

F O R T H
D I M E N S I O N S

FORTH INTERRUPT HANDLJNG - BARRIE B. WALDEN
10

Most microprocessors recognize interrupts from both hardware and software sources. But the power of this feature
relies on a capable interrupt-handling routine. If multiple interrupt sources are available, the handler must be able to
recognize and respond U> them appropriately. This article provides a small set of Forth words to simplify the use of
interrupts, and outlines the process of working with interrupts.

m
INTERRUPT-DRIVEN COMMUNICATIONS - RAMER W. STREED

18
Simply polling the communications port will not keep up with 2400 baud on a 4.77 MHz 8088, and BIOS interrupt
calls cannot receive data much faster than 1200 baud. This article describes a serial communications interrupt handler
for the 8250 UART-shown in a program used to develop embedded Forth applications-that can operate at 9600
baud. m

EAR TRAINING - GLEN B. HAYDON
24

We usually suppress auditory details except those associated with spoken language. But music's many characteris-
tics include pitch, intervals, and triads; and major, minor, augmented, and diminished triads. To develop an
appreciation and understanding of music, we can benefit from ear training. The author, who uses IBM clones, could
not find any appropriate programs. What was he to do?

m
FORST: A 68000 NATIVE-CODE FORTH - JOHN REDMOND

28
Adisadvantage of assembly coding is the need to maintain register contents. A natural development from named local
variables (previous issue) is register variables, which can significantly improve performance. This article, the fourth
in a series of five, describes an approach which adds significantly to the quality of compiled code. The technique is
general, but will be most successful for processors with many registers.

m
GENIE FOR BEGINNERS -FRANK C. SERGEANT

34
GEnie is theon-line home of theForth Interest Group, and if you check the "Reference Section" in this magazine you'll
find several other electronic venues for Forth expertise, software, and information exchange. If you haven't started
telecommunicating yet, it is easier than you think and it just got cheaper. The author tells how, and gives tips for
navigating GEnie with the greatest of ease!

Editorial
4

Letters
5

Best of GEnie
36

Advertisers Index
33

Reference Section
38

Volume X I Index
40

FIG Chapters
4 2 4 3

1

Volume XII, Number 5 3 Forth Dimenrim

Dissent # Exile

In these pages, dissent does not mean
exile. Readers who have been following the
development of an ANS Forth will be most
interested in our "Letters" department. It
contains a summary of the objections and
philosophical differences held by a vocal
and diligent group of dissidents at the
Boston FIG Chapter. While their views
may not mirror those of every anti-ANSI
activist, and while their letter may not de-
lineate all the details of their own argu-
ments, it does give voice to those who
prefer a minimalist Forth and who fear that
ANS Forth will be more extravagant than
economical, that it will break new ground
instead of mapping well-tested turf.

Luckily for us, members of ANS X3J14
(the committee that is developing ANS
Forth, which met recently in Detroit) got
wind of the fact that Boston FIG'S letter
would be appearing here. By stretching our
deadlines just a bit, we were able to print
their response in the same issue, along with
the formal statement of their scope of work.

All the above is printed here in its en-
tirety, because we believe that all manner of
voices in the Forth community should be
heard and understood if we are to achieve
any kind of collective wisdom. 1 am sure
that ANS Forth will not manage to be all
things to all people-some of whom de-
cided in advance that it would mean noth-
ing at all to them, regardless of its content.
But it will be the standard most looked upon
by the outside world and, to some degree,
every Forth implementation will be under-
stood relative to it. Except for projects that
require strict adherence toan ANS standard
programming language, whether a vendor
adheres to ANS Forth will not matter as
much as understanding what it represents
as a whole and one'sownreasons for adopt-
ing or rejecting its specifics.

But plenty of other material is here to be (mulled over. Interrupt handling is ap-
proached from both application-specific
and more general directions. We hope these
articles spur input on the subject from other
readers, in the tradition of working together
to build upon, diverge from, preempt, and
refine published works. In fact, author
Streed proposes a collective effort to de-
velop a communications application in
Forth. He points out that we could then
more easily add all the bells and whistles
we wish the makers of our "com" programs
had provided.

Speaking of which, if you haven't yet
goaen on-line with the Forth Interest Group
on GEnie, or if you tried but found the
system too opaque and mainfrarnely for
your tastes, check "GEnie for Beginners."
It should help smooth the way. Even speak-
ing as an occasional user, and one long
accustomed to graphical interfaces at that,
my on-line time has been well worth while:
both interesting and labor-saving in the
long run.

Finally, many of you have been follow-
ing John Redrnond's ForST series with
inks t . Originally, we debated publishing
articles about a new Forth for the Atari ST;
but we found the author's ideas fascinating
and potentially of general relevance. What
was to have been three articles has become
five (concluding in the next issue). In this
fourth installment, we are treated to
Redrnond's implementation of register
variables and are shown quiteexplicitly the
benefits that accrue from their use.

---Marlin Ouverson
Editor

P.S. If you enjoy quick glimpses of Forth in
high places-or very, very deep ones-be
sure to read the biographical statement fol-
lowing Barrie Walden's article, "Forth
Interrupt Handling."

Forth Dimensions
Published by the

Forth Interest Group
Volume X[I, Number 5
JammyFebruary 1991

Editor
Marlii Ouverson

Advertising Manager
Kent Safford

Design and Production
Berglund Graphics

CirculariorJOrder Desk
Anna Brereton

Forth Dimemions welcomes editorial mate-
rial, letters to the editor, and comments from its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimemions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
iternsfor publication, the address is: ForthInter-
est Group, P.O. Box 8231, San Jose, California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright O 1990 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the wde) is copyrighted by the individ-
ual authors of the articles and by Forth Interest
Group, Inc., respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles. except reproductions for non-commer-
cialpu~poses, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code beariig a copyright
notice, however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group
The Forth Interest Group is the association

of programmers, managers, and engineers who
create pactical. Forth-based solutions to real-
worldneeds. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications. conferences, semi-
nars, telecommunications, and area chapter
meetings are among its activities.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group. 1330 S. Bascom Ave.,
Suite D, San Jose, CA 95128. Second-class
postage paid at San Jose. CA. POSTMASTER:
Send address changes to Forth Dimensions.
P.O. Box 8231. San Jose. CA 95155."

Forth Dimemions 4 Volume XII, Nwnber 5

More Reliable 80x86 Division
Dear Editor:

David Arnold's article, "Reliable 8086
Division," in the November/December is-
sue of Forth Dimensions, contains an inter-
esting and useful discussion of the Forth
division operators. However, David's in-
formation about Interrupt 0 handling on
Intel 80x86-family microprocessors ap-
pears to be incomplete. The 80286's Inter-
rupt 0 behavior, which puts the address of
the divide instruction which caused the
interrupt on the stack, is also thebehavior of
all subsequent Intel microprocessors
(80386X, 80386DX, and 80486). This
change from the behavior of the 8086188 is
well documented by Intel and (as the time-
honored phrase goes) is not a bug but a
feature, in that it allows an Interrupt 0
handler to "fix up" the arguments which
caused the exception and then restart the
failing instruction.

Regards,
Ray Duncan
Laboratory Microsystems, Inc.
P.O. Box 10430
Marina del Ray, California 90295

Dear Marlin,
As I was checking my article, "Reliable

8086 Division," I found a couple of errors
that were in the manuscript provided to
you. I beg pardon for letting them get past
me.

1. On page eight, in paragraph four,
which begins some discussion of floored
and unfloored division, I incorrectly wrote
that school children are taught floored divi-
sion. I should have said unj7oored division.

2. On page twelve, in screen 12, line 2,
the source code listing incorrectly says this:

I

Volume XII. Nwnber 5 5 Forth Dimensions

AX AX XOR DIV-ERR? #) AX MOV

It should have said this:

AX AX XOR AX DIV-ERR? #) MOV

This bit of code is supposed to load a default
false value into the division error flag at the
beginning of a /MOD division process. If an
error later occurs during hardware division,
a special interrupt handler updates the flag
with a true value. The incorrect code
doesn't initialize the flag. The would not
result in incorrect division, because a spe-
cious result in this version of /MOD would
be redone with an error-free auxiliary rou-
tine. It would waste a little time, though.
Here is what can happen:

The incorrect version leaves unchanged
the initial contents of the error-flag register,
DIV ERR?. If a preceding division re-
sultd in a division error, a true value would
remain. Hardware division then takes
place, and the flag value is checked to see if
an error occurred. If true, the auxiliary
processof SAFE-* /MOD redoes the arith-
metic and leaves a valid flag.

As may be seen, the flag would finally
get reset, but in an awfully roundabout way.

YOUS truly,
David Arnold
616 112 W. Hamilton St.
Kirksville, Missouri 63501

Catch & Throw
Doug Phillips:

I saw your note in "Best of GEnie" (FD
XII/3). I had no idea CATCH/THROW had
caught on since I recommended the mecha-
nism to George Shaw last year. Your "for
free" analysis of the requirements for

CATCH/THROW implementation is not
quite complete. There is a middle ground
between your two approaches. I have used
this technique for years in my Forth sys-
tems, and the mechanism is free if your
program doesn't use it, and quite cheap if it
does.

The idea is to have a pointer to the
topmost catch frame on the return stack,
and links fiom catch frame to catch frame.
So far, this is just like your first choice.
Now, when CATCH is executed, it builds
the catch frame and calls the remainder of
its containing routine (instead of return-
ing). When the containing routine returns
to the CATCH via NEXT, CATCH simply
removes the catch frame and falls into
NEXT, too, returning from the containing
routine. NEXT itself is not changed in the
least! Thereturn stack can have anything at
all on it (in fact, I use it for my LOCAL
mechanism).

Now THROW is implemented as areturn
from the outermost CATCH (which hasn't
returned yet ... it called its return point)
after restoring the catch frame pointer. I
also have a routine called PUNT-CATCH
which removes the topmost catch frame
from the return stack.

Reproduced in Figure One are the
CATCH, THROW, and PUNT-CATCH rou-
tines in M68000 assembly code (this is
native-code Forth, i.e., NEXT = RTS). The
references to the frame pointer (A2) are for
local variables.

As a further optimization, I have two
mechanisms to set up local variables. One
allows CATCHeS in the routine with locals;
the other doesn't, and is very cheap. The
two mechanisms may be mixed in one
program. This is just one more way to make
CATCH/THROW inexpensive when not
used.

Regards,
Doug Currie
Flavors Technology, Inc.
3 Northern Blvd.
Arnherst, New Hampshire 0303 1

Open Letter to ANSI X3J14
[The following is a letter that was ad-
dressed to Elizabeth Rather, in her capac-
ity as chairperson of the group that is
formulating an ANS Forth. Its author also
wished to share it with the readers of FD.
Following it is Ms. Rather's response.]

This is an open letter to the members of
ANSI ASC X3 / X3J14 addressed to you,
the chair. I would like to thank you and
X3J14 for the opportunity you afforded the
Boston FIG ANS Forth Group, and me as
their representative, to air our views and act
upon our proposals at your recent (thir-
teenth) meeting in British Columbia.

Our group had hoped to sway X3J14 to
our point of view-a so-called "minimal-
ist" point of view-but the only proposals
of ours that passed were either not contro-
versial at all (post), or fit the already exist-
ing views of the current members of X3J14.
The Thirteenth Meeting of X3J14 was
therefore a disappointment to us.

To be fair, there were a few small victo-
ries that must be mentioned with the casu-
alties. X3J14's treatment of division and
NOT represent compromisebetween Forth-
79 and Forth-83. X3J14's passage of my
motion to the technical committee (TC)
makes it clear in the Scope of Work for
X3J14 that the lack of this or that whizzy
feature is not to be considered a "problem
area" (though an amendment stating
"...unless deemed indispensable to the
production of a coherent standard" signifi-
cantly weakened the wording). And BASIS
did get smaller, if only by one word.

My mission, however, was to try to
change the "world view" of the current
members of X3J14 andin that, I failed. This
letter is an attempt to better explain our
point of view and to sway the current
membership of X3J 14 to it.

At our most recent meeting on Septem-
ber 5th the discussion focused on the ques-
tion, "why don't they understand our point
of view and act on it?" To that end, the
group came up with a way of understanding
the standards process that we hadn't
thought of before: "the three Cs"4om-
pleteness, Compatibility, and (self-) Con-
sistency. Completeness refers to ANS

Forth specifying a language complete
enough to be useful without adding extra
features. Compatibility refers to ANS
Forth being compatible with accepted prac-
tice. Consistency refers to the wording of
the ANS Forth BASIS document being
self-consistent.

It first appears obvious that "the three
Cs" are each goals that ANS Forth should
approach as closely as possible, but a sec-
ond look reveals that significantly attaining
some goals necessitates compromise on the
others. We feel it best to compromise
completeness, while the current members
of X3J14 continually compromise com-
patibility with existing practice and appar-
ently want ANS Forth to be a specification
for the ultimate, complete Forth. It is our
belief that the vendors are responsible for
providing complete Forths and that the
standards process should provide the Forth
community at large with a standard docu-
ment (not a specification) that describes the
Forth that is compatible with accepted
practice.

Forth is, after all, one of the few exten-
sible languages. It is not necessary to put
every language extension into standard
Forth. It is only necessary that standard
Forth provide the facilities for extending
itself, so that users (and vendors) can add
any language extension they want.

We believe that trying to specify every
nook and cranny of a complete Forth sys-
tem-especially in new areas that are out-
side accepted practice--is a process that is
doomed to failure. Any specification writ-
ten describing what Forth ought to be,
rather than what Forth is, is bound to have
hobs in it. It is the usual fate of most well-
meaning specification writers and it was
the fate of the process that yielded Forth-
83. X3J14 must standardize last year's
Forth, not next year's Forth.

It is the belief of the Boston FIG ANS
Forth Group that our point of view, while
not well represented among the current
membersof X3J14, is prevalent in theForth
community at large. We will continue to
drum up support for our point of view
outside of X3J 14 andcontinue to attempt to
win over the current membership of X3J14
to that view by submitting proposals and
comments.

I close with a quotation from Chuck
Moore that is appropriate to the compelling
sense of righmess our group recognizes in
the minimalist point of view:

One principle that guided the evo-
lution of Forth and continues to guide
its application is, bluntly: Keep it
simple. A simple solution has elegance.
It is the result of exacting eflort to
understand the real problem and is
recognized by its compelling sense of
rightness. I stress this point, because it
contradicts the conventional view that
power increases with complexity. Sim-
plicity provides confince, reliability,
compactness, and speed.

Sincerely,
David C. Petty
Boston Forth Interest Group
American National Standard Forth Group
P.O. Box 2
Cambridge, Massachusetts 02140-0001

X3J14 Report
Elizabeth D. Rather, Chair, X3J14

The primary focus of this article is to
respond to concerns expressed by Boston
FIG regarding our work towards ANS
Forth. First, though, I'd like to give a little
background.

X3J14 has held 14 meetings, the most
recent of which was in Detroit Nov. 7-1 1.
A total of 36 people have participated as
Principal voting members (of which 21 are
currently voting members), and an equiva-
lent number have also participated ac-
tively as alternates or observers. Of these,
15 list themselves as producers (including
FORTH, Inc., CSI, LMI, Harris, Vesta,
Johns Hopkins, anda number of individual
producers), 20 as consumers, and one as a
general interest group (FIG). Several of
our members are well known in the Forth
community, including George Shaw,
Mitch Bradley, Bob Berkey, Bill
Ragsdale, Larry Forsley, and Martin
Tracy. Some represent large organiza-
tions: NASA, IBM, NCR, Ford Motor Co.;
while others are individual consultants.
Some of our members are extremely
highly skilled systems programmers, with
extensive knowledge of Forth internals,
while some are relatively casual users who
are keenly interested in this process. Some
are experienced with only one vendor's
system, while others have used several.
Similarly, some are expert programmers
in a number of languages and OSs, while
others aren't. In short, it's a very diverse
group. In addition to our members, nearly
100 people have purchased at least one

I

Forth Dimensions 6 Volume XII, Number 5

I

Volume XII. Nwnber 5 7 Forth Dimemions

copy of our working BASIS documents; of
these, most have bought several, and about
30 are subscribers.

We have met in many places: Mel-
bourne, Florida; Washington, D.C.; Roch-
ester; Boston; Detroit; Vancouver; Port-
land; San Jose; Palo Alto; Los Angeles; and
SanDiego. In 1991 we may add Atlanta and
Boulder, Colorado. In all of these places
we've invited area Forth users to attend,
contribute, and vote in TSC sessions (see
below), and many have done so.

Since our formation in August, 1987,
we've had ten four-day meetings and four
five-day meetings. With an average atten-
dance of about 12 members and five visi-
tors, thatrepresents about 1,020 work days,
many of which were 10-12 hours long, or
roughly 4.25 years of work. In addition, we
have poured many hours of work into pro-
posals and study between meetings.

We've processed 958 proposals: 518
passed, 301 failed, 1 10 were withdrawn
(because they were redundant or dealt with
issues that had already been decided), 1 1
were declared comments, and 18 are still
pending.

This is a lot of work, by a lot of very
bright, dedicated people.

Here is how we work. The TC is gov-
emed by strict rules laid down by our gov-
emingorganization,X3 (InformationProc-
essing Standards group of ANSI), which
require, among other things, that every
technical decision represent a consensus of
the members. In order to arrive at that
consensus, we've set up a sub-group, called
the Technical Subcommittee, or TSC. Greg
Bailey is its chair. It consists of whoever is
present at a meeting: members, alternates,
visiton, each with one vote. This group
debates issues, often at great length, until it
reaches aconsensus, and then forwards that
decision to the TC for official action. Usu-
ally the consensus survives in the TC, with
most votes being overwhelmingly in sup-
port of the TSC's decision. Sometimes,
however, new facts or questions arise about
a proposal or issue, in which case we refer
it back to theTSC. No proposal is permitted
to pass or fail with a significant minority
opinion.

In practice, this has ensured that there
are no hasty or casual decisions, and no
one's "private agenda" can prevail in the
absence of overwhelming support.

At our first meeting, we adopted a state-

ment of our Scope of Work, a step required
by X3. A copy is attached. This was re-
examined at length in May and August of
this year [1990], and amended somewhat
for clarity. In summary, this charter called
for us to examine "common existing prac-
tices" in Forth, as weU as identifying sig-
nificant "problem areas" and attempting to
resolve them. Neither of these has been
easy.

What is "common existing practice?"
Forth-83? Forth-79? One implementation
that happens to have thousands of users?
One brutal truth is that if we adopted a
guideline that required all major implemen-
tations to agree, we'd have a subset of Forth
that would run only on a 16-bit engine and
have a command set so limited that no
significant programs could be written with
it. We have consistently and unanimously
rejected this as a guideline.

One of our earliest acts was to identify
vendors with over 200 users, and send them
a questionnaire soliciting information as to
which, if any, standard they followed and
what they considered to be major problem
areas that needed to be addressed. We also
solicited input from many other sources,
including FIG chapters, electronic bulletin
boards, customers of member vendors, etc.
We found very broad compliance with
Forth-83,a significant minority of Forth-79
compliance, and some specific areas of
concern, such as need to run on other than
16-bit architectures (especially 32-bit sys-
tems), need to deal with host OSs, floating-
point arithmetic, etc.

There were many others. The imple-
mentors we studied had virtually all tackled
these issues, with predictably diverse a p
proaches. In order to resolve this diversity,
we adopted a guideline:

If we changed the behavior of a word
from its meaning in Forth-83, Forth-79, or
significant current usage, we'd give it anew
name. This prevents "breaking" existing
code, as users wishing to comply with ANS
Forth can freely choose to either:
a) Do a blanket name change, if they

comply with the meaning;
b) Keep the old name and meaning, not

changing existing programs, and add
the new name and meaning for later
use;

c) Add a "shell" on top of a system, clefin-
ing the new word in terms of the exist-
ing word, or

d) Add a shell under an application, de-
fining the old word in terms of the new
word.

X3, which has been through these wars
before (thirty years of Fortran and COBOL
standards, for example), is very concerned
about "cost of compliance," and as most of
us operate on tight budgets, we heartily
agree. All of these approaches are far
cheaper than examining all instances of a
word and deciding whether the usage is
impadted by the change of meaning. How-
ever, this has been a source of some "new"
word names which have been adopted to
resolve important usage conflicts (e.g.,
NOT) and technical problems (e.g., usage
of COMPILE and [COMPILE]).

We had many requests for things that
were clearly new as far as Forth standards
were concerned, but with which several
implementors and users had extensive
experience. In some of these cases we
synthesized this experience, and then com-
missioned our members to try the synthesis
and report results. This has been the case
with all the optional word sets.

Our status at this time is that we're
about ready to publish a draft proposed
standard or "dpANS" for review, probably
shortly after our next meeting (January
29-February 3, 1991, at FORTH, Inc.).
The rules governing this phase of our activ-
ity are as follows:

1. The TC must approve the dpANS by a
two-thirds vote of all members (taken
by mail). Negative votes must be re-
sponded to in writing and will be kept
with the document through all the fol-
lowing steps.

2. The dpANS is then submitted to X3's
Standards Planning and Requirements
Committee(SPARC) for review, which
will take several months.

3. The dpANS is then published for public
review, for a four-month period. Public
review comments are sent to X3, and
are tracked by them. The TC must re-
spond in writing to all adverse public-
review comments, and the responses
are reviewed by X3 to ensure that we're
truly responsive.

4. If, as a result of input from X3 or the
public, we elect to make changes, the
revised dpANS then goes out for addi-
tional two-month public review periods

EXPORT catch
c a t c h ; (- n T o r F) c a t c h

M0VE.W # O , - (A 4) ; r t n v a l
M0TEA.L (S P) , A0 ; r t n addr, leave it f o r t h r o w
M0VE.L A2, - (S P) ; save frame p t r
MOVE. L - c a t c h e s - (A 6 1 , - (S P) ; setup catch f r a m e
MOVE. L S P , - c a t c h e s - (A 6) ; l i n k it i n
J S R (A0 ; r e t u r n first t i m e
; c o l o n w o r d RTS c o m e s h e r e
t1i)VZ .L iSP) +, - c a t c h e s - (A 6) ; u n l i x l k
ADDQ.L # 8 , S P ; r e m o v e c a t c h f r a m e
RTS ; r e t u r n f r o m colon w o r d

EXPORT t h r o w
t h r o w ; (n - n T) t h r o w - doesn ' t r e tu rn t o ca l ler b u t t o c a t c h

M0VE.W #-I, - (A4) ; r t n va l T
MOVE. L -catches- (A 6) , S P ; get catch f r a m e
MOVE. L (S P) +, - c a t c h e s - (A 6) ; unl ink it
M0VE.L (S P) + , A2 ; restore f r a m e p t r
RTS ; r e tu rn f r o m catch again

EXPORT p u n t - c a t c h
p u n t - c a t c h ; (-) r e m o v e s catch f r a m e

M0VEA.L (S P) + , A0 ; r t n addr

ADDQ.L #4 , S P ; r e m o v e ca tch 's r t n addr
MOVE. L (S P) +, - c a t c h e s - (A 6) ; u n l i n k
ADDQ.L 18, S P ; r e m o v e c a t c h f r a m e
JMP (AO) ; r e t u r n

as often as needed until all issues are
resolved to the satisfaction of both the
TC and X3.

5. Finally, the dpANS plus all u~esolved
adverse comments andlor negative
votes by TC members goes to X3 for
review and final approval.

Most of our remaining work involves
adding rationales and explanatory materi-
als to help people understand not only what
the Standard says but why we did what we
did. We do have what we consider to be
good reasons for each addition, subtraction,
and change; and we are attempting to ar-
ticulate these reasons as clearly as we can.
There's a little remaining technical work on
multitasking, number conversions, and
search order.

Now, with this background, I'd like to
comment on the specific concerns of the
Boston FIG group.

These people have been among our

most active and dedicated outside con-
tributors. They've met regularly, and re-
viewed our work carefully and diligently.
They've sent us extensive notes and com-
ments, all of which have been distributed
within the TC and read carefully by most of
us. They've also submitted 18 propbsals, of
which ten have passed (some amended)
and eight failed.

Their underlying concern is with the
overall size of the standard, especially the
required CORE word set. We generally
agree with many of their viewpoints, per-
haps more than they realize. But the devil is
in the details: just what is the minimum
useful word set? Our definition of it is
represented by CORE, 135 words (com-
pared with 132 in Forth-83). BFIG has
proposed dropping such words as 1+, I-,
2@, 2 !, 2DROP. 2DUP, ZOVER, 2SWAP,
MAX, MIN, SPACE, and others that have
been in every standard and virtually all im-
plementations. We simply feel this is car-

rying minimalism too far.
No one on the TC believes we are even

close to defming "a complete Forth," and
we agree that this is principally an
implementor's task. We have rejected
many proposed additional words and word
sets, submitted both by members and out-
side obse~ers. In fact, over two-thirds of
our outside proposals have offered addi-
tional words, many of which have merit
but were rejected as being outside com-
mon practice.

We are grateful for all the outside help
we've received, from BFIG and others,
and hope it will continue through the re-
view process. We urge as many people as
possible to participate, by buying copies of
our current BASIS (send checks for $10
made to the Forth Vendor's Group. c/o
FORTH, Inc., 11 1 N. Sepulveda, Manhat-
tan Beach, CA 90266), downloading
BASIS (now published in massive RTF
files on GEnie and other boards), attending

Forth Dimensions 8 Volwne XII. Number 5

our next meeting (contact me at 1-800-55-
FORTH for more information), and send-
ing us your proposals and comments.

Resolution 87-002
Revision #2
Scope of Work for X3/J14

The purpose of this resolution is to out-
line the scope of work for this TC. It is
based upon the project proposal adopted by
X3J14/005. The intent is to present an out-
line of the significant steps to be followed
to achieve an acceptable standard which
will result in broad compliance among all
major vendors of Forth language products,
with minimum adverse impact upon trans-
portability from existing systems in use.

The scope of work for X31J14 shall
encompass the following:

1. Identifkation and evaluation of com-
mon existing practices in the area of the
Forth programming language. This
shall include the following:

a. Identification of all producers of Forth
language programming systems with a
distribution in excess of 200 users.

b. Evaluation of Forth implementations
distributed by these producers with re-
spect to the Forth-83 standard, to iden-
tify the primary areas of non-compli-
ance. Areas in which most producersare
in compliance, or in agreement on a
concept outside of the scope of the
Forth-83 Standard, will be considered
to be "accepted practice."

c. Public solicitation from these producers
as well as other sources represented on
the TC of specific problem areas within
the Forth-83 Standard, and recommen-
dations for change. Problem areas are
areas of accepted practice where pro-
ducers' implementations vary. Problem
areas specifically do not include con-
cepts new to Forth intended to improve
perceived deficiencies in Forth as de-
fined by accepted practice, unless
deemed indispensable to the production
of a coherent standard.

2. Evaluate proposed modifications to the
Forth-83 Standard resulting from Item
lc above, addressing the following ar-
eas:

a. Arithmetic and logical operators
b. Flow-of-control structures
c. Input and output operators
d. Memory and mass storage operators

(Continued on page 17.) 1

SIGFORTH '91
REGISTRATION

ANNUAL
SIGFORTH CONFERENCE

MARCH 7-9,1991
COMPLETE & MAIL THIS FORM TO:

SIGFORTH CONFERENCE
THE SOFTWARE CONSTRUCTION CO.
2900B LONGMIRE DRIVE
COLLEGE STATION, TX 77845
(409) 696-5432

PLEASE TYPE OR PRINT CLEARLY

N A M E I l I l l l l l l l l I I 1 I I I I I J

ORGANIZATIONL I I I I I I I I I I I I I I I 1

A D D R E S S I I I I I I I I I I I I I I I I I I I

CITY I l l I I I I I I I I I I I S T A T E I I I

ZIP IPHONEI 1 I r r I I I 1 I I

F A X l I I I I I I I I I I

CONFERENCE FEE:
PAYMENT BY CHECK ONLY PAYABLE TO: SIGFORTH '91

$190 ACM or SIGFORTH MEMBER
$190 GOVERNMENT (AGENCY)
$240 NONMEMBER

$50 STUDENT
$50 LATE FEE (AFTER 1213 1/90)

HOTEL REGISTRATION:
HYATT REGENCY OF SAN ANTONIO
123 LOSOYA STREET
SAN ANTONIO, TX 78205
PHONE: (512) 222-1234
FAX: (512) 227-4925

Volume XII, Number 5 9 Forth Dimensions

FORTH INTERRUPT
HANDLING

I BARRIE B. WALDEN - WOODS HOLE, MASSACHUSETTS I

h l Z c r o p e s s o r designers provide
interrupt capabilities as a means for an ex-
ternal event to obtain the central processing
unit's attention even while it is busy with
another task. The effect is just what the
name implies: the receipt of an intermpt
causes the processor to temporarily put
aside its current task and service the inter-
rupting hardware. To be successful, the
following must occur:

1. The microprocessor must receive an
indication that an event has occurred
requiring special attention. Most micro-
processors recognize multiple types of
both hardware and software interrupt
signals.

2. The microprocessor must stop what it is
doing in a manner which allows resum-
ing where it left off after completion of
interrupt servicing.

3. A method must exist for determining
which special event has occurred out of
many possibilities.

4. The microprocessor must have a means
for determining the correct action to
take in response to each possible inter-
rupt event.

5. There must be a way to resume the
original task following completion of
the appropriate interrupt response.

Most microprocessors recognize inter-
rupts of various types and priority levels
from both hardware and software sources.
When an interrupt request is received, the
microprocessor stores all of the informa-
tion necessary to mark its place for later
continuation, and then conducts some op-
eration which allows determining the inter-
rupt source and responding in the correct
manner. Using the eight-bit 6809 as an

example, three hardware and three soft-
ware interrupt sources are recognized plus
hardware reset. All are handled in a similar
manner, in that each type has an assigned
memory location which must contain the
address of the code to be run in response to
an intermpt of the associated type. This is a
simple arrangement which allows a pro-
grammer to easily change the desired re-
sponses by changing the appropriate vec-
tor, but all interrupts of the same type share
a single response vector address. As a re-
sult, if multiple sources are available for a
particular type of intermpt, the response
code must contain a means for differentiat-
ing between them. One common method
involves using a polling routine which
causes the processor to run down a list of

This builds words with
a separate code block
in the parameter jield.

possible sources, checking each one for an
active indication.

The goal of this article is to show how a
small set of Forth words can simplify the
use of interrupts by a Forth program. Un-
fortunately, development of the required
words is hardware dependent and there-
fore, for most readers, the code presented
needs to be understood and modified rather
than simply copied. Three principal words
will be developed: INTERRUPT, EN-
ABLE, and DISABLE. INTERRUPT is to
be a compiling word which will construct a
dictionary entry for each interrupt source.
This entry will provide a name for the
interrupt and will contain pointers to Forth
words for accomplishing the required en-
able, disable, test, response, and run func-

tions. The run function defines what will
happen if the name of the interrupt is en-
countered in the input stream under a non-
interrupt condition.

Once these words have been developed,
the process for establishing a working in-
terrupt is as follows:

Write a Forth word which performs the
tasks necessary to enable the interrupt
source. This is likely to be a code word
which changes values in hardware regis-
ters.

Write a Forth word which disables the
interrupt source.

Write a Forth word which tests the inter-
rupt device--to determine if it is the
source of a received interrupt-and re-
turns a flag. This is undoubtedly a code
routine, and the flag can be a testable
microprocessor condition code, pro-
vided that it is not likely to be altered by
the code associated with the Forth inner
interpreter.

Write aForth word which does whatever
is desired when the interrupt occurs. This
is likely to be a high-level definition.

Write a Forth word which accomplishes
something useful when the name of the
interrupt is entered, perhaps initialize a
value or output a status message.

Create the interrupt word by combining
information on all of the above words
into a single dictionary entry using the
compiling word INTERRUPT. This
might look like the following for a timer
interrupt to be named T 1:

INTERRUPT T1
T1 ENABLE
T I D - I SABLE

Forth Dimensions 10 Volume X11, Number 5

Volume XII. Nwnber 5 I 1 Forth Dimemiom

T1-TEST
TI-RESPONSE
TI - RUN

The interrupt can now be enabled and
disabled with:
ENABLE ~1 and DISABLE TI

When an interrupt occurs, T I-TEST
will be run and, if the source is the T 1
hardware, ~1-RESPONSE will be run. If
TI is encountered in the input stream (i.e.,
entered from the keyboard), T l-~uN will
be executed, perhaps to initialize timer
number one.

Developing the three principal words is
tricky and requires knowledge of both the
hardware and the inner workings of the
version of Forth being used. Fortunately,
the necessary information is usually pro-
vided by the hardware and software
vendors. INTERRUPT is perhaps the most
difficult to understand. It is a compiler
word which creates a dictionary entry con-
taining pointers to the other words written
for this interrupt, as well as some code
which can execute these words. The point-
ers and code are placed in the parameter
fields of the words which INTERRUPT
defines. The code is intended to be run by
the microprocessor's primary interrupt-
handling routine rather than the normal
Forth system. A branch instruction is in-
cluded which determines if the response
word is to be executed, depending upon a
flag returned by the test word. Code
following DOES> causes the run word to
execute as the normal Forth run-time activ-
ity for the defined word.

Listing One provides an INTERRUPT
definition for a 6809 system. The double
use of [C O W ILE I is interesting: the in-
tent is to place the code field addresses of
the words following INTERRUPT at run
time in the parameter field of the word
being created. The first [COMPILE]
forces compilation of the second [COM-
PILE] rather than its execution. There-
fore, the second [COMPILE] will be run
when the word INTERRUPT executes,
forcing compilation of the next word in the
input stream (note that the name of the word
being created is removed from the stream
by CREATE). In the example given above,
the word T1 is created and the first pair of
[COMP I LE S I causes the fmt two bytes of
T 1's parameter field to contain the code

address for TI-ENABLE. In the same way.
the second two bytes point at
TI-DISABLE.

The fifth and sixth bytes point at the test
word and they are followed by an address
compiled by HERE OF + , .This is apointer
to a location 15 bytes further down in the
definition. HERE provides the address of
the pointer and OF is added to it as an offset
value. The same thing is done for the re-
sponse word entry. The purpose of these
entries will be explained shortly.

Finally, on line nine, we get to some
executable code. The version of Forth in
this example uses the 6809's Y register as
the instruction pointer. Normally, a word is
placed in the to-be-run state when the in-
struction pointer is made to contain the
address of a pointer to the word's code field
address. This address is usually one of the
list of addresses within the parameter field
of the calling word. In short, if you wish to
run a group of words, make a list of their
code field addresses, place the address of
the first address in the instruction pointer
register, and execute the code for NEXT. All
the words in the list will be run (including
the sub-words that define these words), and
then the system will crash when trying to
use a pointer beyond the end of the list.
DOCOL and ; S prevent this crash when the
address list is part of areal colon definition.

Our code will set Y equal to the address
of thecode field address of the test wordand
will duplicate the action of NEXT. We cap
ignore the crash potential because we will
not completeexecutionof thiscodeblockin
the normal Forth manner. After the test
word has been run, the instruction pointer
will point atthe memory location following
theonecontaining the test word7sCFA, and
the crash will be avoided by ensuring that
this address also points to a pointer to ex-
ecutable code. This is the purpose of the
offset pointers in lines five and seven,
mentioned above. They each point to
pseudo code field addresses generated by
lines 11 and 15 which, in turn,pointtolines
12 and 16, containing executable code.

Lines nine and ten are the hand-as-
sembled version of Figure One.

The only trick is in loading Y correctly.
The code shown uses a PC relative offset to
point back 13 bytes. The last two lines are
the 6809's version of NEXT. The amount
accomplished by these three lines of code
gives some indication of the power of the

6809 instruction set.
Line 12's code is a flag test which deter-

mines if the response word should be run.
The carry-condition code bit is used for the
flag, since it is not affected by the code
associated with NEXT. In the example, a
clear carry flag indicates that the test word
did not find the interrupt source, and a
branch is used to prevent running the re-
sponse word. If the carry bit is set, a second
manipulationoftheY registeroccurstorun
the response word and return to the code in
line. 16. Line 16 sets the carry bit to signal
successful interrupt servicing to the
system's primary interrupt handler. Line
17 contains a return-from-subroutine in-
struction, which will be explained in a
moment.

Line 18 calculates the address of the run
word's address by adding a suitable offset
to the address placed on the data stack by
DOES >. This allows executing the run
word as the run-time action of the word
being created.

The words created by INTERRUPT are
certainly a little strange. They act likeForth
words and they run other Forth words, but
their parameter field forms an independent
code block containing code field address
lists followed by executable code includ-
ing copies of the code f0rNExT. This block
is called by the microprocessor's intermpt
handler and, once running, it becomes a
supervisory task overseeing the operation
of more normal Forth words. The
microprocessor's interrupt handler calls
these words by doing a subroutine jump to
the executable code in the middle of the
parameter field (line nine in the example).
This code mimics Forth's normal opera-
tion solely because it is an easy way to
allow standard Forth words to be run. The
code block is not a Forth word, it is not
called by a Forth word, and it is not exited
in the manner of a Forth word.

ENABLE and DISABLE are a little
more normal. They each have two tasks to
accomplish: they must deal with the
system's interrupt handling code and they
must enable or disable the interrupt source
hardware. Continuing with the 6809 ex-
ample, let us assume that there are multiple
sources for the type of interrupt we are
interested in. Whenan interrupt of this type
is received, the microprocessor fetches an
address from a fixed memory location
designated by the manufacturer andbegins

Forth Dimensions 12 Volume XII, Nwnber 5

executing the code at that address. With
multiple possible sources, this code must
be the source-determination polling rou-
tine. Our ENABLE must add to the list of
devices polled and our test and response
words must return a result flag which the
polling routine understands. DISABLE
must remove a possible sowe from the
polling list and prevent further interrupts
from the hardware. To simplify the ex-
ample, we will assume that two words
exist: IRQV-PUSH and IRQV-PULL add
or remove the address on the top of the data
stack from the list of address vectors used
by the system interrupt handler polling
routine. If an address is in the polling rou-
tine list, the code at that address will be run
as a source-test subroutine. Note that this
explains why the code put in place by
INTERRUPT ends with areturn-from-sub-
routine instruction.

Listing One shows the code for EN-
ABLE and DISABLE, which are quite
similar. Each looks ahead to the next word
in the input stream and determines the
proper entry point for the polling routine to
use in order to cause the test word to run.
This entry point is always a fixed distance
into the code block contained within each
interrupt word's parameter field. The ad-
dress is placed on the data stack and either
IRQV-PUSH or IRQV-PULL is called.
Following that, the address of either the
enable or disable word is fetched from the
parameter field and the appropriate word is
executed. Using our example, ENABLE T 1
would result in timer TI being testedaspart
of the polling routine (TI-TEST) and
timer T 1 being configured to generate
interrupts (T 1-ENABLE). DISABLE TI
would reverse the action. Watch the order
in which the two tasks are accomplished by
each worbthe hardware should never be
in the enabled state without the polling
address in place.

Consider what we have done: INTER-
RUPT builds words which, in addition to
normal Forth characteristics, contain a
separate code block in the parameter field
which is run by the system's interrupt
handler. This code block acts like the nor-
mal Forth inner interpreter and, therefore,
can run external high-level Forth words. In
addition, the block serves as a storage loca-
tion for the addresses of other words asso-
ciated with an interrupt so that words such
as ENABLE and DISABLE an find them
and execute them. ENABLE and DISABLE

interact directly with the system's intermpt
handler, accomplishing such tasks as add-
ing and removing addresses from the poll-
ing routine list and, additionally, running
the Forth words which enable and disable
the interrupting hardware.

Listing Two shows how the above can
be applied to the Motorola 68HC11 micro-
processor. The version of Forth used is that
of New Micros, Inc., which meets the
Forth-83 Standard and can be purchased
permanently installedin the HCll's ROM.
The listing includes definitions for a simple
interrupt polling routine and the test word
address-push and -pull routines. The fol-
lowing comments may help.

New Micros' Forth is configured as
follows:

System stack = Return stack
Register Y = Data stack pointer
Addr $0000 = Word pointer (w)
Addr $0ML? = Instruction pointer (IP)

I N I T I A L I ZE IRQVT starts a polling
address vector table at RAM location
$0 by setting the first two eight-bit
locations to zeroes.

IRQ POLL is a simple interrupt source
polling routine. It is not used as a Forth
word; instead, its code address must be
placed in the HCll's interrupt vector table
so that it will be run when an interrupt of the
desired type is received (See
S E T-RT I VECTOR in Listing Three).
~ o t e that the code ends with a return-from-
interrupt instruction rather than the normal
JMP NEXT. Both the W and I P values are
saved and restored by this routine. Addi-
tionally, the data stack pointer (register Y)
is set to an unused RAM location ($7000)
before jumping to the test routines, to en-
sure that its use will not cause damage. This
is necessary because New Micros' word
F I N D may be interrupted, and it uses the Y
register for more than the data stack
pointer.

IRQV-puSHand IRQv-~~~Lexpec t
an address on the data stack which they
either put in or take out of the polling vector
table. For code simplicity, a push can ex-
pand the table but a pull cannot shrink it. A
$0000 entry marks the end of the table and
$FFFF indicates an unused entry location.
Note that the last line of code in both of
these words requires that you know the
address of NEXT.

The definition for INTERRUPT begins

with 0 , to put a dummy 16-bit value in the
parameter field of the words to be defined.
This seems to be required to make the New
Micros version of the CREATE ... DOES>
construct work properly.

Loading of the IP is done differently
than with the 6809 because the HCll does
not have the load-effective-address in-
struction. Note that the IP is stored in a
memory address ($0002) rather than a reg-
ister.

The New Micros' NEXT code is quite a
bit longer than the 6809 version, and it
increments the IP value before using it to
load register X with a pointer to the code
field address (the 6809 post-increments the
IP value). The IP and register X already
contain the correct values by the time this
in-line version of NEXT is reached and,
therefore, the normal incrementing and
loading is not included.

Listing Three provides some test words
which are specific to the New Micros
68HCl1, due to the interrupt vector and
control register addresses used. They work
with the processor's real-time interrupt
capability which, once enabled, is made to
repeatedly increment the variable CNT.

Barrie B. Walden is the manager of
Submersible Engineering and Opera-
tions at the Woods Hole Oceano-
graphic Institution, home of the hard-
working ALVIN submersible, whose
13,000' depth capability is second in
the U.S. only to the Navy's Sea Clu.
He also manages Operational Scien-
tific Services (providing support to
scientists on several seagoing facili-
ties) and is one of three principal in-
vestigators developing the Autono-
mous Benthic Explorer (ABE), an
unmanned, untethered research ve-
hicle. Ten years ago, he typed in 6800
fig-FORTH and, since then, has spent
more time "improving" the language
than writing applications. Noting that,
for many applications, the source
code-even the source languageis
never seen by anyone but the original
programmer, he relates that the navi-
gation tracking-and-display system
used in ALVIN is written in LMI Forth,
that ABE's top-level controllers will
likely use New Micros' Forth, and that
many embedded programs in the
ships' data-logging system-interface
boxes were developed with Forth.

Figure One.

LEAY F 3 , P C R (3 1 8 C F 3) L o a d I P (R e g Y)
LDX ,Y++ (AEA1) 6 8 0 9 ' s NEXT
JMP [, X I (6 3 9 4)

Listing One. 6809 Interrupt Words.

INTERRUPT CREATE
[COMPILE] [COMPILE]
[COMPILE] [COMPILE]
[COMPILE] [COMPILE]
HERE OF + ,
[COMPILE] [COMPILE]
HERE 1 6 + ,
[COMPILE] [COMPILE]
3 1 8 C , F 3 C,
AEAl , 6 3 9 4 ,
HERE 2 + ,
2 4 0 B ,
3 1 8 C , EC C,
AEAl , 6 3 9 4 ,
HERE 2 + ,
l A O l ,
3 9 C,
DOES> OC + @ EXECUTE

: ENABLE
BL WORD F I N D
DROP DUP
1 2 + IRQV-PUSH
4 + @ EXECUTE

: DISABLE
BL WORD FIND
DROP DUP
6 + @ EXECUTE
1 2 + IRQV-PULL

\ E n a b l e w o r d
\ D i s a b l e w o r d
\ T e s t w o r d
\ P o i n t e r t o l i n e 11
\ R e s p o n s e w o r d
\ P o i n t e r t o l i n e 15
\ R u n w o r d
\ L o a d I P
\ NEXT
\ P s e u d o CFA
\ B r a n c h ca r ry clear
\ L o a d I P
\ NEXT
\ P s e u d o CFA
\ S e t carry
\ R e t u r n f r o m s u b r o u t i n e

; \ E x e c u t e "Run" w o r d

\ F i n d f o l l o w i n g w o r d ' s CFA
\ D r o p f l ag , D u p addr
\ L o a d p o l l i n g vector table
\ E x e c u t e " E n a b l e " w o r d

\ F i n d f o l l o w i n g w o r d ' s CFA
\ D r o p f lag, D u p addr
\ E x e c u t e " D i s a b l e " w o r d
\ U n l o a d p o l l i n g vector table

Listing Two. 68HCll interrupt words (in New Micros' Forth).

Code words for source polling:

CODE INITIALIZE-IRQVT \ T e s t r o u t i n e vector table @ SCFOO
CE C, CFOO , \ LDX #RAM_TABLE-ADDR
6 F 0 0 , \ CLR , X
6 F 0 1 , \ CLR l , X
7 E C, FE4A , \ JMP NEXT

END-CODE

(Continued on next page.)

lolume XII, N d e r 5 13 Forth Dimensions

(Continued.)

1
CODE IRQ-POLL

DEOO ,
3C C,
DE02 ,
3 C C,
18CE , CFOO ,
CDEE , 0 0 C,
2 7 1 7 ,
8C C, F F F F ,
2 7 0 C ,
1 8 3 C ,
18CE , 7 0 0 0 ,
ADO0 ,
1 8 3 8 ,
2 5 0 6 ,
1 8 0 8 , 1808 ,
2 0 E 4 ,
3 8 C,
DF02 ,
3 8 C,
DFOO ,

' 3 B C,
END-CODE

CODE IRQV-PUSH
CDEE , 0 0 C,
1 8 0 8 , 1 8 0 8 ,
1 8 3 C ,
18CE , CFOO ,
CDAC , 0 0 C,
2 7 1 7 ,
18EC , 0 0 C,
2 7 0 C ,
1 A 8 3 , F F F F ,
2 7 0 9 ,
1 8 0 8 , 1 8 0 8 ,
20EA ,
18ED , 0 2 C,
CDEF , 0 0 C,
1 8 3 8 ,
7 E C, FE4A ,

END-CODE

CODE IRQV-PULL
CDEE , 0 0 C,
1 8 0 8 , 1 8 0 8 ,
1 8 3 C ,
18CE , CFOO ,
CDAC , 0 0 C,
2 7 0 B ,
1 8 E C , 0 0 C,
2 7 0 C ,
1 8 0 8 , 1 8 0 8 ,
2OFO ,
CC C, FFFF ,
18ED , 0 0 C,

\ LDX $ 0 0 0 0 G e t W
\ PSHX S a v e W
\ LDX $ 0 0 0 2 G e t I P
\ PSHX S a v e I P
\ LDY #RAM-TABLE-ADDR
\ S t a r t LDX , Y
\ BEQ END T a b l e end?
\ CPX #$FFFF V a l i d en t ry?
\ BEQ I n t l
\ PSHY
\ LDY # $ 7 0 0 0 S e t RP t o Ram
\ J S R , X J u m p t o test r o u t i n e
\ PULY
\ BCS E n d S o u r c e found
\ I n t l INY INY P o i n t a t n e x t e n t r y
\ BRA S t a r t
\ E n d PULX R e s t o r e I P
\ STX $ 0 0 0 2
\ PULX R e s t o r e W
\ STX $ 0 0 0 0
\ R T I * N o t a n o r m a l F o r t h r e t u r n *

\ LDX ,Y G e t addr f r o m data s t a c k
\ INY INY A d j data s t a c k pointer
\ PSHY
\ LDY #RAM_TABLE - ADDR
\ L 1 CPX ,Y
\ BEQ L 4 i f e n t r y already i n place
\ LDD , Y G e t e n t r y
\ BEQ L2 B r a n c h i f end of tab le
\ CPD #$FFFF
\ BEQ L 3 B r a n c h i f inac t ive e n t r y
\ INY INY P o i n t a t next e n t r y
\ BRA L 1 L o o p b a c k
\ L2 STD 2 , Y A d d t o t ab le l e n g t h
\ L 3 STX ,Y A d d e n t r y
\ L4 PULY
\ JMP NEXT

\ LDX ,Y G e t addr f r o m data s t a c k
\ INY INY ~ d j data s t a c k po in te r
\ PSHY S a v e da ta s t a c k po in te r
\ LDY #--TABLE - ADDR
\ L 1 CPX ,Y
\ BEQ L2 B r a n c h i f e n t r y f o u n d
\ LDD ,Y G e t e n t r y
\ BEQ L 3 B r a n c h i f end of t ab le
\ INY INY P o i n t a t next e n t r y
\ BRA L 1 L o o p b a c k
\ L2 LDD #$FFFF
\ STD , Y C a n c e l e n t r y

(Continued on page 16.)
I

Forth Dimemiom 14 Volume XZZ, Nwnber 5

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE ! ! !

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Yes, it is faster than optimized C!
Compile 40,000 lines per minute!
Stay totally interactive, even while
compiling!
Program a t any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routines without recompiling!
Use source code for 2500 functions!

*Use data structures, control
structures, and interface protocols
from any other language!
Implement borrowed feature, often
more efficiently than in the source!
Use an architecture that supports
small programs or full megabyte
ones with a single version!
Forget chaotic syntax requirements!
Outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HSIFORTH with FOOPS The
only flexible full multiple
inheritance object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible a t simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend
all tasks to their noble mold. Add on
OOL's provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HSEORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY
HAS> ARM RightArm
HAS> ARM LeftArm

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
Now that is a null learning curve!

WAKE UP ! ! !

Forth is no longer a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple
tools expected in any commercial
language.

HWFORTH Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics,
they fail to show its true potential.
Not to mention being s-I-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the
ideas that you now see sprouting up
in other Forths. We won't throw in
the towel, but the drain on resources
delays the introduction of even better
tools. Don't kid yourself, you are not
just another drop in the bucket, your
personal decision really does matter.
In return, well provide you with the
best tools money can buy.

The only limit with Forth is your
own imagination!

You can't add extensibility to
fossilized compilers. You are a t the
mercy of that language's vendor. You
can easily add features from other
languages to HS/FORTH. And using
our automatic optimizer or learning a
very little bit of assembly language
makes your addition zip along as well
a s in the parent language.

Speaking of assembly language,
learning i t in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer i t in a
few hours or days using HSFORTH.

HS/FORTH runs under MSDOS or
PCDOS. or from ROM. Each level
includes all features of lower ones. Level
upgrades: $25. plus price difference
between levels. Sources code is in
ordinary ASCII text files

All HSiFORTH systems support 111
megabyte or larger programs & data, and
run faster than any 64k limited ones even
without automatic optimization -- which
accepts almost anything and accelerates to
near assembly language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

STUDENT LEVEL $145.
text & scaledlclipped graphics in bit blit
windows,mono,cga,ega,vga, fast ellipses,
splines, bezier curves, arcs, fills, turtles;
powerful parsing, formatting, f i e and
device 110; shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
We search paths; formats into strings.

PERSONAL LEVEL $245.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer-machine code speed.

PROFESSIONAL LEVEL $395.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; f i e blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $496.
Metacompiler: DOS/ROMldirect/indirect;
threaded systems start a t 200 bytes,
Forth cores at 2 kbytes; C data
stmctures & stmct+ compiler;
TurboWindow-C MetaGraphics library,
200 graphic/window functions, Postscript
style line attributes & fonts, viewports.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance$ 75.
286FORTH or 386FORTH $295.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit address/operand range with 386.

BTRIEVE for HSIFORTH (Novell) $199.
ROMULUS HSPORTH from ROM$ 95.
FFORTRAN translatorlmathpak $ 76.

Compile Fortran subroutines! Formulas,
logic, do loops, arrays; matrix math,
FFT, linear equations, random numbers.

I I I

Volume XII, Number 5 15 Forth Dimemiom

(Continuedfiom page 14.)

I 1
1 8 3 8 ,
7E C, FE4A ,

END-CODE

\ L 3 PULY R e s t o r e data s t a c k po in te r
\ JMP NEXT

1 I 68HCll principal interrupt words: I I
: INTERRUPT CREATE

0 ,
[COMPILE] [COMPILE]
[COMPILE] [COMPILE]
[COMPILE] [COMPILE]
HERE 15 + ,
[COMPILE] [COMPILE]
HERE 2 2 + ,
[COMPILE] [COMPILE]
CE C, HERE OB - ,
DF02 ,
EEOO ,
DFOO ,
EEOO ,
6 3 0 0 ,
HERE 2 t ,
2 4 1 7 ,
CE C, HERE 18 - ,
DF02 ,
EEOO ,
DFOO ,
EEOO ,
6 E 0 0 ,
HERE 2 + ,
OD C,
39 C,

DOES> OC t @ EXECUTE ;

\ E n a b l e w o r d
\ D i s a b l e w o r d
\ T e s t w o r d
\ P o i n t e r t o l i n e 1 6
\ R e s p o n s e w o r d
\ P o i n t e r t o l i n e 2 4
\ R u n w o r d
\ L o a d I P - LDX addr of l i n e
\ STX I P
\ LDX 0 , X G e t code po in te r
\ STX => W
\ LDX 0 ,X G e t code address
\ JMP 0 , X E n d of NEXT
\ P s e u d o CFA
\ B r a n c h if carry f l a g clear
\ L o a d I P - LDX addr of l i n e
\ STX i n I P
\ LDX 0 , X G e t code po in te r
\ STX => W
\ LDX 0 , X G e t code address
\ JMP 0 , X E n d of NEXT
\ P s e u d o CFA
\ S e t carry f l ag
\ RTS
\ E x e c u t e "Run" w o r d

: ENABLE
BL WORD FIND \ F i n d f o l l o w i n g w o r d
DROP DUP \ D r o p f lag; D u p addr
1 4 + IRQV-PUSH \ L o a d addr i n t o p o l l i n g r o u t i n e
6 + @ EXECUTE ; \ E x e c u t e " E n a b l e " word

: DISABLE
BL WORD FIND
DROP DUP
8 + @ EXECUTE \ D i s a b l e h a r d w a r e
1 4 + IRQV - PULL ; \ Remove addr f r o m p o l l i n g r o u t i n e

Forth Dimensions 16 Volume XII, Number 5

Listing Three. Real-time interrupt test words for New Micros' 68HCll.

VARIABLE CNT

: SET-RTI-VECTOR \ Set RTI interrupt vector to IRQ-POLL
7E ~ 7 E 6 EEC! \ SB7E6 is EEPROM

[' IRQ POLL @ >< FF AND] LITERAL B7E7 EEC!
[' IRQ - POLL @ FF AND] LITERAL B7E8 EEC! ;

CODE CLEAR-CC \ Enable Hardware Interrupts
86 C, 40 C, 06 C,
7E C, FE4A , \ JMP NEXT

END-CODE

: RTI ENABLE -
40 B024 C! \ Set enable bit
CLEAR-CC \ Enable interrupts
." RTI Enabled ' ;

: RTI-DISABLE
00 B024 C! \ Clear enable bit
." RTI Disabled ' ;

CODE RTI-TEST
B6 C, B025 ,
48 C, 48 C,
7E C, FE4A ,

END -CODE

: RTI-RESPONSE
40 B025 C!
1 CNT +! ;

\ Get RTI status
\ Bit 6 to carry
\ JMP NEXT

\ Clear flag
\ Increment count

: RTI RUN -
03 B026 C! \ Set interrupt rate
0 CNT ! \ Initialize CNT
." RTI Rate Set " ;

INITIALIZE-IRQVT
SET-RTI-VECTOR
INTERRUPT RTI RTI-ENABLE RTI-DISABLE RTI-TST RTI-RESP RTI-RUN

I (Continued from page 9.) I
e. Exception handling
f. Vectored execution
g. Compiler extension operators
h. Data description operators
i. ROM-based applications
j. Any other areas that emerge from the

study as representing significant prob-
lem areas.

3. Proposed modifications to Forth-83
shall be deemed unacceptable if they
result in significant variance from "ac-

cepted practice" as identified in Item lb
above, or if the proposed definition is
outside the standards of clarity and
unarnbiguity required of an ANS.

4. Once an ANS Forth has been approved,
the TC may address proposed standards
for language extensions beyond the
scope of item 1 above. Areas in which
such extensions may be considered in-
clude data-base support and graphics.
Other extensions will doubtless emerge,

and may be considered at the discretion
of the TC following approval of ANS
Forth.

5. The TC may review existing and pro-
posed standards for other languages.

6. The TC will consider areas in which the
BASIS document or accepted practice
is in conflict with modem hardware
characteristics.

7. The TC will primarily consider one's
and two's complement architectures.

I

Volume XII, Number 5 17 Forth Dimensions

INTERRUPT-DRIVEN
COMMUNICATIONS

RAMER W. STREED - NORTH MANKATO, MINNESOTA
m

T h i s article describes a serial commu-
nications interrupt handler for the 8250
UART. Its use is shown in a communica-
tion program written in HSFORTH for a
PC host to develop Forth applications pro-
grams in embedded microprocessors.
Forth's interactive nature makes a superior
environment for developing programs.

This program was initially written to
develop code for a Rockwell 65F12. Sim-
ply polling the communications port will
not keep up with 2400 baud on a4.77 MHz
8088.' ROM BIOS interrupt calls cannot be
used to receive data at rates much faster
than 1200 baud. To overcome that limita-
tion, I wrote an interrupt driver for the 8250
UART. Incoming data is placed in a FIFO
buffer to be read by the main program. This
interrupt handler is the core of the simple
terminal program C o (short for Comm.
On). I am currently using CO at 9600 baud
to send source code to a Zilog Super 8
running Inner Access F83S8 Forth.

First, I need to describe a few of the
differences between HS/FORTH and most
16-bit Forths. HSFORTH uses a separate
segment for code words, for dictionary
headers, for parameter and return stacks,
and for the body of Forth words. Each
segment can be as large as 64K without the
overhead of 32-bit addresses. VAR is a
defining word that creates a data type of
variable that returns the value. To get the
address, preface the word with
THE [var.name]

and to store a new value use
nnn I S {var.name}

Other Forth implementations support
similar data types called QUAN or VALUE.
I will enclose words I have defined in
braces, since my naming convention uses
lower case. The rest of the code conforms to
the Forth-83 Standard.

Communication parameters-baud
rate, parity, number of bits, and the number
of stop bits-are set by DOS using MODE.
The word SHELL loads a second copy of
COMMAND.COM and executes the
quotedstring. You may set thecommunica-
tion parameters directly, storing the con-
stants in the UART register^.^

I65F12 I and IS8 1 are setup words
for the microprocessors I commonly use.
They contain the solutions for two of the
problems I encountered developing this
code. I did not know the turn-around char-
acter for the Zilog S8. Thanks to Forth's
interactivity, I dumped the serial input
buffer to find the answer: an ASCII line

Add as many bells and
whistles as you wish.. .

feed (OAh). The other problem surfaced
when the program was first started-, often I
would have to try several times to get C o to
receive the sign-on message from the Super
8. The UART was not being reset, which
effectively disabled the interrupts. The
solution is to read the UART and drop the
byte to insure the state of the UART on
startup.

The core of the program is the interrupt
handler code word t corn. int 1 . First, all
registers used are pushed on the stack.
Next, the data segment is computed from a
known location in the code segment (re-
member, HS/FORTH uses separate seg-
ments for code and data) and moved to the ' DS register. Locating the data segment was
one of the more difficult problems I en-

I countered.
FMths that are all in one segment can 1 eliminate the extra step of locating the data

segment relative to the code segment. The
DX register is loaded with the base address
of the communications port. Adding the
offset of the Line Status Register (LSR)
sets DX for the status read. AL IN-DX.
reads the LSR into register AL. AL is then
checked for errors. The error flag is moved
to { ser . in. error? 1.

Program execution proceeds at the label
[no .error I. >>> is an HS/FORTH
word that defines an assembler label. The
code at no. error buffers the input. The
DX register is reset to point to the commu-
nication port base address. The data byte is
read £tom the serial port. The data is then
stored in the input buffer at the offset of
[ser.in.headl.{ser.in.head}is
incremented and wrapued to form acircular
input buffer. the input buffer
with a logical AND requires the buffer size
to be a power of two but is fast, so it is ideal
for interrupt routines which must be kept
short. Next the buffer pointers are checked
to be sure that the input buffer was not
overrun. If there is no overrun, the new
pointer offset is stored at
(ser.in.headl.

The exit code is at EOI. The interrupts
are disabled, as there is no need to stack
pending interrupts now. The 8259 interrupt
controller is reset, and the stack restored.
The IRET instruction enables the inter-
rupts so that the process can be repeated.

Two error conditions are checked*. se-
rial input errors from the Line Status Reg-
ister and buffer overflow. The LSR register
error bits are isolated and returned in
tser .in.error? 1. Any non-zero
value is an error. The high-level Forth
program can analyze the returned value to
give more meaningful error messages. The
buffer overflow is indicated in
tbuf fer. overf low? I; a false is no
overflow, true is overflow condition. The
error flags are not reset by the interrupt

Forth Dimensions 18 Volume XII, Number 5

handler. It is up to the program to clear them
after the error is acknowledged.

After the interrupt handler is compiled,
it must be installed so that the 8259 inter-
rupt controller can call the correct routine.
This is done with { IV=cornl 1. INT-
VECTOR is a defining word that sets up the
address array so that the interrupt vector
can be pointed to {corn. int I . This is
done later with { IV=coml 1 INSTALL.

To prevent executing { corn. int 1 (it
is not an executable word), it is beheaded.
Beheadingremoves { corn. int 1 fromthe
dictionary so it cannot be found. BYE is
redefined to REMOVE the interrupt vector
before exiting Forth, since exiting would
eliminate the code that serviced the inter-
rupt-

The next words initialize the communi-
cations hardware. The IBM PC-specific
addresses are in constants at the beginning
of the source code to make changes for
different hardware easier. As coded, the
program runs only on COM1. However, I
have made all communication address vari-
ables, so the code could be extended to run
for any communications port.
(serial .int .enable} sets up the
UART and 8259 interrupt controller;
likewise, { serial. int .disable}
clears the UART and 8259.

{serial. out. empty? } checks to
see if the UART can accept a data byte for
transmission. It is used to define { cemit 1
which works just like the system CEMIT
and emits a byte to the communications
port. {serial.in.buffer@} gets a
byte from the input buffer to the stack.
{serial. input? 1 returnsatrueflagif
a data byte is available. They are used to
define { ckey 1 which works just like the
system CKEY except the input is from the
interrupt-driven input buffer and not a DOS
call. Note: these words directly control the
hardware-they do not use BIOS interrupt
14h.

{serial.on}and{serial.off)
install or remove the interrupt vector, en-
able or disable the UART and 8259 inter-
rupt controller, and set a flag that indicates
the status of the serial port.

{poll.keyboard} has three func-
tions. First, it tests for a control-Z and
leaves a true flag to exit. Second, it tests for
a backspace (O8h) and converts it if found
to a rubout (7Fh). This was necessary for
the Rockwell 65F12, which objected to the
backspace. The Zilog Super 8 accepts ei-

ther backspace or rubout, so I left this in all
the time. Other special character conver-
sions could be implemented here if re-
quired. Third, the character is sent to the
communications port.

{poll. ser. input } tests for serial
input. Carriage returns and line feeds are
checked and handled as special cases to
ensure correct results. If the log file has
been opened, it sends the input to the log
file. All input is sent to the screen via
SEMIT.

The main routine co is a simple loop
that repeatedly checks the keyboard, errors,
and serial input. This loop can have as many
bells and whistles added as you wish, since
the interrupt-driven input buffer will take
care of input while the computer is busy
checking function keys or other extensions.

In my work developing embedded ap-
plication programs on other microproces-
sors, the key flexibility offered by Forth is
the ability to write the code on a PC using
my text editor and the computer's disk
storage. This requires a few more words to
send the files to the target system. The
words are: ?emit, CSEND, $SEND,
LSEND, SEND, and SAY. LSEND looks for
the turn-around character after a line is sent
from the host to the target, so the target has
time to process the data before more is sent.
The turn-around character is a null for the
Rockwell 65F12 and a line feed OAh for the
Zilog Super 8. SAY sends the following
string up to the carriage return to the target
computer and waits for reply. SEND sen&
a complete file to the target computer, as in

SEND filename. Both SAY and SEND
echo the data to the screen SEMI T? is true.
This function is handled by { ?emit I .

Many features could be added to this
program. The interrupt handler could have
DTR, RTS, or XONIXOFF software flow
control added to stop the other computer
from sending more data if the input buffer
filled up. File upload and download with
XMODEM or Kermit could be added for
use in on-line communications.

I would like to see a full communica-
tions program developed and added to the
ForthModel Library. Will one of the read-
ers please write a series of articles on com-
munications, like A1 Stevens' series
constructing SMALLCOM (see references).

My thanks to Mahlon Kelly and Donald
P. Madson for their assistance with the
code for this program.

References
1. Teza, Jeffrey R. "Multitasking Modem

Package," Forth Dimensions, Volume
IX, Number 6.

2. Fox, Brian. "8250 UART Revisited,"
Forth Dimensions, Volume XI, Num-
ber 1.

3. Cooper, Paul. "Menu-Driving the 8250
Async Chip," Forth Dimensions, Vol-
ume X, Number 4.

4. Stevens, Al. "TINYCOMM: The Tiny
Communications Program," Dr.
Dobb's Journal, February 1989.

5. Stevens, Al. "TINYCOMM Begets
i SMALLCOM," Dr. Dobb's Journal,

March 1989.

\ interrupt driven serial port words
\ Ramer W. Streed
\ 474 Marvin Blvd.
\ North Mankato, Minnesota 56001

\ Qleck for definitions of pc@ and pc! if not available define
\ p@ = word (16 bit) fetch, pc@ = byte (8 bit) fetch
FIND79 pc@ O= ? (SYNONYM pc@ P@ SYNONYM p@ PW@ SYNONYM pc! P! mONYM
p! PW!)

VOCABULARY TERMINAL
ONLY FORTH ALSO TERMINAL ALSO
TERMINAL DEFINITIONS

\ ibm pc corn port specific words

HEX
03F8 CONSTANT cod. base \ first port adr for cod
0010 CONSTANT cod.int.mask \ irq 4
OOOC CONSTm cod. int# \ interupt vector number

I
Volume XII. Nwnber 5 19 Forth Dimemions

20 CONSTANT 8259.eoi \ c o m d to reset 8259
20 CONSTANT 8259.base \ first port adr for 8259 pic

1000 CONSTANT ser.in.buffer.size \ 4096 byte ring buffer
CREATE ser.in.buffer ser.in.buffer.size ALLOT

0 VAR ser.in.head
0 VAR ser.in.tai1
0 VAR ser.in.error?
0 VAR buffer.overflow?

FALSE VAR serial.on?
OA VAR turnaround

coml.base VAR corn.base
coml.int.mask VAR com.int.mask
coml.int# VAR com.int#
01E CONSTANT ser. error-mask
1 CONSTANT IER
3 CONSTANT L&R
4 CONSTANT MCR
5 CONSTANT LSR
6 CONSTANT MSR

\ insert new bytes at head pointer
\ remove bytes at tail pointer
\ non zero if serial error occurs

\ True if Com is enabled
\ Turnaround Character 0 or OA
\ pass corn port base address to IV
\ pass intrrupt mask to routine
\ pass interrupt number
\ mask non error bits
\ Interrupt Enable Register offset
\ Line Control Register offset
\ Modem Control Register offset
\ Line Status Register offset
\ Modem Status Register offset

: 2400BAUD $" MODE COM1:2400,N,7,2" SHELL MAIN CR ;
: 9600BAUD $" MODE COM1:9600,N,8,lW SHELL MAIN CR ;

: 65F12 0 IS turnaround 2400BAUD corn.base pc@ DROP ; \ reading UART resets
: S8 OA IS turnaround 9600BAUD com-base pc@ DROP ; \ data ready interrupt

\ Serial Comnications Interupt Handler

CODE corn.int
ST1 . \ sti = enable ints

\ NOP . \ patch to OCC to enter Debug
AX PUSH. \ save regs used
BX PUSH.
DX PUSH.
DS PUSH.
AX CS MOV. \ set up data segnment
CS: AX CA' EXIT 2- +[] ADD. \ data segment offset from CS
DS AX MOV.
DX THE com. base + [1 MOV.
DX LSR IW ADD. \ Line Status Register address
AL IN-DX. \ get error status
AX ser.error.mask IW AND. \ mask non error bits
JZ no-error
THE ser. in.error? + [] AX MOV. \ save error flag

>>> no-error
DX LSR IW SUB. \ receiver buffer register
AL IN-DX. \ get byte from serial port
BX THE ser.in.head + [] MOV. \ buffer pointer offset to BX
ser.in.buffer +[BX] AL MOV. \ move byte to buffer address + offset
BX INC. \ adjust pointer for new character
BX ser.in.buffer.size 1- IW AND. \ wrap pointer
THE ser.in.tai1 +[I BX CMP. \ heads must not catch up to tails
JE overflow
THE ser.in.head +[I BX MOV. \ save new pointer offset

>>> EOI
CLI . \ disable interrupts
AL 8259.eoi IB MOV.
8259.base AL OUT. \ reset 8259 int
DS POP. \ Restore stack
DX POP.
BX POP.
AX POP.
IRET . \ Return from Interrupt & Enable interrupts

>>> overflow
THE buffer.overflow? +[I FF IW MOV. \ overflow flag to Forth variable

Forth Dimensions 20 Volume XII, Number 5

JMPS EOI
?CSP

I I ONLY FORTH ALSO TERMINAL ALSO TERMINAL DEFINITIONS

\ Insure Forth stack compiled correctly I I
\ Be sure the definitions go in the
\ correct vocabulary

I I \ patch ibm pc coml interrupt vector I I
I I coml.intl INT-VECTOR IV=coml CA' corn.int IV=coml ! I I

\ prevents corn.int from being executed I 1
: BYE IV=coml REMOVE BYE ; \ insures interupt handler is removed

I I \ initialize ibm pc corn hardware I I
: serial.int.enable

com.base LCR + DUP
pc@ 7F AND SWAP pc!
1 com.base IER + pc!
OB com.base MCR + pc!
[8259.base 1+] LITERAL DUP pc@
com.int.mask -1 XOR AND SWAP
PC!
0 IS ser.in.head 0 IS ser.in.tai1
ser.in.buffer ser.in.buffer.size ERASE

I I \ disable i h pc corn interrupt

: serial.int.disable
[8259 .base 1+] LITERAL DUP
PC@
com.int.msk OR SWAP
PC!
corn-base LCR + DUP
pc@ 7F AND SWAP pc!
0 com. base IER + pc ! ;

i I : serial.out .empty? (-- f)
com.base LSR + pc@ 20 AND ;

: cemit (b ---) 1 I BEGIN
serial.out.empty?

UNTIL
com.base pc! ;

\ Line Control Register LCR
\ div latch access off
\ int enable register
\ modem control dtr & out2
\ read 8259 int mask
\ turn on desired level
\ write new msk to 8259
\ init ring buffer ptrs
; \ Clear ring buffer

\ read 8259 interrupt mask
\ turn off this interrupt
\ write msk back to 8259
\ Line Control Register LCR
\ div latch access off DLAB=O
\ disable interrupts int enable register IER

\ true if ok to send byte

\ wait for transmit ready

\ send one byte to serial port

: ser. in.buffer@ (--- b) \ gets byte from ring buffer to stack
ser.in.buffer ser.in.tai1 IC@ \ Get byte if available
ser.in.tai1 1+ \ adjust tail pointer
[ser.in.buffer.size 1-] LITERAL AND \ wrap tail pointer
IS ser.in.taj.1 ; \ save tail pointer

I I : serial. input? ser.in.tai.1 ser.in.head <> ; \ True if a character is available

: ckey (--- C)

BEGIN
serial. input?

UNTIL
ser.in.buffer@ ;

\ False if buffer is empty
\ wait for character
\ get byte from ring buffer

(1 \ serial port control words I I

I

Volume XII. Nwnber 5 21 Forth Dimemions

: serial-on IV-coml INSTALL serial-int-enable TRUE IS serial.on? ;
: serial-off serial.int.disable IV=coml REMOVE FALSE IS serial.on? ;

: poll.keyboard (--- f) \ "Z leaves true flag to exit
?TERMINAL Dm?
IF S-X DUP 1A = \ test for "Z

IF DROP TRUE ELSE DUP 08 = \ convert backspace to rubout
IF DROP 7F THEN \ Rockwell objects to backspace

cemit FALSE \ false flag since there was a character
THEN

THEN ;

FALSE VAR ?LOG
\ OPEN-IDS opens a log file of the interaction. Syntax: OPEN-LOG LOGF1LE.L.G
: OPEN-LOG 20 TEXT PAD MAKE-OUTPUT TRUE IS ?LOG ;
\ Closes the log file. Syntax: CLOSE-LAG
: CLOSE-LOG CLOSE-OUTPUT FALSE IS ?LOG ;
: ?FEMIT ?LOG IF FEMIT ELSE DROP THEN ;

: poll.ser.input (---
serial. input?
IF ser.in.buffer@ DUP OA -

IF DUP ?-IT DUP OD =
IF OA ?=IT THEN
DUP SEMIT OD =
IF OA SEMIT THEN

ELSE DROP THEN
THEN ;

: serial-error
ser.in.error?
IF

CR ." Serial Input Error" CR
FALSE IS ser.in.error?

THEN ;

\ read input buffer to screen
\ is a character available?
\ get character & filter linefeeds
\ send to LOGFILE IF ?LOG is TRUE
\ if character is CR add LF to LQGFILE
\ send to screen
\ if character is CR add IF to screen

\ Test for serial comnications error

: buffer.overflow \ Test for serial Buffer overflow
buffer .overflow?
IF

CR ." Serial Input Buffer Overflow" CR
FALSE IS buffer.overflow?

THEN ;

: CO (com-on)
CR
serial.on? NOT IF serial-on THEN
BEGIN

poll-keyboard
o= WHILE

serial.error
buffer.overflow
poll.ser.input

REPEAT MAIN CR ;

\ Simple comnunications program

\ Test for data to send or quit "Z

\ Test for serial receive errors
\ Test for buffer overflow
\ Read input data if any is available
\ in input buffer

I I EMIT? IF SEMIT ELSE DROP THEN ; \ emits if EMIT? is true I I
I I : CSEND (c --) cemit ckey serial.error buffer.overflow ?emit ; I I
i I : $SEND (Saddr --) COUNT DUP

IF 0 DO DUP I IC@ CSEND LOOP DROP ELSE DDROP THEN ;

I

Forth Dimensions 22 Volwne XII, Number 5

: MEND ($ad& --) DUP C@
IF $SEND OD cemit

BEGIN
ckey DUP ?emit turnaround =

UNTIL
ELSE DROP THEN ;

: SEND s e r i a l .on? NOT IF s e r i a l .on THEN
20 TEXT PAD OPEN-INPUT <FILE CR
BEGIN

255 GW LSEND THE R# O-
UNTIL
CLOSE-INPUT MAIN CR ." Done " ;

: SAY ser ia l -on? NOT IF ser ia l .on THEN
OD TEXT PAD LSEND MAIN CR ;

DECIMAL EXIT

\ LSEND looks f o r turnaround character OAH o r NULL (58 o r R65f12 respect ively) .

\ SEND <filename> (in a Saddress)

\ CO = COMON Terminal conversation with r e m t e computer <Ctrl-Z> terminates
\ cornrmnications.

\ SAY Sends command up t o <CR> t o remote computer and waits f o r reply.
\ SAY "conmnand" w i l l send comnand t o remote.
\
\ coml.int.msk is used t o s e t up 8259 in te r rupt cont ro l le r f o r hardware
\ interupt number 4 .
\ 7 6 5 4 3 2 1 0 - t i m e r i v 8 adr 20
\ I I I I I I +---- keyboard i v 9 adr 24
\ I I I I I +------ reserved i v a adr 28
\ I \ \ \ + -------- c o d , sdlc , bsc2 i v b adr 2c
\ I I I +---------- coml, sdlc , bscl i v c adr 30
\ I I +------------ f ixed disk i v d adr 34
\ I +-------------- floppy disk i v e adr 38
\ +---------------- printer i v f adr 3c
\ n,"i ------------- pa r i t y i v 2 adr 8

\
\ coml.int# OOOC hex = 00001100 binary
\

\ Interrupt Enable Register com.base 1+
\ high enables in te r rupt
\
\ 3 2 1 0 - receive
\ I I +---- TX ernpty
\ I + ----- Receive Line Status
\ + -------- Modem Status

\
Line Control Register LCR com.base 3 t

7 6 5 4 3 2 1 0 -Word Length Select Bi t 0 (WLSO)
I I I I I I +----Word Length Select Bi t 1 -1)
I I I I I +------Number of Stop B i t s (STB)
I I I I +--------Parity Enable (PEN)
I I I +---------- Even Party Select (EPS)
1 1 +------------Stick Par i ty
I +-------------- Set Break

+----------------Divisor Latch access Bi t (DLAB)

Modem Control Register com.base 4 +

I
Volume X11, Nllmber 5 23 Forth Dimemions

EAR
TRAINING

E a r training is an important part of a
musical education. It is different from
music appreciation and playing instrumen-
tal music. Hearing has an analogy with
vision. Most of us are sighted and we learn
to appreciate many visual details. We usu-
ally suppress the auditory details except for
those associated with the spoken language.
Sometimes we do not pay much attention to
even the spoken language. We hear only

1 what we want to hear.

GLEN B. HAYDON - LA HONDA, CALlFORNIA
m

The Problem
There are many characteristics of mu-

sic, including the pitch, the intervals be-
tween musical tones, and the types of
musical triads. We learn to recognize these
characteristics in ear training. We do not
need to recognize the differences between
major, minor, augmented, and diminished
triads to appreciate music. But to develop a
better appreciation and understanding of
music, we can benefit from a course in ear
training.

Well, my wife-after several years of
piano-decided to take some additional
courses in music. Among those courses,
she had to go to a computer laboratory for
ear training. There, students usedprograms
running on Apple computers to provide the
ear-training drills, including pitches, inter-
vals, triads, scales, and so on. It would be
good to extend this practice at home. I use
IBM clones. Evidently, the computer labo-
ratory did not have similar programs to run
on the IBM family of computers. I made the
rounds of several computer software stores
andcouldnotfindany similarprograms. So
what was I to do?

The Conceptual Solution
Within a half hour, I had my IBM clone

playing individual notes. The rest was just
a matter of developing a program that
would provide the ear-training exercises.

After nearly 20 years of my wife's being a
computer widow, she is taking an interest in
computers.

The problem is really simple. The IBM
clones can set the pitch and turn the speaker
on and off. The value OB6h sent to port 43
allows a calculated 16-bit divisor to be sent
to the 8-bit port 42 as two eight-bit values,
the low value first. Then, toggling a bit in
port 61 turns the speaker on and off. An
appropriate delay time can be used.

Program Utilities
The first function to be defined is a

delay. A do-nothing loop will serve the
purpose. The duration will depend upon the
speed of the processor. The easiest way is to
make a simple loop and time it with your
watch. You can adjust the number of itera-
tions to give a sufficiently accurate meas-
ure of the time, in milliseconds or any other
unit. This is the only value that you will
have to adjust for this program to run on an
IBM clone system at a different speed.

We must convert a
pitch to a divisor
value.. .

-

I
: MSEC

0 DO
9 0 DO LOOP

LOOP ;
1

Changing the value 9 in the source and
recompiling the program is probably more
difficult than changing the value of DURA-
TION in the compiled program where it is
used. This can be done from the run-time
program. The name MSEC will no longer

produce milliseconds, but the result can be
used the same way.

For ear training, it would be desirable to
present the training examples in random
order. I stole the code for RND, RANDOM,
and CHOOSE from Leo Brodie's Starting
Forth. It is a classical reference and ade-
quate for this purpose.

{
CREATE RND HERE ,

: RANDOM
RND @ 3 1 4 2 1 *
6 9 2 7 + DUP
RND ! ;

: CHOOSE (ul -- u2)
RANDOM U*
SWAP DROP ;

1

The items to be chosen are placed in arrays
later in the program.

A formatting tool allows multiple car-
riage returns.

I
: CRS

0 DO
CR LOOP ;

1

We would also like to position the re-
sponses at the same place on the screen
each time.

{
: P O S I T I O N

PAGE
1 0 CRS 15 SPACES ;

1

Primitives
The primitive function we need

I
Forth Dimensions 24 Volume XII, Nwnber 5

will take as parameters a pitch in hertz and
the duration in milliseconds. As described
above, we need to convert the desired pitch
to the required divisor value for the 8253
chip. The required value can be calculated
from a system-dependent constant divided
by the desired pitch. That constant is a
double-precision value. I guess it could be
calculated easily enough, but it is far easier
to find the correct value by experiment. The
value can be tuned with a tuning fork or
with a tuned piano. If you find the value I
have used to be off for your ear, just tune it
yourself. The calculated value is stored in
theappropriate channel of the 8253 through
ports 43 and 42, as described. Once the
value is latched into the register, you need
to turn the speaker on for the desired delay
and then turn the speaker off through port

1 61. For more details of the algorithm, see
any manual on the IBM PC.

(
HEX
: NOTE (pi tch , rnsec --)
B6 43 P!
llC5F1. 4 ROLL U/MOD
SWAP DROP
DUP FF AND 42 P!
100 / 4 2 P !
61P@ D U P 0 3 O R
6 1 P ! SWAP
MSEC 61 P! ;

DECIMAL

Try this function with 256 for middle C, and
1 0 0 for 10 seconds. The double-preci-
sion value can be adjusted for tuning, and
the time used will show you how different
your system is from mine.

A Tempered Scale
The next problem is to set up the pitches

for the 12 notes of the chromatic scale. For
each musical key, the diatonic frequencies
vary a little with each note. As with a piano,
the scale can be tempered. The easiest way
is to find a music book that discusses the
tempering of the scale. This I have done and
assigned the appropriate pitch to each

342 CONSTANT F
362 CONSTANT F#
384 CONSTANT G
406 CONSTANT G#
431 CONSTANT A
456 CONSTANT A#
483 CONSTANT B
I

;
;
-
.
4 -

Next we want to play the notes. For this
we first define a DURATION.

256 CONSTANT C
271 CONSTANT C#
287 CONSTANT D
304 CONSTANT Dt
323 CONSTANT E

{
CREATE
DURATION 4000 ,
I

On my system this is approximately four
seconds. The value can be easily modified
from the run-time program:

1000 DURATION !

The new duration will be one quarter as
long.

Next, we will eventually want to change
the keys for our exercises. We do this by
defining a variable that can be changed
during the program.

{
CREATE KEYS 256 ,
1

Then we want toplay anoteof aselected
pitch on the computer. The DURATION of
each note will be the same.

{
: PLAY (pi tch)

KEYS @ 256 * /
DURATION @ NOTE ;

I

Finally, we can define the 12 notes for
the middle octave. By changing the value in
KEYS, the tempered scale can be placed
anywhere.

PLAY ;
PLAY ;
PLAY ;
PLAY ;
PLAY ;
PLAY ;
PLAY ;
PLAY ;
PLAY ;
PLAY ;

: ~ # l A# P L A Y ;
: B1 B PLAY ;
: C2 C 2* PLAY ;
1

A flat symbol is not available on my
computer but a sharp symbol is. In a tem-
pered scale, a C sharp has the same pitch as
a D flat. That problem is easily solved. The
twelve notes of a chromatic scale begin-
ning with middle C are given a postscript of
1, indicating the middle octave. Adjust the
duration of the note to suit your problem.

The Exercises
The next goal is to develop the ear-

training exercises.
The first exercise will be learning to

recognize a series of triads: major, minor,
augmented, and diminished. Assign the ap-
propriate pitches to functions with the ap-
propriate name.

{
: MAJOR
C1 El G1 El C1 ;

: MINOR
C1 D#1 G1 D#l C1 ;

: DIMINISHED
Cl D#1 F#l D#l C1 ;

: AUGMENTED
C1 El G#l El C1 ;

1

Each name will execute the selected triad in
the selected key, and with the selected DU-
RAT ION for each note.

The code fields of the names of the
triads are stored in an array, from which
they can be randomly chosen.

{
CREATE t r i a d s

' MAJOR CFA ,
' MINOR CFA ,
' DIMINISHED CFA ,
' AUGMENTED CFA ,

I

The program cm then choose them ran-
domly from that array. Also, we will want
to select the keys at random. Therefore, we
define an array of keys. Then we can
choose one randomly or we could select
any one key from the array.

I '
Volume XII, Number 5 25 Forth Dirnensim

CREATE keys
' C CFA ,
' C# CFA ,
' D CFA ,
' D# CFA ,
' E CFA ,
' F CFA ,
' F# CFA ,
' G CFA ,
' G# CFA ,
' A CFA ,
' A# CFA ,
' B CFA ,

Next we will put together an exercise
that will randomly select a key, one of the
triads, and play it. A pause after playing the
triad allows the user to decide which key
and triad were played. Striking any key will
then display the answer, followed by an-
other pause to let the user think about his
work. Pressing any key will terminate the
pause and continue the program.

{
: TRIAD
POSITION
12 CHOOSE
2* keys + @
DUP EXECUTE
KEYS !

4 CHOOSE
2 * triads + @
DUP EXECUTE

BEGIN ?TERMINAL UNTIL
POSITION
SWAP ." Key of "
2+ NFA ID.
2+ NFA ID.
." triad. " CR

BEGIN ?TERMINAL UNTIL ;
1

CHOOSE first selects the key and then the
triad to be played. The program must re-
member both the selected musical key and
the triad, so that the correct answer can be
displayed when ready. Next we can write a
function, TRIADS, to repeat the function
TRIAD.

{
: TRIADS
CR 100 0 DO
TRIAD
?TERMINAL

IF LEAVE THEN
LOOP ;

1

You can terminate the exercise by hold-
ing down any key until the menu appears.
This is done by the conditional leave con-
struct.

Intervals
A similar pattern can be used for a

variety of other ear-training exercises. The
laboratory my wife used included intervals.
For this, the series of intervals is defined
with the appropriate names.

The code fields of these names are placed in
an array from which they can be randomly
chosen.

I
CREATE intervals

' Perfect-unison CFA ,
' Minor-second CFA ,
' Ma jor-second CFA ,
' Minor third CFA ,
' ~ajorthird CFA ,
' Perfect-fourth CFA ,
' Augmented-fourth CFA ,
' Perfect-fifth CFA ,
' Minor-sixth CFA ,
' Major sixth CFA ,
' ~inorseventh CFA ,
' Major-seventh CFA ,
' Perfect-octave CFA ,

To start with, it is easier to learn the
intervals in only one key. We will start with
the key of C. The key of C is the first item,
beginning with 0, in the array of keys. The
form is maintained for later use in selecting
random keys.

I
: INTERVAL
POSITION
0 2* keys + @
DUP EXECUTE KEYS !
13 CHOOSE
2* intervals + @
DUP EXECUTE

BEGIN ?TERMINAL UNTIL
POSITION
SWAP ." Key of "
2+ NFA ID.
2+ NFA ID.
." Interval. " CR

BEGIN ?TERMINAL UNTIL ;
1

Once the function for a single INTER-
VAL is correct, we can define multiple
INTERVALS.

{
: INTERVALS
CR 100 0 DO
PAGE 12 CRS INTERVAL
?TERMINAL
IF LEAVE THEN

LOOP ;
1

Mixed Keys and Intervals
Later, using a similar function, we can

randomly select first the musical key and
then the interval.

I
: KEY&INTERVAL
POSITION
12 CHOOSE
2* keys + @
DUP EXECUTE KEYS !

13 CHOOSE
2 * intervals + @
DUP EXECUTE

BEGIN ?TERMINAL UNTIL
POSITION
SWAP ." Key of "
2+ NFA ID.
2+ NFA ID.
." Interval. " CR

BEGIN ?TERMINAL UNTIL ;

Then we can execute the single func-
tion repeatedly.

I

Forth Dimemions 26 Volume XII, Number 5

KEY&INTERVAL
?TERMINAL
IF LEAVE THEN

LOOP ;

These examples provide a few exercises
for drill on the basics of an ear-training
program. The exercises can be extended to
scales and more complicated chords. That
is for the programmer to play with. These
will give the beginner to ear training a good
start.

Menu
There is another problem for the music

student who has never worked with a
computer and does not know how to type.
To solve that, the exercise options can be
put into a simple menu. The menu could be
patched into the program so that it is dis-
played at the start, making it a turnkey
Program.

: MENU
PAGE 4 CRS 10 SPACES
." A TRIADS "

2 CRS 10 SPACES
." B INTERVALS "

2 CRS 10 SPACES
." C KEY&INTERVALS "

2 CRS 10 SPACES
." D QUIT "

3 CRS 10 SPACES

." Enter the letter for "

." the drill of choice."
5 CRS ;

Each letter is defined as an alias for the
desired exercise. Adding MENU to the alias
will return the user to the menu.

KEY&INTERVALS MENU ; l i C

1 this point, the value for DURATION can be I 1 I I
adjusted.

Compile this paper and the program will
run!

A Postscript
I developed this source code as any

programmer might. It required the defini-
tion of the problem, a programmer, a writer,
an editor, a graphics artist, a printer, and a
good proofreader. After I decided what I
wanted, I first wrote the program as I do
most of mine. I started with Forth screens
and left them a mess. After everything was
working about the way I had in mind, I
reformatted the screens, set off portions
with plenty of white space, and often chose
more descriptive names. I then took my
small portable computer to bed and drafted
the text, which I later uploaded to my main
system. Then I converted the revised Forth
screens to a text file. With my word proces-
sor, I merged my text and the source code.
Along the way, I edited and reedited the text
many times. I used my spelling and gram-
mar programs to review the text. Finally, I
moved the edited text file to my typesetting
program, where I formatted the output and
then printed it. Finally, there were several
cycles of proofs and corrections before
printing the publication copy.

Conclusion
This paper is actually the source codev

for my musical ear-training program. The
text file compiles. It is written for the
reader. The compiler selects only those
portions enclosed in braces for
compilation. [To learn more about this
uncommon feature, developed to encour-
age goodin-line source documentation, see
the author's original discussion, "Format-
ting Source Code" in FD Xl6.1

Any project requires a report. Why not
make the report the source code?

Glen B. Haydon is the president of
Epsilon Lyra and WISC Technolo-
gies, the author of All About Forth
(3rd ed.), and the developer of the
widely distributed MVP-FORTH.
This paper waspresented at the 1990
FORML Conference and is reprinted
with permission.

NGS FORTH I I
A FAST FORTH,
OPTIMIZED TOR THE IBM
PERSONAL COMHITER AND
MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE :

079 STANDARD

.DIRECT 1/0 ACCESS I I

.FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS I 1

eENvIRONMmT SAVE
& IDAD

.MULTI-SEGMENTED FOR
LARGE APPLICATIONS 1 1

.EXTENDED ADDRESSING I 1
&EMORY ALLOCATION

CONFIGURZLBLE ON-LINE I 1
.LINE C SCREEN EDITORS I I
ODECOMPILER AND

DEBUGGING AIDS

M 0 8 8 ASSEMBLER

GRAPHICS & SOUND

oNGS ENHANCEMENTS I I
*DFTAIUD MANUAL I I
*INEXPENSIVE UPGRADES I 1
.NGS USER NEWSLETPW I 1

A CYmPLGTE FORTH
DEVEWPMENT SYSTEM.

PRICES START AT $70 I I

NEXT GENERATION SYSTEM8
P e O e B O X 2987
8ANTA CLARA, CA. 95055
(408) 241-5909

Volume XII, Nwnber 5 27 Forth Dimensions

Part Four

FORST: A 68000
NATIVE-CODE FORTH

JOHN REDMOND - SYDNEY, AUSTRALIA I

I t is a commonplace that good assem-
bly code is tighter and faster than code gen-
erated by a high-level language, largely be-
cause the hardware registers of the CPU
can be used to hold intermediate results and
because register operations are much more
time and space efficient than those which
access memory. A major disadvantage,
however, of assembly coding is the need to
keep accurate track of the contents of the
registers-and to save and restore them as
necessary.

A natural development of the use of
named local variables is to refine them as
register variables. These are formally
available in the C language and can signifi-
cantly improve performance, but the pro-
grammer is forced to leave the details of the
allocation to the compiler.

This article describes an approach to
providing register variables for ForST
which adds significantly to the quality of
the compiled code. Using slightly modified
code which uses a BEGIN ... UNTIL inner
loop, the Atari ST executes 100 iterations
of the infamous Sieve in under 27 seconds.
As a more important example, the floating-
point code previously described for ForST
is twice as fast (only about four times
slower than 32-bit integer arithmetic for
multiplication and division) and more than
ten percent smaller when compiled for
register, rather than local, variables.

In the spirit of Forth, a great deal of
flexibility is left to the programmer in de-
ciding the precise allocation of the regis-
ters. The technique is general, but will
obviously be most successful when imple-
mented for a microprocessor with a large
number of registers.

Register Allocation in ForST
The 68000 microprocessor has eight

data registers (DO-D7) and eight address
registers (AO-A7) available to the pro-

grammer. Many of these have specific uses
in ForST (Figure One).

Using Register Variables
Register arguments and register vari-

ables are declared, in the same way as
previously described for (local) arguments
and local variables, at the start of a word
definition. As only six user registers are
available, it is permissible to use both reg-
ister and local variables together in one
definition. The one constraint is that ARGS
and REGARGS (in either order) be declared
before REGS and LOCALS.

As indicated in Figure One, the register
allocation is in a fixed order. As with ForST
locals, a temporary header is set up for each
of the named variables. When code genera-
tion is started, after the) word is encoun-
tered in the definition, the fist instruction
to be compiled is a save of all the allocated
registers to the hardware stack by a multi-

Forth's true primitives
are not the well-known
stack-juggling words. . .

register push (using the M0VEM.L in-
struction) and then the register arguments
are popped by a single instruction in the
same way. If ARGS Or LOCALS are also
used, code is then compiled to set up the
stack frame and, if required, to load the args
into it. The source-level formalisms are il-
lustrated by a definition of CMOVE (Figure
Two-a). The code generated (Figure Two-
b) is functionally equivalent to, and much
faster than, that produced by standard
Forth.

This is the simplest use of register vari-

ables, but there is room for improvement.
The order of register allocation (Figure
One) indicates that source, destination, and
length will be assigned to A3, A2, and D5,
respectively. In other words, two address
registers are used to point to the source and
destination strings. Now, the 68000 per-
mits predecrement and postincrement ad-
dressing without any size or speed penalty.
Therefore, any code such as that in CMOVE,
which includes extra instructions to in-
crease the pointers, is not making proper
use of the hardware. With a slightly smarter
compiler, we can write a shorter definition
(Figure Two-c), using an INC flag to direct
postincrements after the fetch and store.

Both the source and object code can be
improved further by the use of a FOR ...
NEXT loop. FOR,as normally used,expects
a number on the stack. When local vari-
ables are available, however, it is more
flexible and efficient to use it as aprefix for
the variable. (The ForST local prefixes are
summarized in Figure Four.) FOR simply
specifies which variable should be decre-
mented when the NEXT value is
encountered. CMOVE can now be coded
more cleanly (Figure Two-d). The object
code generated from this definition is quite
close to what an assembly programmer
would write (Figure Two-e).

The (in this case) only really wasted
instruction clears register DO (four clock
cycles out of 38 inside the loop). The very
best code, using a memory-to-memory
byte move, would require 30 cycles in the
loop and four bytes less space. A more
eccentric example will generate code as
good as that from an assembler (Figure
Two-f). This word will expand an array of
bytes into an array of words (cells). (It
really is necessary to do this to output text
in the GEM windows environment!) The
clearing of the accumulator is necessary in
this case to provide blank padding in the

Forth Dimemiom 28 Volume XII. Number 5

L I
Volume XII, Nwnber 5 29 Forth Dimemiom

word array.
This level of optimization was possible

because of the redefinition of a set of smart
fetch-and-store (immediate) words, which
are able to check what pushes have just
been compiled and then make a decision
about the best code to generate.

The Virtual Stack
The code in Figure Two is superficially

quite unlike traditional Forth code, in that it
is not centered on the stack. But this is an
illusion. The statement
-1 addto length

corresponds to code which:
1. loads register DO with the value -1
2. pushes DO to the parameter stack
3. pops the parameter stack to DO
4. adds the value in DO to reg D5 (allo-

cated to LENGTH).

The optimizer removes steps two and three,
with the result that DO is loaded with - 1 and
added directly to D5. In this example, the
immediate value of -1 is only virtually
pushed to the stack because of the relation-
ship of the push to the code which follows
it. The outcome is the conversion of four
instructions (eight bytes, 34 cycles) to two
instructions (four bytes, ten cycles).

The Two-edged Stack
A simple edge @ush/pop) optimizer is

able to carry out this code improvement. Its
sole function is to remove unproductive
PUSH/POP instruction pairs which result
from adjacent macro expansions, and the
resultant code is smaller and up to twice as
fast. Examination of typical Forth code,
however, suggests that we can do yet better.
Consider the simple expression
3 4 +

The unoptimized code corresponding to
this is in Figure Three-a. This is improved
by a simple edge optimizer to the code in
Figure Three-b. But it is clearly pointless to
push the value four to the stackand then pop
it again. Better code (Figure Three-c) is
produced from the same macro primitives
by a smarter optimizer which is able to look
back at the previous edge and convert the
push to a move to register Dl, the secon-
dary accumulator. This code pattern is very
common in Forth words-like +, -, AND,
OR, and the comparison words, each of
which expects two edges on the stack.

Only the last two edges are remem-
bered, so the optimizer works best with
code which avoids a Large number of con-
secutive pushes. It is therefore better to
c d e
3 4 + 5 + 6 +

rather than
3 4 5 6 + + +

(it's easier to read, anyway).

Fetching and Storing
There are already too many fetch and

store words in Forth and, if we were to add
new words able to increment and decre-
ment pointers, there would be three times as
many. Thecleanest approach seems to be to
factor out the adjustment by using the pre-
fix words I N C and DEC to set a flag for
enhanced versions of @ and ! . which mod-
ify the macro codeas it is expanded. But this
is only part of the story.

By default, all fetch and store memory
references are made with the main address
register (AO). If, however, a memory
pointer is stored in a named address register
(such as SOURCE in Figure Four), it is a
waste to have to transfer this pointer to A0
before using it. Rather, the address register
should itself be used as the pointer. This is
especially true if there is a pointer adjust-
ment, otherwise it will benecessary tocopy
the alteredaddress back to the register vari-
able.

On the other hand, if a data register is
used to hold the pointer, it cannot be used
directly for memory reference and these
register-to-register transfers are unavoid-
able. The result is code which is bulkier and
less efficient (with two register-to-register
moves). When local variables are used,
I N C and DEC can still be used, but the
address must now be transferred from and
to memory. The code is even slower (28
cycles) and bulkier (eight bytes), even
though it is identical at the source level.

Only two of the six user-available regis-
ters are address registers (Figure One), and
these are the first registers to be allocated. It
turns out that this is just the best arrange-
ment for the smdard Forth memory words
like CMOVE, CMOVE>, and FILL, where
the address(es) come before other pararne-
ters.

The code produced by the compiler for
definitions of these three words is almost as
good as the best code an assembly program-

mer can write (Figure Five).

Implementation of the
Improved Optimizer

The simple optimizer simply examines
the last 16-bit value of the compile code to
determine whether it is a PUSH. The new
version uses specific bits in the FFA (flag
field address) of each macro word as it is
expanded. The present structure of the
ForST header is given in Figure Six, and
the utility word WHAT (Figure Seven) is
provided for the programmer to examine
the status of any of the system and com-
piled words. It is used as:
WHAT <name>

At the start of an expansion/optimiza-
tion cycle, the compiler checks the present
number of edges on the stack, and the ad-
dresses of the last two of them. If there
happen to be two edges and the next word
to be compiled expects two, the top edge is
removed or modified to aregister move (as
before) with a saving of four or two bytes
(and 24 or 18 clock cycles). The second
edge is converted to a move to the secon-
dary accumulator (register Dl) with a fur-
ther saving of 18 cycles.

It is simple enough to set up an array for
16-bit values for each of the registers, cor-
responding to PUSH, POP, ADDR, and
ADDTO. The PFA of each of the temporary
headers for the register variables has an
offset into the array. A further offset is
added by the prefix words PUSH, POP, etc.

Direct Register Access
The final development of the use of

named register variables is to provide di-
rect access to the hardware registers of the
CPU. In ForST, this is presently limited to
the Scratch and System groups (Figure
One), and it is recommended that the Sys-
tem group be handled very cautiously.

Making use of the register words, mac-
ros, and the two-edged optimizer, it is pos-
sible to reconstruct quite efficient code
primitives. While the present details are
specific to the 68000, the ideas can be
generalized to any processor which has
access to two data registers @erhaps gen-
erically named DOand Dl) and twoaddress
registers (A0 and Al).

As implemented, there are simple
macro categories in ForST:
1. DO used only:
NOT, NEGATE, O =

2. DO and Dl used:
t, -, AND,OR, >, =, etc.
3. DO and A0 used:
fetch and store words
4. A0 and A1 used:
CMOVE, CMOVE>
(One or more of these registers can be used
as a temporary store in small definitions,
but A1 is the only one which is relatively
safe.)

Returning to our high-level definition
of CMOVE (Figure Two-e) and the resultant
object code (Figure Twef), we see that sig-
nificant code space (and some time) is
taken up by the instructions which save and
restore the three registers used in the defini-
tion. This is necessary in a high-level
ForST definition, but we can achieve the
same result more economically by direct
access to registers (Figure Seven-a, Seven-
b).

The scratch registers can be used to
build up customized or duplicate versions
of the Forth primitives (Figure Eight). It is
very instructive to analyze the code from
some of the different definitions of the
same word. In the main, it compares well
with assembly code and suggests that,
except when specific Forth hardware is
being used, the m e primitives of Forth are
not the well-known stack-juggling words,
but a lower set of (potentially portable)
register and memory operations.

Scratch group
DO Main accumulator
Dl Secondary accumulator
A0 Main pointer
A1 Secondary pointer

utility program (DUMP . TTP) was written.
Its total file size is 1534 bytes, compared to
a very similar program of over 10K bytes
(presumably written in C) which is in-
cluded in the Megamax Laser C system. It
is used to provide a hex dump of disk files,
which it does more than twice as fast as the
Megamax program!

DUMP. TTP is an instructive model, as
it includes text output, customized numeric
output, keyboard input, and file input. All
the necessary words were written using
register variables and macro expansions.

The ability to generate efficient, totally
independent code should be a useful devel-
opment in Forth. During development, all
the utilities of the Forth system are avail-
able, so development speed is not compro-
mised and, at the end of it all, APPSAVE
can be used to save the application to the
disk.

Conclusion
High-level code which uses register

variables is always smaller and much faster
than that produced using the familiar stack

operations. Operations with register vari-
ables implicitly use the Forth parameter
stack, but the code optimizer minimizes the
extent to which data are moved to and from
the stack. There is still room for improve-
ment of the optimizer, but code produced
by it already compares well with that gen-
erated by the best compilers for other lan-
guages.

The availability of a compiler capable
of using named register variables allows
factoring of code-including that of famil-
iar Forth code primitives-into a limited
number of primitive CPU operations. Good
quality code, including register initializa-
tion, can be achieved without access to an
assembler.

John Redmond is an Associate Profes-
sor of Organic Chemistry at Sydney's
Macquarie University. He is a
,, . . .sometimes-evenings-when-1-
have-time programmer" who wel-
comes letters from FD readers: 23
Mirool Street, West Ryde, NSW 21 14,
Australia.

Stand-alone Application Code
A practical outcome of this develop-

ment is the ability to set up very efficient,
completely free-standing applications

target microprocessor. Figure One. Register allocation in ForST. / Many of the utility words of Forth have / '

~6 k ' i n d e x (I)

ti ~ k ~ ~ ~ ~ ~ t e r (lad variables)
A5 Code base pointer
A6 Parameter stack winter (=SP)

which require no access to an underlying
Forth system. Furthermore, if a modified
compiler and macro primitives are loaded,
code can be generated for any arbitrary

been recoded and packaged into a number
of included files analogous to the header
files of C (Figure Nine).

Compilation definitions-including
those which incorporate DELAY^^ compi-
lation-are in a prelude file and, at the
outermost level of the application, a file
header is incorporated, together with code
for reserving memory, setting up stacks,
initializing registers and, at the end, exiting
and freeing the allocated memory. All this
is achieved in ForST without access to an
assembler.

, As a model for the approach, a small

A7 Return stack (=&) '

User-available group (in order of allocation)
A3 A2 D5 D3 D2

: m v e { 3 regargs source dest length
length O> i f

begin source c@ dest c! (t ransfer a byte)
1 addto source 1 addto dest (increment pointers)
-1 addto length (decrement length)

length 0- unt i l
then ;

Figure Two-a. Example source-code definition.

I

Forth Dimemiom 30 Volume XII, Number 5

: cmove (source,dest, length -)
dup 0> if >r

begin over c@ over c!
1+ swap 1+ swap
r> 1- >r
r@ 0- until

then drop drop r> drop ;

Figure Two-b. The code generated from FigureTwo-a

length O> if
begin source inc c@ dest inc c!

-1 addto length
length 0- until

then ;

1 Figure Two-c. Using INC to direct postincrements.

: cmove { 3 regargs source dest length }
for length source inc c@ dest inc c! next ;

mveq.1 #4, d0
push do
moveq.1 #3, d0
push do
POP do
POP dl
add. 1 dl, do
push do

Figure Three-a. Unoptimized code to add two numbers.

Figure Two-d. Streamlined version with FOR as a local-variable prefix.

movem. 1 a2/a3/d5, - (a7) ;save the registers
movem. 1 (a6) +, a2/a3/d5 ;get the arguments
move.1 d5,dO ;set the flags for length
ble .out ;no good if zero or negative

.lp: moveq. 1X0,dO ; clear the accumulator
move. b (a3) +, d0 ;fetch the byte
move.b do, (a2)+ ;and store it
subq.1 #l,d5 ;count down
bgt. s .lp

.out:movem.l (a7)+,a2/a3/d5;restore the registers
rts

Figure Two-e. Object code generated by Figure Two-d.

: c>wmove { 3 regargs source dest length }
for length source inc c@ dest inc w ! next ;

moveq.1 #4,d0

moveq.1 X3,dO

add. 1 dl, do
push

moveq.1 t 4 , d0
move. 1 do, dl
moveq . 1 #3, d0
add. 1 dl, do

Figure Three-c. A smarter optimizer can use the previous edge intelli-
gently.

P r e f i fw local and register variables
(FRCM) Never used (default).
TO Move from parameter stack to variable.
ADDTO Add from parameter stack to variable.
ADDR ~ddress of local variable (not register) to parameter stack.

Use local or register variable as a down countex for aFoR

I ... NExr loop.

P r e j i i fw fetch and store words
Incrdtnent address pointer (by 1.2, or 4, as appropriate)
after a memory fetch or store.
Decrement address pointer (by 1.2, or4) beforeamemory
fetch or store.

Figure Four. Summary of ForST prefixes.
Figure Two-f. A "more eccentric" example to expand a byte array into
a cell array.

: m v e { 3 regargs source dest length }
for length source inc c@ dest inc c! next ;

: m v e > { 3 regargs source dest length }
length addto source length addto dest
for length source dec c@ dest dec c! next ;

: fill { 3 regargs pointer char length }
for length char pointer inc c! next ;

I

Volume XII, Number 5 31 Forth Dimemiom

NFA: length + $80 (or SCO) , 'name', (+pad byte)
ETA: edge bi ts* (bi ts 27-31)

macro length (-bytes/2) (b i ts 16-26)
macro flag (bi ts 0-15)

CFA: offset address of code
PFA: offset address of data or code

*Edge bi ts : 31: one edge expected
30: two edges expected
29: one edge returned
28: two edges returned
27 : Boolean result returned

Figure Six. Structure of the ForST header (revised).

: crnove t o d l t o a1 t o a0
for d l a0 inc c@ a1 inc c! next ;

Ngure Seven-a. Direct register access brings more economy.

POP dl
POP a1
POP a0
move. 1 d1,dl ;set the f lags for length
ble .out ;no good i f zero or negative

.lp: moveq.1 #O,dO ;clear the accumulator
move-b (aO)+,dO ;fetch the byte
move.b dO,(al)+ ;and store it
subq.1 # l ,d l ;count down
bgt. s .IP

.out: r t s
I I

Figure Seven-b. Code generated by Figure Seven-a

: dup t o do (pop do) do do (push do twice) ;
: dup sp @ (push what is on top of stack) ;
: ?dup sp @ t o a1 a1 i f (non-zero) a1 (push sec-
ond copy) then ;
: >r rp dec ! ;
: r> rp inc @ ;

I I : count t o a0 a0 inc c@ t o do (hold in do)
a0 (push) do (push) ; I I

I I : drop t o do ;
: drop 4 addto sp ;

: over sp 4+ @ ;
: over t o do t o d l d l do d l ;
: over t o d l sp @ t o do d l do ;

I
I I : tuck t o do t o d l do d l do ; I I

Fbr Pmgramming Pmfessionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

Total control
with LMI FORTHTM
For Development:
Interactive Forth83 InterpreterICompilers
for MS-DOS, OSl2, and the 80386

16bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
Support for graphics,floating point, native code generation

: nip t o do t o d l do ;

: : nip rot to SP a1 ! ; to a0 to do a0 a1 do ;
: -rot t o a1 t o a0 t o do a1 do a0 ;

: aligned sp @ 1 and + ;

I . . - . - . - I

I For Applications: Forth-83 Metacompiler
uniq;e-tabledriven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 8080, ZBO, 8088,68000,6502,8051,8096,
l802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

- --

I Laboretory Microsystems Incorporated
FDst Wfice Box 10430, Marina dal Rg! C4 90295

Phone Credit Cerd Olders to: (213) 3W7412
FAX: (213) 3014761

: aligned t o a1 a1 1 and addto a1 a1 ; I I

: f i l l t o do (char) t o d l (length) t o a0 (ad-
dress) 1 1

for dl do a0 inc c! next ;
: cmove> t o d l (length) t o a1 (dest) t o a0 (source)
d l addto a0 d l addto a1 (point t o ends of str ings)
for d l a0 dec c@ a1 dec c! next ;

Figure Eight. Using scratch registers to customize or duplicate Forth
primitives.

Forth Dimemiom 32 Volume XII, Nwnber 5

\ DUMPAPP.S: application demo program

decimal macros

cd a: \forth (set current directory)

load appske1.s (prelude for applications)
load fi1ehead.s (file header and entry/exit

code)
load apputi1s.s (general utilities)
load conio-s
head type is >type (type defined in c0nio.s)
head (') is >(') (also in c0nio.s)
load intout. s (integer output)
head . is >.
load appfi1in.s (disk file input)
load dump.s (the actual application)

Figure Nine. Including Forth utilities via header-like files.

ACM . .9

Institute of Applied Forth Research . .44

. Harvard Softworks. .15

Laboratory Microsystems . 32

Miller Microcomputer Services. . 4 1

Next Generation Systems. .27

Silicon Composers, . 2

(Continued from page 23 .)

\
\ 7 6 5 4 3 2 1 0 -Data Terminal Ready (DTR)
\ I I I 1 I I +----Request to Send (RTS)
\ I I I I I +------Out 1
\ I I 1 1 +--------Out 2

\
\ Line Status Register LSR com.base 5 t I \
\ 7 6 5 4 3 2 1 0 -Data Ready (DR)
\ I I I I I I +----Overrun Error (OR)
\ I I I I I +------ Parity Error (PE)
\ I I I I +--------F raming Error (EX)
\ I I I +---------- Break Interrupt (BI)
\ I I +------------ Transmitter Holding Register Empty (THRE)
\ I +-------------- TX Shift Register Enpty (TSRE)

1 1 i Modem Status Register MSR corn-base 6 t

\ 7 6 5 4 3 2 1 0 -Delta Clear to Send (DCTS)
\ ((((((+----Delta Data Set Ready (DDSR)
\ I I I I I +------Trailing Edge Ring Indicator (TERI)
\ I I I I + -------- Delta RX Line Signal Detect (DRLSD)
\ i l l + --------- -Clear To Send (CTS)
\ I I Data Set Ready (DSD)
\ I +-------------- Ring Indicator (RI)
\ +---------------- Receive Line Signal Detect (FUSD)

I

Volume XII. Number 5 33 Forth Dimensions

GENIE
FOR BEGINNERS
FRANK C . SERGEANT - SAN MARCOS, TEXAS I

I f you haven't broken into bulletin '
boarding yet, now is the time! It is easier
than you think and it just got cheaper. I'll
show you how I do it, in hopes of encour-
aging you to try too.

Month after month, you've been seeing
GEnie and the other Forth bulletin boards
listed in Forth Dimensions. If you are like
me, you've been planning to try it some-
time, but it is one project too many. You've
put it on the back burner. Projects that
confuse us get put off more easily than ones
we understand fully. I was that way about
GEnie. It was a strange new world and I
didn'tknow how to start. It turned out to be
pretty simple.

GEnie is the on-line "home" of the
Forth Interest Group, where we meet to
exchange ideas, ask questions, get help,
express ourselves, and keep up with the
latest Forth news. GEnie is also the host of
many other special interest groups, on-line
shopping, news, stock quotes, games, and
electronic mail (E-mail). For me, the Forth
RoundTable and E-mail are the most im-
portant. One just got cheaper and the other
almost free!

First things fust: you need a computer.
Since you are a Forth enthusiast, you
probably already have one. Next, you need
a modem to connect your computer, via the
telephone lines, to GEnie. These are get-
ting pretty cheap. They come in several
speeds, the faster the better. The faster ones
can also run at the slower speeds if neees-
sary, so you don't give up anything but
money to go with a faster modem. There
are two types: internal and extemal. If you
have a PC/XT clone you are especially
lucky. Because of its large market and
competition, you can get an internal 2400
bps (bits per second) modem for under
$80.00. (For example, check with Hard
Drives at 1-800-766-DISK. Ask for Eric
and tell him I sent you.) If possible, get one

with at least aspeed of 1200 bps, preferably
2400 bps. After that, they get considerably
more expensive. The external modems will
work with any computer that has a serial
port, If it's all you can afford, at least get a
300 bps extemal modem-it should be
awfully cheap these days.

Third, you need telecommunication
software, often called a comm program.
Basically, you want a program that will
copy whatever you type to the modem and
from the modem to your screen, all the
while saving a copy to disk so you can read
it later. The modem connects your com-
puter, through the phone lines, to GEnie.
Perhaps we shoulddo this in Forth, but until

They're making us a
deal we can't refuse.

then it sure is easy to get one of the many
shareware programs such as PROCOMM
or QMODEM (perhaps from Public Brands
at 1 -800-426-DISK or from PsL at 1-800-
2424-PSL or from any high school student
with a computer). You save a copy to disk
so you can read it at your leisure, when you
are not tying up the phone (and spending
money). For my communication software I
use FlashLink. It came with the modem
from Hard Drives and I've been very happy
with it.

Fourth, you need to sign up with GEnie.
This is pretty easy. Phone GEnie Client
Services at 1-800-638-9636 to talk to a
friendly human and get your local GEnie
phone number. Yup! From most places you
can reach GEnie with a local phone call.
Bring up your comm program and set it for
half duplex (i.e., local echo). If you have an
MS-DOS machine, set it for seven bits,
even parity. Otherwise, use eight bits, no

parity. Set your terminal emulation to use
TVI (Televideo) if possible (I use VT102
for FlashLink). If you have any trouble
doing this, don't despair, call Client Serv-
ices. They'll help you get the modem and
comm program set up right (they seem to
want your business). Now have your mo-
dem dial the local number or 1-800-638-
8369 to sign up. When the modem says
CONNECT, type 3 H's (HHH) followed by
a carriage return; then GEnie will reply
with something like U# (for "user num-
ber"). For first-time signers up, type SIG-
NUP and press return. GEnie will prompt
you through the sign-up process. You'll
need your checkbook or credit card handy.

Go through the same procedure to log
on in the future, except dial your local
access telephone number, and type your
actual user number and password (as given
to you during the initial log-on process).

This is a great time to start. GEnie had
been charging five dollars per hour for 300
bps, six dollars per hour for 1200 bps, and
ten dollars per hour for 2400 bps. As of
October 1, they changed to the new Star
Services plan. At first I said, "Uh-oh,
they're going to help me by charging me
more money." I'm suspicious that way, but
for once it was unfounded. As I see it,
they're making us a deal we can't refuse.
For a flat rate of $4.95 a month, we get
unlimited access to about half of GEnie.
This includes the E-mail section, encyclo-
pedia, shopping mall, and the "leisure and
professional" RoundTables. Unfortu-
nately, the Forth RoundTable is not in that
half. Nevertheless, they have reduced their
charges here also (get a 2400 bps modem if
you don't have one yet). In the computer
RoundTables, the charge is now only six
dollars per hour--even at 2400 bps. So the
change is still a good deal. For only $4.95 a
month you and all your friends around the
country, your parents, your children, and

I

Forth Dimemions 34 Volume XII, Number 5

your business associates should sign up, if
only for the E-mail. Then, except for send-
ing photographs, you can practically elimi-
nate your dealings with the U.S. Postal
Service (and even fax machines). With a
local phone call and no charge per hour, you
could even live with a 300 bps modem for
the E-mail services. And there is no longer
a sign-up fee! These rates apply to non-
prime time, which is between 6 p.m. and 8
a.m. local time and 24 hours on weekends
and holidays. Stay off during the day-it
costs a hefty $18 per hour then. One of the
nice things about the new system for begin-
ners is that, for no hourly charge at all, you
can practice in one of the free
RoundTables. You can learn your way
around the bulletin board without pressure
from the sound of the cash register ticking!
Then apply your new skills when you log
into the Forth RoundTable.

Some people, such as myself, live so far
from civilization that there is acommunica-
tion surcharge of two dollars per hour for
that local call. Stil1,thatbeats long-distance
rates. I was surprised to find GEnie had a
local number for me at all.

Barriers to Overcome
The hardest part is starting. Once you

sign up and learn enough about your comm
program to actually log on, all you have to
do is follow the menus. Call the Client
Services number for help if you get stuck.
Once you learn to log on, you'll want to
start reading the messages. Thenext step up
is to reply to a message. Don't put this off.
The first one is the hardest Then comes E-
mail. After that comes uploading and
downloading files. Take it one step at a
time.

Set Your Break Key
If you didn't do this as part of the sign-

up procedure, type TOP at any prompt to
get to the top menu. Or work your way back
up to the top, from wherever you are, by
repeatedly selecting P (for "previous")
from the current menu. Then get to the
break key setup by selecting, consecu-
tively, #3 BillingzSetup, #3 Settings, #1
Terminal settings, #2 Terminal settings,
and finally #2 Break char. Then type the
ASCII value in decimal for the key you
want to use for your GEnie break key. I had
been using 03 (for Ctrl-C) with my previ-
ous comm program, but FlashLink
wouldn't pass that key on to the modem, so

Volume XII, Nwnber 5

I changed mine to 126 (for the - key). Then
select #9 Save and return.

Reading Messages
This is pretty easy. Get into the Forth

RoundTable by typing FORTH or by typ-
ing m710; 1 at any "Enter #, <P>revious, or
<H>elp?" prompt You'll start off in cate-
gory 1. You have a hard decision to make:
Should you read all messages that have
been posted from the beginning of time, or
should you smt fresh? I started from the
very beginning. It took a long time to read
them all. I'm glad I did, but it might not be
the best way for you. If you want to read
them all, type BRO ALLNOR (for-browse
all no-reply"). This will display all of the
new messages (i.e., the ones you haven't
read yet) in all of the topics in all of the
categoriesof theForth RoundTable. All the
messages will be new to you when you start.
Be prepared, there are a lot of them! When
you get tired, hit the break key and quit for
the day. (To log off, just type BYE at the
prompt.) It will take you days to get them
all.

For many people, a more sensible ap-
proach is to ignore all the previous mes-
sages. In that case, type IGN ALL. Next
time you log on, type BRO ALL NOR (as
described above) and you'll get all of the
messages posted after you ignored them all.
Suppose you do an IGN ALL and don't
want to wait but want to read a few mes-
sages right now? You're already in CAT 1
(you can tell by the prompt), so type REA
ALL DAT>901115 NOR to read all of the
topics in the current category that have a
dategreaterthanNovember 15,1990,with-
outstoppingforyourreplytoeachmessage.
Naturally, you can use whatever date suits
you. Then, pick another category, such as
number 2, by typing SET 2, and do it again
with REA ALL DAT>901115 NOR (or use
another date) and so on until you'veread all
the categories you're interested in. Thereaf-
ter, use the BRO ALL NOR method. GEnie
keeps track of the messages you've already
read (or ignored). Note that BROwse reads
all new messages in all categories, while the
REAd command is restricted to the current
category.

After I log off, I use QEDIT to browse
through the file to read the messages. [Most
text editors can read the ASCII, or text-
only, files captured while on line.] I copy
the ones of special interest to another file. I
have a set of files named *.SUM (for

35

"summary") into which I collect the most
memorable messages. This is very easy to
do with QEDIT (a shareware program also
available from the above-mentioned dis-
tributors) as it lets me edit many files at one
time.

Posting Messages
It may be hard toget up the nerve topost

your first message, but after that it gets
easy. Here's how I do it: I browse through
my capture file until I find one I want to
reply to. I compose my reply with QEDIT
(use your favorite editor) and save it to disk
[as an unformatted, ASCII file with car-
riage returns at the end of each line]. I save
my reply to a disk file whose name indi-
cates the category number and topic num-
ber it pertains to. For example, if I am
replying to a message about Pygmy Forth,
which is in Category 1, Topic 45, I might
name the file ClT45RB 1. Next time I log
onto GEnie I upload the reply. Then I
rename the file to ClT45RBl.SNT (for
"sent") so I'll know I've posted it.

To upload the reply, I first get into the
proper category with the SET command
(e.g., SET 1). Then I tell GEnie what topic
the message should go to by saying REP45
(for "reply to topic 45"). GEnie will then
offer to let me enter the first line of the
reply. Instead of typing the message, I type
*U to say I want to upload the reply rather
than typing it from the keyboard. When
GEnie says it is ready for the upload, I press
the PgUp key (this is how FlashLink
works-check the instructions for your
comm program), select ASCII, and type
the name of the file to upload (in this
example it would be ClT45RBl). Then
GEnie and the comm program transfer the
file. When it is complete, I press the break
key (a"-" in my case). When GEnie comes
back with a line number, I can type *L to
list it on my screen (I usually don't bother)
and then *S to send it (if you don't do this,
it won't get "sent").

That's all there is to it. You'll get the
hang of all this pretty quick if you'll just
dive in and try it. Please don't be bashful
about posting messages. The other users of
the RoundTable are always willing to help
correct your errors in thinking! Often, they
are surprisingly polite, no matter how
wrong you are.

Downloading, Uploading, E-mail
You might also want to download

(Continued on page 41 .)

Forth Dimensions

BEST OF
GENIE

GARY SMITH - W V L E ROCK, ARKANSAS
m

M w s from the GEnie Forth
RoundTable-For those who have won-
dered about the sudden pause in ForthNet
ports from the xCFB7s (the PC-board
branch of ForthNet), here finally is an ex-
planation. Work requirements and years of
dedication to the original xCFB, the East
Coast Forth Board, finally took its toll on
ECFB SysOp Jerry Shifrin; he elected to
call it quits. Despite personal need to the
contrary, Jerry stuck it out long enough for
us to locate a new central node for the
xCFB's that would have a SysOp willing to
deal with the mail porting necessary to
maintain the ForthNet bridge.

We have located such a BBS and such a
SysOp in Jim Wenzel of the nationally
recognized Grapevine, located in Little
Rock, Arkansas. While Grapevine is not
accessible via PC-Pursuit, it is accessible
via StarLink on node 9858. The Forth
conference on Grapevine is 58.

Jim's BBS is a PC board and maintains
storage for two gigabytes. Jim was already
a major node in the RIME network, so we
are fortunate to have him and Grapevine as
members of ForthNet. For those interested
in accessing Grapevine directly, registra-
tion is via data phone number 501-753-
8121. Once registered, use 501-753-6859.
Any baud rate up to 19200 is supported on
either line. Line 753-6859 rollsover if busy
and if the other line is open.

We owe a great debt of gratitude to Jerry
Shifiin for his tireless dedication all this
time. I can absolutely guarantee, if not for
Jerry there would be no ForthNet. Jerry
startedECFB when he was, indeed, a single
light in the darkness; and he was a tremen-
dous help and influence when we began the
long process of building what is now Forth-
Net.

Good luck in whatever your future
endeavors may be, Jerry. We will all miss
you. I can promise I will.

Welcome to the club Jim Wenzel. We
are lucky someone as dedicated as you was
willing to take up the slack.

* * *

Two expressions pop to mind as I real-
ize how long it has been sinceIrecappedthe
GEnie Forth RoundTable real-time guest
conferences. The first is, "Time sure flies
when you are having fun." The second has
something to do with yosceriors, swamps,
and alligators. These trips down memory
lane are without doubt one of the more
popular features of this column, and cer-
tainly they are among my favorite to date.

I have said this before, but it bears
repeating. We have really been graced by
an array of guests with divergent views, but
without exception all have been interesting
and a delight to chat with. I would encour-

We have the organiza-
tion and it has room
for new directions.

age you to participate in at least one of these
conferences. The guests generally appear
one per month, on the third Thursday ex-
cept during the fourth quarter (October
through December, when they are moved
to the second Thursday to avoid holiday
conflicts). If you are interested in knowing
whomight be scheduled to appear next, this
is posted on the GEnie Forth RoundTable
Bulletin Board in Category 1, Topic 6 with
the current invitee pre-announced in the
"door banner" that greets users on entrance
to the RoundTable each day. Enough of
that. We have a lot of catching up to do.

This issue we will focus on visits with

Robert Smith, "Floored Division and
Floating Point"; Phil Koopman, "Stack
Machines"; Charles Curley, "A Minimalist
View of Forth", and John D. Hall, "The
Business of FIG." As has become a stan-
dard format for these guest sessions, I will
recall only the guests' opening remarks.
These can be used quite accurately as a
pseudo-abstract of the conference. If you
want to follow the discussion more closely,
the complete transcripts are available for
capture in Library 1 of the GEnie Forth
RoundTable Software Libraries.

Phil Koopman (September 1989)
Senior Scientist, Harris Semiconductor

Some of the things I have found out
about stack machines go against widely
held (at least, outside the Forth community)
ideas. For example, stack machines: don't
need stacks bigger than 16 to 32 elements,
need not have a significant context switch-
ing time, and can cycle their clocks every
bit as fast as (or perhaps faster than) RISC
processors. One thing I run across continu-
ally is that folks confuse the requirements
for real-time embedded control with those
of workstation environments. One of my
professional goals is to understand more
about Forth-derived stack computers in
order to help them gain acceptance in appli-
cations for which they are well suited.
Stack machines seem to be superb at real-
time embedded control (although I still
want to do more research to quantify this
notion). But, what about other application
areas? If stack machines are the answer,
what are the questions?

Robert L. Smith (October 1989)
Research Specialist, Lockheed Palo Alto

Thank you. For floored division, it
helps to focus on the modulus or remainder
rather than the quotient. Most users use
only positive arguments, so floored or non-

1

Forth Dimensionr 36 Volume XII, Nwnber 5

I

Vokme XII. Number 5 37 Forth Dimemiom

flooredgivethe sameresults. Foralmost all
cases that I know of, if you have at least a
negative numerator, you probably should
use floored division.

For floating point:
(1) should Forth have it at all? And
(2) if so, should it be in the standard?

And
(3) IEEE floating point?

Charles Curley (November 1989)
Neologist

Grief, after that lead-in. I guess I see
Forth as a tool, and I like my tools to be
simple and easy to understand. A lathe is
(conceptually) simple, and it does almost
anything one needs to do. So are wrenches,
hammers, etc. I don't think there is such a
thing as a single tool to do everything, so I
like lots of simple, semi-custom tools.
Hence minimal Forth.

That's all for a start.

<[Gary]GARY-S>Charles,yourorigi-
nal non-standard committee is something
of a standard rejoiner. Do you still feel anti-
standard?

Well, since no-one ever joined it, it
can't be a <re->joiner <grin> but, yes, I do
still think that standardsget in the way more
than they help. Note that standards are not
the same as models, which can be very
useful.

I think Chuck said it best standards are
wonderful, everyone should have one. I
think that coding standards would be more
useful than a language standard, but try
getting any two Forth programmers to meet
even minimal standards in coding.. . I think
standards are too vague to be of any real
use. They are too open to interpretation and
fudges. If they are too tight, the resultant
Forth is useless for its natural applications,
high speed and compact code stuff. If
they're too loose, then you have no porta-
bility.

John D. Hall (December 1989)
Programmer, Lockheed Palo Alto

TheForthInterestGroup wasorganized
in 1978, and oneof the first things done was
the formation of the Forth Implementation

1 Team led by Bill Ragsdale to build fig-
FORTH and put it in the public domain.
Because fig-FORTH was implemented on
many microprocessors, based on a single
model and released with complete source
listings, it became the & facto standard of

Forth. The listing were made available for
$15 and were extremely popular. To en-
courage extensions and modifications to
Forth, the same people started Forth Di-
mensions, FORML, and the Forth Stan-
dards Team. Many of these same people
wrote or encouraged others to write aRicles
for Byte, and the famous Byte Forth issue
was published in October of 1980. Money
was coming in faster than new uses for it
could be found and sales taxes were col-
lected, but no formal organization existed
to pay the sales tax and to avoid income tax.
At that time, FIG was only a loose confed-
eration of interested Forth users around the
world, so a California non-profit corpora-
tion, Forth Interest Group, Inc., was formed
to centralize the contacts, establish a distri-
bution point for Forth information, and
establish the formal function of publishing
Forth Dimensions and the FORML pro-
ceedings, and to distribute these and the fig-
FORTH listings. No great thought was
given to the other reasons for having a
corporation. It was primarily to centralize
the loose confederation of people and ideas
and to distribute contributed literature. FIG
was guided by a Board of Directors consist-
ing of Bill Ragsdale, Kim Harris, John
James, Dave Kilbridge, and Dave Boulton.

The corporation wasn't the answer to
theproblemsoforganization,ittookpeople
to make ideas happen. Organization ideas
were and still are plentiful, people to irnple-
ment the ideas were not. From the begin-
ning, business meetings were held one
evening a month on the Tuesday before the
fourth Saturday of each month. Before the
corporation, FIG and the Silicon Valley
chapter were the same, and the planning for
the Saturday meeting was finalized on the
previous Tuesday. As the corporation was
formed, the corporation business meeting
began to take over the topics of theTuesday
meeting until finally the Silicon Valley
chapter planning was split off to another
night. Since actions took more time than
was available at the business meetings,
committees were formed to plan and guide
activities as existing or new functions were
needed. FORML and Forth Dimensions
needed guidance. FORML split into a con-
ference and a convention. People around
the world were forming group meetings and
wanted to be kept informed, so a chapter
committee was formed. Literature needed
to be published, and new books and publi-
cations needed to be reviewed; a publica-

tion committee was formed. Direct com-
munication with the Forth community was
needed, so a connection to GEnie was es-
tablished and a committee of sysops was
formed. All of the literature needed to be
distributed and orders needed to be filled,
so an outside organization was hired.
Money was being received and distributed
on a daily basis and this was more than the
volunteer treasurer could handle. From the
beginning, all the functions of FIG, Inc.
were handled by a group of volunteers with
the help of a few paid people such as the
editor of Forth Dimensions and Mountain
View Press for distribution. When we saw
our way clear enough, a management or-
ganization was hired to try to tie all the
office functions together to establish a
central office for mail distribution and
phone, under the direct control of FIG, Inc.

We are now at a point now where FIG,
Inc. includes
1) Editing, publication, and distribution of

Forth Dimensions
2) Producing and convening the annual

FORML conference
3) Publication and distribution of the

FORML Proceedings
4) Producing and convening the annual

Forth convention
5) Support and sponsorship of the GEnie

RoundTable
6) Support and organization of approxi-

mately 50 chapters
7) Distribution of over 90 publications
8) Production and distribution of a grow-

ing disk library
9) Membership enrollment of over 2000

members

FIG, Inc. is governed by a seven-mem-
ber Board of Directors: Dennis Ruffer,
John Hall, Terri Sutton. MikeElola. Robert
Smith, Jack Brown, Wil Baden. Business is
conducted by the Business Group, includ-
ing the above and: C.H. Ting, Jan Shep-
herd, Bob Barr, Marlin Ouverson, Bill
Ragsdale, Robert Reiling, Tom Zimmer,
and others who are interested in the busi-
ness of FIG.

The growth of FIG was probably not as
chaotic as I am remembering it, but the
organizing was driven by needs that had to
be filled rather than by a planned structure,
and the organizing was done by those of us
who are technically competent in Forth but
not necessarily in organizations.

(Continued on page 39.)

REFERENCE SECTION

Forth Interest Croup
The Forth Interest Group serves both

expert and novice members with its net-
work of chapters, Forth Dimensions, and
conferences that regularly attract partici-
pants from around the world. For member-
ship information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group
P.O. Box 8231
San Jose, California 95 155
408-277-0668

Board of Directors
Robert Reiling, President (ret. director)
Dennis Ruffer, Vice-President
John D. Hall, Treasurer
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith

Founding Directors
William Ragsdale
Kim Harris
Dave Boulton
Dave Kilbridge
John James

In Recognition
Recognition is offered annually to a

person who has made an outstanding con-
tribution in support of Forth and the Forth
Interest Group. The individual is nomi-
nated and selected by previous recipients of
the "FIGGY." Each receives an engraved
award, and is named on a plaque in the ad-

I ministrative offices.

1979 William Ragsdale
1980 Kim Harris
1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling

1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer
1989 Jan Shepherd

ANS Forth
The following members of the ANS

X3J 14 Forth Standard Committee areavail-
able to personally carry your proposals and
concerns to the committee. Please feel free
to call or write to them directly:

Gary Betts
Unisyn
301 Main, penthouse #2
Longmont, CO 80501
303-924-9 193

Mike Nemeth
CSC
10025 Locust S t
Glenndale, MD 20769
301-286-8313

Andrew Kobziar
NCR Medical Systems Group
950 Danby Rd.
Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather
FORTH, Inc.
11 1 N. Sepulveda Blvd., suite 300
Manhattan Beach, CA 90266
2 13-372-8493

Charles Keane
Performance Packages, Inc.
5 15 Fourth Avenue
Watervleit, NY 12189-3703

I 518-274-4774

George Shaw
Shaw Laboratories

P.O. Box 347 1
Hayward, CA 94540-3471
415-276-5953

David C. Petty
Digitel
125 Cambridge Park Dr.
Cambridge, MA 02140-23 1 1

Forth Instruction
Las Angeles-Introductory and inter-

mediate three-day intensive courses in
Forth programming are offered monthly by
Laboratory Microsystems. These hands-
on courses are designed for engineers and
programmers who need to become profi-
cient in Forth in the least amount of time.
Telephone 213-306-74 12.

On-Line Resources
To communicate with these systems, set
your modem and communication software
to 300112001'2400 baud with eight bits, no
parity, and one stop bit, unless noted other-
wise. GEnie requires local echo.

GEnie
For information, call 800-638-9636

Forth RoundTable
(Fortmet link*)
Call GEnie local node, then type M7 10
or FORTH
SysOps: Dennis Ruffer (DRUFFER),
Scott Squires (S.W.SQUIRES), Le-
onard Morgenstern (NMORGEN-
STERN), Gary Smith (GARY-S)
MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
Sysop: Waymen Askey @.MILEY)

BIX (ByteNet)
For information, call 800-227-2983

Forth Conference
Access BIX via TymeNet, then type j

I

Forth Dimensionr 38 Volume XII. Number 5

forth
Type FORTH at the : prompt
SysOp: Phil Wasson (PWASSON)
LMI Conference
Type LMI at the : prompt
Laboratory MicroSystems products
Host: Ray Duncan (RDUNCAN)

CompuServe
For information, call 800-848-8990

Creative Solutions Conference
Type !Go FORTH
SysOps: Don Colbum, Zach Zachariah,
Ward McFarland, Jon Bryan. Greg
Guerin, John Baxter, John Jeppson
Computer Language Magazine Confea-
ewe
Type !Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip
Rabinowitz, Regina Starr Ridley

Unix BBS's with forth.conf (ForthNet
links* and reachable via StarLink node
9533 on TymNet and PC-Pursuit node
casfa on TeleNet.)
WELL Forth conference
Access WELL via CompuserveNet
or 415-332-6106
Fahimess: Jack Woehr (jax)
Wetware Forth conference
4 15-753-5265
Fairwitness: Gary Smith (gars)

PC Board BBS's devoted to Forth
(ForthNet links*)

British Columbia Forth Board
604434-5886
SysOp: Jack Brown
Grapevine
501-753-8 121 to register
501-753-6389
StarLink node 9858
SysOp: Jim Wenzel
Real-Time Control Forth Board
303-278-0364
StarLink node 2584 on TymNet
PC-Pursuit node coden on TeleNet
SysOp: Jack Woehr

Other Forth-specific BBS's
Laboratory Microsystems, Inc.
213-306-3530
StarLink node 9184 on TymNet
PC-Pursuit node calm on TeleNet
SysOp: Ray Duncan
Knowledge-Based Systems
Supports Fifth
409-696-7055
Druma Forth Board
512-323-2402

StarLink node 1306 on TymNet
SysOps: S. Sutesh, James Martin. Anne
Moore
Harris Semiconductor Board
407-7294949
StarLink node 9902 on TymNet (toll
from Post St. Lucie)

Non-Forth-specific BBS's with extensive
Forth Libraries

College Corner (F'C Board)
206-643-0804
3W2400 baud
SysOp: Jerry Houston
Psymatic BBS
Sunnyvale, California
408-992-0372
300 - 2400 baud
This is a programmer's board with a
large Forth area.

International Forth BBS's
Melbourne FIG Chauter
(03) 809- 1787 in ~ & r a l h
61-3-809- 1787 international
SysOp: Lance Collins
Forth BBS JEDI
Paris, France
33 36 43 15 15
7 data bits, 1 stop, even parity
Max BBS (Fortmet link*)
United Kingdom
0905 754 157
SysOp: Jon Brooks
Sky Port (ForthNef link*)
United Kingdom
44-1-294-1006
SysOp: Andy Brimson
SweFIG
Per Alm Sweden
46-8-71-35751
NEXUS Servicios de Infonnacion,
S. L.

Travesera de Dalt, 104-106, Entlo.
4-5
08024 Barcelona, Spain
+ 34 3 2103355 (voice)
+ 34 3 2147262 (modem)
SysOps: Jesus Consuegra, Juanma
Barranquero
banrur@nexus.nsi.es (preferred)
barran@nsi.es
banan (on BIX)

This list was accurate as of October 1990. If
you know another on-line Forth resource,
please let me know so it can be included in
this list. I can be reached in the following
ways:

Gary Smith
P. 0. Drawer 7680
Little Rock, Arkansas 72217
Telephone: 50 1-227-78 17
GEnie (co-Sysop, Forth RT and Unix
RT): GARY-S
Usenet domain.: uunet! wugate!
wuarchive!texbell!
ark! lrark! gars

*ForthNet is a virtual Forth network
that links designated message bases
in an attempt to provide greater in-
formation distribution to the Forth
users served. It is provided courtesy
of the SysOps of its various links.

(Continued from page 37.)

Was FIG the answer for Forth?
Well, yes, if the question was how do we

establish a central focal point for Forth.
What we had done is created aUpassive" or-
ganization, given it the ability to reach out
to the Forth community and made it finan-
cially self-supporting as long as there were
enough people who were interested in
Forth and willing to support FIG.

What we had not done was create an
active environment for encouraging those
who were interested in Forth, instructing
those who were new to Forth, supporting
the creativity of people who were advanc-
ing Forth or even establishing the solid
technical foundation and background for
the growth of Forth use.

There are probably other things the FIG
is not and should be.

We have the organization and it has the
room for new directions. How do we now
make it the organizational answer for
Forth?

I

Volume XII, Number 5 39 Forth Dimensions

VOLUME XI INDEX
MIKE E W L A - SAN JOSE, CALJFORNIA

architecture, 32-bit Forth
Design Tradeoffs in Stack Computm, vol 11, #6, pg 5
SC32: A 32-Bit Forth Engine, vol 11, #6, pg 10

architecture, Forth
ANS Forth: Hardware Independence, vol l l . #6. pg 23
Letter, vo l l l , #3, pg 5

architectures, computation
Seeing Forth, vol 11, #5, pg 28

arithmetic operations
Letter (Fast */ for Novix). vol11. #I, pg 6

assembly language
Seeing Forth, vol11. #5, pg 28

blocks, source code storage inside
Letter, vol 11, #5, pg 5

bookkeeping
Double-Entry Bookkeeping, vol l l , #5, pg 8

bulletin boards
Chapters Down Under, vol11. #I. pg 39
Best of GEnie, vol 11, #4, pg 28

chapters, Forth Interest Group
It Rains-Chapter Coordinator Muses. vol11. #2. pg 36

communication over serial lines
8250 UART Revisited, vo l l l , #I, pg 30

conferences
FORML Conference 1989. vol 11, #6. pg 27

control flow directives, text interpreter support of
Forth Needs Three More Stacks, vol 11, #1, pg 27
Letter. vol11. #3. pg 5
Letter. vol 11. #3. pg 6
Letter. vol11. #4, pg 5

copyright protections
Editorial, vo l l l , #3, pg 4

documentation, source code storage inside
Formatting Source Code (Serial Daymate Compression), vol

10, #6, pg 10
Letter, vol 11, #1, pg 5
Fibonacci Random Number Generator, vol 1 1, #4, pg 10

editing source code
PDE Full-Screen Editor, vol l l , #2, pg 14

educating Forth programmers
Visits to a Parallel Universe, vol 1 1, #6, pg 40
Best of GEnie, vol11, #3, pg 31
Best of GEnie. vol11. #6, pg 35

expert systems
Expert System Toolkit. vol11. #2, pg 23

Forth leaders
Best of GEnie, vol l l , #I. pg 35
Best of GEnie, vol11. #2, pg 32
Best of GEnie, vo l l l , #6, pg 25

graphics, drawing and plotting operations for
Eggs. Ovals Easy. vol11. #2, pg 6
Filling Algorithms, vol 11, #2, pg 10

information services
Chapters Down Under, vol 11, #1, pg 39

interrupts
Accessing 80286 Extended Memory, vol l l , #2, pg 19
Multiprocessor Forth Kernel. vol 11. #3. pg 14

language-driven program design
Letter. vol11. #2, pg 5

languages, development using several
Two Assemblers are Better Than One, vol l l , #2, pg 30

linear quadratic regulator

Forth in Optimal Control, vo l l l , #4, pg 6
local variables

Local Variables and Arguments, vol 11, #I. pg 13
Local Variables, Another Technique, vol l l . #I, pg 18
Prefix Frame Operators, vo l l l , #1, pg 23
Letter, vol 11, #5, pg 5

memory
Accessing 80286 Extended Memory. vol 1 1. #2. pg 19
Increase Memory for the TI 99/4A, vo l l l , #4, pg 21

memory, tools for dumping
Extended Byte Dump, vol 1 1. #1, pg 8

microprocessors
Design Tradeoffs in Stack Computers, vol 11, #6, pg 5
SC32: A 32-Bit Forth Engine. vol11. #6. pg 10

microprocessors. Forth
Editorial. vol11. #6. pg 4

multiprocessor systems
Multiprocessor Forth Kernel, vo l l l , #3, pg 14
Visits to a Parallel Universe, vo l l l , #6, pg 40

multitasking
Multiprocessor Forth Kernel vol11. #3. pg 14
Multitasking & Controlling Regular Events, vol l l , #5, pg 17

number formatting operations
In Search of a Better Number Irgut Routine, vo l l l , #4, pg 36

number input
In Search of a Better Number Input Routine, vol11. #4, pg 36

object oriented design
Designing Data Structures, vol10. #5. pg 19
Letter, vol 11. #I. pg 5
Letter, vo l l l , #2, pg 5
Letter, vol 11, #3, pg 5

portability
Letter, vol 11, #2, pg 5

process control
Timekeeping in Forth, vol5, #5, pg 6
Time-Statement Lexicon, vol 11, #3, pg 7
Multitasking & Controlling Regular Events, vol11. #5, pg 17

promoting the use of Forth worldwide
Letter, vo l l l , #3, pg 37
Best of GEnie, vol l l , #4, pg 28
FIG Chapters Report. vo l l l , #5. pg 36

quaternion operations
Quarternion Rotation Calculation, vo l l l , #3, pg 11

random numbers
Fibonacci Random Number Generator, vo l l l , #4, pg 10

readability of source code
Letter, vo l l l , #5, pg 5

real-time control
Forth in Optimal Control, vol 11, #4, pg 6

reusability of code, designing for the
8250 UART Revisited, vo l l l , #1, pg 30

robotics
FIG Chapters Report, vol11, #5, pg 36

search, binary
Binary Table Search. vol11. #5. pg 19

searches, source code text
PDE Full-Screen Editor. vol11. #2. pg 14

sieve-of -primes benchmark
Letter, vol l l , #6, pg 6

sorting algorithms
The Challenge of Sorts. vol 1 1. #3. pg 24

(Continued on next page.)

Forth Dimensions 40 V o l m XII, Nwnber 5

(Continued from page 35 .)

shareware, public-domain software, or
transcripts of the guest conferences. A lot
of files are available, including public-
domain and shareware Forth systems for
most processors. To download files, I usu-
ally type m711;4 a t any "Enter #,
<P>revious, or cH>elp?" prompt. This
moves to the files section and selects the
browse option. I start at the most recent file
by pressing Enter. GEnie shows me a file
description for each file and gives me the
chance to download it or skip it. Skip it by
pressing Enter. Download it by ptessing D.
If downloading, it will ask you what
method to use. I pick YMODEM (with
FlashLink) but use whatever you have
available with your comm program, pref-
erably ZMODEM. When GEnie says it's
ready, Ipress PgDn to getFlashLink to start
the download process. I again pick
YMODEM (the fust time was to tell GEnie.
this time it is to tell FlashLink) and away
they go. When the transfer is complete, I
press the break key and carry on, skipping
or downloading file after file. When I get to
files that look familiar he.. older ones that
I have browsed through previously) I quit.

To read or send E-mail, type m200 and
follow the menu. To upload a file, type
m7 1 1 and follow the menu.

one who w k t s a new assembler!)
If you are a beginner to Forth (or not a I

beginner) you can learn a lot by participat-
ing in the bulletin board. I can't recommend
it highly enough. Sure, you'll be a little
uncomfortable until you get the hang of it,
but it's worth it. I hope you'll give it a try
tonight! You can reach me by sending
GEnie E-mail to F.SERGEANT. I hope to
hear from you soon.

timing
Timekeeping in Forth. vol5. #5, pg 6
Time-Statement Lexicon. vol 11, #3. pg 7

Fogram execution
Developing a Step Trace, vol 1 1. #5, pg 14

Aladdin
G E N ~ has a special comm program

available for MS-DOS machines, named
Aladdin, that helps to automate the process

Volume XII, Nwnber 5 41 Forth Dimensions

Frank Sergeant is a hardware and
software consultant specializing in
business and real-time systems. He is
the author and implementor of Pygmy
Forth.

- -
vocabularies, sea&& through

Search Order Structure. vol11. #3. pg 23

I

(Index, co~inuedfromprev~o~page .)

Sort Contest Results. vol 11. #6. pg 29
speaking engagements. logistical SupPOfl for

It Rains--Chapter Coordinator Muses, vol 11. #2. pg 36
standards, ANSI

ANS Forth: Required Words. vol11. #4. pg 7
ANS Forth: Hardware Independence. vol 11, #6. pg 23
Best of GEnie, vol11. #6. pg 35

strings
Letter, vol11, #5, pg 6

s'ri"gsvOperatiOnsusing
Best of GEnie, vo l l l , #6, pg 35

swfl of Forth pmducu
Best of GEnie, vol11. #3. pg 3 1

test i n s m e n u
Phase Angle Difference Analyzer, vol 11. #6. pg 15

text interpreter
Letter. ~0111. #4, pg 5

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact AnnaBrereton
at the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimemiom. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 881-6483

ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak, Alaska 99615

ARIZONA
Phoenix Chapter
4th Thus.. 7:30 p.m.
Arizona State Univ.
Memorial Union. 2nd floor
Dennis L. Wilson
(602) 38 1-1 146

CALIFORNIA
Los Angeles Chapter
4th Sat.. 10 a.m.
Hawthome Public Library
12700 S. Grevillea Ave.
Phillip Wasson
(213) 649-1428

North Bay Chapter
3rd Sat.
12 noon tutorial. 1 p.m. Forth
2055 Center St.. Berkeley
Leonard Morgenstem
(415) 376-5241

Orange County Chapter
4th Wed.. 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Bob Nash
(91 6) 487-2044

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Silicon Valley Chapter
4th Sat., 10 a.m.
Applied Bio Systems
Foster City
(415) 535-1294

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson
(305) 855-4790

Tampa Bay Chapter
1st Wed.. 7:30 p.m.
Terry McNay (813) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues.. 7 p.m.
Emprise Corp.. Marietta
Don Schrader (404) 428-081 1

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips. Jr.
(708) 713-5365

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues.. 7 p.m.
UP Univ. Campus
B71 Neff Hall
Blair MacDermid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ.
214 Comp. Sci.
Rodrick Elckidge
(515) 294-5659

Fairfield FIG Chapter
4th Day. 8: 15 p.m.
Gurdy Leete (5 15) 472-7077

MARYLAND
MDFIG
3rd Wed., 6:30 p.m.
JHUIAPL. Bldg. 1
Parsons Auditorium
Mike Nerneth (301) 262-8140
(eves.)

MASSACHUSETTS
Boston FIG
3rd Wed.. 7 p.m.
Bull HN
300 Concord Rd.. Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitIAnn Arbor Area
Bill Walters
(313) 731-9660
(313) 861-6465 (eves.)

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Lmus Orth (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
Ellisville, MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ.. Piscataway
Nicholas Lordi
(201) 338-9363

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
Long Island Chapter
3rd Thurs., 7:30 p.m.
Brookhaven National
Laboratory
AGS dept., bldg. 91 1, lab rm.
A-202
Irving Montana
(5 16) 282-2540

Forth Dimemiom 42 Volume XII, Number 5

Rochester Chapter
Monroe Comm. College
Bldg. 7, Rm. 102
Frank Lanzafame
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

Columbus FIG Chapter
4th Tues.
Kal-Kan Foods. Inc.
51 15 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Li-Benton Comm. College
Pann McCuaig (503) 752-5 1 13

PENNSYLVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int'l. Corp., 8th F1.
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin. TX 78718

Dallas Chapter
4th Thurs., 7:30 p.m.
Texas Instrumen&
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-236 1

Houston Chapter
3rd Mon., 7:30 p.m.
Houston Area League of PC
users
1200 Post Oak Rd.
(Galleria area)
Russell Harris
(713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 8984099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown
(703) 471409
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri.. 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/889-2600
BBS: 61 3 809 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd.
Yowie Bay 2228
021524-7490
Usenet
tedr@usage.csd.unsw.oz

BELGIUM
Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreef 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
0711213858

CANADA
FORTH-BC
1st Thurs.. 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown
(604) 596-9764 or
(604) 436-0443
BCFB BBS (604) 434-5886

Northern Alberta Chapter
4th Thurs., 7-9:30 p.m.
N. Alta. Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly: 1st Sat. of Mar.,
June, and Dec. 2nd Sat. of
Sept. Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 x3443

ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FINLAND
FinFIG
Janne Kotiranta
Arkkitehdiiatu 38 c 39
33720 Tampere
+358-31-184246

GERMANY
German FIG Chapter
Heinz Schnitter
Forth-Gesellschaft C.V.
Postfach 11 10

D-8044 Unterschleissheim
(49) (89) 317 3784
Munich Forth Box:
(49) (89) 725 9625 (telcom)

HOLLAND
Holland Chapter
Vic Van de Zande
Finrnark 7
3831 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021435249

JAPAN
Tokyo Chapter
3rd Sat. afternoon
Harnacho-Kaikan, Chuoku
Toshio Inoue
(81) 3-812-2111 ext. 7073

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
SF, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFIG
Per Alm
4618-92963 1

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8 152 Opfikon
01 810 9289

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
1698 Villa St.
Mountain View, CA 94041
(415) 960-1256 (eves.)

lolume XII, Number 5 43 Forth Dimemiom

1991 ROCHESTER FORTH
CONFERENCE

ON
AUTOMATED INSTRUMENTS

June, 1991
University of Rochester
Rochester, New York

Call for Papers
There is a call for papers on the use of Forth technology in Automated
Instruments. Papers are limited to 5 pages, and abstracts to 100 words.
Longer papers will be considered for review in the refereed Journal of
Forth Application and Research.

Please send abstracts by April 1, 1990 and final papers by June 1, 1990.

For more information, contact:

Lawrence P. Forsley
Conference Chairman
Institute for Applied Forth Research, Inc.
70 Elmwood Avenue
Rochester, NY 1461 1
(716)-235-0168 (716)-328-6426 (FAX)

Forth Interest Group
P.O.Box 8231
San Jose, CA 95 155

Second Class
Postage Paid at
San Jose, CA

