot, Benoit B., 7he FractalGeometry ofNature, W.

H . Freeman and Co., 2nd edition, New York (1982).

2. Peitgen, I-Ians Otto, 7he Beauty of Fractals, Springer-
Verlag.

/ (Code begins on next page.)

In 7th grade. afriend taught MarkSmiley theessentials of Fortran while they sat
in a Daily Oueen. In 1979, he received a B.S. magna cum laude in mathematics
from Donison University, whorchcfirstexperienced computergraphicsvia BASIC
on a plotter for a PDP-11. In 1983, he attained an M.S. in mathematics from the
University of North Carolina. His thesis, under Dr. Sheldon Newhouse, lies in the
realm of dynamical systems/ergodic theory: Relations bctwccn HausdorffDimcn-
sion, Lyapunov Exponents, and Entropy.

Ho spent lhe next four years teaching at Auburn Univers~ly in Alabama, where
he wrote Fortran programs to draw pictures related to his research.. He used the
public-domainversion of MVP-Forth to teach Forth for the first time. He and some
of his students wrote the first bits of a graphics package, which he laler ported to
F83, F83X, FF, F88, and F-PC.

In 1987, Mark married Cathy (who has an M. S. in mathemalics). In 1990, he
achieved a Ph.D. in malhemalics from Auburn University. His dissertation is titied
Metric Dimensions of Fractals. He used F-PC to generate a number of images for
the dissertation.

Ho currently is an Assistant Professor in the Dcpartrncnt of Mathomatios and
Computer Science at Gouchcr College, near Baltimore, Maryland. He has taught
Forth at there, but teaches BASIC more frequently-which Icd him to write the
textbook Learning OuickBASlC Through VGA Graphics, (KendallIHunt Pub. Co.,
1992).

Forth Dimensions January 1993 February

-- - -. - -- -- -. -

"Graphics & Floating Point" codc.7 -- - - -. -- . .- - - - -.

\ Graphics Variables
va r iab le v res \ v e r t i c a l r eso lu t ion
var iab le h res \ horizonta l resolut ion
var iab le co lo r \ i n t h e range 0 t o #colors-1
va r iab le #colors \ number of d i f f e r e n t co lo rs
va r iab le vid.mode \ video mode
var iab le p a l e t t e \ t h e d e f a u l t p a l e t t e
va r iab le vchip \ video card chip set
var iab le b u f - s i z e \ s i z e of t h e graphics buf fe r
va r iab le v i d . seg \ video memory segment
$FA00 value bit-plane.size \ number of bytes t o read/wri te
va r iab le bytes/row \ used by d i r e c t graphics rou t ines
64000. POINTER BUF.SEG \ screen save buf fe r
\ F-PC uses POINTER t o a l l o c a t e memory from outs ide Forth.

\ P l o t t i n g P ixe l s
de fe r dot (x y co lo r --)
defe r color-dot (x y - -)
de fe r c l ip-dot (X Y - -)

de fe r xdot (x y co lo r --)
defe r cdot (co lor x y --)
defe r read-dot (x y -- color)

\ p l o t a p i x e l
\ uses value of COLOR f o r co lo r
\ uses value of COLOR f o r color
\ XORs a p i x e l
\ p l o t a p i x e l
\ re tu rn t h e color of a p i x e l

\ A l l l i n e s use t h e va r iab le COLOR a s t h e co lo r .
de fe r l i n e (x l y l x2 y2 --) \ draw a l i n e
de fe r x l i n e (x l y l x2 y2 --) \ XOR a l i n e
de fe r h l i n e (x l x2 y --) \ draw a f a s t hor izonta l l i n e
de fe r xhl ine (x l x2 y --) \ XOR a f a s t hor izonta l l i n e
de fe r v l i n e (y l y2 x l --) \ draws a v e r t i c a l l i n e
de fe r xvl ine (y l y2 x l --) \ XORs a v e r t i c a l l i n e
d e f e r n l i n e (x y - -) \ draws from cur ren t po in t t o
1
NLINE draws a l i n e from t h e current point t o t h e point on TOS.
Use MOVETO (x y --) t o s e t t h e current point before invoking NLINE t h e
f i r s t time.

The following words save and r e s t o r e graphics screens from video memory
save e i t h e r t o buf fe r o r t o disk, depending on t h e graphics mode

defe r SaveVid
1
Save t h e cur ren t graphics screen t o a temporary loca t ion . This locat ion may
be e i t h e r f i l e o r memory, depending on the graphics mode. (To save t h e
screen permanently, t h e graphics package provides BSAVE and "BSAVE.)
I
defe r RestVid \ Restore screen from temporary loca t ion .
d e f e r TEXT \ e n t e r t e x t mode (i -e . g e t out of graphics mode)
de fe r (bsave) \ used by BSAVE and "BSAVE t o save t o d i sk
de fe r (b r e c a l l) \ used by BRECALL t o view an image on d i sk

/ DEFER (RES) \ s e t graphics parameters

\ resolut ions: values f o r (RES)
DEFER (MED) DEFER (H I G H)
DEFER (VGA640) DEFER (VGA320)

DEFER (EGA)

!VMODE s t o r e s values f o r various resolution-dependent va r iab les .
This version of !VMODE assures t h a t t h e t r u e HRES i s s to red i n
OLD-HRES whether t h e image is square o r not . I .
t
: !WDE (vidmode hres vres #colors vidseg bufs ize vchip --)

VChip ! \ chip s e t
BUF.SIZE ! VID-SEG ! #COLORS !
VRES !
OLD-HRES ! \ save o ld hor izonta l resolut ion

I _ - - . - - -. . -. . .. -

January 1993 February 20 a Forth Dimensions

\ if image is square,
\ make the resolution square

=s @
ELSE

OLDHRES @
THEN
H m S ! VID-MODE !
Set-Aspect \ set the ASPECT, based on the current resolution.
Set-Pals \ set deferred palette words for current res
Set-White \ set various values for use in whiting and filling the screen

(vidmode hres vres #colors vidseg bufsize vchip)
: (VGA320.D) (--) 19 320 200 256 $A000 $FA00 VGA

! VMODE
$FA00 !> bitglane-size
hres @ bytes/row !
1 =: #PLANES
['1 v320 .dot is dot
[' I v32 0. xdot is xdot
[' I v320. cdot is cdot
['I v320.color-dot is color-dot
['I v320.clip-dot is clip-dot
['] bios-read-dot is read-dot
['I line320 is line
['1 xline320 is xline
[' I hline320 is hline
['1 xhline320 is xhline
['1 256vline is vline
['I x256vline is xvline
['I D.NLINE IS NLINE
[' 1 vid>buf IS SaveVID
['1 buf >vid IS RestVID
['] (cga-brecall) is (brecall)
['I (cga-bsave) is (bsave)
['] BUF-BSAVE IS BSAVE
['I WHITE-VGA IS WHITE-SCREEN
[' I FILL-VGA IS FILL-SCREEN
[' 1 (CLEAR-SCREEN-D) IS (CLEAR-SCREEN)

' (VGA320.D) IS (VGA320)

\ for "BSAVE

: (>BIOS)
['I B.dot is dot
['I B.xdot is xdot
['I B-cdot is cdot
[' I B. color-dot is color-dot
['I B.clip-dot is clip-dot
[' I bios-read-dot is read-dot
['I B.line is line
['I B-HOR-line is hline
['I B-VER-line is vline
['I B.xline is xline
['I B.xhline is xhline
['1 B.xvline is xvline
['] B .NLINE IS NLINE
[' 1 SLOW-WHITE-SCREEN IS WHITE-SCREEN
['I SLOW-FILL-SCREEN IS FILL-SCREEN
['] Set-Res IS (CLEAR-SCREEN) \ clear screen using INT $1C

(Cbde continues on next page.)

Forth Dimensions 21 January 1993 February

>VGA BIOS sets various deferred words for saving irrages in VGA and SVGA modes. I (-
: >VGA-BIOS (--)

(>BIOS)
Set-Write-Size \ set the Write-Size, #Rows/Write and

\ #Writes/Im for use in saving images
[' 1 SaveVGA-BIOS IS SaveVID
[' 1 RestVGA-BIOS IS RestVID
['1 (f ile>vga) IS (brecall)
[I] (vga>file) IS (bsave)
[' 1 COPY-IMAGE IS BSAVE

(vidmode hres vres #colors vidseg bufsize vchip)
: (VGA320.B) (--) 19 320 200 256 $A000 $FA00 3

! VMODE
>VGA-B 10s
I

\ (vG~320.B) IS (VGA320)

I
DIRECT-GRAPHICS makes graphics commands write directly to the screen.
~t is deferred, so that other modes may be patched in later.
1
DEFER DIRECT-GRAPHICS
: (DIRECT-GRAPHICS)

[' I (MED.D) IS (MED)
[' I (H1GH.D) IS (HIGH)
[' I (EGA.D) IS (EGA)
[I] (VGA320.D) IS (VGA320)
i l l (VGA640.D) IS (VGA640)
(RES) ; \ makes changes take effect

' (DIRECT-GRAPHICS) IS DIRECT-GRAPHICS
DIRECT-GRAPHICS

DEFER BIOS-GRAPHICS
: (BIOS-GRAPHICS)

['I (MED .B) IS (MED)
[' I (H1GH.B) IS (HIGH)
[' I (EGA.B) IS (EGA)
[' I (VGA320.B) IS (VGA320)
[' I (VGA640.B) IS (VGA640)
(RES) ; \ makes changes take effect

' (BIOS-GRAPHICS) IS BIOS-GRAPHICS

CODE MODE (n --)
POP AX
INT $10
NEXT C;

\ enter graphics mode n

1
The words STATOFF and SLOW below are necessary in F-PC to avoid the text
writing directly to the screen in graphics modes, which would result in
unintelligible garbage.

I {
1 : GRMODE \ enter the current graphics resolution

STATOFF SLOW
VID .MODE @ MODE ;

: SET-RES
(RES)
GRMODE

\ set appropriate values and enter the
\ current graphics mode

L - - -
January 1993 February 22 Forth Dimensions

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Plcasc cntcr your order on the back page of this form and send with your payment to the Forth Intcrcst Group.
All items have one p ice and a weight marked with # sign. Entcr wcight on order form and calculatc shipping based on location and delivery method.

"Were Sure You Wanted To Know ..." 1 FORML CONFERENCE PROCEEDINGS
FORML (Forth Modification Laboratory) is an educational

Forth Dimensions, Article Reference 151 - $4 W * An indcx of 1:orth articles, by kcyword, from Forth Dimemiom
Volumes 1-13 (1978-92).

forum for'sharing and discussing new o; .unproven ro
intended to bcncfit Forth, and is an educational forum trg,",":?
sion of the technical as cts of applications in Forth. Proceedin s
are a compilation of g e apers and abstracts presented at t i e
annual conference. FOR& is part of the Forth Interest Group.

1980 FORML PROCEEDINGS 310 - $30 2#
Address binding, dynamic memory allocation, local variables,
concurrency, binary absolute & relocatable loader, LISP, how to I0
manage Forth pryccts, n-level filc system, documenting Forth,
Forth structures, orth stnngs. 231 pgs

1981 FORML PROCEEDINGS 311 -$45 4#
CODE-less Forth machine, quadruple- recision arithmetic, Last
overlays, executable vocabulary stack, gala typing in Forth,
vectored data structures, using Forth in a classroom, yramid
files, BASIC, LOGO, automatic cueing language for mugmedia,
NEXOS--aROM-basedmultitasking operating system. 655pgs

1982 FORML PROCEEDINGS 312 - $30 4#
Kockwell Forth processor, virtual execution, 32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, numbcr-
input wordset, I/O vectorin , recursive data structures, program-
mable-logic compiler. 29Fpgs

FORML, Article Reference 152-$4 0# * An index of Forth articles by keyword, author, and date from the
FORML Conferencc Proceedings (198C-91).

FORTH DIMENSIONS BACK VOLUMES
A volume consists of the six issues from the volume year (May-April)

Volume 1 Forth Dimensions (1979-80) 101 - $15 1#
t 50 Introduction to FIG, thrcaded code, TO variables. fig-Forth.

I Volume 3 Forth Dimensions (1981-82) 103 -$ I5 1#
La t 5 Forth-79 Standard, Stacks, HEX, database, music, memory man-

agement, high-level interrupts, string stack, BASIC compiler,
recursion, 8080 assembler.

I Volume 6 Forth Dimensions (1984-85) 106-$15 2#
100 Interactive editors, anonymous variablcs, list handling, integer

solutions, control structures, debugging techniques, recursion,
semaphores, simple I D words, Quicksort, high-level packet
communications, China FORML.

Last:

Las

Las

FORML PROCEEDINGS 3 13
Non-Von Neuman machines, Forth instruction set, Chinese
Forth, F83, compiler & interpreter co-routines, lo &exponential
function, rational arithmetic, transccndentaf functions in
variable-precision Forth, portable file-system interface, Forth
coding conventions, expert systems. 352 pgs

:

- $30 2#

Last 10

Volume 7 Forth Dimensions (1985-86) 107.
100 Generic sort, Forth spreadsheet, control structures, pseudo-

intenupts, number editing, Atari Forth, pretty printing, wdc
modules, universal stack word, polynomial evaluation, F83
strings.

- $30 2#

Last 10

FORML PROCEEDINGS 3 14
Forth expert systems, consequent-reasoning inference engine,
Zen floating p in t , rtable graphics wordset, 32-bit Forth,
I IMlB Forth, N ~ O ~ b j c c t - o r ~ c n t e d rograrnming, dewm-
pller des~gn, arrays and stack variables. $78 pgs

Volume 8 Forth Dimensions (1986-87) 108.
100 Interrupt-driven serial input, data-base functions, TI 99/A,

XMODEM, on-line documentation, dual-CFAs, random
numbers, arrays, file query, Batchcr's sort, screenlcss Forth,
classes in Forth, Brescnharn line-drawing algorithm, unsigned
division, DOS file UO.

8 - $30 2#

Last 10
FORML PROCEEDINGS 316
Threading techniques, Prolog, VLSI Forth microprocessor,
natural-language interface, expert sy stem shell, inference engine,
multiple-inheritance system, automatic programming environ-
ment. 323 pgs

1 Volume 9 Forth Dimensions (1987-88) 109 - $20 2#
Las , 00 Fractal landscapes, stack error checking, perpetual date routines,

headless compilcr, execution sccurity, ANS-Forth meeting,

1987 FORML PROCEEDINGS 317 - $40 3#
Includes papers from '87 euroFORML Conference. 32-bit Forth, ~~~t 3 0
neural networks, control structures, AI, optimizing compilers,
hypertext, field and record structures, CAD comrnand languagc,

/ com~uter-aideh instruction. local variablcs. tran~cendental fun& object-oriented lists, trainable neural nets, expert systems.
/ tion;, education, relocatable Forth for 68000. 1 463 Pgs

1988 FORML PROCEEDINGS 318 - $40 2#
Includes 1988 Australian F O W L , Human interfaccs, sirriple
robotics kernel, MODUL Forth, parallel processing, Last l o

rogrammable controllers, Prolog, simulations, langua e topics,
fardware, ~ i l ' s workings &'l'ing's philosophy, Forth fardwarc
annlications. ANS Forth session. future of Forth in A1

L~~

/ Volume 11 Forth Dimensions (1989-90)

Volume 10 Forth Dirncnsioris (1988-89) 110-$20 2#

50 dRase file access, string handling, local variables, data structures,
object-oriented Forth, linear automata, stand-alone applications,
8250 drivers, scrial data cornpression.

a&cations. '310 pgs

tas.

t as

* - These are your most up-to-date indexes for back issues of Forth Dimensions and the FORML proceedings.

Fax your orders 510-535-1295

100 Local variablcs, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
search, phasc-angle differential analyzer, s o ~ t contcst.

Volume 12 Forth Dimensions (1990-91) 112 - $20 2#
, 1 00 Roorcd division, stack variables, c~nbcddcd control, Atari Forth,

optimizing compiler, dynarnic memory allocation, srnart RAM,
extended-precision math, intempt handling, neural nets, Soviet
I:orth, arrays, mctacompilation.

1989 FORML PROCEEDINGS 3 19 - $40 3#
Tncludcs papers from 89 euroFORM1.. Pascal to Forth,
extensibleoptimi~erforcompiling,3Dmeasurementwithobject- Last
oriented Forth, CRC polynomials, F-PC, Hams C cross-
compilcr, modular approach to robotic control, RTX rewm ilcr
for on-linemaintenance, modules, trainable neural nets. 43fpgs

1990 FORML PROCEEDINGS 320 - $40 3#
Forth in industry, communications monitor, 6805 development.
3-key keyboard, documentation tcchniqucs, object-oriented Last
programming, simplest Forth dccompilcr, error recovcrq', stack
operations, process control event management, control stmcturc
analysis, systems design course, group theory using Forth.
441 pgs

1991 FORML PROCEEDINGS 321 - $50 3#
Includes 1991 FOKML, Asilomar, euroFOKML '9 1,
Cseckorltrvakia and 1991 China FORML. Shannhri.
Differential File Comparison, LINDA cm a Simulated Network,

S 2 RISCin it all. A threaded Micropro ram Machine. Forth in
$etworkine.%orth in the Soviet Union. ~ O S M : A Forth String
Matcher, VGA Graphics and 3-D ~nimation, Forth and TSK
Forth CAE System. A lying Forth to Electric Discharge
Machining. MCS%-FOR)& S ingle Chip Computer. 500 pgs

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $90 4#
Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, F-PC, MVP-Forth. hnplementation
examples in high-level Forth andlor 8086188 assembler. Useful
commentary given for each entry. 504 pgs

THE COMPLETE FORTH, Alan Winfield 210 - $14 I#
A comprehensive introduction. including problems with answers
(Forth-79). 131 pgs

eFORTH IMP1,EMENTATION GUIDE, C.H. Ting 215 - $25 1#
eForth is the name of a I:orth model designcd to be portable to a
large number of the newer, more powerful processors available
now and becoming available in thenear future. 54pgs (wldisk)

M13 SOURCE, IIenry Laxen & Michael Perry 217 - $2Q 2#
A complete listing of F83, including source and shadow screens.
Includes introduction on getting started. 208 pgs

FORTH: A TEXT AND REFERENCE
Mahlon G. Kellv & Nicholas Spies
A textbook approach to Forth, with comprehensive references to
MMS-FORTH and the '79 and '83 Forth standards. 487pgs

THE FIRST COURSE, C.H. Ting 223 - $25 1#
This tutorial's goal is to expose you to the very minimum set of
Forth instructions so that you can start to use Forth to solve
practical problems in the shortest possible time. "... This tutorial
bas deveioped to camplement he ~ o r t h Course which skims too
fast on the clementaw Forth instructions and dives too auicklv in
the advanced topics in a upper level college microkmp;ter
laboratory. ..." A running F-PC Forth system would be very
useful. 44 pgs

T H E FORTH COURSE, Richard E. Haskcll 225 - $25 I#
This set of 11 lessons, called The Forth Course, is designed to
make it easy for you to leam Forth. Thc material was developed
over several years of teaching Forth as part of a seniorlgraduate
course in design of embedded software computer systems at
Oakland University in Rochester, Michigan. 156pgs (wldisk)

FORTH ENCYCLOPEDIA, Mitch Derick & Linda Raker 220 - $30 2#
A detailed look at each fig-Forth instruction. 327pgs

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25 2#
Good examples and applications. Great learning aid. poly-
FORTH is the dialect used. Some wnversion advice is included.
Code is well documented. 286 DES

FORTH NOTEBOOK 11, Dr. C.H. Ting 232a - $25 2#
Collection or research papers on various topics, such as image
processing. parallel processing, and miscellaneous applications.
237pgs

F-PC USERS MANUAL (2nd ed., V3,5) 350 -$20 1#
Users manual to thc pubhc-domam Fonh system optimized for
IBM PC/XT/AT computers. A fat, fast system with many tmls.
143 pgs

F-PC TECHNICAL REFERENCE MANUAL 351 -$30 2#
A must if you need to know the inncr workings of F-PC. 269 pgs

INSIDE F-83, Dr. C.H. Ting 235 - $25 2#
Invaluable for those using P-83. 226 pgs

OBJECT ORIENTED FORTH, Dick Pountain 242 - $35 1#
Implemcntauon of data structures. First book to make object-
oriented programming available to users of even very amall home
computers. 118 pgs

SEEING FORTH, Jack Woehr 243 - $25 1#
"...I wouldlike to share a few obsewations on Forth and computer
science. lha t is the purpose of h i s monograph. It is offered in the
hqxthat i t will broaden slightly the streamsof Forthliterature ..."
95 P P

SCIENTIFIC FORTH, Julian V. Noble 2.50 - $50 2#
Scient#c Forth extends the Forth kernel m the direcuon of
scient~fic problem solving. It illustrates advanced Forth
programming techniques with non-trivial applications:
computer algebra, roots of equations, differential equations,
function minimi7ation, functional representation of data (FFT,
polynomials), linear equations and matrices, numerical
integrationiMontc Carlo mcthods, high-spced real and complex
floating-point arithmetic. 300pgs (Includes disk with programs
and several utilities), IBM

n A C K COMPUTERS, T H E NEW WAVE 244 - $62 2#
Philip I. Koopman, Jr. (hardcover only)
l'resents an altemative to Complcx Instruction Set Computers
(CISC) and Rcduced Instruction Set Computers (RISC) by
showing the strengths and weaknesses of stack machines (hard-
cover only).

STARTING FORTH (2nd ed.), Leo Rrodie 245 - $29 2#
In this edition of Starting Forth--the most popular and complete
introduction to Forth-syntax has been expanded to include the
Forth-83 Standard. 346 pgs

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Norman Smith 270-$15 1#
This book is about an application language. More specifically, lt
is about how to write your own custom application language. 'The
book contains the tools necessary to begin the process and a
campletesamplelanguageimplementatim. [Guess whatlanguage!]
Includes disk with complete source. I08 pgs

ACM - SIGFORTH
The ACM SIGForth Newslettcr is published uarterly by the
Association of Computing Machinery, Inc. SIC% I orth's focus is
on the development arid refinement of concepts, mcthods, and
techniques needed by Forth professionals.

Volume 1 S ring 1989, Summer 1989, #3. #4 911 -524 2#
F-PC, ggssaly utility. curoForth, SIGForth '89 Workshop
summary (real-time software engineering), Intel 8 0 x 8 ~ .
Metacompiler in cmForth. Forth exception handler, string case
statement for UF/Forth. 1802 simulator, tutorial on multiple
threaded vocabularies. Stack frames, duals: an altemative to
variables, PocketForth.

Volume 2 #1, #2, #3, #4 912 - $24 2#
ACM SIGForth Industry Survey, abstracts 1990Rochestcr conf.,
RTX-2000. BNF Parser, abstracts 1990 Rochester conf., F-PC
Teach. Tethered Forth model, abstracts 1990 SIGForth conf.
Target-meta-cross-: an engineer's viewpoint, single-instruction
computer.

Volume 3, #1 Summcr '91 913a - $6 1#
Co-routines and recursion for tree balancing, convenient number
handling.

Volume 3, WZ Fall '91 913b - 56 I#
Postscript Issue, What is Postscript?, Forth in Postscript. Rcview:
PS-Tutor.

1989 SIGForth Workshop Proceedings 931 -$20 I#
Software engineering, multitasking, interrupt-driven systems,
object-oriented Forth, error recovezy and control, v~aua l memory
support, signal processing. 127 pgs

LIBRARY O F FORTH ROUTINES AKD UI'ILITIES,
James D. Tcrry 237 - $23 2#
Comprehensive collection of professional quality computer code
for Forth; offers routines that can be put to use in almost any Forth
application. including expert systems and natural-language
interfaces. 374 pgs

1990-91 SIGForth Workshop Proceedings
Teaching computer algebra, stack-based hardware, reconfig- 932 - $20 I#
urable processors, real-time operating systems. embedded
control, marketing Fonh, devclopment systems, in-flight
monitoring, multi-processors, neural nets, security control, user
interface, algorithms. 134 pgs

For faster service, fax your orders 510-535-1295

DISKS: Contributions from the Forth Community
' h e "Cmtributions from the Forth Community" disk library contains
author-submittd donations. general1 including source, for a variety
of computers & disk formats. ~ a c h f& is determined by the aulhor as
public domain, shareware, or use with some restrictions. This library
does not contain "For Sale" a lications. To submit your OWE contn-
butions, send them to the ~18Fublication.s Committee.

-

Prices: Each item below comes on one or more disks, indicated in
parentheses after the item number. The rice is $6mr disk or $25 for
any five disks. 1 to 20 disks = 1 #.

-
- .- -- .- - - . - .- . - . - - .- -

FLOAT4th.BLK V1.4 Robcrt L. Smith Cool - (1)
Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forrhs. IEEE short 32-bit, four standard functions, square
root and log. IBM.

Games in Forth
Misc. games. Go. TETRA. Life ... Source. IBM

A Forth Spreadsheet, Craig Iindley COO3 - (1)
This model spreadsheet first a eared in Forfh Dimensions
VII, 1-2. Those issues contain?ocs & source. IRM

Automatic Structure Charts, Kim Harris COO4 - (1)
Tools for analysis of la e Forth programs, first presented at
FORML conference. F% source; docs incl. in 1985 FORML
Proceedings. IBM

A Sim le Inference Engine, Martin Trac COO5 - (1)
Ascd on inf. engine in Winston & $om's book on LISP,
takes you from pattern variables to complete unification
algorithm, with mnnin commcntaryon Forth philosophy &
style. hcl . source. IS&

The Math Box. Nathaniel Grossman COO6 - (1)
Routines by foremostmath authorin Forth. Extended double-
precision arithmetic, complete 32-bit fixed-point math. &
auto-ranging text. Incl. graphics. Utilit~es for rapid
olynomial evaluation, continued fractions & lMonte Carlo

Factorization. Incl. source & docs. IIIM

AstroForth & AstrnOKO Demos, LR. Agumirsian COO7 - (1)
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an as~mavigation system in
AstroForth, calculates sky position of several objects from
different earth positions. Demos only. IBM

Forth List Handler, Martin Trac COOS - (1)
List rimirives extend ~ o n l to provide a flexible, high-
s e e l environment for AI. Incl. ELISA and Winston &
#om's micro-LISPas examples. Incl. source & docs. IBM

8051 Embedded Forth, William Payne C050 - (4)
8051 ROMmabie Forth operating system. 8086-to-8051
targrtc(mpilcr. Incl. source. Docs are in the lmok Embedded
Coniroller I,-or~h for the 8051 I:amiIy. IB\l

68HCll Collection cXf50 - (2)
Collection of Forths, Tools and Floaling Point routines for
the 681ICll contmller. IBM

F83 V2.01, Mike Perry & Henry Laxen
The newest version, orted to a variety of machines. Editor,
assembler, d e m m d r , metammpiler. Source and shadow
screens. Manual available separate1 (items 217 & 235).
Base for other F83 applications. I B ~ , 83.

F-PC V3.53, Tom Zimmer C200 - (5)
A full Forth system with pull-down menus, sequential files,
editor, forward assembler, metacompiler, floating point
Complete source and help files. Manual for V3.5 ava~lablc
separately (items 350 & 351). Base for other F-PC
applications. Req. hard disk. IBM, 83.

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201a - (2)
Forth classroom on disk. First seven lessor~s on learning
Forth, from Jack Bmwn of B.C. Institute of Technology.
IBM, F-PC.

VP-Planner Float for F-PC. Vl.01 Jack Bmwn c2m - (1)
Software floating- int engine behind the VP-Planner
s readsheet. 80-bit gmporary-real) routines with transcen-

I functions, number VO support, vectors to su ort
numeric co-processor overlay & user NANchecking. f&,

I F-PC.

PodtetForth V6.1, Chris Heilman
SmaUest complete Forth forthe Mac. Access to all Mac functtoi
Events, files, graphics, floating point, macros, create standalo
applications i d DAS. ~ a s c d 4 fi & Startin Forth. lncl. source
and manual. MAC, System 7.01 bmpa6abL.

Kevo V0.9b4, Antero Taivalsaari C360 - (1)
Cwnplete Forrh-like object Forth for +e Mac. -Object-Prototype
access toa~Macfun~m~,fdes,g~ph~~s,floatmgpo~nt,ma~ms.
create standalone a~plications. Kernel source not included,
extensive demo files, manual. MAC, System 7.01 Cmpatablc.

Yerkes Forth V3.6 C350 - (2)
Complete object-oriented Forih for the Mac. Object access to all
Mac functions, files, gra lcs. floating point, macros, create
standalone a lications. gel. source, wtorial, assembler &
manual. MAC! system 7.01 Compatable.

JLISP Vl.0, Nick D+kovsky C401 - (1)
LISP interpreter Invoked from Amiga JForth. The nucleus of the

reter . is the result of Martin Tracy's work. Extended to allow
the ASP Interpreter to link to and execute Forth words. It can
communicate with JForth's ODE (Object-Development
Environment). AMIGA, 83.

Pygm V1.4, Frank Sergeant c!OO
lean, fast I:o& with full source code. Incl. full-screen ehtor,

assembler and metacompiler. Up to 15 files open at a time. IBM.

Wor th , Gu Kelly C600
A full 6orth system with windows, mouse, drawing and modem
packagcs. Incl. source & docs. IRM, 83.

ForST, John Redmond C700 - (1)
Forth for the Atari ST. Incl. source & docs. Atari ST. I

Mops V2.2. Michael Hore 0 1 0 - (2)
Closecousin toYerkes andNeon. Veryfast. com iles subroutine-
threaded & native code. Obiect oriented. Uses f-P co-~rocessor
d resent. t~ullaccess to ~ a c toolbox & s \rent ~ u ~ ~ o r i . ~ S skm
7 f ~ . ~ . . AppleEvents). Incl. assembler. l&s & source. MKC

BBL & Abundance. Roed Green C800 - (4)
I3~1,~ublic-domain, &-bit ~ o r t h withextensive support of DOS,
meticulously optimi7zd for execution speed. Abundance is a

ublic-domain databaselan uage written In BBL. Re hard disk.
kcl . source & docs. IBM I ~ D , hard disk require%

WE HAVE CHANGED THE
WAY YOU CALCULATE

2) We have removed the cost of shipping
from the price of the items.

3) We have given you a better choice of
shipping methods and rates.

I

Back issues of Forth Dimensions
and FORML Conference Proceedings

are going out of Print!!

1) We have leveled the pricing for FIG
items to all members.

1 I

For faster service, fax your orders 510-535-1295

fig-FORTH ASSEMBLY LANGUAGE SOURCE MORE ON FORTH ENGINES -
Lislinrs of fir-Forth for specific CPUs and machines with campiler security and

variatkleng% names (s& lmlallnlion ifan jw): -$I5 I #

6502
6809

- March 81
Apple I1 521 - August 81

8080

308 - $2.5 I#

agsdale, internal

MISCELLANEOUS
T-SHIRT "May the Forth Be With You" 601 - $12 1#

c* size: Small,Medium, Large, Extra-Iargeonorderform) @ lte design on a dark bluc shirt.

POSTER (Ocl., 1980 BYTE cover) L@s t 1 O

FORTH-83 HANDY REFERENCE CARD 683 - free

FORTH-83 STANDARD 305 - $15 1#
Authoritative description of Forth-83 Standard. For reference, not
instruction. 83 pgs

BIBLIOGRAPHY OF FORTH REEXRENCES 340 - $18 2#
(3rd ed., January 1987)
Over 1900 references to Forth articles throughout computer
literature. 104pgs

Volume 10 January 1989 810- $15 1#
R? re rints from 1988 Rochester Forth Conference, ohject-
onenteb)cmForth, lesser Eorth engmes. 87 pgs

Volume 11 Jul 1989 811 -$ I5 I#
RTX supplrnent to Fuulsleps in an Empty Valley, SC32,32-bt
Forth engine, RTX interrupts utility. 93 pg,r

Volume 12 A riI 1990 812 -$I5 1#
ShBoom &i architecture and instructions, Neural Corn uting
~ c d u l e ~ ~ h R 2 3 2 , ~ i g F o n h , binary radix son m 80286, tf8010,
and RTX2MX). 8 7 p g s

Volume 13 October 1990 813 - $15 1#
PALS of the RTX2000 Mini-BEE. EBForth, AZForth, RTX-
2101,8086 eForth, 8051 eForth. 1 0 7 p g s

Volume 14 814 - $15 1#
K1X Pocket-Sc eFo& for muP20, ShBoom, cFotth for CPI

or cForth. 116 pgs M & Z80. XMO%:M f

Volume 15 815 - $15 1#
Moore: New CADSystem for Chi Design, Aponrait of theP20;
Rible: QS1 Forth Processor, QS$ RISCing it all; I20 eForth
Software Simulator/Debuggcr. 94 pgs

Volume 16 816-$15 1#
OK-CAD System, MuP20, eI;orth S srtm Words. 386 eForth,
80386 Protected Mode Operation, F+!P 1600 - 16Bit Real Time
I'rocessor. I04 pgs

DR. DOBB'S JOURNAL
Annual Forth issue, includes code for various Forth applications.
Sept. 1982 422 - $5 1#
Sept. 1983 423 - $5 1#
Sept. 1984 424 - $5 1#

FORTH INTEREST GROUP
1 P.O. BOX 2154 OAKLAND, CALJFORNIA 9462 1 510-89-FORTH 510-535-1295 (FAX)

Name Phone --
U.S. Domestic Postage Rates . S:f;& I 2 day Rmnty

Company Fax $1 501#

Street eMail - AIR MAlL

Citv -

CHECK ENCLOSED (Payable to: FIG) Sub-Total

VISA 0 MasterCard 10% Member Discounf Member #
Card Number +*Sales Tax on Sub-Tola1 (CA only)

Signature Postage: Rate
*Membcrshp in the Forth Interest Grou

Expiratmn Date - MEMBERSHIP C j New =Renewal $40~46~92

S tate/Prov. Zip - - r-1- I ma 1 $225 1 S L
/ $1 00 1 S6pO 1 $450 _

Country I $100 $8.00 1 sfiw

*MEMBERSHIP IN THE FORTH INTEREST GROUP
TheForth Interest Group (FIG) isaworld-wide, non-profit, member.supportedorgan~zationwith over 1,500membersand40chapters. Yourmembershipincludes asubscriptiontothebi-monthly magazine
Forfh Dimensions. FIG ako offers its members an on-line data base. a large seiection of Forlh llerature and other services. Cost is $40 per year for U.S.A. & Canada surface; $46 Canada air mail;
all other countries $52 per year. This fee includes $36142148 for Forth Dimensions. No sales tax. handling fee. or discount on membership.
When you pin, your first issue will arrive in four to six weeks; subsequent issues will be rna~led to you every other month as they are published-SIX issues in all. Your membership ent~tles you to a 10%
discount on publications and functins of FIG. Dues are not deductible as a chartable contribution for U.S. federal inmme tax purposes. but may be deductible as a business expense.

Item #

MAIL ORDERS:
Forlh interest Group
P.O. Box 2154
Oakland, CA 94621
PHONE ORDERS:
51 0-89-FORTH Credit card
orders. customer service.

PAYMENT MUST ACCOMPANY ALL ORDERS
TIME:

T~tle

PRICES: All orders must be prepaid. Prices are POSTAGE:
Books in stock are shipped

subjpd to change without notice. Credit card orders All orders calculate postage as
within seven days of receipt of

will be sent and billed at current prloes. Checks must number of xs times selected :,"e:LdEi :,:.zt,":fi::
be in U.S. dollars. drawn on a 3.S. bank. A f 10 postage rate. Special handling (deliveries in most cases will be
charge will be added for returned checks. available on request. mllrh ~nnnclr)

I I I"-... -"-.I .-.I ,.
For faster service, fax your orders 510-535-1295

Qty.

7.5%: Sonorna; 7.75%: Fresno, Imperial,
Inyo. Madera. Monterey. Orange. Riverside.
Sacramento. San Benito. Santa Barbara. San
Bernardino. San Olego, and San Joaquin:
8.25%: Alameda. Contra Costa. Los Angeles
San Mateo, Santa Clara, and Santa Cruz;

XIV-5

Unit Price Total #

1 FIG Debriefing:

Embedded 1 ive, and sent us, on very short notice, the "free pass" mailers
to go out in our newsletter. At our chapter meeting the month
before the conference, I s~aned UP w o d e to staff the booth.

Santa Cruz, California

ce

FIG was offered a booth at this year's Embedded Systems
Conference "as an experiment" by the promoter, Miller-
Freeman Publications I took on the challenge to make it
successful and succeeded, learning a lot in the process.
We've been invited back next year, when it will be even
better! What follows is an account of the process, in the hopes
that other chapters will decide to do the same at conferences
in their area.

The goal of our participation was to provide information
about Forth to people outside the current user community.
To achieve that at this conference meant showing Forth in
embedded applications. Since F-PC and eForth don't address
this area directly, I wanted to include vendors as much as
possible, to show non-Forth users what was possible. To
increase the excitement, I wanted a rame and demonstra-
tions. And I needed people to staff the booth. We also wanted
to let chapter members know that they could gct into the
exhibits (and the parties!) free. No selling is allowed at this

?'hen I calledeach of them the weekbefore to confirma. Most
everybody showed up, some even for much more than
they'd agreed to a was fun1 I got the Forth Interest Group
office (they're local for us) to donate a couple of books for
the raffle, make coples of FIG menibershp apphcat~ons, and
help out at the booth some, too 1 made up busmess-card

1 I wanted to include vendors
and show non-Forth users
what was possible.

sized name-address-phone cards for people without busi-
ness cards who wanted to enter the raffle, along with a sign
for the jar.

I went the whole first day and half of the last day, to
coordnate setup and cleanup. l'he hall had strict labor union
requirements, so all the brochures were carried in and out by
hand (or else thqdo it at $45/hour, one hour minimum) and
the booth was set up without tools (same "or else"). We used
wire racks to display vendor literature at one end, had FIG
info, the .EE Times "Forth in Space" articlc, "A Brief Intro to
Forth" by Phil Koopman, Jr., and the raffle jar in the middle;
and the vendor demo at the other end. We usually had two
chaptcr members in the booth, with one or two vendor folks
as well. The aisles wcrc gcncrally full, with people stopping
almost continuously. It was very relaxed, though: people
took breaks as desired and the staffing schedule was revised
as each day went on.

After the show, I drew the winners from the raffle jar,
packaged up the systems and sent them off. IJPS was
cheapest in the United States, and the U S Postal Service for
England! The winners were.

Monday's FIG book: Ian David, I,ondon, U.K.
Tuesday's FIG book: Gary W. Dow, San Jose, CA
Wednesday's FIG book: Doyle Kisler, San Jose, CA
Vcsta system: Ron Palmieri, Daly City, CA
NMI system: Lennart Suurik, Sunnyvale, CA
AM Research system: Richard Tobias, San Jose, CA

A1 Mitchell of AM Research volunteered to enter the raffle
names on disk. I contacted a couple ofvendors to arrange the

January 1993 February

show, so there would be no piles of disks and books to worry
about.

So 1 called all the vendors I could think of who did cross-
compilers or boards, about a dozen in all. I was overwhelmed
by the enthusiasm! All of them wanted to participate, and in
some cases were surprised that 1 didn't want to charge them.
'I'hree vendors (AM Research, New Micros, andvestal agreed
to donate a board in return for the names of h e entrants.
'I'hree vendors (AM Research, 1:orth Inc., and Mosaic Indus-
tries) agreed to demonstrate their systems, one each day. I
arranged to have the literature sent to me thc week before the
show, guessing that 2W300 copies of brochures would be
abou~ right, ten per cent of the expected number of
attcndccs. Since table spacc was limited, they were restricted
to just one or two items each.

The pcople at Miller-Freeman were wonderfully support-

-
return of a lot of their expensive brochures. When the disk
with the names arrived, I made copies and sent them to FIG
and the donating vendors. I sent thank you letters to all the
vendors as well.

Next time, I won't be so optimistic about how many
copies to have: although there were 150 cards in the raffle jar,
only 50-100 copies each of the various brochures were
taken! I'll also collate the vendor brochures and slip them into
a 17x11 folded sheet with FIG, local chapter, and the Intro
to Forth information on it, so there's just one pile of info and
more room for books and demonstrations. I hope that, by
starting earlier, we'll be able to get the "free pass" out with
Forth Dimensions. There won't be an X3J14 meeting to
interfere with getting thank-you's out to the vendors. And I
won't mistakenly have my home address embossed on the
exhibitor badges!

See you there.
Forth Dimensions 23

Placing Characters
on the Screen
San Mateo, California

D'he last tutorial demonstrated how to define newcommani&
and how to use the string-printing Junclion . " lo generate
block lelten on the disphy-Ed.]

In this lesson, we will try to write block characters
anywhere on the screen. The screen displays charac~ers in
25x80 format, that is, 25 lines with 80 characters per line. The
following instructions allows us to position the cursor before
writing characters:

dark Clear screen and put cursor at topleft corner.
a t Move the cursor to specified screen location,
40 1 2 a t e.g., put the cursor atthe center ofthescreen.

The following instruction puts a block-letter F at the
center of screen:

: newBar
: newPost
: new-F

dark
38 10 a t newBar
38 11 a t newPost
38 12 a t newBar
38 13 a t newPost
38 1 4 a t newPost
3P 15 a t newPost
c r

But it is very awkward to place a character by specifying
the location of each of its separate elements. A more general
way to place characters is to use variables to store the
location, so that information isn't mixed in with the instruc-
tions that generate the character itself.

v a r i a b l e x
v a r i a b l e y
: newLine
x @ y @ a t \ move cu r so r t o x ,y l o c a t i o n
1 y +! \ increment y f o r next l i n e

newLine newBar
newLine newPost
newLine newBar
newLine newPost
newLine newPost
newLine newPost

Now to place F on the screen, we first specify its location:
3 0 x ! 1 0 y ! F

We have just used several more Forth instructions:
v a r i a b l e <name> Define a variable where numbers

can be stored and retrieved.
@ (var -- d a t a) Fetch the number stored in a

variable.
! (d a t a v a r --) Store a number into a variable.
+! (d a t a v a r --) Add a numberto thevalue stored

in a variable.

: F-demo
da rk
O x ! O y ! F
7 0 x ! 1 0 y ! F
1 0 x ! 1 8 y ! F
4 0 x ! 1 5 y ! F

Exercise One. Define a new instruction to clear the screen and
put the message FORVIat the center of the screen in block
characters.

: b a r
: p o s t
: t r i a d 1
: s i d e s
: t e t r a
: duo1
: duo2
: duo3
: c e n t e r

January 1993 February Forth Dimensions

newLine t r i a d l
newLine sides
newLine s i d e s
newLine s i d e s
newLine s i d e s
newLine t r i a d 1
I

newLine t e t r a
newLine s i d e s
newLine t e t r a
newLine duo2
newLine duo3
newLine sides

newLine b a r
newLine c e n t e r
newLine c e n t e r
newLine c e n t e r
newLine c e n t e r
newLine c e n t e r

newLine sides
newLine sides
newLine bar
newLine s i d e s
newLine sides
newLine sides
,

: FORTH dark
2 5 x ! 1 0 y ! F
3 2 x ! l O y ! O
3 9 x ! l O y ! R
4 6 x ! 1 0 y ! T
5 3 x ! 1 0 y ! H

: demo FORTH 20 8 62 1 7 box 0 21 at ;

Exercise Two. Design a message yourself and display it at the
center of the screen.

Dr. C.H. Ting is a noted Forlh authority who has made many significant contribu-
tions to Forth and the Forth Interest Group His tutorial series will continue in
succeeding issues of Forth Dimensions.

New Contest Announcement

Call for Papers!
Forth Dimensions is sponsoring a

contest for articles about

"Forth Development Environments"

Write about:

libraries, source management, user interfaces,

platForm/machine/kernel independence,

other topics suggested for this year's FORML
conference, or issues not specified here which,

nevertheless, relate to the general theme.

Entries will be refereed. Papers to be presented at FORML
are eligible, but must be completed and received at our
office by the contest deadline.

Mail a complete hard copy and a diskette
(Macintosh 800K or PC preferred) to the:

Forth lnterest Group
P.O. Box 2154 * Oakland, California 94621

-
Cash awards to authors:

1st place: $500
2nd place: $250
3rd place: $1 00

I Deadline for contest entries B August 1. 1993. I
Advertisers Index

1

renew or to extend your subscription. Mail or
fax the mail-order form in this issue, or call
the Forth Interest Group at 510-893-6784.
Your comments are welcome.

Good things are coming, and your continued
participation as a reader of Fo& Dimcions
is imnortant to us. Please take a moment to

Harvard Softworks42
Laboratory Microsystems35
Miller Microcomputer Services 12
Silicon Composers..2

The Computer Journal35
.................................. FORML Conference .44

................. Forth Interest Group .25, centerfold

I L

Forth Dimensions 25 January 1993 February

Principles of
Metacompilat ion
B. J. Rodriguez
Hamilton, Ontario, Canada

J. Compiler Directives (IMMEDIATE words)
Most of Forth's control structures are implemented as

compiler directives: IF ... ELSE ... THEN, BEGIN ...
UNTIL, BEGIN . . . WHILE . . . REPEAT, DO ... LOOP. These
words are executed, rather than compiled, at compile time,
and are known in Forth as IMMEDIATE words.

Forth also allows the programmer to create new compiler
directives by defining words with the IMMEDIATE attribute.

1. Use
The Forth compiler directives are used in the same

manner when metacompiling as when compiling "nor-
mally". For example:

: name
word word I F word word THEN ;

However, the definition of a compiler directive-an
IMMEDIATE word-is somewhat dfferent in the meta-
compiler. This is because two sets of actions need to be
defined. First, the word's action when execuled in the
Target system, as part of the metacornpiled application.
Second, the action the metacompiler must take when it
encounters the word.

Consider the I F . . . THEN example. Suppose a new
Forth kernel is being metacompiled. The result of the
metacompiler is a dictionary of words, including a com-
plete Forth compiler, that will run on the Target system.
Later, the programmer using the Target system will write
programs with IF . . . THEN. So, a "Target" action for I F and
THEN must be part of the Forth kernel.

But the Porth kerncl itself contains many IF . . . THEN
constructs! Thcse must be recognized by thc metacompiler
while the kerncl is being compilcd, and the appropriate
branches and branch offsets for the Target machine must
bc compilcd into the Target image. So, a "Host" effect on
thc Target image must also be defined for I F and THEN.

The same holds true for any IMMEDIATE word in the
Target application.

a) Defining the Target action
This is straightforward. The Target's action is defined

just as any other Forth word to be executed in the
Target, i.e., as a colon or CODE definition. The only
difference is that h e "precedence bitn in he name
must be set, to indicate that the word is IMMEDIATE.

T h e metacompiler's IMMEDIATE (in the HOST vo-
cabulary) will set the prccedencc bit of the last word
defined in the Target image.

So, the Target action is written:

: name
word word ... word ; IMMEDIATE

b) Defining the Host action
The Host action must be defined, in words known to
the Host, describing what operations are to be per-
formed on the Target image.

This is specified after the Target word is defined, using
the word ACTS : to specify the Host action, and the
word IMPERATIVE to indicate that it is a compiler
directive.

: name
word word . . . word ; IMMEDIATE

HOST ACTS:
host-word host-word . . . ; IMPERATIVE

Generally, the "host-wordy" will be words from the
mctacompilcr lexicon, which act on the Target image.

c) Defining a Target action only
It is possible to envision a case where a Target version
of a compiler directive must be metacompiled, but the
Host action is not needed.

For example, suppose a new Forth kernel is to be
created which includes the unsigned loop word
/LOOP. The eventual user ofthe Target Forth willwant
to use this word. But this word is used nowhere within
the Forth kernel, so a Host action for /LOOP is no1

January 1993 February Forth Dimer~sions

needed-the metacompiler will never be called upon
to use il.

In this case, the HOST ACTS : ... IMPERATIVE: clause
may be omitted.

dl Defining a I I a t action only
It is also possible to cnvision a case whcre a IIost
action, but not a Target action, is required for a
compiler Irective.

For example, consider an embedded, "sealed" appli-
cation, such as a microwave oven wriuen in Forth and
burned into PROM. Obviously, thc end application
will have no terminal, no programmer, and no means
of extending the program. In such a case, the sizable
part of the Forth kernel which implements the com-
piler can be onitted. And, with no means of compiling,
there is no need for compiler directives.

What is needcd is merely a word which executes in the
Host. Such a word is definedwith the "nativen : (colon).

HOST
... : name host-word host-word ;

Ohe word IIwERATIVE is not required.) This word
will be defined in the "mirror" vocabulary which has
last been selected for DEFINITIONS, amidst all of the
mirror words. So, although this word will reside in the
I-Iost's memory, it will appear in the Target's

compiling environment is:

: IF COMPILE OBRANCH HERE 0 , ;
IMMEDIATE

: THEN HERE OVER - SWAP ! ; IMMEDIATE

First, the expiicil instructions to h e Host, to have this
effect in rhe Target image, must be defined.

I F in the lIost must compile the Target's OBRANCH.
Assuming, for the moment, the existence of a word such as
TCOMP ILE:
TCOMPILE OBRANCH

l h e target's Dictionary Poinler must be stacked:
HOST HERE (recall that this is the Target DP)

Then the empty cell must be left for the offset:
0 T,

The branch will be resolved when THEN is encountered.
Thc Target address of the off<set cell is still on the stack. The
current Dictionary Pointer is obtained:
HOST HERE

Then the offset is calculated in the Host.. .
OVER -

.and the result is stored in the Target irnagc, at the address ..
of the offset cell:
SWAP T !

search order-xacrly the desired effect! 1 ~igure Eight. Ccmpiling IF ... THEN (compiler directives). 1
2. I m p h e n t m

Building a compiler directive which will be used
by the Target is straightforward. An ordinary colon
or CODE definition is compiled in the Target image.
Then, a special version of IMMEDIATE is executed
by the Host whose function is to set the precedencc
bit in the Target image, in the last defined Target
word. This is, of course, found from the LATEST
which is maintained for the Target.

Building the compiler directive which will be
used by the metacompiler is somewhat more in-
volved. Bearing in mind the First Rule of Metacompiler
Design, this discussion will focus on the concrete
example of compiling the Forth phrase

IF FOO BAR THEN

Figure Eight shuws the data which must be
conlplled into Lhe Target image by this phrase. IF
must compile the Target's OBRANCH, a CODE word,
and leavc space for an offset. FOO and BAR, being
ordinary Forth words, compile normally. THEN
resolves the branch by patching h c correct offset
after the OBRANCH.

'fie Forth code to acconlplish this in a resident

In Unormaln Forth...

Usually done by:

... ... 1.F FO-0 BAR T U N ---... -- .-.*.- ./."".
..... I-'A ""-..-L

: I (-- a) COMPILE ORRANCH
HERE 0 , ; IMMEDIATE

...

: THEN (a) HERE OVER -
SWAP ! ; IMMEDIATE

The Forth word IMMEDIATE means, when in
compiling state, to execute this word instead
of compiling its CFA.

--.

CFA of

OBRANCH

To compile for the target ...
we would like the compile-time action to be like: ...

TCOMPILE OBRANCH T-HERE 0 T,

o f f s e t
t o skip

I I I

Forth Dimensions 27 January 1993 February

CFA of
FOO

CFA of
BAR

...

The problem of writing a TCOMP ILE was glossed over
in this discussion, its function is to compile the following
word-which is a Target word-into the Target image. But
this is exactly the action of a mirror word. So the metacom-
piler need only ensure that the mirror word OBRANCH is
executed, and not the Host's "native" OSRANCH. This is
done:
TARGET OBRANCH

When does the Host perform these actions? When it
attempts to "compile" the words I F and THEN into the
Target-i.e., when the metacompiler parses the words IF
and THEN and attempts to execute their mirror words.
(Recall that mirror words, when executed, compile their
Target equivalents.) All that is necessary to change these
words from "words which are compiled into compiler
directives, is a change in the run-time action of their mirror
words in the Host.

Forth provides a mechanism for changing the run-lime
action of a word: DOES>. This implementalion uses the
Forth-79 DOES>, which acts by changing the CFA of the
word in question. The new CFA points to a shorl machine
code subroutine (DODOES>), which re-enters the Forth
interpreter for the high-level code which follows.

So the Host word ACTS: should immediately execute
DOES> to change the CFA of the latest wor6-a mirror

3. AlternatWs
a) The absence of executable mirror words

As noted, some metacompilers do not execute their
mirror words, or don't maintain a mirror vocabulary at
all. In these metacompilers, the actions of all thelarget
compiler directives must be explicidy coded as pad of
the metacompiler (usually in the TARGET vocabulary,
or its equivalent).
Some of these metacompilers have diff~culty a d h g new
compiler directives, once the metacompiler is complekly
laded.

K. Defining Words
One of Forth's most powerful features is the ability to

creatc new classes of words. A new class is described by a
Forth "defining word," so named because it will bc used to
creatc the new Forth words whidi are rrlembcrs of thc class.

Defining words are among the most powerr~ll tools of
the skillful Forth programmer, so it is a pity that many
metacompilers provide little or no means of including them
in a metacompiled application. Not so the Image Compiler.

1 . 7 1 ~
A brief refresher on defining words is in order here.

Defining words use the <BUILDS ... DOES> construct in
fig-Forth; CREATE .. . DOES> in Forth-79 and Forth-83.

word I F is shown in
Figure Nine.

The advantages of
metacompiling by ex-

(next section) will in-
troduce some new

ecuting mirror words
should now be appar-
ent !

This is not exactly
how the In iag Corn- I

piler handles compiler

twists inlo lhe action of
mirror words, and this
will be reflected in the
handling of compilcr
directives.

word-and compile

...

January 1993 February

lhe machine
code. It then enters the
compiling state in the
Host to compile the
words which describe

that mirror word.
The result, for the

the Host's action for

directives. The prob-
lem of Defining Words I

......- ...-
....--- x"'

TARGET IMAGE--. A_.-.---"

_......-. .,..---

2

...

precedence bit is set in the target

Figure Nine. Compiling IF . . . THEN.

HOST

address of
target's 0

TARGET : I F COMPILE OBRANCH
HERE 0 , ; IMMEDIATE

DODOES>

I F

HOST ACTS: TCOMPILE OBRANCH
HERE 0 T, ;

2

address of
target's ,

I
L- We need an IF to run ~n the target, and one for the host.

- - -. -. - - -

28

address of

link

IF link

.- J

Forth Dimensions

\... ...-

address of

address of
target's ; s

"'

CFA address of
target's IF

address of tar-
get's COMPILE

...

...

machine code

address of tar-
get's Oa-CH

address of tar-
get's HERZ

TCOMPILE OBRANCH

Figure Ten. Defining words. I
-. - - -

: CONSTANT
<BUILDS , DOES> @ ;

6 4 CONSTANT C/L

: .L INE ... C / L TYPE ;

: F I E L D DUP + CONSTANT ;

Definition of CONSTANT for
target m a c h i n e to use.

1. Host Uses CONSTANT to
define a word in t h e target.

2. Host uses a defined word
(c/L) interpretively.

3. Host compiles a defined word
into a definition in t h e target .

4. T h e word CONSTANT is
compiled into a target definition,
for later execution by t h e target.

In general, we need to code:
1. a <BUILDS action for t h e h o s t to use
2. a DOES> action for t h e h o s t to use
3. a DOES> action for t h e target to use
4. a <BUILDS action for t h e target to use

- . - - -- . -- .-

Three "sequences" are involved in their creation and use [71:
Sequence One is when h e defining word is itself built.

This happens once.
Sequcnce Two is when the defining word is executed.

This causcs a "defined wordn-a member of thc c l a s e t o
be bullt. This may happen many times, each time adding
a word to the dictionary. 'l'he action to be taken during
Sequcnce Two is specified by the <BUILDS clause.

Sequence 'lhree is when a defined word is cxccuted.
The action which is taken during Scquence Three-the
common action of he new class-is specified by the
DOES> chusc.

An example of a defining word is CONSTANT (Figure
Ten). CONSTANT is itself a colon definition (Scquence
One). Each time CONSTANT is executed (Sequcnce Two)

I it defines a new word, a named constant. The action of a
1 named constant (Sequence Thrce) is to put its integcrvalue

on the stack.
Observe, in Figure Ten, the many ways a defining word

and its "children" may be used while metacompiling a
! Forth kernel:

a) The Host may perform the defining action, e-g., to
create a CONSTANT which is in the kernel.

b) The Host may need to execute a defined word, e.g.,

i toget the value of one oftheTarget kernel's CONSTANTS.
C) 'l'he Host may need to compile a defined word into a

Target colon definition.
d) The Host may need to compile the defining word itself

into another colon definition. (This is not uncommon;
many classes are built using CONSTANT and specify-
ing a different DOES> clause.)

Of coursc, in this cxamplc
of a new Forth kernel, the
eventual user of the Targct
system will need all the com-
ponents of the defining word.

To cover all contingencies,
the metacompiler mustbe able
to define:

a) a <BUILDS action for
the Host to use;

b) a DOES> action for the
Host to use;

c) a <BUILDS action for
the Target to use; and

d) a DOES> action for the
'l'arget to use.

?he Image Compiler syntax
for all of Lhese operations is:

: name <BUILDS word word word (c)
DOES> word word word ; ' (d)

HOST ACTS: word word word (a)
HOST DOES> word word word ; (b)

Any of these clauses may be omitted. ParLicular in-
stances where this would be useful are:

a) The Host <BUILDS is not nccded if this defining word
will not be used during the metacornpilation. For
example, 2CONSTANT could be included in thc kcr-
nel; but it is not used during the compilation of thc
kcrnel.

b) 'l'he Host DOES> action 1s not needed if no defined
word will be used interpretively during Ihc metacom-
pilation. For example, C / L is defined in the fig-Forth
kernel, but its only use is when it is compiled into
Target colon definitions.

c) The Target <BUILDS action is frequently omitted in
embedded applications. No compilation takes place
in the Target system; all defined words are created
during thc metacompilation.

d) It is possible, though rather pointless, to omit the
Target DOES> action. OX%y build a word in the Targct
image that only the Host can use?)

The defined word action in the Target may also be
written in machine code, as:

: name <BUILDS word word word (c)
;CODE assembly code ((3)

HOST ACTS: word word word (a)
HOST DOES> word word word ; (b)

Forth Dimensions January 1993 February

There is no provision to specify the Host's DOES> action
in machine code; blinding speed is not usually required
during metacompi!ation. Should it be necessary, a separate
CODE definition can be made in the Host, and used in the
DOES> clause.

2. Impkmentution
Note, from the examples given above and in I'igure l'en,

that the Host must be able LO compile or to execute both
defining and defined words.

Compiling a word into h e Target image is done by
executing its mirror word. Both the defining and the
defined words will have corresponding mirror words. But
giving a Target word an executable behavior-as in the
case of compiler directives--involves changing the run-
time action of the niirror word.

The solution is to give the mirror words both a
compiling action and an executing action, both of which
can be altered.

This, of course, requires some means of distinguishing
between the metacornpiling and metu-executing states.
Thus the variable STATE is resurrected.

Figure 11 illustrates the form now taken by the mirror
word. (The reason for reserving a cell should now be
clear.) The compiling action is specified by the code
address of the word; this points to machine code in the
Host, and is changed with DOES> (see the previous
section). The executing action is specified by a common
Forth execution vector, which points to a Forth word in the
Host. This difference is because Lhe former is invoked by
the Forth interpreter, while the latter is invoked by the
phrasc @ EXECUTE .

Thc final definition of CONSTANT is given in Figure 11;
the resulting code in Ilost and Target-including one
instance of a defined word-is shown in Figure 12. A step-
by-step analysis of he process follows.

Sequcnce 1: When the code is metacornpiled,

: CONSTANT
Builds the colon definition header (8 CONSTANT link cfa)
in the Target, and the mirror word named CONSTANT in the
Host. The compile action of the mirror word is the default;
the execute action is an error word.

CREATE T I
Are corripiled into the Has(

DOES>
Compiles (DGES>) (described below) and ; S to enti the
colon definition in [he IIost. 'lhen begins a ncw headerless
definition, which will be he execution action (in the Host)
of the "children."

T@ ;
Are compiled into the I-Iost (; compiles ; s).

Sequence 2: When 6 4 CONSTANT C / L is executed
interpretively, control is transferred to the first headerless
definition described above.

CREATE
The metacompiler's CREATE-it builds a header in the
Target image, and a mirror word of the same name (C/L)
is built in the Host.

T I
Compiles the constant value (64) into the Target image.

(DOES>)
Which was compiled "invisibly" into the Host by DOES>,
changes the execute vector of the new ~nirror word (C/L),
to point to the secvnd headerless definition described
above. It also changes the code address of the new word
in the Target image, to point to the DODOES, portion of the
Target's CONSTANT.

Sequence 3: When C / L is executed interpretively, control
transfers to the second headerless definition. (It is entered
with the address of the mirror word on the stack.)

T @
Fetches the constant value (64) from thc Target image, and
puts it on the ffost stack.

Finally, observe that the 'I'arget image has exactly the
form required by the <BUILDS . . . DOES> construct (with
the Forth-79 enhancement). Both CONSTANT and C / L can
be used in the new Forth kernel.

<BUILDS ,
Are compiled into the Target image.

DOES>
Compiles the Target (; CODE) and the DODOES> machine
code into the Target image.

@ ;
Are compiled into the Targel image.

HOST ACTS:

3. Alternatiws
This implementation, having distinct and separate com-

piling and executing actions lor the mirror words, is unique
LO the Image Compiler.

L. Compiler Directives Revisited
I. Implemmtation

Figurc 11 also alludes to a fringe benefit of his
approach. Since cach mirror word has a separatc executing
vector, any word in the Targct image can bc given an
interpretive action in the I-lost.

Changes the execute vector of the mirror word to point to 1 For example, thc mirror word DUp normally compiles
the following codc; builds a headerless colon definition in the address of h c corresponding CODE word in the Target
the Ilosrby compiling the address oflhc L :) rnaciunc codc.) irnagc 11 may be dcsirablc co use DUP interprctivcly-
January 1993 February 30 Forth Dimensions

Action to take
when in compiling
mode.. .

Figure Eleven. Improved mirror word In the Host. 1

-.

number of times.

e.g., compile the
address of the
target's DUP.

Action to take
when in interpretive
mode.. .

3

e.g., execute the
host's DUP!

el 'l'he usual logic of search order in

code
address
in host

The host must keep a metacornpiler STATE!

CFA of address of d) 'l'he first definition having that name

a word this named word will be the definition used to resolve
i n hos t i n t h e image any forward references.

DUP

What we would like to write:

l i n k

TARGET : CONSTANT <BUILDS , [4]
DOES> @ ; [3]

HOST <BUILDS T, [I]
DOES> T @ ; [2]

Foflh vocabularies does not apply to
forward referencing. For safety, for-
ward-referenced words should be
uniqucly named, and forward refer-
ences should not cross vocabularies.
Doing otherwise may lead to unpre-
dictable results.

t) All forward-referenced words must
eventually be defined!

While forward refcrencing is active,
there is no such thing as an undefined
word-words are either defined, or arc
expected to be defined later. When for-
ward rcferenccs are not being used, this
will deprive the programmer of usehl
diagnostic information. So, forward refer-
encing can be enabled and disabled with

January 1993 February

affecting the Host stack, of course--during metacompila-
tion. By setting the executing vector of the mirror word to
point to the Host DUP, this is achieved.

There are so many cases like this, where a mirror word's
execution is vectored to a single Host word, that a special
version of ACTS : is defined:

HOST ACT word
Changes the execution behavior of the latest mirror word,
to the.single Forth word in the IIost.

M. Forward Referencing
Forth as a language provides no formal support for

forward references. All words must be defined before they
are used. So it is paradoxical h a t the Forth kernel itself
depends ,on the use of forward references. This problem
must be considered in the metacompiler.

1. IJse
Forward rcfcrencing is automatic in the Image Corn-

piler. A word which is to bc forward referenced may be
used in a colon definition just like any other word:

: name word . . . fwd-word ... word ;

The Imagc Compiler will compile an empty cell in the
place of f wd-word. Later, when f wd-word is defined, its
address will automatically be placed in this definition.

The following rules and restrictions apply:
a) Forward references can only be made within colon

definitions.
b) Compiler directives and other IMMEDIATE words

may not be forward referenced.
C) The same word may be forward referenced any

Fortti Dimensions 3

FORWARD ON and FORWARD OFF

2. Imphentation
The Image Compiler handles forward references by

having the Host remember the location of all references to
an unknown word. When that word is later defined, all thc
remembered locations can be patched with its address.

First ~efewrm?. Figure 13 illustrates the Iiost's process-
ing the first time a word is forward-referenced. When the
word is encountered in the input stream, the Host will
attempt to find and execute the mirror word of that name
in the TARGET vocabulary (or sub-vocabulary). Failing
this, the Host will attempt to convert it as a number. Failing
this, the word is considered undefined, and the Host
presumes this to be a forward reference.

An empty cell is compiled into the Target image, where
the address of this unknown word belongs. Then the Host
crcates a dictionary entry, in the CURRENT mirror vocabu-
lary, using the name of the unknown word. 'l'his is how the
Host rcmembcrs the name of this word, so that it will be
recognized when it is defined later. This dictionary entry-
a forward-refcrcncing mirror word-contains a pointer to
the Targct location to bc patchcd.

Second and subsequent references. 'lhc next time that
word is used, it will be found in the dictionary! What is
found is not he normal, self-compiling mirror word, but
the forward-referencing mirror word dcscribcd above. This
word is givcn a special compile-time action:

a) Reservc an empty cell in the target, to bc patched later.
b) Store the address of the previous location-to-be-patched

(as found from the mirror word) in this reserved cell.
c) Change the mirror word to point to this new reservcd

cell.

1

Figure Twelve. Defininq words-the result. I

64 CONSTANT C/L

HOST

I.:"'

8

C

address of
(:) code

TARGET IMAGE

...

link CONSTANT

address of
; S

....

address of
T,

address of
(:) code

'p-..
.e

address of
T@

host's
compile
action

address of
TCREATE

address of
; S

3
addr of
compile
action

8

addr of
target's
(;CODE)

the links.
Finally, a normal self-com-

piling mirror word is created
for the new definition.

Note that any Forth word
may bc forward-referenced in
this manner: colon definitions,
CODE definitions, data struc-
tures, or defined words.

Later "backward" refer-
ences. Thanks to the search
order of Forth, all dictionary
searches for this word will now
stop at the new, normal, mirror
word. To all appearances, the
normal mirror word completely
replaces the prior, forward-
referencing mirror word.

Thus, when the word is
next encountered in the meta-
compilation, the normal mirror
word corresponding to its defi-
nition will be found and
executed, compiling its Target
address. No other forward ref-
erences will be made for this
word.

Which is exactly the de-
sired result.

host's
interpret
action

CJL

CFA
3. Issues

a) Disabling forward refer-
encing
In most application pro-
gramming, an undefined
word is an error condition
and should be reported
as such. Forward refer-
encing interfetes with this.

address of
target's
CONST

addr of
interpret
action

link

CONSTANT

-

DODOES>
machine
code

64

addr of
target's

C/L

address of link

3

address of
target's ,

addr of
target's

@

link C/L

1 Forward referencing is

addr of
target's
; S

CFA

The effect of these actions is to build, in the Target
image, a linked list of all cells to be patched with the
address of this unknown word. The forward-referencing
mirror word contains the pointer to the head of the list.
Each different forward-referenced word (i.e., each un-
known name) will have a separate linked list. See Figure
14.

Definition of the word. When the word is finally de-
fined, TCREATE will find its name is already in use. Before
reporting this as a duplicate name (a Forth re-definition),
TCREATE checks to see if the prior use is a forward-
referencing mirrorword. Qhis test is performed by checking
the execution vector, since forward-referencing mirror
words have a specific and unique action.)

If there is a forward reference, the head of the linked list
is fetched from the mirror word. The address of ~ h c new

disabled by setting a flag.
This flag must be tested in two places: to prevent a
forward-reference mirrorword from being constructed
on the first occurrence; and within that mirror word,
to prevent subsequent occurrences from being linked
into the list. Forward referencing can be turned on and
off many times within the metacompilation.

4. Alternatives
a) F83

The Laxen-Perry F83 metacompiler uses a forward-
referencing scheme similar to that of the Image
Compiler, except that it is manual instead of auto-
nlatic.

Each word which will bc forward referenced must bc
declared prior to its first appearance, by the phrase

definition is patched into all the entrics of the list, replacing /
January 1993 February 32 Forth Dimensions

Fiaure Thirteen. Forward references (first occurrence). 1
How unrecognized words are handled

V
look up name try to convertQot.>Mu~t be a
in dictionary"""* it as a ?umber forward" reference!

i

V
found

V
valid

v
Create a forward-
referencing mirror
word in the Host.

V
Compile a zero cell
in the Target.

HOST

address of
3 FOO l i n k CFA patch l o c a t i o n

in target

N. Getting the Image into the Target
The Image Compiler is now complete. It is

capable of metacompiling programs ranging
from a few hundred bytes of embedded applica-
tion code, to a full Forth kernel, to a complex
Forth application with multiple vocabularies and
uscr-created defining words. What remains is the
problem of getting this metacompiled code into
the Target system!

1. Via hex fde
Perhaps the mosl useful method in the IBM

PC environment is to create an MS-DOS file with
the Target's binary image in some generally
recognized format.

The Intel hex format is widely accepted.
Many operating systems can convert Intel hex
files to executable files. Most EPROM program-
mers, and many rcsident monitor programs (e.g.,
the Zilog Super8 Monitor) will accept the Intel
hex format.

The word HEXFILE (screen 43) will copy a
range of Target mcmory to an MS-DOS file, in the
Intel hex format:

address length HEXFILE name

The starting address is the origin of the
metacompilation-set in the source file, before
the first definition, by the phrase:

DEFER name address HOST DP !
DEFER builds a word in the Host which maintains a
linked list of forward references, in essentially the It is frequently convenient to define an EQUate to
same manner as the Image Compiler. After the for- contain this address, so that it may be referenced by some
ward-referenced word is actually defined, the forward easily remembered name (like ORIGIN) after the compi-
references must be explicitly resolved by the phrase lation is finished.

At the end of the compilation, the first unused address
def ined-name RESOLVES reference-name in the Target dictionary can be obtained with:

which has the unfortunate consequence of requiring
the name used for forward references to be different
than the name used in the eventual definition.

b) Metaforth
Metaforth and many similar metacompilers require all
forward references to be explicitly patched by the
programmer. This usually means knowing the loca-
tion to be patched as a byte offset within a colon
definition. If the definition is changed, the patch offset
must be cdilcd accordingly. Normally, all of the
palchcs are performed, in a load screen, as Lhc last step
of metacompilation.

To reserve the empty cell which will be patched, a
metacompiler directive (often called GAP) is used.

HOST HERE

and thus the length of the image can be found with:

HOST HERE ORIGIN -

(It would be a simple exercise to write this as a Forth word;
but so far, it's been advantageous to know these addresses
before doing the download.)

2. Uirect humload to Ya7get or EPKOM
It would be possible to write a program, in Forth, which

communicates directly with the Target system (via its
resident monitor program) or an EPROM programmer.

The difficulty is that every target system and every
EPROM programmer has a slightly different protocol for
communication over a serial link. So a different download
program is necessary for each different piece of target

Forth Dimensions January 1993 February

1 Figure Fourteen. Forward references (s u b s e q u d I Metscornpilation code, conclusion. 1
-7

- .-

Fowxd-referencing mirror word
is executed in the Host

v
Compile a cell in the Target, which
l~nks to the previous reference.

v
Save the address of this cell in
the mirror word.

screen # 87
(Super8 [compile] () HEX (8 6 88 bjr 1 2 : 3 9)

TARGET : [CUMPlLEI -FIND 0- 0 ?LHXOR DROP CE'A , ; IMMEDIATE
HOST ACTS: DROP -FIND 3= 0 ?ERROR DROP 2+ @ T, ; IMPFRATIVE

I I TARGET : (2 9 WOW ; IMMEDIATE
HOST ACTS: DROP 29 WORD ; JWERATIVE

I HOST I
address of

3 FOO l i n k CFA f i r s t i n l i s t
t o be patched

TARGET

reference

hardware. (When hex files are used, these differences are
handled by the manufacturer-supplied host software.)

Still, for a frequently used target device, the time savings
in being able to download directly from Host memory
would make a Forth download program useful.

3. Metacomiling to Taqet memory
Carrying this logic one step further, if the Target system

has a resident monitor program which allows memory to
be examined and altered over a serial link, and if this
system is connected to the Host at the time of the
metacompilation, it would be possible to metacompile
directly into the Target's memory!

This obviously would necessitate rewriting the Target
memory words (T@, T !, etc.) to transmit commands and
parse responses over the serial link. A slight speed penalty
is involved, but since mcrnory transfers are not the critical
element in compile time, the degradation may not be
noticed.

This leads to possibilities of fully interactive rnetacom-
pilation, where words can be compiled one at a time in the
Target, tested individually, forgotten, and redefined.. .
making the metacompiler environment every bit as inter-
active as a normal Forth system!

0. References
METMORTFI is a trademark of John J. Cassady.
Target Compiler is a trademark of FORTH, Inc.

1. Rodriguez, R. J., "B.Y.O. Assembler," The Comfluter
journal #52 (Sept/Oct 1991).

2. Rodriguez, B. J., "R.Y.O. Assembler: A 6803 Forth rlssem-

screen 1 88
(S u p e r 8 do l o o p lf else t h e n) (8 6 8 8 bjr 1 2 : 2 9)

TARGET : BACK HERE - , ;
TARGET : DO COMPILE (DO) HERE 3 ; IMMEDIATE

HOST ACTS: DROP TARGET (DO) HOST HERE ; IMPERATIVE
TARGET : LOOP 3 ?PAIRS COMPILE (LOOP) BACK ; I W D I A T E

HOST ACTS: DROP TARGET (LOOP) HOST HERE - T , ; IMPERATIVE
TARGET : +LOOP 3 ?PAIRS COMPILE (+ L a p) BACK ; IMMEDIATE

HOST ACTS: DROP TARCET (ILOOP) HOST HERE - T, ; IMPERATIVF
TARGET : I F C W I L E OBRANCH HERE O , 2 ; IMMEDIATE

HOST ACTS: DROP TARGET OBRANCH HOST HERE 0 T, ; IMPERATIVE
TARGET : THEN ?COMP 2 ?PAIRS llERE OVER - SWAP ' ; IMMEDIATE

HOST ACTS: DROP HFRF OVFR - SWAP T ' ; IMPFWLTIVF
TARGET : ELSE 2 ?PAIRS COMPILE BRANCH HCKE 0 ,

SWAP 2 [CCMPIIZI THEN 2 ; I W D I A T F
HOST ACTS: DROP TARGET BRANCH hOST HERE 0 T, SWAP

HERE - SWAP T! ; IMPERATIVE

screen # 89
(S u p e r 8 begin - r e p e a t) (8 6 88 bjr 1 2 : 2 8)

TARGET : 8EGIN ?COMP IIERF. 1 ; I M E D I A T E
HOST ACTS: DROP HERE ; IMPERATIVE

TARGET : UNTIL 1 ?PAIRS COMPILE: O B W C H BACK ; IMMEDInTE
HOST ACTS: DROP TARGET OERANCH HOST HERE - T, ; IMPERATIVE

TARGET : AGAJN 1 ?PAIRS COMPILE BRANCH BACK ; I W E D I A T E
HOST ACTS: DROP TARGET BRANCH llOST HERE - T, ; IMPERATIVE

TARGET : WHILE [COMPILE] I F 2 t ; I M D I A T E
HOST ACTS: DROP TARGET OBRRNCH HOST HERE O T, ; IMPERATIVE

TARGET : REPEAT >R >R [COMPILE] AGAIN R> R> 2 -
[COMPILE] THEN ; IMMEDIATE

HOST ACTS: DROP SWAP TARGET BWLNCH HOST HERE - T,
HERE OVER - SWAP T ! ; IMPERATIVE

S ["ILE] UNTIL ; IMMEDIATE
ENDlF [C W I L E l THEN ; IMMEDIATE
- - .-

bler," i%e ComputerJournal#54 (Jan/Feb 1992).
3. Ewing, Martin S., 7he CalTecb Forth Manual, a Technical

Report of the Owens Valley Radio Observatory, California
Institute ofTechnology, Pasadena, CA(2nded., June 1978).

, 4. Laxen, I-Ienry, "Techniques Tutorial: Meta Compiling I,"
Forth Dimensions 1v/6 (Mar-Apr 1!983). Discussion of
host and target memory spaces.

5. Laxen, Henry, "Techniques Tutorial: Meta Compiling 11,"
Fotth DimensionsV/2 (July-August 1983). Compilation of
CODE and colon defmitions.

6. Laxen, Henry, "Techniques Tutorial: Meta Compiling 111,"
Forth Dimemions V/3 (SepVOct 1983). Forward refer-
ences and compiler duectives.

7. Derrick, Mitch and Baker, Linda, FOK'liFrl Encyclopedia,
Mountain View Press, Mounlain View, CA (1st ed., l%2).

8. Cassady, John J., METMOK771, Mountain View Press,
Mountain View, CA (1st cd., 1W).

9. Walker, Ray and Rather, Elizakth, polyF0K'IIIZZKeJi~rence
Manual, FOR'I'H, Inc., Manhaltan Bcach, CA (4th ed., 1983).

10. Ragsdale, Willian~ I:., "The 'ONLY' ConcepL for Vocabular-
ics," I9SZFORML C'onf~ence Pmcecdings, Forth lntercst
Group, San Carlos, CA (1982).

11. Rodriguez, B. J., "Intcractive EnlbeddcdMetacompilation,"
I'nxeedings ofrhe 1990 Rochesteribrth Confmce, Insti-
tute for Applicd Forth Research, liochester, NY (1330).

January 1993 February Forth Dimensions

(Letters, continuedfrom page 5.)

Fast 32-bit Integer Square Root
Dear Marlin,

This is a simple-even prirnitiv+contribution, but it
may be useful to some Forth uwrs.

I have been writing an application in JForth (Delta
Research) and, for space reasons, I did not want to useJForth's
floating-point library. I derived integer trigonometrical func-
tions from the article by Phil Koopman, Jr. (FD W4), but I
also needed a 32-bit integer square root function. Delta
Research supplies a Newtonian successive approximation
square root utility which is credited to R.L. Davies (F D W) .
Despite an added convergence test, the result is relalively
slow, averaging over three milliseconds per root.

Back in the days when the Intel 8080 represented the state
of thc art, 1 derived a direct compulation square root
algor~thm. 'l'his I have disinterred and converted to Forlh.
Though it always executes a loop 16 times, it uses no divisions.
On my standard Amiga 500, it computes the root of a 32-bit
number in under a millisecond. It should not prove too
dificult to extend it to 64 bits.

Since it lies in an inner loop in my application, I plan to
implement this algorithm in 68000 machine language. How-
ever, its incarnation in Forth may bc of use Lo others as a
program speed-up device. As shown hcrc, it returns both the
root and the remainder. The latter is the difference between
the input number and the square of the root, It may be used
to round up the root, or can be dropped, as the users wishes.

Total control
with 111 FORTH"
fbr Programming Ptvfessionals:
an expanding family of compatible, high-
performance, campilers for microcomputers
For Development:
Interactive Forth433 InterpreterlCompilers
for MS-DOS, OSl2, and the 80386
16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
S u ~ ~ o r t for ara~hics.floatina mint, native code generation

1 . . - . - . - I

I For Applications: Forth-83 Metacompiler 1
uniquitable-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based appliwns
Excellent e m handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 0080, ZBO, 8088,68000,6502,8051,8096,
l802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

Laborafory Mictvsys~s Incorporated
R o s t ~ B a x 1 ~ M a r i n a ~ ~ C A 9 0 2 9 5
mm~ crecsr and m s t ~ do: (213) 3067412
64x1 (n3) m m

-
A zero root and a negative remainder indicate that the input I

I

number was negative.
K~nd regards,

Tom Napier
One Lower State Road
North Wales, Pennsylvania 19454

Integer Square Root
SQRT (32-bi t number -- roo t remainder) I Subscription

\ Root squa re p l u s remainder equa l s i npu t
\ I n comments, P is t h e processed inpu t ,
\ Q is the r e s u l t , and S is a power of two
\ which s t e p s by 1 /4 p e r l oop

-
There are whole other worlds in micro computers

than DOS and Windows. If embedded controllers,
Forth, S100, CP/M or robotics mean anything to you,
then you need to know aboutThe Computer Journal.

DUP O < \ t e s t f o r nega t ive inpu t
I F DROP 0 -1 \ f l a g nega t ive input
ELSE 0 \ i n i t i a l Q

SWAP 1073741824 \ i n i t i a l S, 2"31
BEGIN >R \ keep S on r e t u r n s t a c k

DUP 2 P I C K - R@ - (Q --
DUP O< \ i s P 1 (= P-Q-S) negat ive?
I F DROP \ r e s t o r e P

SWAP 2 / \ Q := Q/2
E L S E N I P \ u s e P '

SWAP 2 / R@ + \ Q := Q/2 + S
THEN SWAP R> 2 / 2/ \ S := S/4
DUP O= \ i s s zero yet?

U N T I L DROP \ dump s
THEN ;

Forth Dtrnensions 35 January 1993 February

Hardware projects with schematics, software
arlicles with full source code in every issue. And you
can try The Computer Journal without cost or risk!
Call toll free today to start your trial subscription and
pay only if you like it.

Rates: $18/year US; $24/year Foreign. You may
catrcel your subscriptiott without cost ifyou don't feel The
Computer Journalis for you. Published six times a year.

(800) 424-8825

The Computer Journal
The Spirit of the Individual MadeThis Industry

Socrates Press
PO BOX 535
Lincoln, CA 95648

1

have a compiler that can determine when 61; module's
interface is not being honored properly. These measures
help you reuse code written by others. The efficiencies that

hploring Forth Issues and Promoting Forth

Mike Elola
San Jose, California

a programmer-supplied component) has high code-reuse
significance, then a more granular partitioning can lead to
greater opportunities for code reuse.

You should be ablc to create thesc modules in a uniform
way. You should havc a uniform way to engage code
~urchased from a librarv vendor. Furthermore. vou should

can be gained through such conlbinations of measures is
widely acknowledged. Look at the advcrlisemcnts in other
programming journals as well as the growing number of
articles discussing the creation and use of libraries.

Languages designed with consideration for such needs
will include a formal lexicon for declaring the interface (or

To gain acceptance, a programming language needs to
satisfy many needs. Two of these needs arc interrelated and
lead to increased programmer productivity.

a programming language should offer native func-
tions that impart as much utility as possible. The uniform
delivery of this fUnctionality is of keen importance so that
source code portability is maximized and so that language
dialects are minimized.

Language unifornlity is partly a function of how well
language implementors breathe life into a language. None-
theless, a clear and well-un&rstood language specification
offers t h best hope of uniformity amongst
implementations, It is in the best interests of everyone that
agreement is reached over the language and that the
language specification is elaborated in one document. me
ANS f?o& specification offers the best hope for Forth to
progress regarding this critical first step to programming
language acceptance.)

By dclivefing uniform and widely useful functions, a
programming language synchronizes code to a
single, consistent processing model. This is an important
advantage that high-level languages have over
language-particularly for the porting efficiencies that are
possible.

Code relocatability and
intermodule routine calling am
the thorny issues.mm

~

When application codc is written in a high-level lan-
P a g e , at least two layers of fUnctionalit~ exist. I-ow-level
functionality is consolidated in the language kernel, which is
not dependent on the application. Even this gross partition-
ing reaps a reuse benefit thal cannot be obtained in assembly
language. Most of the porting cfforl for such an application

be the creation of a language compiler for a new
procmor. the language pofl has great reuse
potential, so that work is likcly to be amortized across many
projccts. Moreover, most of the routines developed in a high-
level lanffuage are reu~~ble-~egardless of the plat-
form they were for In these a

language can fuel efficiencies h a t cannot be
equaled by any assembly language.

A ~rogranl[~ung language takes a second big stride
toward acceptance by providing a facility to subdivide
programs into modules with distinct interfaces. If even gross
partitioning of an application (into a kernel component and

January 1993 February 36

'2

usage rules) for newly developed routines or modules.
Besides establishing the beginning and end of a module, you
may also need a way to hide elements that are not part of the
module's visible interface, such as instances of data struc-
tURS.

a library user, you do not need to
code. For lhe sake writing portable code, you

should not have to be concerned with the implementation
details of either the language or any libraries you might be
using. Offering libraries in a precompiled form suits that
PUrPaw. Only the source code that defines the interface has
be You to use the
The source code ha1 sets up the interface for a module

provides information the can use to
ensure that the is used P ~ ~ P ~ ~ ~ Y . languages
can verfi that you are using the 'Orrect names for the
P ~ ~ ~ ~ ~ P ~ ~ ~ ~ routines as as using the number
and type of parameters.

Enhanced for (Or 'Ode

cEate the 'Ommerce that library vendors ?he library
vendor becomes preoccupied with porting the same module

various placforrrls and with assuring lhat a uniform
interface is to tach a ~ ~ l i c a l i o n any platform
differences.

Adding support for modules does not automatically
dictate that we transform modules into libraries. Without
adding all the trappings of a library, separate or redundant
declaration of the module interface is still possible: (1) in the
central location where h e complete source code for the
module lives, and (2) as many client locations where source
code must be compiled that exercises h e module interface.

ne inability to precompile shared may not be
a siginificant concern. However, the ability to independently

modules does become a big concern when
require more than one programmer. Code relocatability and
intermodule routine calling are probably the thorny issues to
deal with here, not module precompiling itself. I predict that
dynamic libraries will be extremely popular; so when Forth's
full-blooded support of modules finally arrives, it should
include a means for late binding ofa routine inside a module
lo its callcrs the

By making it easier to reuse code across many different
project,, module support that stops short of library support
still offers a valuable boost-ven for a solitary programmer.
At the very least, such support should involve a uniform
lexicon for declaring h e interfaces for routines.

Implenlentation hiding occurs fuIlctions arc
standardized as a native cor:lponcnt of a language or if hey
are and made dlrough i~~ declared

Forth Dimensions

,

'--

SEPTEMBER '1992
Laboratory Microsyslems announced WinForth, a Fo&-

8 implementation or Forth that takes advantage of the
graphical user interface provided by Microsoft Windows

3.l) in protected It all Windows
MI fUncbons, such as callbacks, dialogs, menus, and
icons. Traditional command-driven applications are also
supported through words such as KEY and EMIT in
tandem with a resizable console window. No royalty or
licensing fee is required to distribute Windows applica-
tions that you create with w i n ~ ~ r t h . prices range from
$100 for the basic version (on-line hypertext doamenta-
tion only), to $495 for a professional version that supports
DLI, creation and includes source codc for supplied
utilities. FO~USCJS o f t k p r ~ f e ~ ~ ~ o n a l v e r s ~ o ~ , the complete
source code- induding Cl MASM, and code--is
also available for an additional premium. Upgrade prices
arc offered to registered users of UR/Forth and PCRorth.
The prices of the upgrades range from nothing to $250.

FORTH, Inc. announced a new release of its 32-bit
p o l y ~ ~ ~ m software development systcin. &idcs run-
ning in protected mode with DOS 5.0, it works with XMS

asvCP1 servers. ?his spmenhancede&tors
and utilities for source code maintenance. Also included in
the S1v495 prim is a
documentation, complete source code, and the ability to
link to shroutines written in C and other lanf3uages.

OCTOBER 1992
FORTH, Inc. announced a new release of its MPRESS

Event Management and Control System for process
control and factory automation applications. Besides
enhancements and new T/O drivers, a historical trend
recording featurc is addcd. New driver support is added
for OPTO-22 Optomux and Modicon V9M.

ExpressLite, a $195 demonstration version of EX-
PRESS now support5 limited (digital and analog) inputs
as well as up to 256 simulated inputs. Use a PC to control
simple experiments or devices through a graphical
display that you can tailor for a simple apparatus
controllable by one analog output and two analog inputs,
or eight digital outputs and inpuLs. EXPmSS for
$6,875, while ExpressLite retails for $195. Both systems
require 80386/486 computerswith 4 Mb ofRAM andVGA
graphics

Companies Mentioned
Forth Inc. Laboratory Microsystems Inc.
11 1 N. Sepulveda Blvd. 12555 W. Jefferson Blvd.,
Manhattan Beach, Suite 202
California 90266-6847 Los Angeles, California 90066
Fax: 21 3-372-8493 Fax: 31 0-301 -0761
Phone: 800-55-FORTH B E : 310-306-3530

Phone: 310-306-7412

January 1993 February

interface (lor which the compiler can check client code for
compliance). Either way the programmer need not be con-
cerned with how the function is actually coded, just how it is
engaged to suit thc syntax requircment~ of lhc language or Lo
suit its explicitly declared interface.

Furthermore, the portability of vast amounts of application
code is improved, due to rhe uniform functions of a standard
language or the frequent use of functions that' serve as a
module interface. lhat uniformity can help commit us to more
uniform ways of specifying certain functions, reducing the
amount of gratuitous diversity exhibited by our collective
application code. A directly relaled effect is the improved
readability of all application code that makes use of popular
modules. The contemplated increase in the readability of Forth
applications can only come about in such a way-no substitute
approach appears to exist that comes anvhere near having
the desired effect.

disassion has not paid adequate homage to Forth's
virtues in areas related to program partitioning and code reuse.
I have ofiered aviewpoint slanted towards the perceptions and
understanding of the larger programming community. Per-
haps another essay will be written to offer an opposing, or
Forth-centric, point of view.

Nonetheless, mainstream programming languages and
mainstream programming practices recognize the need for
separate declaration of interfaces. C now has function proto-
types to add to h e long-standing practice of using header files
for ease of reuse of data type declarations. Those reused data
type declarations help synchronize the structure of any data
that must remain visible to client routines-or synchronize the
data structures for which pointer references must be passed,
as parameters to client routines or as return values from client
routines.

If only to counter the perception of Forth as an outdated
language, we need to transform stack comments into a formal,
standardized mechanism for interface declaration that can be
scaled up to the module level.

ANS Forth Update
Thc X3J14 committee convened in October 19512 to

respond to conlrncnts resulting from he public
review ending in August of that year. That review period was
neccssary due to substantive changes made after the first
four-month public review period ending inFebruary of 192 .
Because a few substantive changes were made at the
October meeting, there will be yet another two-month public
review in early 199%

A January is taking place in
California lo contemplate a reorganized and reformatted
version of the current draft proposal.

Mitch Bradley reports fewer comments (15) received in
the second public review cycle, and fewer substantive
changes made in its aftermath. Accordingly, committee
members are optimistic about the prospect of obtaining ANS
approval for a Forth standard sometime in 1333.

Among the substantive changes that came about as a result
of 01e second review period are the obsolescence of TIB and
#TIB (they are not immediately eliminated, but are among the
controued exknsions). The single word SOURCE is their
replacement. SOURCE returns an address and a length. A new
word, SLITERAL, was added to compile strings. Also, a newly
added clarification requires that an interpretive mode be
present before compliance with ANS Forth is satisfied.

.

Forth Dimensions 37

("Back Bumer,"Jivmpage 43.1

Back to the Future
Sometimes the path of advance is a seeming regression.

For many applications, the proper solution to the problems
of real-time control and instrumentation lies not in the
application of faster computers addressing more memory
but, rather, in simplification of directly interfaced hardware
and software. In an interrupl-driven environment, even a
slow eight-bit processor may prove more effective than a fast
386 PC-compatible.

When designing a computer system for control and
instrumentation, maintainability demands that the critical
portion of the system consist of components designed and
standardized for industrial service. Such components may be
in the form of standalone boards or they may be bus oriented.
The most widely used industrial bus is the STD bus. With
support from a large number of domestic manufacturers, an
installed base second only to the IBM-PC, and a history of
approximately 15 years, the STD bus allows assembly of
systenls which will be maintainable for years to come.

At some sacrifice in reliability and maintainability of the
system, non-critical portions, such as a graphical user
interface, may be relegated to an IBM-PC/RIOS/MS-DOS
platform which communicates with the embedded system
via a serial link. Such a compromise may be necessary to
satisfy customer demands within a reasonable time frame
while staying within budget. To insure against downtime in
case the PC-hosted interface goes south, the embedded
software can be written to accommodate a substitute inter-
face, such as a video terminal, a printing terminal, or a laptop
running a terminal emulation program.

Training Wheels
As promised, the accompanying schematic [pages 40-411

and parts list document a reproducible, low-cost single-
board computer (SBC) which will serve as a trainer for our
investigation of metacompilation and embedded program-
ming techniques.

Some readers may prefer to utilize one of the numerous
8051-family SBCs advertised in computer and electronics
magazines. The advantage of the SBC presented here is that
it provides for software development apart from use of
EPROM programmer or ROM emulator, while making avail-
able an unfettered 64 Kbyte address space. (Well, almost
unfettcrcd. The uppermost eight bytes of the address space
are dedicated to a parallel interface.)

The Scheme o f Things
The 8051 family supports what is termed a Hamard

architecture in which the 64K read-only code space (ROM)
and the 6 4 ~ read/write data space (RAM) are distinct. The
spaces may, however, be combined into a single 64K region
by means of external hardware. In our SBC, a pair of 32K
RAMS are mapped from 0000 to FFFY in the data space, and
a single ROM is mapped starting at 0000 in Lhe code space.
Processor port pin P1.2 ("switch enable" line SWEN) and the
74153 data selector control the memory map. Line PSEN- is
the processor read s w o k for external ROM; line RD- is the
January 1993 February 38

processor read strobe for external RAM. Note that a signal I name designates the active (i.e., asserted) state; Lhus, PSEN-
is low when asserted, whereas SWEN is high.

The ROM is accessed only while RDP- is low, which
occurs only when the data selector routes SWEN- to RDP-
while S m - is asserted. (Note that asserting SWEN asserts
SWEN-.) SWEN- is routed to 1DP- only when PSEN is low
and RD- is high; this combination of PSEN- and KD- also
routes SWEN to IIDM- but, iPSWEN is asserted, the active-low
output enables of the RAMs and the active-low read enable
of Lhe 8255 do not respond. Thus, a processor read-from-
ROM instruction accesses code space of our SBC only if ~ 1 . 2
is high.

If SWEN and PSEN- are low and RD- is high, then S W N
is routed through the data selector and RDM- is asserted, so
that processor read-from-ROM instructions access the data
space of our SBC. In this manner, code and data spaces are
effectively combined into a single 64 Kbyte address space.
Note that processor read-from-RAM instructions assert RD-
rather than PSEN-, with the result that the data selector routes
VCC (logic high) to RDP- and GNI) (logic low) to RDM-.
Thus, the output enables of the RAMs and the read enable of
the 8255 are a?serted, whereas the output enable of the ROM
does not respond.

Since 8051 instructions which write to memory do not
assert PSEN- (i.e., writes are possible only to data space), it
is a simple matter to create a routine which, while tunning
from ROM in code space, downloads to KhM in data space.

Upon power-up, processor port pins are high. Thus, the
power-up entry point is address 0000 in ROM. Initialization
code in ROM can branch to a simple monitor which provides
serial download capability. Once download is complete, the
downloader need only write a zero to port pin P1.2 in order
to transfer execution [rum ROM to RAM Note that, with this
scheme, the entry point for code in RAM is not 0000; rather,
it is the RAM address equaltothe ROM address following the
instruction which writes a zero to port P1.2.

To Wrap or Not to Wrap,
That is the Question

Doubtless there are a few brave souls who will, a s did the
author, undertake construction of a wire-wrapped version of
the beast. The best prophylactic available to the wire-wrap
builder is a board which provides a ground plane and is
liberally furnished with bypass capacitors. Connect a 0.1 mf
ceramic bypass capacitor directly between the VCC and
ground terminals of each I(: socket; keep the leads short.
Distribute over the board several electrolytic capacitors
(preferably tantalum, in the range 1 to 50 mfl between the
VCC bus and ground. Verify capacitor polarities before
applying power.

The less adventuresome will welcome the efforts of FIG
member Ed Sisler of Santa Cruz, California who is designing
a printed circuit board for the device. He plans to offer any
combination from a bare board 10 an assembled and Lesled
unit. Ed also can provide EPROMs containing Lhe downloader.
If there is sufficient interest, he has expressed willingness to
design and market an inexpensive liOM emulator. Ed can be
reached Ihrough Lhe author, or on GEnie (address E.SISLER).

Forth Dimensions

A Shopping List
When shopping for parts, notc that loading problenis can

result unless the specified logic family (i.e., IIC or IlCO is
used; make substitutions only if you understand the consc-
quences. The crystal can be virtually any 11.0592 MHz rock,
regardless of rated load capacitance and design circuit
configuration (i.e., series resonance or parallel resonance).
C1 and C2 are disk ceramics. Bypass capacitors C3 through
CB can be either ceramic disk or multilayer ceramic. Discrete
resistors can be used instead of resistor packs; the smallest
typically available are 1/8 watt, which is more than ample. D2
can bc a garden-variety LED; it serves as a convenient
diagnostic tool to facilitate software development. Q1 iso-
lates port 1 from the loading effects of D2. Dl can be a
garden-variety switching diode. D3 provides reverse-polarity
protection, and can be a garden-variety power diode. C8 is
to guarantee stability of the 7805 regulator; for this purpose,
C8 should be located within an inch of the 7805. A suitable

rrom KOM to RAM. The author wire-wrapped and tested the
prototype.

Initializatioddownloader code will be posted on GEnie,
and will bc available directly from the author; kindly include
an SASE or a postage stamp.

The prelirr&aries bcingnow complete, the next episode
will be& our exploration of metac~m~ilation. ~ c a k h i l e ,
contact your local Siemens, Signetics/Phillips, or Intel sup-
plier for an 8051-family handbook.

R.S.V.P.
- -. .-

Russell Harris is an independent consultant providing engineering, program-
ming, and technical documentation services to a variety of industrial clients. His
main interests lie in writing and teaching, and in working with embedded systems
in the fields of instrumentation and machine control. He can be reached by phone
at 713461-1618. by mail at 8609 Cedardale Dr.. Houston. Texas 77055. or on
GEnie (address RUSSELL.H).

power source is a wall-mount supply furnishing 9 to 15 volts
DC at a few hundred milliamperes (the 7805 requires an input

I [Schematic appears on next pages.]
of at least 7 volts). The authojs prototype draws less than 100
mA.

l'he slowest commonly available EPROMs have a maxi-
mum access time of 250 nanoseconds; this is more than
adequate for an 8051 running at or below 12 MHz. Although
a 32K x 8 (27256) EPROM is shown on the schematic (U9),
an 8K x 8 (2764) can be used by a simple wiring change:
disconnect A14 from pin 27 of U9 and tie pin 27 to VCC.
EPROMs should be CMOS (i.e., 27C256 or 27C64).

The DB25S connector facilitates connection to external
devices, including Centronics printers. Since each pin is
connected to a programmable I/O line, the parallel port is
software configurable.

The bare necessities for construction and checkout are a
logic probe of the $15 variety, an inexpensive ($20 to $30)
VOM (volt-ohm-milliampere meter, digital or analogue, used
mostly to verify polarity and continuity), a soldering iron and
tip-cleaning sponge (a damp rag will serve), miniature
diagonals (for cutting component leads), and a few feet of
rosin-core solder. Miniature needle-nose pliers, a solder
sucker, and a magnifying lens are not essential, but will be
found to be more than useful.

Miscellany
Readers using anohcr SBC as a trainer, and those working

Parts list. 1
The following components are available from the Dig-Key
Corporation, 701 Brooks Avenue South, Post Office Box 677,
Thief River Falls, Minnesota 56701-0677, telephone 800-344-
4539.

u 1
u2
u4
TJ6
u5
u11
Rl,R4,R5
RPI
R2
R3
Y1
Dl
D3
D2
Q1
PI31

with other pr&or families, will have need of a I~OM
emulator or the combination of EPICOM programmer and
uhraviolct EPROM eraser. FIG rncmber Prank Scrgcant
markets an inexpensive EPROM programmer (see his article

So31
82C55-5
HM43256LP-10
27C256 or 2764 (see text)
7W5T
SM-30
T10-25
DB25S

The following components are available from JDR Micro-
devices, 2233 Samaritan Drive, San Jose, California 95124,
telephone 800-538-5000 or 408-559-1 200.

in the Septembcr/Octobcr 1592 issue). l l lc author recently
purchased from Digi-Key a Dataerase TT ultraviolet eraser
with timer, manufactured by Walling Company of Tempe,
Arizona T am extremely pleased, both with the dcsign and
performance of thc eraser and with the manufacturer's
service policy. The instruction manual contains a tutorial
covering EPROMs and the production of ultraviolet light

The circuitry of the trainer was designed by FIG member
Mike Foley of Houston, Texas who also compilcd the parts
list. Mike proposed the scheme of transferring cxecution

January 1993 February

u3
u10
1 J7,U8
u9
KEG 1
C1,C2
C3,C4,C5,C6,C7,C8
PI

- . _

Forth Dimensions 39

I

January 1993 February 40 Forth Dimensions

P r i n t e r Functions

<PZ, CO. -73
1 3 7

P3.0 HXD
P 3 . 1 TXD 1 P3.2 INTO-
P3.3 INT1-

\ P 3 . 4 TO
, P3.5 T 1
, P3.6 WR-

U10

PFiO 4 Pit0 STROEE-
3 P a l AUTFD-
2 PA2 DATA0
1 PA3 ERE-

' f . 4 0 P.4 PAS I N I T -
EAT A 1

"2.:: PCIL 0kT A2

PA7 : 3 7 PA7 SLCTI-
\ / DATA3

1 8 PEO GNU
k 0 9 1 9 PE.1 DAT A4
A1 8 g: PB2 20 PE2 GNU

PE3 PB3 22; PB4 DAT A 5
6ND

RUM- 5 2 3 PE5 DAT A6
2 4 PB6 GND

ICSHI-> WR- 3 6 EE FE: 2 5 PE7 DQT A 7
6ND

XEN- 6 1 4 PC0 ACK-

PC1 1 5 PC1 6N0
35 RESET PC2 . ;: ;E; 835'1

PC3 6ND

PC4 , 1 3 PC4 PE
VCC 26 VCC PC5 . ;: GND

PC6 SLCTO
GND 7 GND F,;7 - 1 0 PC7

82C55

VCC a
A10 2 1 ~ +(/ lOuF : 1 1 2 3 $:ff56 C4 I\ICV
'I2 A12 (0000-7FFF)

+I / lUuF
REG1 $;: 2t A13 A 1 4 7805 0 3

V I N+
' Q15 222 vcC 2 8 VCC

RDW- 2 5A
WR- 272 E TXD 11,) T ~ l ~ l ~ 314 TXDA -+CS ., WE GND l4 GND

F- l O u F

>T2 TZ? 3L 16V U9 A GND
',.A0 10 Do ,11 ADO ,' RXD lZC <Ri R1< . 1 3 RXDk

-
'\, A 1 1 2 A D 1
\ A 2 : 1: Ei 1 3 AD2 5 INTO- gC (R2 R2< 8 R I A

A3

TXDA 5@M
RXDA 6

@,@

ROM , VCC \ I lOuF
6 . 3 V) I + ~ 7

n VCC VCC

Q tFp GND 1 4 GND

27256PG

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE ! ! !

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Faster than optimized C!
Compile 40,000 lines per minute!
(10 Mhz 286)
Totally interactive, even while
compiling!
Program a t any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routines without recompiling!
Source code for 2500 functions!
Data structures, control structures
and interface protocols from any
other language!
Implement borrowedfeatures, more
efficiently than in the source!
An architecture that supports small
programs or full megabyte ones
with a single version!
No byzantine syntax requirements!
Outperform the best programmers
stuck using conventional languages!
(But only until they also switch.)

HSFORTH with FOOPS -The only
full multiple inheritance
interactive object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible at simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL's provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HS/FORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY
HAS> ARM RightArm
HAS> ARM LeftAnn

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
The painful OOL learning curve
disappears when you don't have to
force the world into a hierarchy.

WAKE UP ! ! !

Forth need not be a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple tools
expected in any commercial language.

HSIFORTH Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics, they
fail to show its true potential. Not to
mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
Forths. We won't throw in the towel,
but the drain on resources delays the
introduction of even better tools that
could otherwise be making your life
easier now! Don't kid yourself, you are
not just another drop in the bucket,
your personal decision really does
matter. In return, we'll provide you
with the best tools money can buy,

The only limit with Forth is your
own imagination!

You can't add extensibility to fossilized
compilers. You are at the mercy of
that language's vendor. You can easily
add features from other languages to
HS/FORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well as and often
better than in the parent language.

Speaking of assembler language,
learning i t in a supportive Forth
environment virtually eliminates the
learning curve. People who failed
previous attempts to use assembler
language, often conquer i t in a few
hours using HSIFORTH. And that
includes people with NO previous
computer experience!

HSB'ORTH runs under MSDOS or
PCDOS, or fiwm HOLM. Each level includes
all features of lower ones. h v e l upgrades:
$25. plus price difference between levels.
Source cade is in ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
o~timization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headem without recompiling. Compile 79
and 83 Standard plus FS3 programs.

PERSONAL LEVEL $299.
NEW! Fast direct to video memory text

& scale&clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bczier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device VO;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LENEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete t h ~ v complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
mbin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;
C data structures & struct+ compiler;
MetaGraphics Turbowindow-C library,
200 graphic/window functions, Postscript
style line attributes & fonts, viewpo~ts.

ONLINE GLOSSARY $ 46.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $79.
TOOLS & TOYS DISK $ 79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and frecly available;
32 bit addresdopcrand range with 386.

ROMULUS HSG'ORTH from ROM $99.

Shippinglsystem: US: $9. Canada: $21.
foreign: $49. We accept MC, VISA, & A&x

Economics

@m Oh@ B a ~ k Bwamsr #5

/ Conducted by Russell L. Harris

Penny-Wise, Pound-Foolish
The IBM-PC/BIOS/MS-DOS environment lures the un-

suspecting real-time user with the siren call of cheap
hardware, inexpensive software, and a seeming abundance
of capable programmers. Not until one makes adetailed cost
analysis, taking into account system lifetime, does the true
cost become apparent. Moreover, industrial experience
continues to demonstrate that commodity-grade C program-
mers armed with mass-marketed software packages are
generally inept in the realm of real time.

Aside from illusory economies in the area of hardware,
the basic impetus toward the IBM-PC/BIOS/MS-DOS envi-
ronment is the elusive goal of automatonistic software

Houston, Texas

~d zern relaks the tale of hc ill-fated manufacturer,
'I'ates, which attempted to branch out irlto the production of

magnetic compasses of the sort uscd by hunters, fishermen,
and Boy Scouts. Unfortunately, Tates had no prior experi-
ence in the manufacture of compasses. Being unaware of
pilfalls and design subtleties inherent in this field of endeavour,
Tatcs management millions into production and
marketing, but almost nothing into research and engineering.
In appearance, the Tates compass was a thing of beauty. It
was nicely proportioned, and appeared to be well-crafted
and rugged1 y built. Nevertheless, for reasons now lost in
annals of history, the design was flawed, Sometimes the
device worked perfectly, giving an acarate indication; other
times, without warning or indication that things were amiss,
the compass would give readings seriously in error,
Outdoorsnlen soon learned Gom personal experience that
the Tales compass was not to be trusted, thus giving rise to
the saying, "He who has a Tates is lost."

A Matter of Misfeasance
The IBM-PC family, running under PC, BIOS and MS-

DOS, has become perhaps ~h~ most misapplied
component in the field of real-time instrumentation and
control. Direct control of machinery by a PC is a practice
fraught with many perils and considerable difficulty.
Whether in ignorance or in deliberate disregard of the
body of facts and documented experience presented by
a multitude of authors in a variety of engineering publi-
cations, programmers and newly emerging systems houses
daily foist upon their clients systems in which the PC is
directly interfaced with "the real world." Often, it is not
until a project has passed the point of no return that the
full consequence of matters such as indeterminate inter-
rupt latency, bugs in BIOS, and bugs in DOS become
apparent.

Sometimes the PC is disguised by means of packaging.
It seems h a t hardly a day goes by without the introduc-
tion of another PC-compatible single-board computer
targeted at he embedded control market. Although such

lnay utilize solid-slale Illernory instead of a
mechanical disk drive, they nonetheless possess the basic
liabilities of thc desktop PC.

Forth Dimensions

creation. Viewing the variety of inexpensive mass-marketed
MS-DOS software, one finds appealing the possibility of
creating customized software for a system simply by blindly
combining a number of off-the-shelf programs. IIowever,
projecls bking this approach repeatedly demonstrate that (1)
the expense incurred in to general-
Purpose Program for which one is lacking the source code
can eagly c!xcced the cost of a tailor-made program, and (2)
the h*ge~odge tends to be unreliable and full of
arcane idiosyncrasies, in addilion to aberrations inherent in
the TBM-PC~B1OS~MS-DOS platform.

It is for a Programmer to have
complete control of a system based on the IBM-PC/BIOS/
MS-DOS platform, for it is virtually impossible for a Program-
mer to gain access LO the Source code for all the pertinent

, software and firmware modules. Moreover, the complexity
of the platform precludes accurate prediction of system
response &O real-time stimuli. The situation is exacerbated
when commercial software packages are integrated into the
System.

When one commits himself to the IBM-PC/BIOS/MS-
IX>S platform, he enters an environment of continual
change. Whether from the standpoint of hardware or that of
software, the window of availability in the P(: world is short
compared with the service life of typical industrial systems.
The high sales volume which drives down the cost of PC
hardware and both pernits and encourages fie-

redesign, in order to reduce manufact~ring Cost and to
enhance performance. BY comparison, common industrial
components, suchas relays, valves, andtran$ducers, generally
continue in production without change for dozens of years.

The problem is maintainability: after a system incorporat-
ing a PC has been in a Year Or two, it be VeIy
difficult to find replacement Components which are compat-
ible with the original PC hardware. Even if such components
are available, they may not be compatible with the original
software, apart from reconfiguration Or modification of the
software. If the original software cannot accommodate the
available hardware, extensive software modification may be
required. If the soflware has been integrated from a number
or~ornrnercial software packages and one or more of these

bc the Programmer must again with the
same problems of software/software and sol~ware/hardware
compatibility he faced in patching togelher the original
systcm.

("Back Burner" continues on page 38.)

43 January 1993 February

CALL FOR PAPERS
for the fifteenth annual and the 1993

FOWL CONFERENCE
The original technical conferene

for professional Forth programmers, managers, vendors, and users.

November 26 - November 28,1993
(following Thanksgiving)

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S.A.

-

Theme: Forth Development Environment
Papers are invited that address relevant issues in the establishment and use of a Forth Development
Environment. Some of the areas and issues that will be looked at consist of Networked Platform
Independence, Machine Independence, Kernel Independence, Development System-Application
System Independence, Human-Machine Interface, Source Management and Version Control, Help
Facilities, Editor-Development Interface, Source and Object Libraries, Source Block and ASCII Text
Independence, Source Browsers (including Editors, Tree Displays and Source Database), Run-Time
Browsers (including Debuggers and Decompilers), Networked Development-Target Systems.

Additionally, papers desaibing successful Forth project case histories are of particular interest.
Papers about other Forth topics are also welcome.

- -

Mail abstracts of approximately 100 words by September 1,1993.
Completed papers are due November 1,1993.

We anticipate a full conference this year.
Priority will be given to participants who submit papers.

John Hall, Conference Chairman Robert Reiling, Conference Director

Information may be obtained by phone or fax from the
Forth Interest Group, P.O. Box 2154, Oakland, California 94621.510-893-6784, fax 510-5351295

This conference is sponsored by FORML, an activity of the Forth Interest Group, Inc. (FIG).

The Asilomar Conference Cen ter combines excellent meeting and cornfor table living accommodations
with secluded forests on aPacific Ocean beach. Registration includes use of conference facilities, deluxe
rooms, all meals, and nightly wine and cheese parties.

