

F O R T H
-

D I M E N S I O N S

m
FORMATTING SOURCE CODE - GLEN B. HAYDON

10
Forth source code was first written in a series of blocks, with occasional comments enclosed in parentheses. Later,
further comments were sometimes included in shadow screens. But if source code requires explanation in order for
us to use and maintain it, perhaps one should simply write all source code in the narrative form. Just indicate which
parts of the narrative should be compiled; the rest is easily readable documentation.

=
A HIGH-LEVEL SINGLE-STEPPER - PHILIP BACON

15
Author Bacon gives us the definition of trouble and an answer to it, too. If a new Forth definition fails to produce
the intended effects, the problem may be found with a single-stepper. This is not a program you can just type in and
run. The strategy is to simulate the Forth interpreter and, since interpreters behave differently, you'll have to learn
how your Forth interpreter works. Roll up your sleeves!

rn
CAPTURE! - BRUCE T. NICHOLAS

20
Sometimes the only way to learn Forth is to use it. With some encouragement from his son, the author chose to adapt
a game originally published in BASIC. Although written by aneophyte, this version is much faster than its ancestor.
In fact, the author put a timing loop into the code to give you a fair chance. Try to trap the deadly, stalking beas ts...

rn
.CAME-FROM - FRANS VAN DUINEN

29
Goto-less programs using "came from" sprang to our author's mind again when a program kept trying to execute
variables whose base pointer had not been initialized. Most of the CFAs were zero so, like a bad joke, his system
rebooted every time. He probably won'tbe the last to fool with it, but this EXECUTE will now check to see if a CFA
is at least reasonable.

TIME-KEEPING ROUTINE - PETER VERHOEFF
30

f You can benefit from this program, which makes it routine to keep track of your time, even if you don't need to strictly
audit your hours. It records the length of your current session at the computer, the total time for the day, and totals
for the current and previous periods. The timelog file holds almost 50 pairs of login and logout times, so even down
time and coffee breaks can be included.

Reference Section
4

Editorial
5

Letters
6

Advertisers Index
32

Best of GEnie
33

FIG Chapters
4 0 4 2

Volume X, Nwnber 6 3 Forth Dimensions

REFERENCE SECTION

Forth Interest Group
The Forth Interest Group serves both

expert and novice members with its net-
work of chapters, Forth Dimensions, and
conferences that regularly attract partici-
pants from around the world. For member-
ship information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group
P.O. Box 823 1
San Jose, California 95 155
408-277-0668

Board of Directors
Robert Reiling, President (ret. director)
Dennis Ruffer, Vice-President
John D. Hall, Treasurer
Terri Sutton, Secretary
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith

Founding Directors
William Ragsdale
Kim Harris
Dave Boulton
Dave Kilbridge
John James

In Recognition
Recognition is offered annually to a

person who has made an outstanding con-
tribution in support of Forth and the Forth
Interest Group. The individual is nomi-
nated and selected by previous recipients
of the "FIGGY." Each receives an en-
graved award, and is named on a plaque in
the administrative offices.

1979 William Ragsdale
1980 Kim Harris

1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer

On-Line Resources
To communicate with these systems, set
your modem and communication software
to 300/1200/2400 baud with eight bits, no
parity, and one stop bit, unless noted other-
wise. GEnie requires local echo.

GEnie
For information, call 800-638-9636

Forth RoundTable (Fortmet link*)
Call GEnie local node, then type M710
or FORTH
SysOps: Dennis Ruffer (D.RUFFER),
Scott Squires (S.W.SQUIRES), Leona
Morgenstern (NMORGENSTERN),
Gary Smith (GARY-S)
MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
SysOp: Waymen Askey (D.MILEY)

BIX (ByteNet)
For information, call 800-227-2983

Forth Conference
Access BIX via TymeNet, then type
j forth
Type FORTH at the : prompt
SysOp: Phil Wasson (PWASSON)
LMI Conference
Type LMI at the : prompt
Laboratory Microsystems products
Host: Ray Duncan (RDUNCAN)

CompuServe
For information, call 800-848-8990

Creative Solutions Conference
Type !Go FORTH
SysOps: Don Colburn, Zach Zachar-
iah, Ward McFarland, Jon Bryan,
Greg Guerin, John Baxter, John
Jeppson
Computer Language Magazine Con-
ference
Type !Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip
Rabinowitz, Regina Starr Ridley

Unix BBS's with Forth cor&erences
(ForthNet links*)

WELL Forth conference
Access WELL via CompuserveNet or
4 15-332-6106
Fairwimess: Jack Woehr Cjax)
Wetware Forth conference
4 15-753-5265
Fairwimess: Gary Smith (gars)

PC Board BBS's devoted to Forth
(ForthNet links*)

East Coast Forth Board
703-442-8695
SysOp: Jerry Schifrin
North Coast Forth Board
612-483-671 1
SysOp: Don Madson
British Columbia Forth Board
604-434-5886
SysOp: Jack Brown
Real-Time Control Forth Board
303-278-0364
SysOp: Jack Woehr

(Continued on page 37.

I

Forth Dimensions 4 Volume X , Number 6

Forth Dimensions
Published by the

Forth Interest Group

Volume X , Nwnber 6 5 Forth Dimensions

Volume X. Number 6
MarcNApril1989

Editor
Marlin Ouverson

Advertising Manager
Kent Safford

Design a& Production
Berglund Graphics

Forth Dimensions welwmes editorid ma-
terial, letters to the editor, and comments from
its readers. No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 Per Yea ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth
Interest P.O. 8231* Sari

95155. Administrative and
advertising sales: 408-277-0668.

Copyright @ 1989 by ForthInterest Group'
Inc. The material contained in this periodical
(but not the code) is copyrighted by the indi-
vidual authors of the articles and by Forth
Interest Group, Inc., respectively. Any repro-
duction or use of this periodical as it is wm-
piled or the articles, except reproductions for
non-co,,,,,,ercial purposes, without the written
permission of ~ ~ f i Interest Group, hc. is a
violation of the Copyright Laws. Any code
bearing a copyright notice, however, can be
used only with permission of the copyright
holder.
About the Forth Interest Group

The Forth Interest Group is the association
of programmers, managers, and engineers
who create practical. Forth-based solutions to
real-world needs. Many research hardware
and software designs that will advance the
general state the art. provides a
of exchange and benefits intended
to assist each of its members. Publications,
conferences, seminars, telecommunications,
and area chapter meetings are among its activi-
ties.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per yea by the
~ ~ f i hterest Group, 1330 S. B~~~~ Ave.,
suite D, sari Jose, CA 95128. ~ ~ ~ ~ ~ d - ~ l ~ ~
postagepaid atSan lose, CA. POSTMASTER:
Send address changes to Forth Dimensions,
P.O. Box 8231, San Jose, CA 95155."

1 recently got this word from Natha-
niel Grossman: "It appears that a fulminat-
ing debate on Forth programming style has
been waiting to erupt." Yes, that ugly
monster has reared its ill-documented head
again. Have you noticed how everyone
approves of code with good style, but resists
being saddled with coding conventions?
The former is something everyone is pretty
sure they already have (and therefore ap-
prove of), while the latter rub a Forth
programmer's independent streak the
wrong way.

Our retrospective look at last year's
real-time programming convention in-
cluded Jef Raskin's remark thatForth3s use
of parentheses is backwards. He said Forth
code could be inserted parenthetically as
the working part of a human-language es-
say that clearly describes the taskbeing per-
formed. Ina letter to theeditorprintedin the
same issue,BillKtbler wroteof thecontinu-
ing discussions in his company about Forth
style. He described some of the real costs of
code that does not conform to a standard of
style.

Even before that issue was printed, Glen
Haydon offered his own timely contribu-
tion to the subject. Here you will find his
code to let you embed Forth programs in
clearly written (knock on wood) English
descriptions of their function. Have a look
at Glen's example, try it on some of your
own code, then let us know your reactions,
opinions, and variations. ~1~ see Peter
Verhoeff s time-keeping routine for a
couple of incidental contributions to the
discussion of style.

* * *

If coding style seems like weak fare,
perhaps you should make reservations to
attend euroFORML '89 on October 13-15
in West Germany. The theme will be
loosely organized around real-time appli-
cations with, typi~ally, plenty of leeway for
digression to other Forth topics. The mod-
em Hotel Selau is in a town near the village

of Forth, about 20 km. west ofNuremberg.
The conference languages will be English
and Forth, and the proceedings will be
published (deadline for included papers:
October 1). Contact Marina Kem, Roter
Hahn 42, D-2000 Hamburg 72, West Ger-
many. Then come to the original FORML
conference the next month in California to
share what transpired!

* * *

Like a dental probe, discussion of a
sensitive issue can make one wince; the
closer to the problem, the stronger the re-
action. Remember the HAL 9000? In the
years since that fictitious A1 entity's
breakdown, psychologists have confirmed
that things known but not acknowledged
can, indeed, hinder problem solving. This
issue's FIG chapters column may make
you wince, but it may move you to become
part of a strong local chapter near you and,
thus, part of a stronger Forth Interest
Group.

As the printed voice of that member-
ship organization, Forth Dimensions in-
tends to represent its readers, not to decide
for them which topics are important or
how Forth should be wriuen. The articles
and essays we publish are a slice of the
Forth commonwealth. The collective
domain expands and shifts, and so does the
material we print.

Our publishing process is meant to
foster mutual benefit and cooperative ef-
fort. But this means that, more than most
magazines, we rely on our readers' input.
Letters to the editor are a great way to join
the dialog or to offer an improvement to
someone's ideas. And having an article of
your own printed in these pages brings
attention and recognition from an audi-
ence of intelligent peers. We welcome the
contribution you may make to our next
volume, and hope to hear from YOU soon!

- M a r l i n Ouverson
Editor

Vintage Hardware
Dear Marlin,

I was pleased to read your comments
about previous-generation machines (FD
V/5). I have, since the first day of my intro-
duction to computing, been working with
either a "home computer" (TI 9914A) or a
PG. Mine is a Kaypro I with graphics
screen and double-sided disks. I can't jus-
tify the expense of a common PC, let alone
something really current. That is because I
have no call to ask anything of my 280 that
it can't do and do fast enough for the task
at hand.

In the past three years, FD has pub-
lished code in six articles and eight letters
that I have submitted. I mention that to
point out that all the code was developed on
one of the computers I mentioned above
(albeit only one or two were machine spe-
cific).

I see no reason for you not to publish an
occasional piece that is machine specific-
even if the machine is an old one. I see, as
you pointed out, good reason to publish for
PGs as well as for current generation PCs
and beyond.

Thanks for all the good work.

I Sincerely,
Gene Thomas
4300 Bowmen Road #lo3

I Little Rock, AR 72210

Dear Marlin,
Kudos for including and eloquently

justifying the Apple-specific article. I
don't and haven't used one, but it was
refreshing to see an alternative to the
snootiness and disdain focused on us who
stuck with our old stuff because it did what
we wanted well enoughto justify not rush-

I

Forth Dimensions 6 Volume X , Number 6

ing to buy the latest, fastest, whiz-bang
Belchjire 500 as it came out.

On the phrase, ''The rest is silence."
You asked Michael Perry if it came from
The Hitchhiker's Guide to the Galaxy and
he denied it. Not surprising. The line pops
up in HAIR, sung by the chorus in "The
Flesh Failures (Let the Sunshine In)". One
can also find:
"0, I die, Horatio;
The potent poison quite o'ercrows my spirit:
I cannot live to hear the news from England;
But I do prophesy the election 'lights
On Fortinbras: he has my dying voice;
So tell him, with the occurrents, more and less,
which have solicited.-~e rest is silence.w
[Dies.]

-Hamlet, Act V, Scene I1

Regards,
Glenn Toennes

More on Behalf of Wm. Shkspr.:
Dear Mr. Ouverson:

I am writing to provide you with the
original attribution for the phrase, "The rest
is silence,n which you mentioned in the
editorial of the January/February issue.
The phrase comes from near the end of
Shakespeare's tragedy Hamlet, Prince of
Denmark, Act V , Scene 11, line 370 (or
thereabout, depending on the version).

I hope this helps.

Sincerely,
Robert Lee Hoffpauer
[Mr. Hoffpauer also provided the same ex-
cerpt quoted above, and further jogged my
memory with Horatio's over-quoted
respome: Now cracks a noble heart. Good
night, sweet prince; And flights of angels
sing thee to thy rest!

I knew that.--Ed.]

Forth Style
[The following isfrom a letter sent to Bill
Kibler in response to his letterpublished
in our last issue; its author kindly sent me
a Copy as of possible interest. In light of
the current ~ ~ S C U S S ~ O ~ S about Forthstyle,
I found it illuminating and encourag-
ing.-4d.l

Dear Mr. Kibler,
The latest Forth Dimensions anived

here yesterday, and 1 was able to read
your letter about Forth programming
style. It's, of course, not a new concern;
Kim Harris wrote a major article about it
many years ago, and since the start of
Forth publishing there have been articles
appearing regularly.

I'vejust written alittlearticle which is
concerned, in part, with Forth program-
ming style. It's been submitted to Forth
Dimensions. Of course, there is no6'Forth
sty1e"as such, justas thereis no uniqueor
even dominant literary style in English. If
all Forthwriters produced only code for
embedded systems that had to fit into 4K,
there might be a chance for a consensus
style. If Forth were only for building
Rapid-Files or VP-Planners, another
style might a P W . Then an enterprising
Forth adept might produce a Forth analog
of Grarnmatik I1 and impose a universal
style.

Nevertheless, we all seem to agree
that the principal need is to make Forth
code by others--even by its
Own author- The actual mechanism for
doing this very well be im~lementa-
tion dependent- After all, we shouldn't
expect a screen-bound Forth im~lemen-
tation to host a commenting style that is
stream-file friendly. A Forthwriter work-

YES, THERE IS A BETTER WAY
A FORTH THAT ACTUALLY

DELIVERS ONTHE PROMISE

I POWER

HSIFORTH's compilation and execution speeds are
unsurpassed. Compiling at 20.000 lines per minute, it
compilesfaster than many systems link. For real jobs
execution speed is unsurpassed as well. Even non-
optimized programs run as fast as ones produced by
most C compilers. Forth systems designed to fool
benchmarks are slightly faster on nearly empty do
loops, but bog down when the colon nesting level ap-
proaches anything useful, and have much greater
memory overhead for each definition. Our optimizer
gives assembler language performance even for
deeply nested definitions containing complex data and I control structures

HSiFORTH provides the best architecture, so good that
another majorvendor "cloned" (rather poorly) many of
itsfeatures. Our Forth uses all available memory for
both programs and data with almost no execution time
penalty, and very little memory overhead. None at all for
programs smaller than 200kB. And you can resize s e g
ments anytime, without a system regen. With the
GigaForth option, your programs transparently enter
native mode and expand into 16 Meg extended memory
or a gigabyte of virtual, and run almost as fast as in real
mode.

Benefits beyond speed and program size include word
redefinition at any time and vocabulary structures that
can be changed at will, for instance from simple to
hashed, or from 79 Standard to Forth 83. You can be-
head word names and reclaim space at any time. This
includes automatic removal of a colon definition's local
variables.

Colon definitions can execute inside machine code
primitives, great for interrupt 8 exception handlers.
Multi-cfa words areeasily ~mplemented. And code
words become incredibly powerful, with multlple entry
points not requiring jumps over word fragments. One of
many reasons our system is much more compact than
its immense dictionary (1600 words) would imply.

I INCREDIBLE FLEXIBILITY

The Rosena Stone Dynamic Linker opens the world of
utility libraries. Link to resident routines or link & remove
routines interactively. HSIFORTH preserves relocata-
bility of loaded libraries. Llnk to BTRIEVE METAWIN-
DOWS HALO HOOPS ad infinitum. Our call and data
structure words provide easy linkage.

HSiFORTH runs both 79 Standard and Forth 83 pro-
grams, and has extensions covering vocabulary search
order and the complete Forth 83 test suite. It loads and
runs all FIG Libraries, the main difference being they
load and run faster, and you can develop larger applica-
tions than with any other system. We like source code in
text files, but support both file and sector mapped Forth
block interfaces. Both line and block file loading can be
nested to any depth and includes automatic path
search.

Volume X , Number 6

FUNCTIONALITY

More important than how fast a system executes, is
whether it can do the job at all. Can ~t work with your
computer. Can it work with your other tools. Can ~t trans-
form your data into answers. A language should be
complete on the first two, and mlnimize the unavoidable
effort required for the last.

HSIFORTH opens your computer llke no other lan-
guage. You can execute function calls, DOS com-
mands, other programs interactively, from deflnitions,
or even from files being loaded. DOS and BlOS function
calls are well documented HSiFORTH words, we don't
settle forgiving you an INTCALL and saylng "have at I!.
We also include both fatal and informative DOS error
handlers, installed by executing FATAL or INFORM.

HSIFORTH supports character or blocked, sequential
or random 110. The character stream can be received
fromlsent to console, file, memory, printer or com port.
We include acommunications plus upload and down-
load util~ty, and foreground/background music. Display
output through BlOS for compatibility or memory
mapped for speed.

Our formatting and parsing words are without equal. In-
teger, double, quad, financial, scaled, time, date, float-
ing or exponential, all our output words have string
formatting counterparts for building records. We also
provide words to parse all data types with your choice of
field definition. HSIFORTH parses files from any lan-
guage. Other words treat files like memory, nn@H and
nn!H read or write fromito a handle (file or device) as
fast as possible. For advanced file support. HSIFORTH
easily linksto BTRIEVE, etc.

HSIFORTH supports texffgraphic windows for MONO
thru VGA. Graphic drawings (line rectangle ellipse) can
be absolute or scaled tocurrent window size and
clipped, and work with our penplot routines. While great
for plotting and line drawing, it doesn't approach the ca-
pabilities of Metawindows (tm Metagraphics). We use
our Rosetta Stone Dynamic Linker to Interface to Meta-
windows. HSIFORTH with Metawindows makes an un-
beatable graphics system. Or Rosetta to your own
preferred graphics driver.

APPLICATION CREATION TECHNIQUES

HSIFORTH assembles to any segment to create stand
alone programs of any size. The optimizer can use HSI
FORTH as a macro library, or complex macroscan be
built as colon words. Full forward and reverse labeled
branches and calls complement structured flow control.
Complete syntax checking protects you. Assembler
programming has never been so easy.

The Metacompiler produces threaded systemsfrom a
few hundred bytes, or Forth kernelsfrom 2k bytes. With
~ t , you can create any threading scheme or segmenta-
tion architecture to run on dlsk or ROM.

You can turnkey or seal HSIFORTH for distribut~on, with
no royalties for turnkeyed systems. Or convert for ROM
In saved, sealed or turnkeyed form.

HSIFORTH includes three editors, or you can quickly
shell to your favorite program ed~tor. The res~dent full
window-editor lets you reuse former command lines and
save to or restore from afile. It is both an Indispensable
development ald and agreat user interface. The macro
editor provides reuseable functions, cut, paste, file
merge and extract, session log, and RECOMPILE. Our
full screen Forth editor editsfile or sector mapped
blocks.

Debug tools include memorylstack dump, memory
map, decomp~le, s~ngle step trace, and prompt options.
Trace scope can be limited by depth or address.

HSiFORTH lacks a "modular" cornpllation environ-
ment. One motivation toward modular compilation is
that, with conventional compilers, recompiling an entire
application to change one subroutme is unbearably
slow. HSIFORTH complles at 20,000 lines per minute,
faster than many languages link- let alone compile!
The second motivation is linking to other languages.
HSIFORTH links to foreign subroutines dynamically.
HSIFORTH doesn't need the extra layer of files, or the
programs needed to manage them. With HSIFORTH
you have sourcecodo and the executable f~le. Period.
"Development environments" are cute, and necessary
for unnecessarily complicated languages. Simplicity is
so much better.

HSIFORTH provides hardwareisoftware floating polnt, HSIFORTH Programming Systems
including trig and transcendentals. Hardware fp covers Lower levels Include all functions not named at a higher
full range trig, log, exponential functions plus complex
and hyperbolic counterparts, and all stack and comparl-
son ops. HSIFORTH supports all 8087 data types and
works in RADIANS or DEGREES mode. No coproces-
sor? No problem. Operators (mostly fast machine code)
and parselformat words cover numbers through 18 dig-
its. Software fp eliminates conversion round off error
and minimizes conversion time.

Singleelement through 4D arrays for all data types In-
cluding complex use multiple cfa's to improve both per-
formance and compactness. Z = (X-Y) I (X + Y) would
be coded: X Y - X Y + I IS Z (1 6 bytes) Instead of: X @
Y @ - X @ Y @ + I Z ! (26 bytes) Arrays can Ignore 64k
boundaries. Words use SYNONYMsfor data type inde-
pendence. HSiFORTH can even prompt the user for
retry on erroneous numeric input.

The HSIFORTH machlne coded string library with up to
3D arrays IS without equal. Segment spanning dynamic
string support includes insert, delete, add, find, replace,
exchange, save and restore string storage.

Our minimal overhead round robln and time sllce multi-
taskers require a word that exits cleanly at the end of
subtask execution. The cooperative round robin multi-
tasker provides individual user stack segments as well
as user tables. Control passes to the next taskiuser
whenever desired.

level. Some functions available separately.
Documentation 8 Working Demo

(3 books, 1000 + pages, 6 Ibs) $ 95.
Student $145.
Personal optimizer, scaled & quad integer $245.
Profess1onal80x87. assembler. turnkey. $395.

dynamic strings, multltasker
RSDL linker,
physical screens

Production ROM. Metacompiler, Metawindows
$495.

Level upgrade, price difference plus $ 25.
OBJ modules $495.
Rosetta Stone Dynamic L~nker $ 95.
Metawindows by Metagraphics (includes RSDL)

$145.
Hardware Floating Polnt 8 Complex $ 95.
Quad integer, software floating point $ 45.
Time slice and round robin muttitaskers $ 75.
GigaForth (802861386 Natlve mode extension) $295.

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390

7 Forth Dimensions

ing from floppy disks might not feel com-
fortable shuffling floppy disks in order to
call upon elaborate shadow screens.

I don't write Forth code for a living, so
I have a little leeway and the luxury to look
at the artistic side of Forthwriting. Yes. I
feel that writing Forth code and its com-
mentary can be an artistic endeavor. That's
not to say that the world of Forth comment-
ing is crying out for its e.e. cummings or
William Burroughs. But even technical
manual writing, a well-known rite of com-
menting, has its good and its bad practitio-
ners, and even a technical manual can be
beautiful. Psychologists now affirm that
each of us has a sense of beauty inside
himself, and the current fashion allows
each person free expression of that sense.
Beauty and clarity are not antithetical.
Let's encourage commenting as a creative
activity, no less laudable than the code
writing itself.

Best!
Nathaniel Grossman
Department of Mathematics
UCLA
Los Angeles, California 90024

Outa' Space
Dear Editor,

I am in need of help from my fellow
FIGers. I havebeen working, onand off, on
a program that was to produce printed
circuit artwork with computer-driven rout-
ing, as well as other bells and whistles. The
output is to an Epson-compatible printer or
plotter. I hoped to release this program as
an aid to the hardware experimenter.

My problem is that I have run into a
space limitation. I am using F83 on a PC
clone, and have reached the top of usable
memory. I have utilized every space-sav-
ing technique I can think of, including
reusing the disk buffers for a circular queue
when necessary. Whencompiling, I use the
assembler as a temporary module, and do
not include theeditor; but I still end up with
a .COM file of >57K, not including the
>150K of memory usage outside the Forth
segment. The program is only partially
operational, and at present consists of three
text files totalling 4000 lines of code. There
is still more to be added, but without more
room it cannot be done.

The only solution to my problem seems
to be an overlay manager for F83. Portions
of the program are mutually exclusive, and

would lend themselves to an overlay proce-
dure.

If I bang my head against the wall long
enough, I may be able to come up with
something--but I would like to complete
this project before the end of the decade. If
anyone out there can help me, or is inter-
ested in the program, please drop me a line.

George Boudreau
P.O. Box 43 1
Kentville, Nova Scotia
Canada B4N 3x3

Korean Forth Is Natural
Sir:

I am enclosing my membership dues
and photocopies of two articles my col-
league, Jin-Mook Park, and I have written
to introduce Korean Forth, which is a trans-
lated version of fig-FORTH. Our apprecia-
tion goes to the Forth inventor, Charles
Moore, and all others who contributed to
the development of Forth.

Since the syntax of Forth is similar to
that of the Korean language, it is the appro-
priate computer language to be translated
into Korean. Even though some of the other
computer languages have been translated
into Korean, they look strange to Koreans
because of their English-like syntax. Thus,
we translated fig-FORTH into Korean for
Apple II+ compatibles, which have the
capability todisplay lowercase letters. The
character-generation ROM was modified
to replace the lower-case patterns with
those of 24 Korean characters.

There is a special notation for the K e
rean language. A syllable is expressed with
2-5 characters, and is normally written as a
cluster character. Cluster characters are
very difficult to display on the monitor,
almost as difficult as displaying Chinese
characters. Fortunately, Korean characters
can be placed one by one as in Roman
languages, with the characters in a queue.
Although the latter writing method is not
popular, it enabled us to implement Korean
Forth with minimum modification to the
hardware, i.e., replacement of the charac-
ter-generation ROM.

Our first article describing Korean
Forth was published by the Korean com-
puter magazine micro software in Septem-
ber 1987. We described Forth briefly by
comparing the syntaxes of computer lan-
guages like LOGO and Forth with that of
the Korean language, and gave word-for-

word translations of Forth words. The sec-
ond, two-part, article was published in
Scientific Eastern Asian in February and
March 1988. The first part, "A Computer
Understands the Korean Language" intro-
duces the general features of Korean
Forth, with printouts performed by LIST,
VLIST, and INDEX. The second part,
"Let's Program in Korean," is for the in-
troduction of Forth programming.
Screens containing definitions for a turtle
graphics demonstration are listed and
explained.

Forth is so simple and elegant that we,
as an electronics technician and achemist,
could implement Korean Forth. Many
thanks for the great works at FIG: publi-
cizing and advancing the Forth language.

Sincerely,
Chong-Hong Pyun
Inorganic Chemistry Lab, KAIST
P.O. Box 13 1, DongDaeMun
Seoul, 130-600
Korea

I

Forth Dimensions 8 Volume X, Number 6

For more information please contact the Conference Chairman or call (716)-235-0168.

REGISTRATION
The registration fee and conference services includes all
sessions, meals, and the Conference papers. Lodging is
available at local motels or in the UR dormitories.
Registration will be from 4 - 11 PM on Tuesday, June
13th in the Wilson Commons, and from 8 AM
Wednesday, June 14th in Hutchison Hall, where
sessions will be held.

Name

Address

Telephone: Wk (1

Registration:
$200.00 $150.00 (UR Staff and

IEEE Computer Society)
IEEE #

$50.00 (full-time students)

Vegetarian Meal Option

Total $

Conference Services $200.00
Dormitory housing, 5 nights

$125.00 single $100.00 double

non-smoking roommate 5~ ~ u n Run
Total $
Amount Enclosed $
MC/Visa# exp
Please make checkspayable to the Rochester Forth Conference. Mail
your regisaation to Rochester Forth Conference, Box A, 70 Ebnwood
Avenue, Rochester, NY14611, USA.

Volume X, Number 6 9 Forth Dirnensionr

r Forth-79 & FPC

FORMATTING
SOURCE CODE

- -

GLEN B. HAYDON - LA HONDA. CAUFORNIA

T e r e is no agreement about what
constitutes a good form for source code in
any language. Programming languages are
too cryptic for easy understanding by the
English reader. Some form of documenta-
tion is often included that, in one way or
another, tries to help the reader. Having
examined a variety of styles used by a
number of programming languages, I have
experimented with several for use with
Forth programs.

In the Forth community, source code
was first written in a series of blocks with
occasional comments enclosed in paren-
theses. Further comments were sometimes
included in shadow screens. These blocks
or screens corresponded to the size of the
screen Charles Moore had available when
he first created Forth. Recently, Forth
source code has been written as text files
but it still can only be viewed in pages,
according to the device used. Even in
scrolled text, the displayed window into the
text is a sort of a page. We are always back
to pages.

In many journals, source code is pre-
sented in some way separate from the nar-
rative text. The code may be inserted be-
tween lines of text as examples or included
in an appendix. If one assumes that the
publication of source code requires some
sort of a narrative text, perhaps one should
simply write all of the source code as a
narrative.

Conventional source code for most
languages uses some sort of enclosing
symbols for comments. This technique
would seem to have things backwards.
What is needed is some sort of enclosing
symbols to indicate what part of the narra-
tive should be compiled. The rest of the
narrative is simply easily readable docu-

mentation. (This presumes that the pro-
grammer can write English, which may not
always be the case.)

With the simplicity of Forth, I have
decided to see what such a technique would
be like. I have selected a piece of code I
wrote some time ago and published in the
FORML Proceedings 1981. That code was
written in fig-FORTH. It really needed
updating to the code I presently use and
seems to be a good, short piece to use as an
example.

: 1
BEGIN

T I B @ > I N @
+ 1 > I N +!
C@ 1 2 3 =

UNTIL ;
IMMEDIATE

: FILE-COMPILE
T I B @ >R > I N @ >R
FILE-BUFFER T I B !
0 BLK ! 0 > I N !

I [COMPILE] } <INTERPRET>
R> > I N ! R> T I B ! ;

it beloigs." to include only the parts enclosed within
braces. This can be done with a simple

"All the information
is easily located where

filter function, which can be easily imple-
mented in Forth. But this would defeat the

One could easily eliminate all the
documentation by rewriting the source file

L

Forth Dimensions 10 Volume X, Number 6

The source code can be easily compiled
in MVP-FORTH by a routine to bring a text
file into a buffer and a slight mWication to
INTERPRET. With some slight modifica-
tions to FPC version 2.5, the same source
code has compiled successfully. There are
as many ways of bringing a text file into a
Forth program as there are programs. I will
leave that to the option of the user.

The enclosing symbols are the opening
and closing braces. The opening brace is
simply a text marker and requires nodefini-
tion. The closing brace is an immediate
Forth word to search for the next opening
brace from which to start compiling again.
The change required in INTERPRET is to
point the interpreter to the text buffer in
memory and to start interpreting at the first
open brace.

purpose of including documentation.
If onedevelops his code as a text file, he

could easily edit his code to conform with
a style. And, really, the best time to do that
is while the code is fresh in his head. In
addition to an introductory note and an
overview of the code, each function is pre-
sented in a fixed, general format of records
with variable-length fields: name, narra-
tive functional definition, implementa-
tion, tests, and comments. The specifica-
tions for a program should be a narrative
description. Such a narrative might even
help the programmer focus on the goals of
his program. The actual names provide a
label for the beginning of a variable-length
block. The narrative functional definition
is closely related to the implementation
and should help the programmer under-
stand his code. Test vectors are rarely

included with any code or documentation,
but with them one can, for example, deter-
mine that the function does what was in-
tended, that the boundary conditions do not
cause problems, that the stack depths be-
fore and after are as defined, etc. Finally, a
comment should be included to suggest
why some particular algorithm has been
used or why some unusual code has been
included.

The discipline of completing the pro-
gramming job by adopting such a style
would meet many common problems with
understanding and maintaining code. All of
the necessary information is easily located
where it belongs. Also, publication is the
ultimate goal of much research; why not
incorporate that style in the source code and
have the job done?

SERIAL DAY COMPRESSION
by Glen B. Haydon

A serial day can be converted to a 16-bit value. The converted
value can conserve memory space and make calculation of the
period between days easy. The following algorithm is adapted
from one presented in Sky & Telescope (April 1981, page 3 12).
and was published in FORML Proceedings 1981.

The military sometimes refers to a Julian Day when they
really mean a serial year day. It would take more than 16-bits to
encode a Julian Day-in that form of reckoning, we are nearly up
to 2,300,000 and each date includes an additional fractional part
to indicate the time. Julian days also start at noon. This program
provides an offset from the Julian Day, with March 1,1952 being
day 123. By beginning with March first, the leap-year day is the
immediately preceding day. The time fraction is also dropped
and the days are calendar days. The fractions in the original al-
gorithm are used to calculate leap years and the variable lengths
of months. They have been scaled to integer values and then trun-
cated to give the proper values for a 16-bit Forth system.

The source is divided into four parts:
1. Two mathematical operators in addition to the program kernel
are desirable.

2. Encoding a 16-bit serial day is accomplished with ?DATE
which first prompts for the input in aprescribed format, parses
the input to three double-precision values with $ -N and then
these values are scaled and combined with the single function
TO. SERIAL .DAY.

3. Decoding a 16-bit serial day is more complicated because it is
necessary to determine if the year is a leap year and, accord-
ingly, make a number of adjustments. This part leaves three
values on the stack ready to be formatted for output.

4. Finally, the three decoded values can be formatted in a variety
of ways of which one example is given.

Additional Mathematical Operators
D /
A double-precision number is divided by a single-precision un-
signed number and leaves a double-precision value.

Implementation
I
: D / (d u - - d)
SWAP OVER /MOD >R SWAP
U/MOD SWAP DROP R> ; 1

The serial-day-compression source
code which follows is presented as an ex-
ample for consideration. In the end, the
style adopted is left up to the programmer
and his management. Any style could be
used. The important thing is that some style
be adopted which serves as many functions
as possible. This source code exists and
works. It is not vaporwaretry it!

Test
4 . 2 D/ D.
Will print a double-precision value of 2.

Comment
The function illustrates how to write uncommon specific code
for an application.

D *
A double-precision number is multiplied by a single-precision
unsigned number to leave a double-precision value.

Implementation
{
: D * (d u - - d)

DUP ROT * ROT ROT U* ROT + ;
1

Test
4 . 2 D* D.
Will print the double-precision value 8.

Comment
The result could overflow if the original values are too large.
This is not a problem in this application, so no error checking
is done.

Encoding a Serial Day
TO.SERIAL.DAY
Convert a series of double-precision values representing the
month, the day, and the year in the form MM/JlD/YY to a 16-
bit serial day.

Implementation
I
: TO.SERIAL.DAY (d d d -- u)

ROT DUP 3 < IF 13 + SWAP 1 -
ELSE 1+ SWAP THEN

52 - 365.25 ROT D* 100 D/ DROP
SWAP 30.6001 ROT D* 10000 D/ DROP + +

,
1

Volume X, Number 6 11 Forth Dimensions

Test
3. 30. 60. TO.SERIAL.DAY
Should leave a single 16bit value.

Comment
This is the heut of the encoding. No error checking is done. The
result can be checked after input and reentered if necessary. The
value 13 is introduced to offset the months in the calculation to
begin with March.

$ -N
Parse the next character string according to the delimiter pro-
vided, and convert it into a double-precision value.

Implementation
I {

: $-N (c -- d)
WORD 0 0 ROT CONVERT DDROP ; }

Test
: TEST

." Enter numerical value-> '
PAD 10 EXPECT BL $-N D. ;

Should print the value entered.

Comment
The function is a factor in parsing a date input formatted with
slashes between the values and terminating with a blank.

?DATE
Provide a prompt to remind the user of the format for the input,
and convert the input to a serial day.

Implementation
{
: ?DATE

." (MM/DD/YY) -> "
QUERY 47 $-N 47 $-N
BL $ -N TO. SERIAL. DAY ;

1

Test
?DATE
Will issuethedesiredprompt and leave a 16-bit serial day, which
can be printed with . DATE to be coded later.

Comment
These several routines have no error checking and some means
should be provided to ensure that the intended date has been en-
tered. There is no possible way to assure that the intended date
has been input, so one might as well inspect the result and elimi-
nate the overhead for error checking.

Decoding Routines
YEARS
From a serial day value, calculate a test year as a single-precision
integer from which it can be determined if a leap year must be
considered.

CONCEPT 4
f o r t h W I N D O W S +

Text and Data Windows
(90 Windows1 per available memory I P V M 8 3 1

8086,8088 Native
Code generator.
The easy way to
optimize Laxen &
Perry F83, including
the hi-level flow
control words ... If ..

Popup Windows
Save and Restore windows from files

Mouse Support
Circular Event Que for Mouselkeyboard

DOS services1 directory
F83, HSFORTH, FPC supported

PLUS

Prolog
Virtual

Machine

Add productivity,
flexibility, and auto-

mated reasoning
Fully interactive

I
Then, Do .. Loop, 1 $49.95 I between Forth and
Begi n..Agai n. All programs require DOS 2.0 or higher Prolog code

All programs Include 5 114" disk and manual
$20.00 Send check or money order to : $69.95

CONCEPT 4, INC. PO BOX 20136 VOC AZ 86341

Forth Dimemions 12 Volume X, N~unber 6

1 {mplementation

(s e r i a l - d a y -- t e s t - y e a r) 1 : Y:A?:O D* 36525 D/ DROP ;

Test
123 YEARS
Should leave the value 0 .

Comment
Making the value a double-precision integer is needed for scaling.
The truncation takes care of the leap year.

I I DAYS/YEARS For a given year, calculate the number of days in that year.

I I Implementation

: DAYS/YEARS (year -- days)

0 36525 D* 100 D/ DROP ;

MONTHS
From the remaining days after the test year has been removed,
determine a test month.

: MONTHS (days -- days tes t -month)
DUP 3267963. ROT D*
10000 D/ 10000 D/ DROP ;

I

Test
123 MONTHS .S
Should show the days and a value for a test-month.

Comment
The rather large value for determining a test month must be scaled
down in two steps on a 16-bit processor.

DAYS.TO.M/D/Y
Going back to the calculation leaving years and days, calculate the
actual number of months and days.

Volume X, Nwnber 6 13 Forth Dimensions

Test
123 YEARS DAYS/YEARS
Should leave the number of days in the selected year.

Comment
The scaling avoids the need for floating point.

TEST.YEARS
From the serial day and the test year calculated above, determine the
actual year and the number of remaining days.

Implementation
{
: TEST.YEARS

(se r i a l -day t e s t - y e a r -- year days)
DDUP DAYS/YEARS - DUP 123 <

IF DROP 1- SWAP OVER DAYS/YEARS -
ELSE ROT DROP
THEN SWAP 52 + SWAP ;

1

Test
123 0 TEST.YEARS
Should convert the serial day to the year 52 and the remaining days
in that year.

Comment
The number of years determined is offset to begin with 52, which
in this case is the year the sample date should give.

Implementation
(
: DAYS.TO.M/D/Y

(yea r s days -- y e a r s days months)
MONTHS SWAP OVER
30.6001 ROT D* 10000
D/ DROP - SWAP DUP 13 >

IF 13 - ROT 1-t ROT ROT
ELSE 1- THEN ;

I

Test
52 123 DAYS.TO.M/D/Y .S
The three values should be left on the stack ready to be output.

Comment
Again the use of double-precision integers with scaling is used
rather than floating point. Note the 13 is used to gain the offset to
the effective year ending at the end of February.

CONV.SERIAL
Convert a serial day to a form ready for formatting.

Implementation
{
: CONV.SERIAL

(s e r i a l - d a y -- yea r s days months)

DUP YEARS TEST.YEARS
DAYS. TO .M/D/Y ;

1

Test
123 CONV.SERIAL
Should complete the conversion from the serial day to 3/1/52.
Try other values.

Comment
With the values left on the stack, they may be used in many
ways, according to the requirements of the application.

Format and Output
OUT. DATE
Format the date values into a double-precision value, which can
then be formatted with the primitive formatting tools, and
finally type it.

Implementation
{
: 0UT.DATE (years days m o n t h s --)
100 * + 0 100 D* ROT 0 D+
<# # # 47 HOLD # # 47 HOLD # # #>
TYPE ;

1

Test
52 1 3 OUT-DATE
Should output the beginning date in the form 3/1/52.

Comment
A variety of other output formats could be implemented, accord-
ing to the desires of the user.

.DATE
From a serial day as it may be retrieved from a database, print the
date in the selected format.

Implementation
(
: .DATE (serial-day -- 1

?DUP
IF CONV.SERIAL OUT-DATE
ELSE ." 00/00/00" THEN ; EXIT

1

Test
123 .DATE
Should print the date 3/1/52.

Comment
The program can be rearranged to output the result in any
different format, such as DD/MM/YY. If the serial day has a
zero value, as in an unused zero-initialized date field, the zero
date is printed without any conversion.

SDS FORTH for tile INTEL 8051
C u t your development t i m e w i t h your PC using SDS Fo r t h based env i ronment .

Programming Environment
CI Use your IBM PC compatible as terminal and disk server

Trace debugger
Full screen editor

Software Features
0 Supports Intel 805x, 8OC51FA, N80C451, Siemens 80535, Dallas 5000
O Forth-83 standard compatibi l i ty

Built- in assembler
O Generates headerless, self starting ROM-based applications
I7 RAM-less target or separate data and program memory space

SDS Technical Support
0 l O O t pages reference manual, hot line, 8051 board available now

Limited development system, including PC software and 8051 compiled software w i th manual, for $100.00.
(generates ROMable applications on top o f the development system)

I SDS hc . , 2865 Kent Avenue #401, Montreal, QC. Canada H3S 1 M 8 (514) 461-2332 I
L

Forth Dimensions 14 Volume X, Nwnber 6

A HIGH-LEVEL
SINGLE-STEPPER

w h e n a newly defined Forth word
fails to produce the- intended effects, the
source of the difficulty can sometimes be
found by a single-stepper, a program that
executes the words of a colon definition
one-by-one, displaying the contents of the
stack and pausing at each step until a key-
board command causes it to continue.

When I switched from programming a
Commodore 64 to an IBM XT, I wanted a
single-stepper immediately, without wait-
ing to learn 8088 assembly language. So I
designed the single-stepper shown in
screens 23-29. The basic strategy is to
simulate the Forth interpreter. A variable
IP serves as a mock instruction pointer. An
array RETURNSTACK is used to simulate
the return stack; the parameter stack simu-
lates itself. The only Forth words that do not
simulate themselves are those that manipu-
late the instruction pointer or the return
stack in unusual ways.

Dissect Your Interpreter
Since different Forth interpreters be-

have differently, this is not a program you
can just type in and run. To write a single-
stepper that works for you, you will have to
find out just how your Forth interpreter
behaves. One way to do this is to read the
source code for your Forth. An easier alter-
native is to run a few test words and observe
the results. Here is an example of the kind
of detective work to be done.

I The Forth-83 words that interact with
the return stack are >R, R>, R@, QUIT,
ABORT, ABORT", E X I T , and the run-time
actions of : , ; , and ; CODE. Additional
possibilities are the run-time words for DO,
LEAVE, LOOP, and +LOOP. An examina-
tion of the word list for the Forth at hand
turns up yet more possibilities: 2 >R, 2 R>,

PHILIP BACON - GAINESVILLE, FLORIDA

SCR # 21
0 (Utilities)
1 : .BYTE (8b --)
2 BASE @ SWAP HEX US>D < # # # # > TYPE SPACE BASE ! ;
3 : .ADDRESS (16b --)
4 BASE @ SWAP HEX US>D < # # # # # # > TYPE SPACE BASE ! ;
5 : DUMP (addr u --)
6 OVER + OVER DO
7 I OVER - 8 MOD O= IF CR CR I .ADDRESS 3 SPACES THEN
8 I C@ .BYTE
9 LOOP

10 DROP ;
11
12 : SCAN ' HERE OVER - DUMP ;
13

SCR # 22
0 (Case words)
1 : =IF COMPILE OVER COMPILE = [COMPILE] IF COMPILE DROP ;
2 IMMEDIATE
3 : FIN COMPILE EXIT [COMPILE] THEN ; IMMEDIATE
4

; S , RO, RP@, RP ! , and UNRAVEL.
To this list of words that might need to

be simulated, we must append words that
use the instruction pointer in special ways.
These include the words that push compiled
constants to the parameter stack, and the
run-time words compiled by IF, ELSE,
THEN, BEGIN, WHILE, REPEAT, AGAIN,
and . ". In the Forth at hand, these run-time
words are L I T , D L I T , OBRANCH,
BRANCH, and (. ") . ' Any words in the list that are defined in

terms of other words in the list do not
need to be simulated. We now startprob-
ing.

The word SCAN (screen 21) displays
the compiled form of colon definitions.
In response to
: ALPHA DUP ;
SCAN ALPHA

the following is displayed:
I 7 B 2 5 D9 0 5 1 9 0 5 CB 0 3

Volume X, Nwnber 6 15 Forth Dimensions

I NGS FORTH I I
A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMFUTER AND
MS-DOS COMPATIBLES.

I STANDARD FEATURES I I
I INCLUDE: I I
I eDIRECT 110 ACCESS I I

@FULL ACCESS TO MS-DOS I FILES AND FUNCTIONS I I
eENVIRONMENT SAVE I & lDAD

I @MULTI-SEGMENTED FOR
LARGE APPLICATIONS I I I @EXTENDED ADDRESSING 1 I

.MEMORY AIXDCATION I CONFIGURABLE ON-LINE I I

.AUTO ILIAD SCREEN BOOT

.LINE & SCREEN EDITORS I I
eDECOMPILER AND

DEBUGGING AIDS

1 e8088 ASSEMBLER 1 I
.GRAPHICS & SOUND

eNGS ENHANCEMENTS

eDGTAILED MANUAL

eINEXPENSIVE UPGRADES

aNGS USER NEWsLEmm

A COMPLETE I;r)RTH
DEVEU)PMBW SYSTEM. I I
PRICES START AT $70 I I
NEW-HP-150 L HF-110
VERSIONS AVAILABLE

NEXT GENERATION BY-
P.O.BOX 2987
BANTA CLARA, CA. 95055

SCR # 23
0 (STEP
1 DECIMAL
2 VARIABLE IP
3 : IP+ 2 1 P + ! ;
4 : SKIP 4 IP + ! ;
5 VARIABLE LEVEL
6 VARIABLE MARK
7 VARIABLE RETPTR
8 : :RP@ RETPTR @ ;
9 : :RP! RETPTR ! ;
10 VARIABLE :RO
11 CREATE RETURNSTACK 64 ALLOT
12 HERE :RO !
13 - - >
14
15

SCR # 24
0 (STEP)
1 DECIMAL
2 : :R@ RETPTR @ @ ;
3 : :R> :R@ 2 RETPTR + ! ;
4 : :>R -2 RETPTR + ! RETPTR @ ! ;
5 : :: IP@DUP 2+ : > R @ 2 + IP ! 2 LEVEL+! ;
6 : :;S :R> IP ! -2 LEVEL + ! ;
7 : PRIMARY IP @ @ IP+ EXECUTE ;
8 : :BRANCH I P @ 2+ @ IP ! -
9 : :OBRANCH IF SKIP ELSE :B~ANCH THEN ;

10 : :LIT IP @ 2+ @ SKIP '

11 : :DLIT IP @ 2+ DUP @ ~ W A P 2+ @ 6 IP + ! ;
12 : :2>R SWAP :>R :>R ;
13 : :2R> :R> :R> SWAP ;
14 - ->
15

SCR # 25
0 (STEP)
1 HEX
2 : :(DO)
3 I P @ 2 + @ : > R OVER8000+ :>R - 8000 SWAP - :>R SKIP
4 : :(LOOP) :R> 1+ DUP 8000 = IF
5 DROP :R> DROP :R> DROP SKIP
6 ELSE :>R :BRANCH THEN ;
7 : :(+LOOP) :R> OVER OVER + DUP :>R O<
8 IF O< NOT SWAP O< NOT ELSE O< SWAP O< THEN AND
9 IF :R> DROP :R> DROP :R> DROP SKIP ELSE :BRANCH THEN ;
10 : :LEAVE :R> DROP :R> DROP :R> IP ! ;
1 : I :R> DUP :R@ + SWAP :>R .
12 : :J RETPTR@ DUP 6 + @ SWA; 8 + @ + ;
13 : :(;CODE) :R> LATEST NAME> ! -2 LEVEL + ! ;
14 ' DUMP @ CONSTANT DOCOL
15 DECIMAL - ->

Forth Dimensions 16 Volume X , Nwnber 6

SCR # 26

0 1 (: STEP PACE) IP @ @
2 ['I R@ =IF IP+ :R@ FIN
3 ['I R> =IF IP+ :R> FIN
4 ['I >R =IF IP+ :>R FIN

5 6 ['I ['1 EXIT ;s =IF =IF :;S :;S FIN FIN
7 [' I BRANCH =IF :BRANCH FIN
8 ['] OBRANCH =IF : OBRANCH FIN
9 ['I (DO) =IF :(DO) FIN
10 [' I (LOOP) =IF :(LOOP) FIN
11 ['I (+LOOP) =IF :(+LOOP) FIN
12 [']LEAVE =IF :LEAVE FIN
13 ['I I =IF IP+ :I FIN
14 ['I J =IF IP+ : J FIN
15 ['I (;CODE) =IF :(;CODE) FIN

SCR # 27

o 1 (STEP [' I LIT =IF :LIT FIN
2 ['] DLIT =IF :LIT FIN
3 [I] 2>R FIN =IF :2>R
4 ['1 2R> =IF :2R> FIN
5 ['I RO =IF :RO FIN

6 7 ['I ['I RP@ RP! =IF =IF : :RP! RP@ FIN FIN
8 ['I QUIT =IF QUIT FIN
9 @ DOCOL = IF :: ELSE PRIMARY THEN ;
10
ll 12 - ->

13
14
15

SCR # 28
0 (STEP
1 HEX
2 : CR CR 0 OUT ! ;
3 : HTAB (n - -)
4 DUP OUT @ < IF CR ELSE OUT @ - THEN SPACES -
5 : U.S DEPTH IF o DEPTH 2- DO I PICK U. -1 +LOOP +HEN ;
6 : DISPLAY 18 HTAB ." (" U.S CR
7 IP @ DUP .ADDRESS LEVEL @ SPACES @ >NAME ID. ;
8 : SELECT
9 -1 SWAP
10 51 (Q) =IF DROP QUIT FIN
11 53 (S) =IF LEVEL @ 2+ MARK ! FIN
12 52 (R) =IF LEVEL @ MARK ! FIN
13 43 (C) =IF LEVEL @ 2- MARK ! FIN
14 DROP DROP 0 ; DECIMAL - - >
15

SCR # 29
0 (STEP)
1 DECIMAL
2 VARIABLE ACTION
3 : STEP
4 I ACTION ! ACTION IP ! o LEVEL !
5 :RO @ :RP!
6 BEGIN
7 PACE [ACTION 2+ 1 LITERAL IP @ -
8 WHILE
9 LEVEL @ MARK @ > NOT IF
10 DISPLAY BEGIN KEY SELECT UNTIL
11 THEN
12 REPEAT ;
13
14 ;S
15

Volume X, Nwnber 6 17

~!?>:.>p?>p;!2:.??:!:!::::?;!;.;!:!:!2;!:::!:!:!::::::x! .: :i .5'
:i Z.'

1 ... BRYTE 8 :.> ..d ...,
Z. ... z.'

Z.'

2.
.:.:
1-2 I . . FORT'ii *.-I :.I :.:.

.:. .5':. .:. ,-i . . .?.'

... *:.: .:*

, &&
:.:a

Z.
Z.

.5' .:. -.a :-2 . . 15' .:. :.>
5. . .
Z.

t; .:. X,' .:. -.. . . ,:.:
2. ..I ... 2. +:
:> :.. ,-.a

. .

.5

INTEL ... 8 ...
.t.
ri

:::
f.' f.. .:.
IS' 9 5.
2.'

.-i
a.i 55 8031 . . 2.' ..i

A
f..

2.

f.. .-.* MICRO- ...
:::

2; ?.'

A

8 ...- CONTROLLER$-.. 2.

3:. .?.,
2.. ,-.a .:. .-.. f.'

3 ; :-:
.?.* 2.' .?., .?.* ?.* g :.* :.* :.. ..a r:.

.:.:
2. A .:.I-. .-. ::: .a:. .:.:
2. ... ?:# ,?.'
:? .:.:
I. :.a

::' :.. ?.'

FEATURES
%'

,::: ,-.. ?.'

-FORTH-79 Standard Sub-Set t.:
2. 2 -Access to 8031 features .:.

2 -Supports FORTH and machine 8
,.$ code ~nterrupt handlers 15. '' 5.

$ -System timekeeping rnalntalns $
tlme and date with leap .?.' ..> .?.'

.f* year correction . . .?.' .?.'
.A' ?.'

$ -Supports ROM-based self-;
starting appllcatlons

:.: ,i.

9 f.' .?.' f i

.:: . . 5:

:$ 5 COST :-: K'
:i 8 130 page manual -S 30.00 :?

8~ EPROM with manual-SIW.W B
A Postage pa~d In North Arnerlca ..:.
$ lnqulre for l~cense or quantlty prlclng
f.
..:. .:. .. .-. e.................................... :.:
,-:- . . .:. ?:a
.5.
i.

. .
2. 2.

Bryte Computers, Inc.
.... 3- P.O. Box 46, Augusta, ME 04330 $
A* (207) 547-32 18 :.-
5. ::: . .
id. ... -.

Forth Dimemiom

By using we find that the compilation
address of DUP is 0519 (hex), and the
compilation address of ; s is 03CB. Com-
parison of these values with the compiled
form of ALPHA suggests that compilation
addresses are compiled in low-high byte
order, that every colon definition is pref-
aced by the bytes D9 and 05, and that ;
compiles ; S.

The next test requires two words:

: BETA R> DUP
.ADDRESS >R ;

: GAMMA BETA ;

The output of SCAN GAMMA is:
7B46 D9 0 5 3 2 7B CB 0 3

The compilation address of BETA is
7B32. Execution of GAMMA prints 7B4A.
This shows that when the interpreter en-
counters a colon definition, it adds two to
the value of the instruction pointer before
pushing the value to the return stack. Our
simulator must treat I P and RETURN-

STACK Similarly.
The next word is used to find out how

branches are compiled.

: DELTA
I F DUP ELSE SWAP THEN ;

The Output of SCAN DELTA is:
7B54 D9 0 5 8A 0 1 6 0 7B 1 9 0 5
7B5C 7 7 0 1 6 2 7 B 0 8 0 5 CB 0 3

The compilation addresses of BRANCH
and OBRANCH are 0177 and 018A, reSpeC-

tively. Knowing this, we can see that I F
compiles OBRANCH followed by a destina-
tion address, and that ELSE compiles
BRANCH followed by a destination address.
Our simulation of OBRANCH must put the
compiled address into IP if the top of the
parameter stack is zero; othenvise, the value
of IP must be incremented by four. The
simulation of BRANCH must put the com-
piled address into IP.

The next test wordexhibits thecompiled
form of a DO loop.

WE'RE LOOKING
FOR A FEW GOOD

$#

DMH, FIND
A S S O C I A T E S

Forth Recruiters

70 Elmwood Ave.1 Rochester, N Y 1461 1 / (7 16) 235-0168
r

: EPSILON
DO LEAVE LOOP ;

The output of SCAN EP s ILON is:
7B6E D9 0 5 EO 0 1 7A 7 B D F 0 3
7 B 7 6 A8 0 1 7 4 7 B C B 0 3

The compilation address of (DO) is
OlEO, that of LEAVE is 03DF, and that of
(LOOP) is 01A8. We see that (DO) is
followed by the address of the loop exit,
and (LOOP) is followed by the address of
the first location within the loop.

Execution of the next test word shows
that (DO) pushes the DO loop parameters
to the return stack.

: OMEGA
5 2 DO

CR I .
R> DUP .ADDRESS
R> DUP .ADDRESS
R> DUP .ADDRESS
>R >R >R

LOOP ;

Execution of OMEGA yields:
2 7FFD 8 0 0 5 7BB2
3 7FFE 8 0 0 5 7BB2
4 7 F F F 8 0 0 5 7BB2

At run time, (DO) pushes three items
to the return stack: the address of the loop
exit, the sum of 8000 and five, and the
value 8000 - (5 - 2). Each time (LOOP) is
encountered, the value on the top of the
return stack is incremented by one. When
the result is 8000 (hex), the loop is exited.
Execution of I produces the sum of the
first two values on the top of the return
stack. When LEAVE executes, control
goes to the third address from the top. Our
simulations of these words must treat RE -
TURNSTACK Similarly.

If F I V E is defined as:
: F I V E 5 ;

execution of SCAN F I V E yields
7 B 2 4 D9 0 5 4 2 0 1 0 5 0 0 CB 0 3

Since 0142 is the compilation address of
LIT, we see that the simulation of LIT
must push the value contained in the two
bytes following LIT, and increment that
value of IP by four.

You might imagine that (. ") -
which is the run-time word for . "-
would need to be treated something like

Forth Dimensions 18 Volume X, Nwnber 6

L I T . But in this version of Forth, (. ") is
a compound word, and therefore can simu-
late itself.

Using the Single-Stepper
Once we have simulations for the words

that need them, we put all in a word called
PACE. Suppose IP contains an address at
which the compiling address of a Forth
word resides. If PACE is invoked and the
Forth word is not a compound word, that
word is executed. If the word is defined by
a colon definition, the address of the first
word in the colon definition is put into IP
and the value d a variable LEVEL is the
principal building block for the single-
stepper STEP, which is used as follows.

Suppose you have defined a Forth word
SHAKY that doesn't workas you intend. Put
any parameters needed by SHAKY onto the
parameter stack and type STEP SHAKY.
The contents of the parameter stack and the
first word in the definition of SHAKY will
be displayed. If you now press the R key,
the displayed word will be executed, a new
picture of the stack will be shown, and the
next word to be executed will be displayed.
Press the R key repeatedly, until the word
that produces the bad output (TROUBLE,
say) is executed. Quit (by pressing Q) and
start over. But this time, when TROUBLE is
displayed, do not execute it by pressing R;
instead, press S. If TROUBLE is a com-
pound word, the first word in its definition
is displayed. The descent into the definition
of TROUBLE is indicated by extra indenta-
tion. To further localize the source of your
difficulties, step through the definition of
TROUBLE by repeatedly pressing R. To
complete the execution of whatever word
you are currently stepping through, press C.

Philip Bacon teaches mathematics at
the University of Florida. He has used a
homebrew Forth to prototype assembly
language programs for the Commodore
64.

Volume X, Number 6

) with LMI FORTHTM 1

For Programming ~rofessionals:]
an expanding family of
compatible, high-performance,
Forth183 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 lnterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-60, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

l ~ a b o r a t o r ~ Microsystems Incorporated
Post Office Box 10430. Mar~na del Rey, CA 90295

credlt card orders to. (213) 306-7412

/ Overseas Distributors.
Germanv. Forth-Systeme Anaelika Flesch. T~tisee-Neustadt. 7651-1665
V K : ~ y s i e m science ~ t d . ~ o i d o n , 01-248 0962
France: M~cro.Sigma S.A.R.L., P a r t , (1) 42.65.95 16
Japan: Southern P a c ~ f ~ c Ltd.. Yokohama. 045-314.9514
Austral~a: Wave-onlc Associates. Wilson. W.A.. (09) 451-2946

19 Forth Dimensir

CAPTURE!
BRUCE T. NICHOLAS - RALEIGH, NORTH CAROLINA

A f t e r studying several b k s about
the Forth programming language, I de-
cided the only way to really learn Forth
would be to attempt to write a program
using it. About this time, my eight-year-
old son wanted me to help him write a
program to draw on the screen. We first
wrote a BASIC program similar to the
familiar Etch-a-Sketch, then I decided to
translate it into Forth. This was easier than
I thought, so I decided to write a more
difficult program.

I took a BASIC program and rewrote it
to run with Laxen & Perry's F83. This is a
public-domain implementation, available
on many bulletin boards. I got my copy
from PC-SIG (1030 E. Duane, Suite J,
Sunnyvale, CA 94086; the two-disk set
263 and 264).

In this game, you may choose to play
against up to three opponents, deadly
beasts which stalk you as you try to trap
them while staying out of their reach. This
version of the game is neither an elegant
nor an efficient translation into Forth, but
it is faster than the BASIC version. In fact,
I had to put a timing loop into the Forth
code to slow the game down. I built in nine
different speeds (not in the original
game), as well as three levels of difficulty.

When the game is played, a title page
shows which keys move your piece
around the screen. Use the keypad, as
shown below, tD move. Pressing 8 moves
your screen marker up, 1 moves it diago-
nally down to the left, etc. Press any other
key to stop moving.

Obstacles are placed randomly on the
screen. You can push these around, but the
beasts cannot. Your job is to build walls

7 8 9

4 5 6

1 2 3

Keyboard "joystick"

completely enclosing the beasts. The game
ends when none of the beasts can move (or
if you get eaten).

Programming Notes
Obstacles, beasts, and your marker are

placed randomly on the text screen. The
program pauses to allow the player to study
the game board and plan a strategy.

In the highest level of difficulty, each
beast gets a chance to move every time you
do. At lower levels you are given extra
moves.

"I had to put in a
timing loop to slow
the game. "

Screens one through five contain gen-
eral-function words. The game itself be-
gins on screen six. Screens seven and eight
display the title and get the required input to
play the game. Screen nine sets up a white-
on-blue game board and outlines the board
with double box characters.

Screens 12-16 contain the words that
move the marker around the board.

MOVE HERO (screen 17) moves your
piece around the board, and pushes the
obstacles.

MOVE BEAST (screen 18) contains
the rout& for moving the beasts. The
beasts follow you, but not perfectly. They
have to be able to move around obstacles,
even if that entails backing up. After
checking to see if the beast is right next to
you (too bad for you!), a value of -1,0, or
1 is selected for X and Y. This will modify
the beast's position coordinates so that
there is a higher probability of it stepping
toward you than away from you. A check
is made in the chosen location for an
ASCII 32 (space). If an obstacle or another
beast is found there, the beast searches in
adjacent squares for a favorable place to
move. When no beasts can move, you
have won the game. LOSE? and WIN?
(screen 19) check for these conditions and
take the appropriate action.

Code on screen 23 will create a
CAPTURE.COM file. This eliminates the
need to enter Forth and load the program
each time you wish to play.

During the game, the elapsed time is
displayed.

Credits and Requirements
Capture is designed to run on black-

and-white or color monitors in 80-column
mode. This version was written for the
IBM PC.

The original version of this game was
calledTrap6Em, written by Rob Smythe in
Applesoft BASIC for the Apple I1 com-
puter, and was published in Nibble (vol. 2,
no. 4, 1981).

Forth D~memiam 20 Volwne X, Nwnber 6

I D \. CAPTURE BTN 04-i4-1988 \ CAFTUZE BTN 04-14-1989 1 1
/ 1 This game i i baied an the progran o r i g i n a i l r w r i t t e n i n This gare i s based on the p rogra r o r i g i n a l l y w r i t t e n i n

4 A p ~ l e i o f t BASIC b V Rob Smythe f u r the Appie I 1 and publ ished Applesof t BASIC by Rob Savthe f o r the beple I 1 and eubl ished
C

6 i n NIBFLE magazine Vo1.2iNo,4/1981. I wrote t h i s ve rs ion o i i n NIBBLE aagazine V o l . ? i N ~ . 4 i l 7 8 1 . I wrote t h i s ve rs ion of

'2 t h e program as a i ea rn ing experience. !t i s w r i t t e n us ing t h e erogram as a l e a r m n q exper ie r~ ie . I t is w r i t t e n us ing
9

13 the p u b l i c do ra in i e r s i ~ n o i FORTH - F33 by Perry % Laxen. the p u b l i c donain vers ion of FORTH - Fa3 bv P ~ r r y & Lasen.
11
12
13 Erbce T. Nicholas Bruce T. t i icholas
14
15

1 25
0 \ CAPTURE - Load screen BTN 64-16-1988 \ CAPTURE - Load screen ETN 01-16-1988

1
2 : CLS DARK ; : CLS Clear the screen and hone cursor
-r
J

4 CLS
5
6 2 LOAD CR . (Time words loaded 1 i Timer 2 LOAD Tine words loaded
7 3 LOAD CR . (Code words loaded i i Code wards 3 LOAD Code words loaded
9 4 LOAD CR . (Random generator loaded i i Randon 4 LOAD Randor generator loaded
9 5LOAD CR . (N a t r i x w o r d s l o a d e d 1 \ N a t r i x 5 LOAD N a t r i x words loaded

13 6 22 THRU CR . (CAPTURE loaded) \ Load CAPTURE 6 22 THRU CAPTURE laaded
11 23 LOAD CR . (CAPTURE.CON f i l e b u i l t i i Appl ic . f i l e 23 LOAD CAPTURE.CON a p p l i c a t i o n f i i e b u i l t and saved
12 CR
13 CR . (Type GAME t o p1a;i or) ' Play qare
14 CE . (type BYE t o e x i t F o r t h)

15 CR . (and then type CAPTURE i

2 26
0 i TinE OF DATE WORDS BTN 04-14-1988 I! TIRE OF DATE WORDS BTN o4- la- ls t ia

1
2 VARIABLE HOURS VARIABLE NINUTES VARIABLE SECONDS Var iab les used by t i iber .
3 : 3HRS HOURS 3 ; : OHRS Fetch the hours.
4 : 3NIN NINUTES 3 : : 3NIII Fetch the ~ i n u t e s .
5 : 3SEC SECONDS 2 : : 3SEC Fetch the seconds.
6
7 CODE GETINE AX POP AL AH NOV 33 INT CX PUSH DX PUSH CODE EETIME Set the t i r e of day.
a AH AH SUB AL PUSH NEXT END-CODE
9

I O : TINE3 44 GETINE DROP 256 IMOD ROT 2% MOD ; : TIRE? b e t the t i n e .
11
12 : TINE! TINE3 HOURS ! tlINUTES ! SECONDS I DROP : : TIME! Store the t i w e i n Hours, Minutes and seconds.
1::
1 4 : TIME TINE3 6 0 t + 6 i l t t 3 H R S 6 0 t O M I N + 6 O t 3 S E C + - : TINE Get the t i r e and f o r r a t i n t o minutes and
15 60 /ROD . ." Minutes and ' . . "Seconds * DROP ; seconds t o s h o ~ elapsed t l n e dur ing q a w .

I

Volume X, Number 6 21 Forth Dimemiom

7 27
O i CODE WORDS - POKE, PEEK, EQUIP, CGA? BTN 04-20-1788 \ CODE WORDS - POKE, PEEK, EUUIP, C6A? BTN 04-14-1988

I

2 COLE POKE (S by te seqment address --) CODE POKE U s e d t o p u t a b y t e o f d a t a t o t h e V i d e o s c r e e n .
3 BX POP ES POP AX POP ES: AL 0 [BXI HDV NEXT END-CODE
4 CODE PEEK iS segment address -- by te i CODE PEEK Used t o get a b y t e o f data f r o a t h e screen.
5 AX AX SUE BX POP ES POP ES: 0 l 6 X l AL NOV lPUSH END-CODE
b CODE EQUIP i S -- equip i COOE EQUIP P u t s a l i s t o f h a r d w a r e o n t h e s t a c k . U s e d t o
7 17 INT lFUSH EHD-CODE \ l i s t o f harduare on s tack de te r f i i ne t h e t ype o f a t tached moni tor .
6
7 HE):

10 : C6A7 iS -- v ideo- tu i fer -address a t t r i b 1 \ EkW o r Color : C6A7 Used t o set t h e remory l o c a t i o n o f t h e at tached
11 EQUIP 30 AND 31 = I F OBOO? ! B/W NONITOR) 70 1 ATTRIB I v ideo s o n i t o r .
12 ELSE UB800 i COLOR NOt4ITOR) 71 1 ATTRIE) THEN ;
13 DECINAL
14 CGA? CONSTAHT ATTRIB
15 CONSTANT SEGNENT

4 28
8 \ RANDON GENERATOR - RAND, RANDON, EKEY, YKEY BTN 04-20-1988 \ RANDON GENERATOR - RAND, RANDON, EKEY, WKEY BTN 04-18-1988

1
2 VARIAELE SEED TINE3 t t 1 SEED !
5
4 : RAND iS -- randor no, 1
5 SEED 3 5421 1 It DUP SEED ! ;

7 : RANDON i S n -- randoa no. / I

VARIABLE SEED Used as a seed f o r t h e randoa generator.

: RAND Used f o r t h e random q e n ~ r a t o r .

: RANDOIY Randoa number generator .

1 1 8
RAND FLIP SYAP NOD ;

9
10 : EKEY KEY DUP 0: I F DROP KEY THEN ; \ Extended keys : EKEY Reads t h e extended keyboard keys.

12 : WKEY EKEY 05 I F DROP THEN ;

14

: WKEY Wait f o r any kev press.

29
0 \ NRTRIX WORDS - NhTRIX, ELENEHT, FIND-LENGTH e t c BTN 01-14-1988 \ NRTRIX WORDS - HGTRIX, ELENENT, FIND-LEHGTH E ~ C BTN 94-i8-13a8

1 1
2 : NATRIX i S 2 by tes per e n t r y : NATRiX Create a two dimensional ar ray.
3 CREATE (S #rows #columns --)

4 2DUF , , \ Reeelher t h e d isens ions
5 t 2 t ALLOT ; \ #rods t l c o l s e lenents
b : ELENENT i s row# c o l # " ~ a t r i x -- "element 1 : ELENEtiT Locate any data i n t h e ~ a t r i k .

7 DUP >R 3
8 ROT 2 t 1 SYAP 21 t
9 R j . 4 t t ;

1 0
11 24 a$ RdTRIX SCREEN 24 60 #ATPIX SCPEEN B u i l d data i r a g e o f t h e screeq.
12 : FIND-LENGTH (S address -- leng th 1 : FIND-LENGTH F ind t h e l e n g t h o f t h e data a a t r i x .

13 SCREEN PUP 2, 3 SWAP 3 t ;
14 : FILL-ARRAY iS ar ray- index --i : FILL-ARRAY F i l l t h e ma t r i x d i t h data.
15 O DO l 21 0 I SCREEW ELEREHT ! LOOP ;

I

Forth Dimensions 22 Volume X, Nwnber 6

7 .- >c
? \ CAPTURE - 7 2 r i i b l e s BTH 34-14-199.5 \ CAPTURE - Var iab les ETN 04-14-1788

4

2 h '~RIAELi LEVEL VARIhELE SPEED VARIABLE YPEASTS Var iab les used i n the p roq ras and t h e i r i n i t i a i value.
3 V&RiABLE ENS VARIABLE XKEY VARIAELE CNT
4 VKRIAELE X l l ' D VHKIABLE 'i VARihBLi # I N
5 VARIkSLE LOSE ViRIABLE DIFFCNT VARIABLE ANGTHEE
b
7 O XKEY ! 6 CNT i 0 Y I

9 1 END ! O X ! Q MIN i
9 I LOSE ! O ANGTHER !

10
li CREATE H 8 ALLOT
12 CREATE v a ALLOT
13
14
15

7 7 4 21

0 : CAPTURE - TITLE & INSTRUCTIONS BTN 64-16-1980 i CAPTURE - TITLE t INSTRUCTIONS BTN 04-18-3988
1
2 : TITLE 11 1 AT ." C A P T O R E ' : TITLE D isp iav the t i t l e paye on the s i reen.
3 0 4 AT .' Trap t h e beasts be fo re they ge t you ! "
4 3 6 AT ." Eox thea in complete ly t o win."
5 0 8 AT .' Use t h e numeric keypad t o rave HERO. \
& : K E Y S 1 1 1 1 A T . V 9 ' 18 11 AT 30 EtlIT : KEYS Show t h e cu rso r c o n t r o i keys.
7 11 12 AT .' I H

I .

6 I 1 13 AT .' Y . > .
9 1 4 AT , ---- ---- " 12 14 AT 17 EHIT

10 11 15 AT . * 8 . " 24 14 AT 16 EMIT I

11 11 16 AT .' , I . , .
12 11 17 AT .' 1 3 ' 18 17 AT 31 EHIT
15 3 20 AT . V a a p any other key t o s top HERO."
14 3 22 AT . " P r e s s ESC key t o q u i t anytime.' :
15 : CONTINUE 5 24 AT ." Press any KEY t o continue." #KEY ; : CONTINUE Pauses t h e d i s p l a y so t h e screen can be read.

8 32
0 \ CAPTURE - TITLE & INSTRUCTIONS BTN 04-20-1988 \ CAPTURE - TITLE t INSTRUCTIONS BTN 04-19-1988
1
2 : INVERSE 3 0 DO : INVERSE Reverse v ideo f o r t i t l e .
-, 30 0 DO ATTRIB SEGNENT 23 1 + 160 J 1 + POKE 2 +LOOP
4 LOOP ;
5 : INVERSE1 9 6 DO : INVERSE1 Reverse v ideo f o r keypad area.
6 34 0 DO ATTRiB SEGHENT 1621 I + 160 J 1 + POKE 2 +LOOP
7 LOOP :
8
9 : Ail: KEY 48 - 1 HAX HIN DUP 48 + EHIT ; : ASK Read the key and limit t h e inpu t .

16 : PBEASTS? 0 20 AT ." Nurber o f beasts (1, 2, o r 3 i ? " PBEASTS? S to re the number o f beasts t o be used.
11 3 ASK #BEASTS ! ;
12 : DIFFICULTY? 0 22 AT ." Level of d i f f i c u l t y ! 1 t o 3 Eas ies : DIFFICULTY? Store t h e d i f f i c u l t y lwei t o be used.
13 t 1 V ASK LEVEL ! ;
14 : SPEED? 0 24 dT ." Set speed (1 t o 9 Slowest) ? " : SPEED? S to re t h e speed o f t h e qaae.
15 9 ASK SPEED i 36 20 AT ;

Volume X , Nwnber 6 23 Forth Dimensiom

12 '7 I .> Q

o \ CAPTURE - UP", D ~ W N PTN 114-13-1986 'r CAF'TURE - UP-', D O U ~ ~ BTN 04-14-19aa

2 : VGCAHT DUP EL = ;
!)fi fi DO

: VACANT 15 l o c a t i o n blank?
: up.&. Bove one space up.

Bove one space doan.

4 H0 I, 4
v - 1 I - THERE PEEK VACGNT I F

5 OPOKE 177 HO V-1 I - THERE POKE
b 2 HO V-1 THERE POKE
7 V-1 V1 ! LEAVE ELSE
e 4: = IF LEGVE THEN THEN LOOP ;
7

10 : DOWN 23 VO - 0 DO : DOWN
11 HO V+1 I t THERE PEEK VACANT I F
12 OPOKE 177 HO V t l I + THERE POKE
13 2 HL) V+l THERE POKE
14 V+l V1 ! LEAVE ELSE
15 42 = I F LEAVE THEN THEN LOOP ;

13 37
0 \ CAPTURE - LEFT, RIGHT BTN 04-14-1988 \ CAPTURE - LEFT, RIGHT
1
2 : LEFT HO 0 DO : LEFT Rove one space l e f t .
3 H-1 I - VO THERE PEEK VACANT I F
4 OPOKE 177 H-1 I - VO THERE POKE
C 2 H-1 VO THERE POKE
b H-1 H1 ! LERVE ELSE
7 42 = I F LEAVE THEN THEN LOOP ;
8
9 :R IGHT 7 9 H 0 - O D 0 : RIGHT Bore one space r i g h t .

10 H t l I + VO THERE PEEK VACANT I F
11 OPOKE 177 H+1 I + VO THERE POKE
12 2 H+ 1 VO THERE POKE
13 H t1 H1 ! LEAVE ELSE

BTN 04-14-1989

1 1 l4 42 = I F LEAVE THEN THEN LOOP ; 1 1

14 38
0 \ CAPTURE - UP-LEFT, UP-RIGHT BTN 04-14-1988 \ CAPTURE - UP-LEFT, UP-RIGHT BTN 04-14-1988

1
2 : UP-LEFT VO 0 DO : UP-LEFT Nove one space up and one space l e f t .
5 H-1 I - V-1 I - THERE PEEK VACANT I F
4 OPOKE 177 H-1 I - V-1 I - THERE POKE
5 2 H- 1 V-1 THERE POKE
6 H-1 H1 ! V-1 V1 ! LEAVE ELSE DUP
7 42 = I F DROP LEAVE THEN
8 186 = I F LEAVE THEN THEN LOOP ;
9:UP-RIGHT VOODO : UP-RIGHT Hove one space up and one space r i g h t .

10 H+1 I + V-1 i - THERE PEEK VACANT IF
11 OPOKE 177 H I1 I + V-1 I - THERE POKE
12 2 H+ 1 V-1 THERE POKE
13 H+1 H1 ! V-1 V1 ! LEAVE ELSE DUP
14 42 = I F DROP LEAVE THEN
15 186 = I F LEAVE THEN THEN LOOP ;

Volume X, Number 6 25 Forth Dimensions

15 7" J 7

9 \ CAPTURE - DOWN-LEFT, DOWN-RIGHT BTN 04-13-1988 \ CAPTURE - DO#N-LEFT, DOWN-RIGHT BTN 04-14-1988
1 : DOWN-LEFT 25 VO - it DG : DOWN-LEFT nove one space down and one space l e f t .

H-1 I - V+1 I + THERE PEEK VACANT I F
3 WOKE 177 H-1 I - V+l I + THERE POKE
3 2 H- 1 V + i THERE PORE
5 H-1 H1 I V+I V'1 ! LEAVE ELSE DUP
b 42 = I F DROP LEAVE THEN

186 = I F LEAVE THEN THEN LOOP ;
8
9 : DOWH_RIGHT 25 V O - 0 DO : DOYN-RIGHT l o v e one space down and one space r i g h t .

10 Ht1 I + V+l I + THERE PEEK VACANT i F
11 ?POKE 177 HI1 I + V+l I + THERE POKE
12 2 H+ 1 V+1 THERE POKE
1 .: H+1 H1 ! V+l V1 ! LEAVE ELSE DUP I 42 = I F DROP LEAVE THEN

186 = I F LEAVE THEN THEN LOOP ;

16 1 Y i CAPTURE - FUNCTION

2 : FUNCTION
3 DUP 72 = I F DROP UP" EXIT THEN
4 DUP 80 = I F DROP DOWN EXIT THEN
5 DUP 77 = I F DROP RIGHT EXIT THEN
6 DUP 75 = I F DROP LEFT EXIT THEN
7 DUP 71 = I F DROP UP-LEFT EXIT THEN
8 DUP 73 = I F DROP UP-RIGHT EXIT THEN
9 DUP 79 = I F DROP DOWN-LEFT EXIT THEN

10 DUP 81 = I F DROP DOWN-RIGHT EXIT THEN
11 DUP 27 = I F DROP 0 END ! EXIT THEN
12 DROP 2 OPOKE ;
13
14
15

40
BTN 04-14-1988 '\ CAPTURE - FUNCTION BTN 04-14-1988 I I

: FUNCTION Check f o r t h e cursor key pressed and r o v e
accord inq lv .

17 4 1
0 \ CAPTURE - HOVE-HERO and Hisc BTN 04-14-1988 \ CAPTURE - HOVE-HERO and H isc BTN 04-14-1988

1
2 : HOVE-HERO : WOVE-HERO Hove t h e HERO. He can push obstac les.
3 KEY? I F EKEY DUP XKEY ! ELSE XKEY 3 THEN FUNCTION :
4
5 : Y=O 4 RANDOH 1- 21 Y ! ; : Y=O Generate random number i f Y equals 0.
6

, 7 : X=O 4 RANDOH 1- 21 X ! ; : K=O Generate randor nurber i f X equals 0.
a
9 : YO0 0) I F -1 Y I ELSE 1 Y ! THEN 100 RANDOH DUP : Y O 0 Generate random nurber i f Y does no t equal 0.

10 60 ! I F DROP ELSE
11 75) I F 0 Y ! ELSE Y 3 NEGATE Y ! THEN THEN ;
12
13 : 1 0 0 O i I F -1 X ! ELSE 1 X ! THEN 100 RANDOn DUP : XOO Generate random number i f X does no t equal 0.
14 70 ! I F DROP ELSE
15 80 ; I F 0 X ! ELSE X 3 NEGATE X ! THEN THEN ;

I

Forth Dimensions 26 Volume X, Number 6

1 a 42
O \ CAPTURE - HWEB, #WE-BEAST, DELAY L SET-LEVEL BTN 01-14-1938 \ CAPTURE - ROVEB, HOVE-BEAST, DELAY & SET-LEVEL BTN 04-14-1988
1
2 : MOVE6 HB 3 HO - DUP 0= I F DROP X=O ELSE X <) O THEN : HD'V'EP Nove t h e beas ts t o an e r p t y space,
7 VB 3 VO - DUP 0; I F DROP 7-0 ELSE Y(.X THEN
4 HB 3 x 3 + VE 3 Y a + THERE PEEK
5 BL = IF BL HB a VB a THERE POKE
b 12 HB 3 X 3 + VB 3 Y 3 + THERE POKE
7 H B 3 : ! 3 + H B !
0 VB 3 Y a + VB ! THEN ;
1

10 : HOVE-BEAST -1 CNT ! BEGIN 1 CNT +! HOVER : MOVE-BEAST Hove t h e Leasts. They cannot rove obstac les,
11 CNT a #BEAST5 a 1- = UNTIL ; bu t must rove around then.
12
13 : DELAY 25 SPEED 3 9 t t 0 DO LOOP ; \ Speed o f jaRe : DELAY Speed o f game loop.
14
15 : SET-LEVEL DIFFCNT DUP 3 1- DUP ROT ! ; : SET-LEVEL Set gare d i f f i c u l t y l e v e l .

19 43
O \ CAPTURE - LOSE? and WIN? BTN 04-14-1988 \ CAPTURE - LOSE? and WIN7 BTN 04-14-1988
1
2 : LOSE? -1 CNT ! BEGIN 1 CNT +! 3 0 DO 3 O DO : LOSE? Check f o r l o o s i n g t h e game,
3 HB 3 1 1 - t VB 3 J 1- + THERE PEEK
4 2 = I F 0 END ! AT 4 24 ."
5 4 24 AT ." YOU LOSE V LOSE ! LEAVE ELSE 1 LOSE !
b THEN LOOP LOOP
7 CNT 3 #BEASTS 3 1- = UNTIL ;
8
9 : WIN? -1 CNT ! O WIN ! BEGIN 1 CNT +! 3 0 DO 3 0 DO

10 HB 3 I 1- + VB 3 J I- + THERE FEE#
I 1 32 = I F LEAVE ELSE 1 WIN +! THEN LOOP LOOP
12 CNT a #BEASTS 3 1- = UNTIL WIN a #BEASTS a 9 r =
13 I F 4 24 AT .' YOU # IN " 0 EHD ! THEN ;
14
15

: WIN? Check f o r winn ing t h e gane.

2 il 44
0 \ CAPTURE - YIN, TELL BTN 04-15-1988 \ CAPTURE - YIN, TELL BTN 04-14-1188
1
2 : YIN BEGIN KEY UPC DUP 78 = I F 1 ANOTHER ! DROP EXIT THEN : YlN Check +or a YES o r NO answer. -
.j as = IF -1 ANOTHER ! THEN ANOTHER 3 a 0 UNTIL ;
4
5 : TELL : TELL D isp lay t h e i n s t r u c t i o n s and ask +or
b CLS TITLE INVERSE ! I n s t r u c t i o n s , number o f beasts, d i f f i c u l t y l e v e l
7 KEYS INVERSE1 \ h i g h - l i g h t and speed o f p lay .
a CONTINUE 0 24 BT ~2 SPACES '\ and
9 #BEASTS? DIFFICULTY? SPEED? \ i n i t i a l i z a t i o n

10 FIND-LENGTH FILL-ARRAY ; '8, r o u t i n e
i 1
12
13
14
15

I
Volwne X, Number 6 27 Forth Dimensions

21
13 \ CAPTURE - PLAY
1
2 : PLAY
j 1 END ! 0 XKEY ! 0 ANOTHER ! CLS
4 COLOR GORDERS OBSTACLES BEAST HERO
5 CONTINUE 0 24 AT 32 SPACES TIRE!
6 LEVEL a DIFFCNT !
7 BEGIN DELAY MOVE-HERO
8 SET-LEVEL 9- I F MOVE-BEAST LEVEL ?
9 DIFFCNT ! THEN LOSE? LOSE 3

19 O= I F ELSE WIN? THEN 50 24 AT TINE
11 END 3 0: UNTIL 20 24 AT 1

12
13
14
15

22
O \ CAPTURE - GANE
1
2 : EAHE BEGIN TELL FLAY 50000 0 DO LOOP
3 0 24 AT .' Play again? (YIN) "
4 Y / N ANOTHER a 1 = UNTIL CLS
C BYE i

b
7
8
?

10
i 1
12
I -
I c'

14
15

-7
i J

0 \ CAPTURE - B u i l d System
1
2 ONLY FORTH ALSO OOS ALSO ..
1

4 : CAPTURE ENFTY-BUFFERS
5 ' CAPTURE.BLKVCC1 (!FCB)
6 FCGl !FILES OPEN-FILE
7 SANE 1

8
7 ONLY FORTH ALSO

1% ' CAPTURE I S BOOT
i 1
12 SAVE-SYSTEM CGPTiiRE.COM
13
14
15

45
BTN 04-15-1988 \ CAPTURE - PLAY

: PLAY Draw the p l a y i n g board, p lace t h e
\ Draw p lay ing obstacles, t h e beasts and t h e HERO,
i f i e l d then p l a y t h e gaae.

\ Speed o f game
\ D i f f i c u l t y
'\ and nove/lose
\ win
\ End game

46
BTN 04-14-1788 \ CAPTURE - GAHE

: GAHE Play t h e game o f Capture.

47
BTN 04-i6-1988 \ CAPTURE - B u i l d Syster

\ search DOS and F o r t h

\. dummy program nare
\ parse f i i e n a c e t o f cb
'\ open the f i l e t o l i s t

\ power up search order
:,, make deao r u n a u t o m a t i c a l l r

i crea te capture.cor f i l e

BTN 04-14-1988

BTN 04-18-1988

RTN 04-i4-1988

This screen i s used
t o b u i l d a .coa f i l e
o f the program. This
e l i e i n a t e s the need t o
c o c p i i e (LOAD ! the
a p p l i c a t i o n each t i s e
i t i s needed.

I
Forth Dimemiom 28 Volume X , Number 6

CAME-FROM
FRANS VAN DUINEN - ETOBICOKE, ONTARIO, CANADA

Y a r s ago, when structured program-
mina was still relatively new, there was an
article about goto-less programming using
the "came from" construct Since it ap-
peared in the April issue (Datamation, I
think), it made amusing reading and that
was it. It is somewhat ironic, then, to be
implementing a "came from" in what may
be the most structured of all languages,
Forth.

"Most of the CFA's
were zero...a system
reboot every time."

I've been doing some neat stuff with
table-driven applications. For one of these,
the basic data structure is a list of addresses
of other data structures, which in turn point
to other lists of yet other addresses; there
are four levels of structures and address
lists in total.

The implementation uses something
like user variables, with a separate base
pointer for each of the four levels. The
addresses in the list are the CFAs (code
field addresses) of words to initialize the
base pointer.

The problem was that, during testing,
the program kept trying to EXECUTE vari-
ables for which the base pointer had not
been properly initialized. Most of the exe-
cuted CFAs were zero. That meant a system
reboot every time.

Hence the following test version of
EXECUTE to check that the CFA to be
executed is at least reasonable (i.e., within

VARIABLE (EXEC-FENCE)
' i n t e r p r e t 2- (EXEC-FENCE) !

: EXEC?
(EXEC-FENCE) @ HERE >R OVER U> SWAP R> U> OR NOT ;

: EXECUTE (S cfa --)
DUP EXEC? NOT
I F TRACE-BACK .STACK TRUE ABORT" EXEC error " THEN
EXECUTE ;

Figure One. Bulletproofing EXECUTE.

: .CAME-FROM
DUE' EXEC? SWAP 2- @ SWAP OVER
EXEC? AND I F ." =" >NAME . I D
ELSE DROP THEN ;

: .SR R> \Hide own return address
RPO @ RP@ - 2/ \# of entries on return stack
?DUP I F
O< I F ." U n d e r f l o w "
ELSE RP@ RPO @ 2- \RPO byte after return stack
DO I @ DUP 5 U.R .CAME-FROM SPACE
KEY? ?LEAVE -2 +LOOP

THEN
ELSE . " Enrpty" THEN >R ;

: TRACE-BACK ." R s t a c k : " .SR CR ;

: .STACK . " S t a c k : " . S CR ;

Figure Two. Where did we come from?

the application). It uses EXEC? to check
that the address is in the range from '
EMPTY (or, as used here, from ' INTER-
PRET 2-) to HERE. If not, ABORT (see
Figure One).

The next step was to show the return
1 stack and the data stack just prior to ABORT

by using . TRACE-BACK and . STACK.
The word . SR shows the return stack, and
is a simple transliteration of . S which, in
F83, shows the data stack (see Figure
Two).

The return stack, of course, contains

~ (Continued on page 32.)

Volume X, Number 6 29 Forth Dimensiom

TIME-KEEPING
ROUTINE

PETER VERHOEFF - GLENDALE, CALIFORNIA
m

I f , like me, you work odd hours and
would like to somehow keep track of how
much time you spend at your computer
each week, you may find this program
useful. It is written in F83 version 2.1 for
the IBM PC and compatibles.

This program records the length of the
current session, the total time for the day,
the total for the current week (or other
period of your choice), and remembers the
total for the previous period. It also records
the date and time in ASCII format when
you log in or out, which can then be printed
so that you have a record of exactly when
you logged in and out.

How to Use It
Two files are used: TIMELOG.COM,

the compiled form of the program, and
TIMELLOG, the file containing the logging
data. I made TIMELOG three blocks long,
which holds almost 50 pairs of login and
logout times.

To register a login time, you type
TIMELOG I N from the DOS command
line. Likewise, TIMELOG OUT will record
the time you logout. Actually, just the leuer
I or 0 after the TIMELOGcommand will do
the trick.

When you log out, it subtracts the time
you logged in to compute the session time,
and adds this to the daily total and the total
for the period. To start from scratch, you
would type T IMELOG R. This simulates a
logout followed by a login, moves the cur-
rent period total to the previous period, and
then clears the current period total. The
session total is always cleared by a login,
and the daily total is cleared by a login if the
day differs from the previous day of login.

My work week ends at two p.m. on

Thursdays, and I have therefore included
another command: TIMELOG N. When I
issue this command, the new week is
started at two p.m. sharp (it gets the two
p.m. from memory, not the clock.) Other
than that, it works the same as the R com-
mand and could be used instead of it. The R
command, however, is useful if you have
been away for some days, and weren't there
on Thursday to add the total for the week;
you'd start the new week right then. Of
course, it will work just as well on periods
longer than a week, but you should increase
the TIME.LOG file size accordingly.

If, during a session, you wish to know
how much time you'veput in, you can do so
by using the command TIMELOG Q. This
will display the data of any of the above
commands, but won't make any permanent
changes to the logging file.

"These routines store
the date and time into
a log file that can be
printed."

How It Works
My intention in writing this program

was first to provide auseful application and,
second, to provide clean and elegant code
that may be of interest to readers. Being a
fm believer in keeping things simple, I
adopted the approach of defemng com-
plexities at the higher levels of the code. It
also seemed logical to list the program in
reverse order, so that in explaining the
program, the higher-level concepts are pre-
sented first.

The top-level word on screen 17 con-
sists of just three parts: a beginning, a
middle, and an end. That's about as simple
as it can get. The code at the bottom of the
screen makes it possible to execute the
program automatically from the DOS
command line.

Screen 16 is where the different o p
tions get selected. I considered creating a
case command for the occasion but de-
cided against it, because it would only be
used once and the code is pretty easy to
follow anyway.

INIT on screen 15, again consistingof
three words, gets your choice from the
DOS command line, reads the log file, and
gets the current date and time. The other
two definitions on this screen aren't quite
as tersely defined, but nonetheless are
pretty straightforward. One word worth
noting is START, an F83 word which
opens the DOS "defaultw file (normally
obtained from the command line, but not
in this case).

The code for NOW, on screen 14, is
almost COBOL-like in its definition,
where you would say something like:
MOVE DATE TO PRESENT-DATE
MOVE TIME TO PRESENT-TIME
In Forth, of course, we use reverse nota-
tion, so the MOVE goes at the end and gets
renamed to PUT because we already have
a MOVE word in Forth.

NOW hides quite a lot of data: DATE@
and TIME@ each put four bytes on the
stack, which are stored into the log file by
PUT, using offsets defined by PRESENT,
DATE, and TIME. I find the idea of using
words to define offsets interesting and
similar to adjectives in human language, in
that they modify the object.

I

Forth Dimensions 30 Volume X, Nwnber 6

Also on screen 14, NEW. WEEK sets the
present time to 14:00:00:00 hours (since
my new week starts and ends at two p.m.)
and then does a RESET, which does a
simulated logout and login, moves the
current week to last week, and zeroes the
new week.

LOG.IN, on screen 13, checks if
today's date differs from the previous login
date and, if so, clears the daily total. It also
resets the session time and saves the login
date and time. On the same screen,
LOG. OUT and INQUIRE are almost iden-
tical, except that LOG .OUT saves the
changes that were made, and I N Q U I R E
doesn't.

STRETCH, on screen 11, inserts 32
bytes at the start of block zero of
TIME . LOG and moves everything else up.
The last 32 bytes of the last block are saved
just before the insert, since that is where the
binary totals are being kept, and
SAVE. END on screen ten is the word that
puts those values back. This permits us to
use the log file like a stack, with the most
recent entry first. It is also independent of
the number of blocks in the file.

Screens eight and sevendeal with string
handling. The purpose of these routines is
to store the ASCII date and time into the log
file in a format that can be printed out later,
to provide something like an audit trail. The
routines are commented pretty well. The
only unusual definition is of $+c. SP@
gives the address of the character on the
stack. Next, a one is pushed onto the stack,
thus defining a one-character suing which
can then be processed by PLACE+ to be
appended to the already existing string in
INBUF.

Screens six and five contain logic to add
with carry, and to subtract with borrow.
The time calculations could, of course, be
done by converting everything to hun-
dredths of a second, but I consider this a
more interesting way of doing it.

The routines that extract the time and
date are on screen four. The time and date
are converted into four separate bytes each,
for uniformity and to simplify processing.

Screen three contains some primitive
words and screen two contains the con-
stants and buffers used.

TIMELOG.BLK Screen 17
\ LOG-TIME

Occasionally I forget to log in or out, which
throws off the totals. The log file can be

: LOG.TIME (S --)
INIT
CHOICE
FINAL :

re-totalling routine Yet. Perhaps You can
come UP with a neat way to do that?

' LOG-TIME IS BOOT

edited, but I didn't get around to writing a

\ Top level time keeping word.
\ Open log file, get input char.
\ Decide what to do and do it.
\ Wrap up the actions.

\ for automatic execution

TIMELOG.BLK Screen 16
\ CHOICE

: CHOICE (S char --) \ Input char determines what next
DUP ASCII I =
IF DROP If IN: l1 m G . 1 ~ \ On login check daily total.
ELSE DUP ASCII 0 =

IF DROP " OUT: " LOG.OUT \ On logout update total also.
ELSE DUP ASCII N =

IF DROP NEW.WEEK \ Close old week, start new one.
ELSE ASCII R =

IF RESET \ Start new week now.
ELSE INQUIRE \ Just check current status. ." Choices: In, Out, New, Query, ResetBf

THEN THEN THEN THEN :

TIMELOG.BLK Screen 15
\ INIT GET.FILE FINAL

: FINAL (S --) \ Display data and exit.
CR 0 BLOCK $LEN 2* TYPE \ Display last 2 entries.
.TOTALS FLUSH 0 0 BDOS ; \ Write data and exit.

: GET.FILE (S --) \ Open time keeping file.
[DOS] DOS-FCB CLR-FCB \ Clear file control block.
" TIME LOG" DOS-FCB ,I+ \ Get time keeping file name.
SWAP CMOVE START ; \ Put file name in fcb & read it.

: INIT (S -- char)
DOS . CHAR
GET. FILE
NOW ;

\ Initialize and get input char.
\ Get dos command line character.
\ Open the time keeping file.
\ Get the date and time.

I have used this program during the last
few months and find it useful. One feature
that could be added is a re-totalling option.

1 Final Note

I

Volume X, Number 6 31 Forth Dimemiom

1 1 1 1

TIMELOG.BLK Screen 14
\ NOW NEW.WEEK RESET

: RESET (S --) \ Use this if starting afresh.
It OLD: II LOG. OUT \ Close out last week.
II NEW: fl LOG. IN \ Start a new week.
WEEK TIME LASTWK TIME XFER \ This week becomes last week.
ZERO WEEK TIME PUT ; \ New week's total is zero.

: NEW.WEEK (S --) \ Do only after totals displayed.
14 0 0 0 PRESENT TIME PUT \ My new week starts at 2 pm.
RESET ; \ Go and fix the totals.

: NOW (S --) \ Get and save the date and time.
DATE@ PRESENT DATE PUT \ (Only used at entry time.)
TIME@ PRESENT TIME PUT ;

TIMELOG.BLK Screen 13
\ LOG.IN LOG.OUT INQUIRE

: INQUIRE (S --) \ Session length = now - in time.
PRESENT TIME LOGIN TIME SUB SESSION TIME PUT
SESSION TIME DAILY TIME ADD DAILY TIME PUT
SESSION TIME WEEK TIME ADD WEEK TIME PUT ;

: LOG.OUT (S adr cnt --) \ Log out and add up totals.
INQUIRE SAVE.TIMES ; \ Get elapsed time and log it.

: LOG.IN (S adr cnt --) \ Log in date & time = now.
PRESENT DATE DAY LOGIN DATE DAY DIFF?
IF NEW. DAY THEN \ New day if not last login day.
ZERO SESSION TIME PUT \ Start new session.
PRESENT DATE LOGIN DATE XFER \ Update the time log.
PRESENT TIME LOGIN TIME XFER SAVE.TIMES ;

TIMELOG-ELK Screen 12
\ NEW.DAY ZERO DIFF? XFER SAVE.TIMES

: SAVE.TIMES (S adr cnt --) \ Save the log and update file.
STRETCH SAVE-END \ Make room in file, save totals.
MAKE$ PUT$; \ Put ascii log time in file.

: XFER (S oal oa2 obl ob2 --) \ Transfer time from a to b.
>R >R GET R> R> PUT ; I

: DIFF? (S oal oa2 oa3 obl ob2 ob3 -- tlf) \ Compare 2 units.
UNIT@ >R UNIT@ R> = NOT ; \ True if different.

: ZERO (S -- 0 0 0 0) 0 0 0 0 ; \ Four zeros.

: NEW.DAY (S --) \ Start a new day.
ZERO DAILY TIME PUT ;

(Screens continued on page 34.)

the return address(es) in the calling
word@) and how we got to the point in the
program where it failed. Doing DUMPS for
each address on that stack to look for the
name of the calling word was not, how-
ever, the way to go.

. CAME -FROM takes care of that (Fig-
ure Two). We know that the address on the
return stack points in the calling definition
following the two bytes whose content
points to the CFA of the word currently
executing (nested). Of course, there are
occasionally values on the return stack
that are notreturn addresses(e.g., after >R,
loop control, etc.). There are also words
like ?BRANCH and LITERAL that adjust
the return address to skip past some in-line
parameter. But by and large, if the address
on the stack and the address it points to are
both in a reasonable range, the latter
probably points to a CFA.

The word . CAME-FROM does a rea-
sonableness test (?EXEC) on the two ad-
dresses it uses and, if they both look good,
uses >NAME . I D to go from CFA to NFA
(name field address) and display the name.

Note that . CAME-FROM Outputs
something like ... 2A64=INTERPRET.
Thatdoesnotmean that INTERPRET isat
2A64. It does mean that the return stack
contains 2A64, which corresponds to
INTERPRET being the word that called
us (at 2A62 we found the address of the
CFA of INTERPRET).

Bryte . 17
Concept 4 . 12
Dash-Find, Assoc. 18
Forth Interest Group44
Harvard Softworks 7
Inner Access . .39
Institute for Applied Forth

Research . 9
KBSI . .38
Laboratory Microsystems 19
Miller Microcomputer

Services . .41
Next Generation Systems 16
SDS Electronic.. .14
Silicon Composers 2

I

Forth Dimemiom 32 Volwne X, Nwnber 6

THE BEST OF
GENIE

GARY SMITH - LITTLE R O C K , ARKANSAS

Volume X, Nwnber 6 33 Forth Dimemiom

A m o n g the many things to which
Forth is suited, real-time control has to rank
as its strongest suit. Included in this ever-
expanding category is the control of robots.
Since the subject of robotics is near and
dear to many Forth enthusiasts, it would be
fair to expect discussion of such on the
GEnie Forth RoundTable. In fact, Category
6, Topic 9 is devoted to robotics; and in this
issue we will sample the knowledge that is
there for the asking.

Topic 9
Mon Sep 07,1987 ATFURMAN
[Alan F.]
sub: Autonomous mobile & hobby robot-
ics. This topic also includes legged loco-
motion.

Category 6, Topic 9, Message 2
Mon Sep 07,1987 ATFURMAN
[Alan F.]

Radio-Electronics magazine has been
publishing a series of articles on building a
mobile robot progmnmed in Forth (actu-
ally a robot-control wordset called RCL for
"Robot ~ontrol Language") since kcem-
ber 1986. A kit of mechanical parts is
offered by mail order. The robot has a one-
degee-of-freedom "arm" (gripper on a
vertical positioning slide). It has two pow-
ered wheels and a control board with an
Intel 80186. The board is one of several
SBCs sold bundled with Forth, and is made
by Vesta Technology, Wheatridge, CO~O-
rado (which just happens to be run by the
author, Steven E. Sams). l'lanks to George
Shaw for alerting me to this one.

I have not been following the series, so
I do not know how sophisticated the soft-
ware has gotten. This does seem like ageat

opportunity to blow the field away with
some A1 extensions to the Forth system. In
fact, one of the niftiest A1 hacks in Forth
was created precisely for an autonomous
mobile robot (at Oak Ridge National Labo-
ratory; see "The Internals of FORPS: a
FORth-based Production System" by
Christopher Matheus. Journal of Forth
Application and Research, Vol. IV, No. 1,
pp. 7-27 (1986). The inference engine and
rule compiler take about one page of source
and originally ran on a 280. Now imagine
running this on a Forth engine.

"A good feedback
Servo motor controzzer
is a real thing of

99 beauty. ..
Category 6, Topic 9, Message 3
Tue Sep 08,1987 S.w.SQU1RES [wott]

Versions of FORPS are available in the
file directory for a few different computers.
Search for FORPS.

Category 6, Topic 9, Message 4
Tue Sep 08, 1987 S.W.SQU1RES [wott]

I may be involved with a mobile cart for
a future project. Since the wheels may be
rubber, there will be some slippage. ~ o e s
anyone know of good single-axis measure-
ment-sensing system? Objective: the cart
will be portable and will be in different en-
vironments with a minimal amount of setup
time. Distance traveled will be from a few
feet to 50 feet. Position resolution must be
1/100 of an inch or better, Update at a speed

of60 to 100 times per second. The technol-
ogy must be practical with little mainte-
nance. Possible ideas we've started to ex-
amine:

Ultrasonics. Disadvantage: resolution
and distance limited.

Laser. Disadvantage: complexity.
Magnetic field. Disadvantage: not

practical, given amount of metal and other
factors.

Visible focus (similar to Autofocus
cameras). Disadvantage: complexity and
limited resolution.

Grid on ground. Disadvantage: not
practical in environment.

Tape on ground. Bar-code-style mark-
ings would be printed on the tape. This
looks the most promising SO far.

Although this is for a single axis, I'd be
curious to know about three-dimensional
measurements given the same criteria. -
Scott

Category 6, Topic 9, Message 5
Tue Sep 08,1987 ATFURMAN [Alan F.1

David Jaffe of the Palo Alto (Califor-
nia) Veterans Administration Hospital
rehabilitation research group (and soon to
be on GEnie) is connected with people
doing mobile robot research at Stanford
University. In particular, Larry Leifer of
the Mechanical Engineering faculty.

Category 6, Topic 9, Message 6
Tue Sep 08,1987 ATFURMAN [Alan F.1

Scott: Is this robotic cart connected
with ILM? What is it for?

Category 6, Topic 9, Message 7
Wed Sep 09,1987 S.W .SQUIRES [s~ott]

(Verhoeffscreens, cont.)

TIMELOG.BLK Screen 11
\ STRETCH $INS OUT>IN

I : OUT>IN (S --) \ Move outbuf data to inbuf.
OUTBUF COUNT INBUF PLACE ;

: $INS (S bl.adr n --) \ Insert n chars at start of blk.
2DUP - B/BUF + OVER OUTBUF PLACE \ Save end of block.
2DUP 2DUP >R + B/BUF R> - CMOVE> \ Move everything up.
INBUF 1+ -ROT CMOVE ; \ Put data from in-buffer.

: STRETCH (S --) \ Insert 32 bytes into file.
$LEN CAPACITY 0 \ Do from block 0 to eof:
DO

I BLOCK OVER $INS \ Insert into each block.
UPDATE OUT>IN \ Save change, outbuf to inbuf.

LOOP DROP ;

TIMELOG.BLK Screen 10
\

: PUT$ (S --) \ Save ascii time string in file.
INBUF COUNT 0 BLOCK SWAP CMOVE UPDATE ;

: SAVE.END (S --) \ Save totals at end of file.
INBUF COUNT CAPACITY 1- \ After stretch, totals in inbuf.
BLOCK B/BUF + OVER - \ Save at end of last block.
SWAP CMOVE UPDATE ;

TIMELOG.BLK Screen 9
\ .TOTALS DISPLAY MAKE$

: MAKE$ (S adr cnt --) \ Text, date, and time in ascii.
INBUF PLACE \ Save identifier in inbuf.
PRESENT DATE GET $+DATE \ Append the date.
PRESENT TIME GET $+TIME ; \ Append the time.

: DISPLAY (S adr cnt 01 02 --) \ Display message and time.
2SWAP INBUF PLACE GET \ First store the message.
$+TIME INBUF COUNT TYPE ; \ Then the time and display.

: .TOTALS (S --) CR \ Print totals.
Total for session " SESSION TIME DISPLAY

" Total for to-day I' DAILY TIME DISPLAY
" Total this period I' WEEK TIME DISPLAY
" Total last period " LASTWK TIME DISPLAY ;

: $+C (S char --) \ Append character to string.
SP@ 1 INBUF PLACE+ DROP ; \ Treat stack as 1-char string.

: $ + # (S # - -) \ Append number to string.
0 <# # # #> INBUF PLACE+ ;

: $+DATE (S cc yy mm dd --) \ Append date to INBUF.
INVERT $+# $+# ASCII . TUCK \ Append year. Period delimits.
$+C $+# $+c $+# BL $+C ; \ Append .mm.dd and a space.

: $+TIME (S hh mm ss .ss --) \ Append time to INBUF.
INVERT $+# ASCII : TUCK \ Append hh:mm:ss.ss <cr> <If>.
$+C $+# $+C $+# ASCII . $+C $+# 13 $+C 10 $+C ;

This would be a live-action dolly sys-
tem with the same requirements as a nor-
mal dolly but be repeatable. This is just in
an idea stage, so it might not become a
reality. -Scott

Category 6, Topic 9, Message 8
Thu Sep 10,1987 ATFURMAN
[Alan F.]

All right. You guys want 0.25 mm.
resolution over a 1.5-15 meter range of
movement. I guess you are already aware
of the avalanche of papers in the robotics
literature on two subjects: navigation for
mobile robots (obviously) and 3D sensors
(for mobile robots and also for workpiece
inspection and robotic bin picking). SPIE,
SME, and IEEE run conferences with vo-
luminous proceedings annually that ad-
dress these topics. Here are a few
thoughts:

Putting a target on the dolly and deter-
mining its position by triangulation re-
quires a resolution of four seconds of arc.
Theodolites are made that resolve 0.01
seconds, so it is potentially feasible.

A company called Digital Optronics is
gearing up to commercialize very-high-
resolution laser range finders. Rather than
using time of flight (which performs
poorly with attainable time resolution),
these gadgets apparently chirp the (long-
pulse) beam and heterodyne it with the
return. Distance variations translate into
frequency variations in the beat note.
Clever, what? Of course, using it would
still entail gimbal mounts and angular
tracking of the dolly as it moves.

Coded tape is a contender, given the
assumption that dolly motion is planned in
advance, rather than arbitrary. More in our
next episode ...

I Category 6, Topic 9, Message 9

(Screens continued on page 35.)

Thu Sep 10,1987 ATFURMAN
[Alan F.]

Coded tape for repeat path sensing,
continued from previous posting. Con-
sider, if you will, the pattern [in Figure
One] printed on, say, mylar tape.

A CCD camera aboard the dolly looks
directly downward at this tape, which is
stuck onto the floor. A simple image-
processing algorithm locates a line cross-
ing in the pattern, and compares its posi-
tion in the image to the position seen
during the lead-through programming
run. Ambiguities as to which crossmark it

Forth Dimensions 34 Volume X, Number 6

is are resolved by taking a cut (in software)
through one of the bar codes (which label
the scale every 1/10 meter).

Using one of the 512 x 512 sensors
available now, and with optics imaging at
0.25 mm. per pixel, the camera will cover a
field of 12.8 x 12.8 cm. For more coverage,
sub-pixel resolution can be used. One ap-
proach to the latter is to use a fancier target
pattern, as in Figure Two, for example, in
which at least two lines not parallel to the
grid axes of the sensor are guaranteed. The
software can then fit line equations to the
diagonal pixel patterns (which smooths out
the spatial sampling errors) and calculate
their intersection. The software will also
have to be smart enough to deal with
wrinkles and overlapping ends of tape
strips.
Cheers. Alan

Category 6, Topic 9, Message 10
Fri Sep 11,1987 S.W.SQUIRES [scott]

Thanks for all the feedback Alan.
Sounds like you're quite involved with
these areas.

I looked at some of the optical and laser
techniques when I was at the SPIE show
this year. Would rather keep it a bit simpler.
Your thoughts on tape are good. We were
looking at a bit lower tech. The tape would
have two or more parallel patterns, each
being read with a separate simple photode-
tector. This would allow some fault toler-
ance. The tape would probably be of plas-
tic, mounted to a channel on the track to
avoid being stepped on. Mounting the tape
on the side or upside down might also be
done. Relative marks would probably be
f i e but, if not, we might use something
similar to the SMFTE code. A single 'chan-
nel' of data should suffice if done correctly.
-Scott

Category 6, Topic 9, Message 11
Sun Sep 20,1987 ATFURMAN [Alan F.]

Since getting on GEnie, I have learned
of the existence of the Macbot autonomous
mobile robot project: a loosely defined,
public-domain, hacker-community effort
that seems to be drifting toward adopting
Forth as the main programming language.
References: several files in the Forth Appli-
cations DL, and postings under Category
12 in the "Mac developers" RoundTable.

The Macbot group figures that spinoffs
alone (usable designs in servo control, AI,
etc.) would pay for the effort, but practical

'Verhoefscreens, cont.)

TIMELOG.BLK Screen 7
\ INVERT PLACE+

: PLACE+ (S from cnt to --) \ Like PLACE, but adds string
2DUP COUNT TUCK + -ROT + ROT C! \ Update count.
SWAP CMOVE : \ Then move string.

\ Example: if STRING contains 'Hello ',
\ then " Joe" STRING PLACE+ will result in
\ 'Hello Joe' at STRING (1st byte = count.)

: INVERT (S a b c d -- d c b a) \ Invert 4 items on stack.
SWAP 2SWAP SWAP ;

TIMELOG.BLK Screen 6
\ TIME+ +C ADD

: +C (S X y W -- 0 x+y I 1 x+y-w) \ Add with carry.
-ROT + 2DUP > \ Add a to b, compare with w.
IF NIP 0 \ If sum < w means no carry.
ELSE SWAP - 1 \ Else subtract w, carry = 1.
THEN SWAP ; \ Keep sum on top.

: TIME+ (S hi mi si .si ho mo so .so -- h m s .s) \ Add times.
4 ROLL 100 +C >R + \ Save .so + .si.
3 ROLL 60 +C >R + \ Save so + si.
ROT 60 +C >R + \ Save mo + mi.
+ R> R> R7 ; \ Sum in hrs min sec secs/100.

: ADD (S oal oa2 obl ob2 -- h m s .s) \ Add times by offsets.
>R >R GET R7 R> GET TIME+ ;

TIMELOG-ELK Screen 5
\ TIME- -B SUB

: -B (S x y w -- 0 x-y 1 -1 x-y+w) \ Subtract with borrow.
-ROT - DUP O< \ Subtract y from x.
IF + -1 \ If negative, borrow w.
ELSE NIP 0 \ Else get rid of w.
THEN SWAP ; \ Keep difference on top.

: TIME- (S hi mi si .si ho mo so .so -- h m s .s) \ Out - in.
4 ROLL 100 -B >R + \ Save .so - .si.
3 ROLL 60 -B >R + \ Save so - si.
ROT 60-B > R + \ Save mo - mi.
SWAP 24 -B NIP R> R> R> ; \ Diff in hrs min sec secs/100.

: SUB (S oal oa2 obl ob2 -- h m s .s) \ Subtract a - b.
2SWAP >R >R GET R> R> GET TIME- ;

(Screens continued on page 36.)

Volume X, Number 6 35 Forth Dimensions

TIMELOG.BLK screen 4
\ TIME@ (TIME) DATE@ (DATE)

CODE (DATE) (S -- yyyy mmdd) \ Get the date from the system.
42 # AH MOV 33 INT
CX PUSH DX PUSH NEXT END-CODE

: DATE@ (S -- cc yy mm dd) \ Get date in byte format.
(DATE) SWAP 100 /MOD SWAP ROT CHOP ;

CODE (TIME) (S -- hhmm ss.ss) \ Get the time from the system.
44 # A H M O V 33 INT
CX PUSH DX PUSH NEXT END-CODE

: TIME@ (S -- hh mm ss .ss) \ Get the time in byte format.
(TIME) SWAP CHOP ROT CHOP ;

TIMELOG.BLK Screen 3
\ CHOP UNIT@ GET PUT 'INFO

: 'INFO (S -- addr) \ This is where it is stored.
CAPACITY 1- BMCK B/BUF + $LEN - ;

: PUT (S a b c d 01 02 --) \ Store 4 bytes at 'INF0+01+02.
+ 'INFO + FULL + FULL 0 DO 1- TUCK C! M O P DROP :

: GET (S 01 02 -- a b c d) \ Get 4 bytes from 'INF0+01+02.
+ 'INFO + FULL 0 DO COUNT SWAP LOOP DROP ;

: UNIT@ (S 01 02 03 -- a) \ Get 1 byte from 'INF0+01+02+03.
+ + 'INFO + C@ ;

: CHOP (S xxyy -- xx yy) \ Chop word into 2 bytes.
256 /MOD SWAP ;

TIMELOG.BLK Screen 2
\ Constants and buffers.

0 CONSTANT DATE
0 CONSTANT PRESENT
8 CONSTANT SESSION
16 CONSTANT WEEK

0 CONSTANT CENTURY
2 CONSTANT MO
0 CONSTANT HR
2 CONSTANT SEC

1 CONSTANT UNIT
32 CONSTANT $LEN

CREATE INBUF $LEN 1+ ALLOT
: DOS.CHAR 130 C@ UPC ;

8 CONSTANT TIME
4 CONSTANT LOGIN
12 CONSTANT DAILY
20 CONSTANT LASTWK

1 CONSTANT YEAR
3 CONSTANT DAY
1 CONSTANT MINS
3 CONSTANT .SS

4 CONSTANT FULL

CREATE OUTBUF $LEN 1+ ALLOT
\ Get input character.

applications like aids to the handicapped
have been mentioned. The only fixed
quantity seems to be the Macintosh as
central controller. Actually, the best con-
mller choice would be the 32-bit Forth
virtual machine, whether implementedon
a Mac, Atari ST, Amiga, or 386 PC bus
system (the last two choices would make
interfacing easier).

Macbot activity on GEnie stalled this
summer; I do not know what is going on
with the project itself (it appears to live
mainly on Compuserve). The leader of the
project, B.W. Lightsey, is on GEnie;
B.W.LIGHTSEY is his address.

Category 6, Topic 9, Message 12
Sat Nov 14,1987 H.SlMMONS

Lacking practical experience, this
suggestion may not have merit, but it
would seem that the use of a fifth wheel
would provide sufficient accuracy to al-
low for only occasional calibration by
moving the dolly to a known location. If
the dolly is to have two-dimensional
travel, a larger-than-handheld "mouse"
with larger ball should do the job.

For calibration, perhaps laser diodes
attached to the ceiling at strategic posi-
tions, which could fire in response to an
ultrasonic signal from the dolly? Is there
any possibility of placing ultrasonic tar-
gets or "calibration tape" on the ceiling to
get regular position information? -Ho-
race

Category 6, Topic 9, Message 13
Mon Nov 16, 1987 S.W.SQUIRES
[Scott]

Good suggestions, but the travelling
wheel would probably have some accu-
racy problems over long runs. The ceil-
ing, for most applications, might be 4O-t
feet up and differ from aregular ceiling; or
it may be outside in some projects, with no
ceiling. Not much is happening with this
currently, so I'm on to other projects. -
Scott

(Screens continued on page 37.)

Category 6, Topic 9, Message 14
Sun Oct 02,1988 S.W.SQUIRES [scott]

Those interested in Robotics and A1
may want to check the October issue of
OMNI magazine. There is a article on the
insect robots designed by Rodney Brooks
at MlT's Artificial Intelligence Labora-
tory. The potential applications and ap-
proaches are discussed. The article in-

Forth Dimensions 36 Volume X, Nwnber 6

cludes step-by-step instructions on how to
modify a cheap toy car from Radio Shack
and add electronics to simulate some of the
responses of an insect ($50-75 total). All
the logic is actually photocells, Op Amps
and TTL logic, but a person should be able
to replace that logic with a small Forth
board that does that and much more. As I
recall, Scientific American had a "Com-
puter Recreations" article a couple of years
ago describing similar photocell-con-
mlled vehicles. S c o t t

Category 6, Topic 9, Message 15
Sat Dec 03, 1988 R.SCHEMMEL1
[JEPEDO]

Gentlemen, allow me to be of assis-
tance. Robotics is my main objective and I
would be glad to participate in a group
project. I can provide technical reference
information in electronics to almost any
degree of detail, as far as circuitry goes.
However, as I am sure you are aware, the
sheer magnitude of new technology is
staggering and, although I have a nice as-
sortment of very recent engineering books
on robotics-related subjects, nevertheless
it is relatively equivalent to having a few
fish out of the ocean: compared to what
you don't have, you have nothing, but it's
still enough to feed you ...

Also, my fort6 is prototyping circuitry
and fabrication of an electronic nature, to
wit, building circuits, equipment, etc. in-
cluding motor control. Feedback servos
are, of course, the only way to get real
precision but are incredibly involved, both
design-wise and in prototyping and test-
ing. A good feedback servo motor control-
ler is a real thing of beauty: it flies through
the air with the greatest of ease and stops
close enough to a dime standing on its edge
to knock it over with the air pressure and
still not touch it. The precision standard
four years ago was 111000 of an inch, but
these days they have stuff that can thread a
needle (literally) with plenty of clear-
ance-if you have enough money. Any-
way, if you need something prototyped
and have the design but need an engineer-
ing technician to build it, I might be able to
help you. I am hoping I'll eventually learn
enough about Forth to program the hard-
ware I build, but at the moment I couldn't
program my way out of a paper bag.

Personally, I'll take aForth engine over
anything else for a main CPU or control
processor. I just wish I could afford one!

(Verhoeff screens, cont.)

TIMELOG. BLK Screen 0
\ Time keeping program TIMELOG.BLK

Copyright (c) 1988 by Peter Verhoeff
308 N. Louise Ave. #14
Glendale CA 91206

This program is freely available for private use.
Commercial use of this program or any part thereof requires
written permission from the author.

I This program has been written in F83 Forth, version 2.1.0.

(Continuedfrom page 4 .) I
Orher Forth-specific BBS' s

Laboratory Microsystems, Inc.
213-306-3530
Sysop: Ron Braithwaite

This list was accurate as of March 1989. If
you know another on-line Forth resource,
please let me know so it can be included in
this list. I can be reached in the following
ways:

Gary Smith
P. 0. Drawer 7680
Little Rock, Arkansas 72217
Telephone: 501-227-78 17
Fax: 50 1-228-027 1
Telex: 6501 165247 (store and forward)
GEnie (co-Sysop, Forth RoundTable):

GARY-S

BIX (Bytenet): GARYS
Delphi: GARY-S
MCIMAIL: 116-5247
CompuServe: 7 1066,707
Wetware Diver. (Fairwitness, Forth Con

ference): gars
Usenet domain.: gars@well.UUCP or

gars@ wet.WCP
Internet: well!gars@lll-winken.arpa

WELL: gars

*Fortmet is a virtual Forth network that
links designated message bases in an at-
tempt to provide greater information dis-
rribution to the users served. I f is provided
courtesy of the SysOps of its various links.

Volume X, Nwnber 6 37 Forth Dimensions

Category 6, Topic 9 Message 16
Sun Dec 04, 1988 R.SCHEMMEL1
[JEPEDOI

Scott, for your inf~rmation the RE-
ROBOT uses an 80188, not 80186 as you
mentioned. Also, for those interested, the
RR-BBS phone number is 516-293-2283.
It was busy every time I called, but they
have a section for RE- ROBOTEERS, so to
speak.

Also, on the subject of rubber wheel
slippage I would suggest you forget that
word "slippage" because all you really care
about is not how much you've slipped, but
where you are when all the slipping is over.
That is, concentrate on getting your bear-
ings using something like the Polaroid In-
frared range sensor for course measure-
ments and a doppler-type ultrasonic sensor
for a complementary input. You'll need
something photoactive for fine distance
measurements and I would recommend a
high-powered infrared LED mounted on a

1 one-axis mount or a disk such that it can

change the angle at which it shines on the
path or the wall. Have a strip of infrared
optical transistors running along the base
strip all the way around so the transmitter
scans back and forth, sending a pulsed
beam at a preset frequency which the tran-
sistors receive. Multiplex the transistor
detectors for a signal and test the signal
found for the correct frequency to eliminate
all light not sent by the transmitter.

Admittedly this is a crude method, but
the key to making it work is using linear
transistors and sensing amplitude of return
signal rather than switching type in an on/
off setup. By varying the current to your
scanning transmitter LED and sensing line-
arly varying light pulses returning, you
have the ability to make either "short
range" or "long range" sensor scans. By
using the amplitude of the return light sig-
nal to vary the frequency of a voltage-to-
frequency converter IC (there are many
available), you can measure the frequency
of the signal you have generated and use

that when you wish to know the distance.
The cart sensor navigation system is

calibrated by driving it in a learning mode
through an obstacle course and recording
all sensor readings. The measurements are
used to establish equivalent parameters
such that a data value X equals ten feet, or
six feet, or one foot etc.The readings, of
course, are never the same for different
areas so, given a large memory capacity
for read-only data (CD ROM would be
ideal, but a large hard disk will do), you can
record all the readings for points along the
path and store them once as data--this is a
map which has no value to anyone except
the robot that generated it, to which these
readings representreal places it has been to
once. Therefore, it cando a string search or
approximation comparison of real-time

, readings with its stored map data and de-
termine that it is about three feet from the

: drinking fountain in front of the elevator
door on the second floor near the east wing
at about 4:00 p.m., when the sun coming

32-bit data stack
Tree structured scoping of dictionaries
Direct editing of dictionary structure
Tight binding of source and code
Automatic compilation
On-line help facility:

One key help from within editors
Context sensitive help on errors

Turnkey application generator
Complete debugging tools
Built-in heap memory management
Forth 83 to Fifth converter
Produces native code
8087 floating point processor support
Pointer validity checking during development

For IBM PC's with 128K, MS-DOS 2.0 or better
Professional Version: $250.00
Demo Disk: $10.00
System Source Code Available for

68000 Versions, call for information

Knowledge Based Systems Inc.
100 West Brookside
Bryan, TX 77801
(409)-846- 1524
This advertisement was prepared using a Postscript compatible
interpreter written in Fifth, controlling a hi& resolution Laser Engine. - -
P e & c d @ k . ~ T n d n u r l r m I * d . b . S y l k s I r
MSDOS b - T d - m r t .(M h m d l Cy.
IBM Is a rrli.tcrrd T-.rlr sl I m h m a t * u l hi.- MvLIa C m

I

Forth Dimensions 38 Volume X, Nwnber 6

Figure One. Ruled tape with bar code labels at ten-centimeter increments.

through the window is at its lowest. As you
can see, place is only part of the problem;
the time must be recorded when the map is
generated. That is, the data header for the

Figure Two. Targets used to achieve sub-pixel resolution require calculation.

THE SUPER8 DEVELOPMENT Wig
An unparalleled development envi ronment for a whole spectrum of applicat ions

Complete documentation for Super8 and FORTH use

$295
single quantities

PC Terminal Emulation and
Disk Sewer software

Super8 assembler/utilities
software

SUPER8 DEVELOPMENT BOARD, with Zilog's powerful Super8 monitor/instructions/ 20MHz Super8 single-chip microcomputer - with examples software monitor ROM for conventional assembler development
FORTH ROM set for interactive FORTH development
with full implementation of F83 FORTH
Prototyping area

Inner Access Corporation BOX 888 Belrnont. CA 94002 (415) 591-8295 Telex 494-3275 INNACC

sensor readings mustalwayscontain adate-
stamp or the readings will lose much of their
value. As a matter of general practice, all
sensor readings of any nature should con-

I J
Volume X. Nwnber 6 39 Forth Dimemiom

tain a date stamp, as this information will
be invaluable later.

"Jepedo is the name and robots are my
game."

THE GREENING OF
FORTH

M a n y proverbs of our civilization
indicate that he who wishes to lead must
discover in which direction the people are
heading and then place himself in front of
them.

The Forth Interest Group has been a
leader of the steady and inspiring progress
of the Forth programming environment for
well over a decade. Recently, however, the
question arises, "Is anyone still follow-
ing?"

Forth is more popular than ever. The
surest gauge of the health and well-being of
Forth is to be had in the number of annual
annoucements of its impending death. Last
year was perhaps a banner year forForth, its
demise being proclaimed in forums where
its name had not previously been heard.
such as John Dvorak's writings.

Forth in 1988 acquired a powerful and
influential patron in Harris Semiconductor.
No less than Dr. C.H. Ting has testified
that, "I used to think I knew all the preach-
ers of Forth," but after attending a Harris
RTX2000 seminar, he owned that he had
heard the gospel preached eloquently by
well-informed individuals previously un-
known to the small and cozy Forth commu-
nity.

Forth continues to sweep the field of
microprocessor-based embedded systems.
FORTH, Inc. announced in 1988 several
innovative extensions of their line of em-
bedded-system-targeted polyFORTHs.

As an embedded-system programmer
myself, I have daily phone or BBS contact
with inventors, scientists, designers, and

I engineers eager to acquire a working
knowledge of Forth. They all have come to
the conclusion that, like it or not, they must
learn Forth to get the job done in reasonable

JACK WOEHR - 'JAX' ON GEnie

time for a reasonable investment of cash.
A class I teach in Golden, Colorado

continues to gain new attendees, individu-
als who have discovered Forth on their own
and seek tutoring in the basics.

An admittedly unscientific and subjec-
tive assessment of job opportunities for
Forth programmers leads me to believe that
there have never been more positions for
qualified individuals in the history of Forth,
nor have so many of these positions ever
gone begging for so long. Furthermore,
Forth is reaching higher in the corporate
world; for example, IBM here in Colorado
is committing major programmer effort to
the Forthcoded IBM-CAD project.

Yet those of us who enjoy the FIG
fellowship must find it subject for concern
that this "Greening of Forth" does not seem
to be entirely reflected in the Forth Interest
Group. Membership has certainly not in-
creased in proportion to the Forth boom;
rather, we find old members too busy to
participate any longer, often less enchanted
with Forth Dimensions, occasionally dis-
gruntled at actions, or lack of same, from
the FIG leadership.

To a certain extent, this falling away
from FIG is limited to North America. I am
informed by telecom friends in Europe and
Australia that new Forth Interest Group
chapters are constantly being formed, and
that the chapters that exist are lively and
well attended. Recently, we certified the
first chapter in Finland, with a second pos-
sibly to follow; new applications have
reached Kent and Jan in the business office
from as far away as Bulgaria!

If FIG indeed is currently in decline,
what could be the reasons?

First of all, the institution of the Satur-

day computer club is in decline in North
America. Computer savvy goes crying in
the streets nowadays; we are surrounded
by all the digital wizardry we could desire
and more; the beginner does not need as
much hand-holding from monthly meet-
ings as before, since the sophistication of
even the most casual computer user is far
greater than that of ten years ago.

Secondly, while FIG has made one
bold stride in the direction of the brave
new world by opening the Forth Interest
Group RoundTable on GEnie, other sen-
ices are needed by the modem Forth pro-
grammer that FIG has not yet been able or
seen fit to provide. It may yet be that other
organizations will step in to fill the vac-
uum, such as the Association for Compu-
tationMachineryYs SIG-Forth, which sees
itself as a natural forum for the profes-
sional Forth programmer.

Also, FIG has been drifting slightly
under the influence of aquite natural proc-
ess of new faces coming into the organiza-
tion to replace experienced hands, your
correspondent finding himself among the
fonner culpable grouping.

Many suggestions have been offered,
many plans have been laid for the continu-
ation of the work of the Forth Interest
Group. Those interested in summaries of
these suggestions, or in making sugges-
tions of their own, will find the most ready
audience waiting in the various telecom

I institutions growing up with Forth-see
the "Reference Section" elsewhere in this
issue. Furthennore, any chapter can sub-
scribe to our monthly Chapters Newslet-
ter by contacting me on any of those
services or at my W C P address of
jax@ well.UUCP, well! jax@lll-

I
Forth Dimenrionr 40 Volume X, Nwnber 6

winken.arpa, or alternatively by shouting
for my attention on USENET's
comp.lang.forth discussion group.

Your Chapter Coordinator's personal
offering to the FIG suggestion box is tried,
trite, and true: the future is in the hands of
youth. FIG has yet to ~y a major outreach
to high schools in every city in the world
where there exists a FIG chapter. IMHO
(as we say in telecom) such a framework
for the propagandization of the youthful
entrant to the digital universe is long over-
due.

I feel very optimistic about FIG. The
Forth Interest Group, in particular the Sili-
con Valley FIG Chapter, was instrumental
in my entry into the world of Forth. Fur-
thermore, since May 1987, I have held
three consecutive full-time Forth pro-
gramming positions, two obtained
through FIG meetings, the latest and cur-
rent position here in Colorado found in the
"Programmer Wanted" ads on the GEnie
FIG RT.

I see no reason why the Forth Interest
Group cannot continue to offer a friendly
and helpful gateway to Forth for the begin-
ner while serving the changing and varied
needs of the professional. Innovation and
dedication will be required from the mem-
bers of the world's oldest fraternal associa-
tion of Forth programmers, which will no
doubt be available in abundance, since are
not innovation and dedication the very
hallmarks of the Forth programmer?

1988 PROGRAMMERS CONTEST
Held at last year's FIG-sponsored

"Real-Time Programming Convention,"
this event captured the spirit of the Forth
programmer confronted with an unusual
problem. The object of the contest was a
closely held secret until the event began.

Winners of the contest were Phil Burk
, and Mike Haas from Delta Research.

I

Volume X , Number 6 41 Forth Dimensions

FIG
CHAPTERS

The FIG Chapters listed below
are cwently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimensions. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 88 1-6483

ALASKA
Kodiak Area Chapter
Horace Simmons
(907) 486-5049

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
AZ State University
Memorial Union, 2nd floor
Dennis L. Wilson
(602) 956-7578

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat., 2 p.m. &
4th Wed., 7 p.m.
Jungkind Photo. 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat, 10 am.
Hawthorne Public Library
12700 S. Grevillea Ave.
Phillip Wasson
(213) 649-1428

North Bay Chapter
2nd Sat.. 10 am. Forth. A1
12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Tom Ghormley
(91 6) 444-7775

San Diego Chapter
Thursdays. 12 Noon
Guy Kelly (6 19) 454- 1307

Silicon Valley Chapter
4th Sat., 10 a.m.
H-P Cupertino
Bob Ban (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson
(305) 8554790

Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

Tampa Bay Chapter
1st Wed.. 7:30 p.m.
Terry McNay (813) 725- 1 x 5

GEORGIA
Atlanta Chapter
3rd Tues., 6:30 p.m.
Western Sizzlen, Doraville
Nick Hennenfent
(404) 393-3010

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(312) 386-3 147

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
UP Univ. Campus. B71 Neff
Hall
Blair MacDermid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues.. 7:30 p.m.
Iowa State Univ., 214 Comp.
Sci.
Rodrick Eldridge
(515) 294-5659

Fairfield FIG Chapter
4th Day. 8:15 p.m.
Curdy Leete (515) 472-7077

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8140

MASSACHUSETTS
Boston Chapter
3rd Wed., 7 p.m.
Honeywell
300 Concord, Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitIAnn Arbor Area
4th Thurs.
Tom Chrapkiewicz
(313) 322-7862

MINNESOTA
MNFIG Chapter
Minneapolis
Even Month, 1st Mon., 7:30
p.m.
Odd Month, 1st Sat., 9:30 a.m
Fred Olson (612) 588-9532
NC Forth BBS (612) 483-67 1 :

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Lmus Orth (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam
9 1 Weis Drive
Ellisville. MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi
(201) 338-9363

Forth Dimensions 42 Volume X, Number 6

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
FIG, New York
2nd Wed.. 7:45 p.m.
Manhattan
Ron Martinez (212) 866-1 157

Rochester Chapter
Odd month, 4th Sat., 1 p.m.
Monroe Cornm. College
Bldg. 7, Rm.102
Frank Lanzafame
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergsworn
(216) 247-2492

Columbus FIG Chapter
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Li-Benton Comrn. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Villanova Univ. FIG Chapter
Bryan Stueben
321-C Willowbrook Drive
Jeffersonville, PA 19403
(215) 265-3832

TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Tues., 7 p.m.
Sci. Appl. Int'l. Corp., 8th F1
800 Oak Ridge Turnpike
Richard Secrist
(615) 689-8161

TEXAS
Austin Chapter
Man Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter
4th Thurs.. 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-2361

Houston Chapter
3rd Mon.. 7:45 p.m.
Intro Class 6:30 p.m.
Univ. at St. Thomas
Russell Harris (713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 8984099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown
(703) 4714409
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St.. Superior
Allen Anway (7 15) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600
BBS: 61 3 299 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg.. RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd., Yowie Bay
2228
021524-7490

BELGIUM
Belgium Chapter
4th Wed.. 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
0711213858

CANADA
BC FIG
1 st Thurs., 7:30 p.m.
BCIT. 3700 Willingdon Ave.
BBY. Rm. 1A-324
Jack W. Brown (604) 596-
9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat., l0a.m.-noon
N. Alta. Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(4 1 6) 525-9 140 x3443

ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FINLAND
FlnFIG
Janne Kotiranta
Arkkitehdinkatu 38 c 39
33720 Tampere
+358-31-184246

I

Volume X, Nwnber 6 43

HOLLAND
Holland Chapter
Vic Van de Zande
Finmark 7
3831 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021435249

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 x7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-518-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
5F, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFIG
Per A h
46B-92963 1

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8 152 Opfion
01 810 9289

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
1698 Villa St.
Mountain View, CA 94041
(415) 960-1256 (eves.)

-
Forth Dimensions

New from the Forth Interest Group

Proceedings of the First Tenth Annual FORML
Australian Forth Symposium Conference
Organized by Forth users These proceedings contain
from industrial and academic papers from the FORML
organizations. Held May 19- Conference held November
20,1988 at the University of 25-28,1988 at the Asilomar
Technology Sydney School of Conference Center, Pacific
Physical Sciences. 154 pages. Grove, California. 156 pages.

$2400 $2400

Special introductory offer available-buy
both books together-total price $4000.

Mark Order Form: FORML Special.
FIG members entitled to additional membership discount-see order form.

Forth Interest Group
P.O.Box 8231 Second Class
San Jose, CA 95155 Postage Paid at

San Jose, CA

