
- - -

Dimensions

Floating-Point
Arithmetic

Visit the MACH 2 Produet Support RouodTableM oo GEniew !!

MACH 2
MULTI-TASKING FORTH 83 DEVELOPMENT SYSTEM

The MACH 2 FORTH 83 Multi-tasking Development System created by Palo Alto Shipping Company
provides a fresh approach to FORTH programming and the FORTH language. The foundation of MACH 2 is
a subroutine threaded FORTH with automatic macro substitution. This state-of-the-art implementation of the
FORTH language allows MACH 2 to take full advantage of the powerful 680x0 microprocessors; therefore
execution times of programs written in MACH 2 are comparable to the execution times of programs written in
the traditional compiled languages.

MACH 2's integrated programming environment consists of a standard (infix), Motorola-format assembler
which supports local labels and forward references, a symbolic debugger/disassembler which allows multiple
task debugging with single-stepping, breakpoints, and more. The Macintosh and Atari ST systems include a
mouse-based, multi-window text editor and all systems support the use of text source files.

The MACH 2 system is a professional development system designed to take the programmer through all
phases of product development -- from initial designlprototyping to the creation of the final, stand-alone
application.

MACH 2 FOR THE
MACINTOSHTM

features full support of the
Macintosh toolbox, support
of the Macintalk speech
drivers, printing, and floating
point, easy 110 redirection
and creates double-clickable,
multi-segment Macintosh
applications. Includes
RMaker, and 500 pg manual.

MACH 2 FOR THE
ATARl S F M

features full GEM and TOS
support, floating point, I10
redirection and creates double-
clickable ST applications.
Includes 300 page manual.

MACH 2 FOR THE OS-9
OPERATI N6 SYSTEMTM

provides position-
independent and re-entrant
code execution, full support
of all 0 s -9 system calls.
Creates stand-alone 0 s -9
applications. Link FORTH
to C and vice-versa. Includes
400 page manual.

MACH 2 FOR
INDUSTRIAL BOARDS

is 68020 compatible,
provides 68881 Floating
Point support, and produces
position-independent,
relocatable, ROM-able code
with no meta-compilation or
target compilation required.
Includes system manual and
porting manual.

VISA/MC accepted. CA residents include 6.5% sales tax.
Include shippinoandling with all orders: US $5 S/H; Australia $20 S/H; Canada $7 S/H; Europe $10 S/H.

RoundTable and GEnle are regstered trademarks of the General Elecuic Information Services Company.

FORTH Dimensions 2 Volume VIII, No. 5

Forth Dimensions
Published by the

Forth Interest Group
Volume VIll, Number 5
January/February 1987

Editor ..

Marlin Ouverson
Advertising Manager

Kent Safford
Production

Cynthia Lawson Berglund
Typesetting

LARC Computing
Forth Dimensions solicits editorial

material, comments and letters. No re-
sponsibility is assumed for accuracy of
submissions. Unless noted otherwise,
material published by the Forth Interest
Group is in the public domain. Such
material may be reproduced with credit
given to the author and to the Forth
Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth Inter-
est Group at $30 per year ($43 foreign
air). For membership, change of address
and to submit items for publication, the
address is: Forth Interest Group, P.O.
Box 8231, San Jose, California 95155.
Administrative offices and advertising
sales: 408-277-0668.

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

Advanced; requiring stu-
dy and a thorough under-
standing of Forth.

Code and examples con-
form to Forth-83 stand-
ard.

- Dimensions
FEATURES

Code and examples con-
form to Forth-79 stand-
ard.

Practical Considerations for Floating-Point by Richard Wilton
In most high-level languages, whether or not to use floating-point arithmetic is
not even a question. But a Forth programmer must know the low-level details of
real numbers and arithmetic operators. These source code examples illustrate the
design of real arithmetic in a Forth application.

Screenless Forth by Carl A. Wenrich
So you think screens would be all right, if only you didn't have to edit them? This
piece, for the 1BM P C running F83, lets you escape the tyranny of the silent
screen. It allows creation of source modules using any ASCIl text file editor.

Tracking the Beast by Nathaniel Crossman
Evidence shows that numerology, the study of numbers' influence upon human
affairs, developed alongside the scientific study of numbers. Certain numbers
were thought to have special significance for humans. Even if you've rid yourself
of such ancient superstitions, this program presents some interesting techniques.

A Simple Translator: Tinycase by Allen Anway
Menu-driven programs nornlally require a keystroke response, but what if the
desired output is other than that of the pressed key? If the function is needed only
once, CASE is a good solution because of its clear, easy-to-change structure. If
needed often, save memory with the compact TINYCASE to inspect an array and
output the translated number when a match is found.

Classes in Forth by Vince 1). Kimball
It takes class to d o object-oriented programming. Transparency and localization
are central to objects, but Forth does not appear to support these principles
explicitly. As a solution, minor modification of the vocabulary concept is
proposed.

The Ultimate CASE Statement by Wil Baden
Many citizens of the Forth community have lamented the lack of a CASE

statement in standard specifications. But all proposals to date, even Eaker's
widely used technique, have had problems. Lack of portability is one. Restriction
to their area of application is another. Generalization is accomplished with a
special case of CASE.

Volume Seven Index by Julie Anton
Subjects, authors and titles from last year, arranged for easy reference. Keep a
copy of this with your collection of back issues!

34 National Forth Convention '86
Nearly one thousand people gathered in November to explore the state of "Forth
Engines." Hardware and software designers discussed several methods used to
embed Forth in hardware, and how those efforts are shaping Forth's future. This
and other important topics are included in this capsule summary.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

Code and examples con-
form to fig-FORTH.

38 FIG Chapters

DEPARTMENTS
5 Letters
9 Editorial: "A Sense of Place"

36 Index to Advertisers

Volume VIII, No. 5 3 FORTH D~rnens~ons

SPEED AND POWER
is the name of the game!

PC4000 $995
Use the PC4000 to turn your PC into a high speed Forth development workstation. The PC4000
is a PC plug-in card with the Novix NC4000P Forth engine on board to add speed, 512K memory,
and concurrent processing power to your PC or 100% compatible. The PC4000 runs crnForth,
SCForth, and Delta-C. PolyFOKI'H (a registered trademark of Forth, Inc.) coming soon.

DELTA BOARD $495
The Delta Board is a single-board stand alone computer using the Novix NC4000P Forth engine
to execute high-level Forth instructions without compilation. It brings minicomputer performance
to industrial control and other tasks using embedded processors. Operates at least 10 times faster
than the 68000-based systems. Memory board, mother board, power supply, cable, and enclosure
available for expansion. The Delta Board runs cmForth, SCForth, and Delta-C.

The PC4000 and Delta Board come fully assembled and tested with 4 MHz operation, 90 day
warranty, PO< (or DO< with the Delta Board) Communication Software in F83, User Manual,
cmForth with editor and demo programs and user support with Silicon Composers Bulletin Board.

SILICON COMPOSERS Formerly
210 California Avenue, Suite I SOFTWARE COMPOSERS
Palo Alto, CA 94306
(415) 322-8763 m. .

SILICON COMPOSERS
FORTH Dimensions 4 Volume VIII. No. 5

A Tale of Recursion

Dear Editor,
While reading the very interesting

article, "The Point Editor" (VIII/3)
by J . Brooks Breeden, I couldn't help
noticing the use of RECURSE at the end
of the word MENU in screen seven. This
is an example of tail recursion, where
the recursive call is made at the end of
the function and no more processing
comes after the recursive call. Tail
recursion can be caught by a smart
interpreter, such as LOGO, and turned
into iteration for efficient use of the
return stack. In LOGO, recursion is
the only way to do indefinite loops. I
thought, why not have a smart version
of RECURSE so that I can use tail
recursion in Forth without worrying
about my return stack overflowing?

See my included screen for a solu-
tion. RECURSE starts by saving the
input stream pointer >IN so that it can
look ahead. If the next word is ; or

THEN followed by ;, we have a case of
tail recursion and an iterative branch to
the beginning of the word being de-
fined is called for. Otherwise, the
word's own compilation address is
compiled, to allow a recursive call to
take place. Finally, the input stream is
restored and compilation continues
normally. The difference between the
two cases is that, at run time, tail
recursion avoids using the return stack.

Included are two examples taken
from Michael Ham's article, "Recur-
sion" (Forth Dimensions VI/4). GcD is
the greatest common divisor, and is an
example of tail recursion. FACTORIAL is
an example of true recursion, where
both stacks pile up and processing
occurs both before and after the word
RECURSE. These definitions seem to
work as expected, but if I've over-
looked anything, please write and in-
form me.

Charles Shattuck
Roseville, California

57
Efficient t a i l recursion .I 7OctBb CWS
HECUHSE) iN @ ' (n e x t wordi [' 3 THEN = NUT \ n e a r e n d q
IF DUP >TN ! THEN \ t h e n res t i : , re t h e i n o u t stt-earn
LATEST NabiEi \ cctrnoi l a t iiwr a d d r e s s of word be1 r ~ q cfef i n e d
7 (n e x t word) [' -2 : = \ a t end n f d e f . ~ n ~ t . i o n ?
IF COMPILE BRRNCH)BODY (RESOLVE \ t h e n branoh t o b e a i n n l n o
ELSE . \ else c a i 1 t h e f u n c t l o r , r e c u r s i v e l y
THEN > . I N ! : IMMEDIRTE COMPILE-ONLY \ r e5 to r . e irrout st?-earn

GCD (a b -- g c d) \ a n examole nf t a i l r e c u r s i o r ,
7DUP IF SWRP OVER MOD HECUHSE THEN ;

FRCTORIRL (n -- n !) \ a n examole o f true r e c u r s l n n
DUP 1 = NUT IF DUP I- HECUHSE * THEN :

Shattuck Screen

Forth aux Ecoles

Dear Marlin,
I would like to tell you about a

French teaching experience in Queb\ec,
Canada. This program at the College
de Sherkrooke is tifled, "Technologie
des Systemes Ordines." This three-year
program aims at forming technicians
who can adapt and maintain software,
as well as repair microcomputers. The
programming is mostly centered on
real-time applications, while hardware
revolves around chips like pio, sio, pic,
crtc, etc. But the students also learn

- -

other useful tools like word processing,
databases, spreadsheets, communica-
tions, CAD and so on. In fact, we try
to take the best out of the two worlds
of electronics and programming.

Here is hqw we teach and use Forth.
In the first semester of their first year,
students follow a basic course on pro-
gramming logic and the rudiments of
Forth, using a network of twenty Com-
paq Deskpro's. The use of computer
graphics is of primary importance,
since it motivates the students while
permitting them to learn the elemen-
tary control structures.

F
Volume VIII NO 5 5

In the second year of this program,
students develop real-time applications
(in Forth), wing concepts such as
multi-tasking, an I/O toolbox, code
definitions, low- and high-level
interrupts, etc. As an example,
students last year simulated a railroad
crossing control using an STD bus
system and I/O modules.

Finally, in their last year, the stu-
dents have a course on the internals
and the extensibility of Forth, includ-
ing the higher level of metacompila-
tion. In the last semester of that pro-
gram, students in groups of two have
300 hours to work (with assistance) on
a main project. Most of these projects
are coming from "real" needs among
the region's industries. These projects
must be about half hardware and half
software to get approval from the in-
structors. The software must be written
in Forth, assembler or both, and is put
into EPROMs if necessary. As an ex-
ample, students last year developed
two projects for Ph.D.'s in nuclear
physics at the ~niversit; de Sher-
brooke. One was for data acquisition
and control of an electron gun in an
experiment about the diffraction of
"slow" electrons. Another was the
temperature control of a hothouse for
growing tomatoes. Of the projects that
were eventually put into EPROMs, we
can mention a PID temperature con-
trol and an ultra-sonic radar with
graphic display on a VT-100 terminal.

For our needs, we use a modified
version of Laxen & Perry's F83 for the
IBM P C (congratulations for your
work, guys!). The major changes
brought to it were to get rid of the view
fields in the structure (because it now
loads from normal MS-DOS level 2
text files), the use of binary overlays to
speed up the loading of precompiled
applications and a complete set of
graphics words (including LOGO-like
commands).

This year we had a grant from the
provincial government and bought a
FORCE VME computer equipped with
a 68020 (16 MHz) microprocessor. We
will drive it with a polyFORTH system.
We are expecting a lot of possibilities
from this machine. More to come. . .

FORTH Dlrnenslons

But since our actual control projects
are mainly done with the Z80, we are
using a CP/M network of STD bus
stations, duplicating easily the future
targets and simplifying the develop-
ment of stand-alone applications. We
have also modified a Nautilus meta-
compiler to make it F83 compatible
and to build EPROM versions of code
that was previously tested on the
CP/M workstations.

That is what is so fantastic about
Forth: you can change it to make it
appropriate to your needs!

As an example, lately we wrote two
simple words (>FORTH and >ASM) that
permit us to execute high-level words
within a code definition. This is very
useful within a slow-interrupting sys-
tem when there are math equations to
perform and system status to display
on a console (a PID control loop with
adjustable parameters, for example).

Other colleges (CEGEP) in Quebec
are thinking about switching to Forth,
just like we did four years ago. There
will probybly be a course given by the
Universite de Sherbrooke in the spring
of 1987 for the CEGEP teachers.

We would like very much to exchange
information with other institutions
about their Forth teaching experiences.

Denis Lambert
collige de Sherbrooke
Sherbrooke, Quebec
Canada

On-Line Docs
for fig-FORTH

Dear Marlin,
Regarding "On-Line Documenta-

tion" (Forth Dimensions VIII/2), it is
a very good idea. 1 have implemented
it. Some fig-FORTH users, however,
are going to have some trouble getting
it to work. Perhaps I can help.

Mr. Wavrik's definition of LOCATE
seems to assume that the word -FIND
leaves a CFA and a flag. The usual fig-
FORTH -FIND leaves PFA, CNT and a
flag. The count (NFA'S count byte con-
tents) is a gremlin floating around in
the word LOCATE. The word CFABSFA
is acrually being fed the count, and
even after the count is dropped,
CFA>SFA receives a PFA, not a CFA.

Another difficulty is that the u< in
the word LOCATE should be just plain <
in many systems, mine included, as'the
LFA, NFA, CFA and PFA will all be
negative numbers and growing in the
right direction to use <.

Also a problem is the assumed de-
compilation of CREATE. Most users will
be safe, in that their CREATE will be a
standard fig-FORTH definition, but
mine is not. In those cases where it
varies from

: CREATE -FIND IF DROP . . . ;

then changing the patch word XCREATE
to end with the first word in the defini-
tion of CREATE, instead of with -FIND,
should work.

The listing shows an application of
LOCATE that will work. For TI-Forth
users, the definition of SFA-PUT is:
: SFA-PUT BLK , =CELLS HERE ;

The code on line one should be
compiled until debugging is no longer
necessary. If things don't go right, then
simply keying in

FORGET SFA-PUT (XCREATE)
and then reloading will crash the sys-
tem. Why? Because CREATE has al-
ready been patched, and compiling the
screen again patches it again. Before
recompiling, execute RESTORE.

Sincerely,

Gene Thomas
Little Rock, Arkansas

Locate U t i l i t y
L i s t i n g 1
Screen #16

0 . \ LOCATE, r e v . gtAug86 (f i g) j. j . ~ . FD 8 / 2
1. ' CREATE @ CONSTANT (C) : RESTORE (C) ' CREATE ! ;
2.
3. : SFA-PUT BLK @ , -FIND ; \ xcreate
4. ' SFA-PUT CFA ' CREATE ! \ patch c r e a t e w i t h efa-put
5. HERE CONSTANT WALL \ no s fa" below w a l l
6. : S F A (p f a - - s f a) L F A 2 - ; \ l f a , n f a , c f a , p f a d i c t . order
7. \ : SFA NFA 2- ; \ n f a , l f a , c f a , p f a d i c t . order
8. : KB? (b l k -- f i b l k O = t f) @ O= ;
9. : SHOW-SCR @ LIST ; \ o r : @ e d i t

10. : NIP-CNT (c f a cnt f -- c f a f) SWAP DROP ;
11.
12. : LOCATE -FIND NIP-CNT O= I F . " Not found" ELSE
13. DUP WALL < I F ." Not l o c a t a b l e " DROP ELSE
14. SFA DUP KB? I F ." Block 0" DROP ELSE
15. SHOW-SCR THEN THEN THEN ;

Thomas Screen

Apologia in Absentia

Dear Marlin,
This letter is intended as an apology

to all those who wrote to The Tools
Group and never received a reply. The
reason for the lack of response was
that I never got the letters.

About the time the first ad for The
Tools Group came out, I broke up with
my girlfriend and sold the house in
Desert Hot Springs to her. Although
some mail has been forwarded by the
post office, I am sure that I did not
receive a number of responses. To
those writers, I offer my apologies.

The Tools Group was formed to
develop and market the Forth we had
developed as the tools group for a large

Forth project. The most significant
feature of our Forth is the large num-
ber of extensions (library manager,
floating point, etc.).

Looking around at the marketplace,
we have decided there are enough ver-
sions of Forth in existence. We have
decided to adapt our tools to establish-
ed Forth packages, supplementing the
tools those vendors supply. This con-
version effort is underway and should
be ready for public consumption soon.
At that time, we will run our ad in
Forth Dimensions (with the correct
address).
Regards,
Ron Braithwaite
The Tools Group
Forest Falls, California

FORTH Dimens~ons Volume VIII. No. 5

Volume VIII, No. 5 7 FORTH D ~ m e n s ~ o n s

F83 Compiles Text The requirements are MS-DOS 2.1 or
greater and plain ASCII text files. 1

Dear Marlin, hope this is useful for Mr. Streed and
In a letter to Forth Dimensions your readership.

(VIII/2), Mr. Ramer W. Streed asked
for a program to read and compile F83 Sincerely,

code for the IBM PC from a text file. Alberto Pasquale
The accompanying screens will do that. Houston, Texas

Pasquale Screens

Scr # 0 B:TEXTLOAD.BLK
0 \ F83 TextLoad.hlk by Alberto Pasauale 11/15/1986
1 TextLoad < f~lenane > loads a text file and prints ~t on the
2 screen
3 Control-table replaces CC (Kernel86.blk scr# 48)
4 (open-f) and (close-f) requires MS-DOS 2.1
5 (f-key) reads a byte from an open file into TOS
6 replaces key to redirect input from the keyboard to a
7 text file
8 ?err-0 executes eof if an error is encountered during loading
9 eof brings the system back to normal and closes the file
10 control-z indicates that all the file has been loaded and
11 executes eof
12 TextLoad opene a file, dropa line-feeds 'J
13 redirects key to make F83 think you are typing the
14 file at the terminal.
15

Scr # 1 B:TEXTLOAD.BLK
0 \ F83 TextLoad-blk by Alberto Pasquale 11 /15/1986
1 DEFER 'A DEFER 'B DEFER 'C DEFER 'D DEFER 'E DEFER 'F DEFER 'G
2 DEFER 'I DEFER 'J DEFER 'K DEFER 'L DEFER 'N DEFER '0 DEFER '0
3 DEFER 'R DEFER 'S DEFER 'T DEFER ' V DEFER ' W DEFER 'Y DEFER ' 2
4 DEFER '0 NOOP IS '0
5 ' (CHAR) IS 'A ' (CHAR) IS 'B ' (CHAR) IS 'C ' (CHAR) IS 'D
6 ' (CHAR) IS 'E ' (CHAR) IS 'F ' (CHAR) IS 'G ' (CHAR) IS 'I
7 ' (CHAR) IS 'J ' (CHAR) IS 'K ' (CHAR) IS 'L ' (CHAR) IS * N
8 ' (CHAR) IS '0 ' (CHAR) IS '0 ' (CHAR) I S 'R ' (CHAR) IS 'S
9 ' (CHAR) IS 'T ' (CHAR) IS ' W ' (CHAR) IS 'Y ' (CHAR) IS '2
10
11 CREATE CONTROL-TABLE CONTROL-TABLE CC !
12 I 0 'A 'B 'C 'D 'E 'F 'G
13 BS-IN 'I t J 'K 'L CR-IN 'N '0
14 P-IN ' 0 'R 'S 'T BACK-UP ' V ' W
15 BACK-UP 'Y ' z CHAR CHAR CHAR CHAR CHAR

FORTHki t

5 Mips computer kit

$400

Includes:

Novix NC4000 micro
160x1 00mm Fk3 board
Press-fit sockets
2 4K PROMS

Instructions:

Easy assembly
cmFORTH listing

shadows
Application Notes
Brodie on NC4000

YOU provide:

6 Static RAMS
4 or 5 MHz oscillator
Misc. parts
250mA @ 5V
Serial line to host

Supports:

8 Pin/socket slots
Eurocard connector
Floppy, printer,

video I/O
272K on-board memory
Maxim RS-232 chip

Inquire:

Chuck Moore's

Computer Cowboys

410 Star Hill Road
Woodside, CA 94062

(415) 851-4362

DASH, FIND
65 ASSOCIATES

OulCompany. DASH. FIND & ASSOCIATES.

is in the business of placing FORTH Progrdm-

mers in positions suited to their capabilities.

We deal only with FORTH Programmers

and companies using FORTH. I f you would

like to have your resum6 included in our

data base, or if you are looking for a

FORTH Programmer, contact us or

send your resume to:

DASH, FIND & ASSOCIATES

808 Dalworth. Suite B
Grand Prairie TX 75050

(214) 642-5495

7m
Committed to Excellence

Scr # 2 B:TEXTLOAD.BLK
0 \ F83 TextLoad.blk by Alberto Pasquale 11/15/1986
1 HEX
2 CODE (OPEN-F) (filename-adrr -- handle flag)
3 DX POP 3D02 # AX MOV 21 INT AX PUSH
4 U< IF 0 # AX MOV ELSE 1 # AX MOV THEN lPUSH END-CODE
5 CODE (CLOSE-F) (handle --)

6 BX POP 3E # AH MOV 21 INT NEXT END-CODE
7 VARIABLE F-HANDLE VARIABLE K-BUF
8 LABEL F-ERROR 0 # AX MOV 1PUSH
9 CODE (F-KEY) (- - - n)
10 F-HANDLE #) BX MOV 1 # CX MOV K-BUF # DX HOV 3F # AH MOV
11 21 INT F-ERROR JB
12 CX AX SUB O<> IF 1A # AL MOV
13 ELSE K-BUF #) AX MOV THEN
14 AH AH SUB lPUSH END-CODE
15 DECIMAL

Scr # 3 B:TEXTLOAD.BLK
0 \ F83 TextLoad.blk by Alberto Pasquale 11/15/1986
1
2
3 VARIABLE F-NAME 15 ALLOT
4 : (GET-FNAME) 14 MIN DUP ROT ROT
5 F-NAME SWAP MOVE F-NAME + 0 SWAP C! :
6 : GET-FNAME BL WORD COUNT (GET-FNAME) ;
7 : EOF [' I (KEY) IS KEY [' I (CHAR) IS 'J
8 [' I NOOP IS '0 [' I RES-IN IS ' 2
9 C'l (?ERROR) IS ?ERROR
10 F-HANDLE 8 (CLOSE-F) :
11 : CONTROL-Z ." END OF FILE " CR EOF BACK-UP CR :
12 : ?ERR-0 DUP IF EOF (?ERROR) ELSE DROP 2DROP THEN :
13
14
15

Scr # 4 B:TEXTLOAD.BLK
0 \ F83 TextLoad.blk by Alberto Pasquale
1
2 : TEXTLOAD
3 GET-FNAME F-NAME (OPEN-F)
4 IF F-HANDLE !
5 [' I DROP IS 'J
6 [' I (F-KEY) IS KEY
7 [' I EOF IS '0
8 [' I CONTROL-Z IS 'Z
9 [' I ?ERR-0 IS ?ERROR
10 ELSE TRUE ABORT" FILE NOT FOUND" THEN :
11
12
13
14
15

FORTH Dimensions 8 Volume VIII. No. 5

A Sense of Place
Last November was one of the busi-

est months in our history. A tour to
exchange technical papers in China,
a national Forth convention and a
FORML conference all occurred dur-
ing production of this issue. We try to
keep you informed, but details of these
events would fill at least two entire
issues. Look for convention coverage
herein; a brief review of FORML will
appear in the following issue, but the
entire proceedings will be published
separately, as usual, to keep you
abreast of useful, new findings and
techniques.

At several Forth conferences, I've
met representatives from Bell Canada,
Stanford University, Johns Hopkins
University, British Telecom and East-
man Kodak, to name only a few large
sites where Forth is used. Some of
those who cannot attend these events
personally may still feel that Forth has
yet to come into its own in terms of

public recognition. They may have
outdated notions of Forth's place in
the world.

The question, "Why isn't Forth
recognized more widely?" has been
with us too long. Certainly we cannot
hope for from others what we do not
grant ourselves. Some very large names
indeed have designated Forth as their
language of choice for major projects,
investing money and manpower in its
use. And they receive tangible gains in
development time and cost, efficiency,
maintainence. . . Well, it will be best if
such Forth users make their own state-
ments. Forth Dimensions will tell the
stories this year of some installations,
large and small, using Forth. We think
you'll find it interesting and eye-opening.

This is part of a larger information-
gathering project. We hope Forth ven-
dors and programmers will help us to
compile the first complete document of
Forth's use in all manner of systems

and products. We first published a
questionnaire a year ago (issue VII/5)
which brought many fascinating re-
sponses, but still reached only the tip
of the iceberg. That questionnaire is
reprinted in this issue - please use it
yourself and see that copies get passed
to non-FIG members who have been
involved in Forth projects.

On a final note. the new set of Forth
Ditnensions writer's guidelines is now
available from FIG. It provides infor-
mation that new writers. as well as our
regulars, should have oh hand. Much
of the material in i t will also help
anyone writing about Forth for other
publications. The price is right, so if
you would like to write an article,
tutorial or technical note, please send
for a free copy. We will look forward
to hearing from you!

-Marlin Ouverson

Johns Hopkins Correction

Dear Editor,
We would like to point out a factual

error in Glen Haydon's article, "The
Multi-Dimensions of Forth" (VIII/3).
The article, in describing several hard-
ware Forth engines, states that we at
Johns Hopkins University's Applied
Physics Laboratory ". . .have taken
the basic design of the Novix 4000
device and expanded it to a thirty-two
bit processor on a chip." It is true that
we have designed a single-chip, thirty-
two bit Forth processor, but it is in no
way related to the Novix processor.
Our processor was independently de-
signed based on our experience with a

microprogrammed bit-slice Forth en-
gine our group designed for the Hop-
kins Ultraviolet Telescope, a part of
the ASTRO Space Shuttle mission.

The Novix processor and our proces-
sor are radically different in both ar-
chitecture and implementation. The
Novix chip achieves high performance
by connecting to external memory via
three buses, one for fetching instruc-
tions and two for accessing the param-
eter and return stacks. Our processor
uses a more conventional single bus,
but caches the top sixteen elements of
both the parameter and return stack on
chip. Our architecture was influenced
by RISC research and has only two
instruction formats. The Novix design

is implemented in a CMOS gate array.
We did a full custom implementation
of our design in four-micron SOS
CMOS, which is suitable for high
radiation spacecraft environments. We
are currently reimplementing the ar-
chitecture in three-micron bulk CMOS
and will be finished in the second
quarter of 1987. Papers describing the
full details of the processor and ar-
chitecture have been submitted to the
1986 FORML Conference.
Martin E. Fraeman
John R. Hayes
Robert L. Williams
Thomas Zaremba
Johns Hopkins University
Laurel, Maryland

- - - -

9 FORTH Dlmens~ons

Practical Considerations for

Floating-Point Arithmetic
Richard Wilton

Marina del Rey, California

In most high-level languages, wheth-
er or not to use floating-point arith-
metic is not even a question. Fortran,
PL/l or C programmers simply take
for granted that when they wish to
compute with real numbers, the lan-
guage they are using offers the tools to
do so. The presence of arithmetic data
types in such high-level languages al-
lows the selective use of integer or real
arithmetic.

In contrast, Forth deals with objects
on a somewhat less abstract level. A
Forth programmer must always be
aware of the low-level representation of
real numbers and the manner in which
arithmetic operators are implemented.
These considerations are much less im-
portant to programmers in most high-
level languages.

This article discusses some of the
practical points involved in doing Forth
floating-point arithmetic. It starts by
covering the salient low-level features of
floating-point system design in Forth.
The simple source code examples which
follow illustrate some of the points to
consider in designing real arithmetic
into a Forth application.

Real-Number Representation

One of the first questions the imple-
mentor of floating-point numbers has
to solve is that of the representation of
real numbers. The usual representation
is a simple data structure containing an
exponent (sometimes called the "char-
acteristic"), a significand ("mantissa")
and a sign bit. An example is shown in
Figure One.

With an eight-bit exponent, a
twenty-three-bit significand and one
s i g n b i t , t h i s r e a l - n u m b e r
representation could be stored in two
sixteen-bit words on the usual Forth
stack. Many similar representations
can be used in Forth floating-point
implementations.

A Forth systems programmer chooses
the representation best suited to a par-
ticular hardware and software situation.
For example, some representations are
more easily used in software floating-
point primitives, whereas others corres-
pond to the representation used by a
floating-point coprocessor such as the
AMD 951 1 or the Intel 8087, or to that
used by firmware routines such as
those in the Apple Macintosh or in the
IBM PC's BASIC ROM.

A Forth application programmer
who uses floating-point arithmetic
must be aware of the representation
used, because the dynamic range and
accuracy of real numbers is implicit in
their representation. Also, if you wish
to manipulate real numbers with stan-
dard Forth operators such as 2@ or
CMOVE, you must know how many
bytes of storage are required for each
real number.

Manipulating Real Numbers

Another important point to consider
when you use floating-point arithmetic
in Forth is the problem of where to
place real numbers so that they can be
manipulated conveniently. Because in-
teger arithmetic is sufficient for Forth's
memory-conserving, threaded code in-
terpreter, the Forth virtual machine is
implicitly biased towards performing
integer arithmetic. Integrating real

bit -- > 3 1 23-30 0-22

Figure One

s

numbers and floating-point operators
into the standard Forth system thus
demands careful consideration.

There are two common solutions to
this problem. One is to maintain real
numbers on Forth's parameter stack.
The other is to design a separate real-
number stack which is tightly integrat-
ed into the standard Forth interpretive
system. Both approaches are viable.

Using the Parameter Stack. For
most purposes, there is no reason to
avoid placing real numbers on the
parameter stack, even though they are
almost certainly represented as thirty-
two-bit, forty-eight-bit or even sixty-
four-bit numbers. After all, the usual
Forth stack is already cluttered with
data items of various sizes and types,
including eight-bit characters, sixteen-
bit signed and unsigned integers,
thirty-two-bit integers and addresses of
various sizes.

An advantage to manipulating
floating-point data on the Forth param-
eter stack is that the usual stack and
memory operators can be easily
adapted to handling real numbers. For
instance, if a real number is represent-
ed in sixty-four bits, then

: FDROP (r --)
DROP DROP DROP DROP ;

exponent

is exactly analogous to DROP for
sixteen-bit integers or to 2DROP for
thirty-two-bit integers. Similar oper-
ators, Such as FDUP, FSWAP, FPlCK and
so on can be defined in terms of the
standard Forth stack words.

A common problem is that the pa-
rameter stack can quickly become
crowded, particularly when sixteen-bit
integers and addresses must be main-
tained on the stack at the same time as
real numbers. Bugs introduced by inac-
curate stack operations (for example,
SWAP instead of FSWAP) can be notori-
ously difficult to track down.

Using a Separate Stack. In an effort
to avoid stack clutter, some implemen-
tors of Forth floating-point support
simply maintain all real numbers on a
separate, dedicated stack. This design
makes life much easier for program-
mers who make heavy use of the pa-
rameter stack.

significand

F T T H Dimensions 10 Volume VIII. No. 5

The separate stack approach can
also lead to significantly improved per-
formance if i t is supported in hard-
ware. For example, the Intel 8087
arithmetic coprocessor maintains its
own stack. (The stack is only eight
deep, but this is sufficient for most
applications.) A separate real-number
stack thus maps directly onto the hard-
ware, which simplifies the low-level
software primitives and leads to in-

creased execution speed in application
programs.

In practice, neither approach to
floating-point stack design has proved
to be unequivocably better. Other con-
siderations, including source code
readability, portability and the asym-
metry of floating-point hardware with
standard Forth system design, lead to
compromises in system complevity and
in execution speed.

(STEST -- Scaled arithmetic version)
: AREA (radius -- area)

DUP * \ rA2
355 113 */ ; \ pi * rA2

(USTEST -- Unsigned scaled arithmetic version)
: AREA (radius -- area)

DUP * \ rA2
355 UM* 113 UM/MOD SWAP DROP ; \ pi * rA2

(FTEST -- Floating point version)
: AREA (radius -- area)

DUP M* D>F FPI F* ; \ pi * rA2
(F87TEST -- version which uses 8087 stack)
: AREA (radius -- area)

0 \ convert to double (8087 "short integern)
IS>AP APDUP (FMULP) \ rA2 on 8087 stack
(FLDPI) (FMULP) AP>FL ; \ pi * rA2

(Timing loop)
: TEST (--)

!TIMER
100 0 DO
101 1 DO I AREA DROP LOOP \ substitute FDROP in ..

LOOP \ .. floating point versions
.TIMER ;

Table One. Source Code Examples.

STEST USTEST REST (SFP)' FTEST (8087) F87TEST
5.16 3.46 75.63 5.88 3.63

Table Two. Timings for 10,000 executions of AREA (IBM PC, 4.77 MHz 8088).

STEST USTEST FTEST (SFP)' FTEST (8087 F87TEST
1.16 0.71 18.34 2.26 1.53

Table Three. Timings for 10,000 executions of AREA (IBM PC AT, 8 MHz
80286).

*SFP means "Software Floating Point."

:.:. .-. MICRO-
.*.

Z.. f.

$$ 2.

2.l
?.. gCONTROLLERH
.... .-.a .-.
7.' .:. ,..' . .
?.. 2.
.:.: .-. Z.

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and machine

code interrupt handlers
-System timekeeping malntalns

time and date with leap
year correctlon

-Supports ROM-based self-
starting appllcatlons

COST
130 page manual - S 30.00
8K EPROM with manual-$100.00

Postage pa~d in North Arner~ca
lnqu~re for I~cense or quantlty prlclng

,-.- ,?.. .:.
?..:.: f. .:.

Bryte Computers, Inc. ... :::
P.O. Box 46, Augusta. ME 04330 3 .fa 7.. :.~ :.. (207) 547-3218 Z. ..: ::. .!. f.

VolumeVIII. No 5 11 FORTH Dimenstons

Floating-Point Operators

M o s t p r o g r a m m e r s p e r f o r m
floating-point arithmetic in Forth with
operators that are analogs of the stan-
dard Forth integer arithmetic oper-
ators. Floating-point operators with
analogous names (e.g., F +, FDUP, F@)
perform functions analogous to the
standard integer operators. It is easy to
program "intuitively" with this type of
system.

Some programmers prefer to rede-
fine the standard integer operators so
that they work with real numbers in-
stead. These redefined operators are
maintained in a separate vocabulary.
This approach allows a given piece of
source code to be used with either
number type, simply by switching vo-
cabularies. Also, the same set of oper-
ators can be used for either integer or
real arithmetic, just as they are in
Fortran and other high-level languages.

The disadvantages of both approaches
are clear. Using a parallel set of opera-
tors adds two or three dozen new
words to a language which already
demands familiarity with several hun-
dred words. However, redefining exist-
ing Forth integer operators to handle
real numbers also creates problems. A
program which manipulates both data
types simultaneously soon becomes
littered with vocabulary changes which
obscure the functional meaning of the
source code.
Other Considerations

Forth systems programmers must
consider many other issues of floating-
point implementation, including ac-
curacy, rounding, representation of
values which cannot be exactly ex-
pressed in binary, infinity, error trap-
ping (division by zero, invalid argu-
ments to trigonometric functions) and
so on. Such implementation details are
often irrelevant to an application pro-
grammer. However, in many instances,
knowledge of the exact behavior of the
floating-point package is critical to
debugging as well as to obtaining ac-
curate results.

A Simple Example

At this point it is worthwhile to
examine some source code. Apart from
superficial differences in notation, it is

important to observe the implicit dif-
ferences between integer and floating-
point arithmetic when each is used for
computation of fractional quantities.
Although there are applications which
by nature demand the use of either
integer or real arithmetic, situations
frequently arise in which the choice is
affected by stylistic or performance
considerations.

The simple example in Table One
calculates the area of a circle four
different ways. The first two, STEST
and USTEST, use scaled integer arith-
metic. The value for pi is the well-
known ratio 355/113, which is accurate
to six decimal places. The scaling in
USTEST looks slower but runs faster
because it does not use I and thereby
avoids the overhead of floored division.

The second pair of examples, FrEST
and F87TEST, use floating-point arith-
metic to do the same work. FrEsT is
written with a set of floating-point
operators which parallel the usual in-
teger operators. It uses the Forth pa-
rameter stack for all real arithmetic, so
integers and real numbers coexist on
the stack at the same time. The last
example, F87TEST, uses the Intel 8087's
separate stack to hold real numbers for
intermediate calculations.

A comparison of the source code
reveals little on the surface apart from
the somewhat obscure operators used
to manipulate the 8087 stack directly.
There is, however, a great deal of
difference in dynamic range and in
precision implied by the use of
floating-point operators. Any increase
in precision of the integer versions
STEST and USTEST would require
additional scaling operations with a
significant performance degradation as
a consequence, as well as additional
code required to support scaling.

Tables Two and Three contain typi-
cal performance data. Most of the
differences in timing between the ex-
amples is due to the time required for
multiplication by pi. The timing loop
calls the AREA routine 10,000 times and
uses the computer's system clock (ac-
curate to about 0.06 seconds on an
IBM PC) as a timer.

The poor performance of -EST
when real arithmetic is carried out in
software (SFP) stands out in sharp
contrast to the other results. (Neverthe-
less, it is still a bit faster than inter-
preted BASIC!) What is striking is that
the speed of floating-point arithmetic
using a hardware coprocessor is quite
close to that of integer arithmetic, yet
the degree of precision and dynamic
range achievable with the use of
floating-point arithmetic is far beyond
the capabilities of integer arithmetic,
scaled or not.

Practical Experience

It would be wrong to extrapolate
from these simple timing data that real
arithmetic will always be just about as
fast as integer arithmetic in Forth. The
point is that the performance penalty
for using floating-point arithmetic in
Forth is negligible in situations where
an application demands precision and
dynamic range. There is no reason to
use scaled arithmetic to avoid decreas-
ed run-time performance if the degree
of performance degradation is not
critical and if significantly increased
source code complexity results.

This observation has been thoroughly
demonstrated in real-world situations.
Floating-point Forth programs have
been successfully utilized in applications
such as high-level display graphics, real-
time engineering telemetry processing
and industrial quality-control analysis.
A Forth program which uses floating-
point arithmetic is often the best ap-
proach to an application which de-
mands real-number processing as well
as interactive hardware control.

With inexpensive, widely available
floating-point hardware, real numbers
can be handled in a sophisticated man-
ner without sacrificing either speed or
the many conveniences of the standard
Forth interpretive environment. Fur-
thermore, in well-integrated systems
such as the Apple Macintosh, i t be-
hooves a Forth programmer to take
advantage of readily available firm-
ware support for real arithmetic. With
a critical eye to the factors described in
this article, you can easily integrate
floating-point arithmetic into Forth
applications.

VolumeVIII. No. 5

Screenless Forth
Carl A. Wenrich
Tampa, Florida

Don't get me wrong: I love my
Laxen & Perry F83 package. It is the
most elegant piece of code I've seen
since the last thing I wrote myself. But,
somehow, I've never been able to get to
the point where I actually enjoy screen
editing. Even with everything that's
done to help, 1 still find it tedious.

On the other hand, editing with my
SEE editor (C Ware Corporation, P.O.
Box C, Sunnyvale, CA 94087) is a pure
joy. So to have my cake and eat it too,
I wrote this little piece for my IBM PC
to escape the tyranny of the silent
screen. It allows you to crea;e source
modules using any ASCII text file
editor (even DOS's EDLIN, if you're
desperate).

Here's how it works. F83 is set up
with four disk buffers of 1024 bytes
each at the top of memory. I just
redefined that space as a 4K source file
buffer. Any programs larger than 4K
can be broken down into 4K modules
and chained together easily.

Let's take a look at the commands
required to implement this screenless
Forth system. As you can see by glanc-
ing at the listing, there really isn't very
much to it. What we have is yet
another indication of the power of
Forth: you can do quite a lot with very
little.

Since some of the new words are
duplicates of existing commands, we
begin by defining a new vocabulary
named UNSCREEN to keep them separ-
ate. BlFlLE is the variable that will hold
the number of bytes in whatever source

file we load. Moo-BuF is the address of
the 4K buffer at hex FOOO where the file
will go.

REC-SIZE and FILE-SIZE serve as off-
sets into the file control block; they
leave the record-size and file-size ad-
dresses, respectively. OPEN-FILE is simi-
lar to the existing OPEN-FILE command,
except this one checks to see that the
source file is no larger than 4K. If i t is,
we abort with an appropriate error
message; if i t isn't, we store the num-
ber of bytes in BIFILE.

READ-CHAR reads one character from
the source file. REAPSEQ is the com-
mand that reads a sequential source file
into the 4K buffer at MOD-BUF. The
record size is set to one so that the file
you need is the file you get. The DTA
(data transfer address) is set up at PAD.
Each time a character is brought in, it

1 2.

ii ! LOAD BLOCK fjSApk6bCY ! READ-SEP \LOAD, iSOdRCE! 05APRQbCN
1
? ONLY FORTH ALSO DEFINITiONS : READ-SEO \ S -- ! IN-FILE @ DUP REC-SIZE ! SWAP !
3 FILE-SIZE @ c DO
4 WARNING OFF READ-CHAP PAD cs ai. nia no;-~UF :?IN e c! 1 ;IN + I

5 LOOP ;
6 : NLDAD .S iLOAD) ; ' NLOBG IS LOAD
7 : !iOAD! 15 -- ! 7DEFIdE !F!LES OPEN-FILE :IN OFF
FI ? 4 TVRU FAD SET-ZMA HEAD-SEB >!ti GFi BiK JN HUN
9
10 : iSOUkiEi !S -- adr ien ! ELK @ ii
11 ROD-BUF biF1~E $ ELSE T!3 #T!a @

THEN ;

L

0 \ UNSCREEN RE!-SIZE FILE-SIZE OPEN-FILE READ-CHAR 05APREbCW
1
2 VOCABULARY UNSCREEN
2 DNLY iORTH ALSO DOS ALSO UNSCREEN OEFIN!TIONS
4 VARIABLE RIFILE 51440 CONSTANT MOD-BUF 4
5 \ I?ERRORl 05APRBbCW
A : REC-SIZE !S adr -- adr' ! 14 t ;
7 : FILE-SIZE (S adr -- adr' i 15 t ; : (?ERHORI (5 adr len f -- i IF
5 TVPE iR SPU 5 SP' PRINTING OFF BLK @ IF
9 : OPEN-FILE iS -- i IN-FILE @ DUP 15 BDOS DOS-ERR? iR tiOD-Bui !IN @ BOUNDS DO I C@ EMIT LGOP

10 ABORTa Open errcr" FILE-SIZE I! DUP 40% : THE?; QUIT
11 ABORT" Fiie cver 4k",5BiFILE ! ; ELSE
1 2 ?DROP
13 : READ-CHAR iS -- ! IN-FILE 6 20 ED% DGS-EhR? THE5 ;
14 ABOHTVead error" ;
15 (LOAD) iS LOAD . i?EHRDR! 15 'ERROfi ' ISOUCCE! IS SOURCE

VolumeVIII, No 5 13 FORTH D~mens~ons

W R PROGRAM
F m CONCEPT

TO REALITY
4 TO 10 TIMES

FASTER

THE ONLY INTEGRATED SOFIWARE
DEVELOPMENT PACKAGE DESI6NED

FOR REAL-TIME APPUCATIONS

If you're o real-trme software developer,
polyFORTH can be your best ally In
genlng your progrom up and runnlng
on tlme In fact, on the average, you
will develop a program 4 to 10 tlmes
taster than wdh trodtttond progrom-
mrng languages

polyFORTH shortens development
tcrne by mak~ng the best use of y%
time There ore no long walts whlle you
load editors, comp~lers, assemblers, and
other tools, no long wo~ts wh~le they
run- because everythlng you need IS
In o scngle, easy-to-use, 100% resident
system Uslng polyFORTH you take a
raw Idea to fast, comp~led code In
seconds-and then test ~t fnteroctlvely

poIyFORTH has everythlng you need
to develop reol-trme appllcot~ons fost
multl-tosklng, multi-user OS, FORTH
compller Interpreters and assemblers,
editor and utllltles, and over 400 prtml-
tlvesand debuggcng ords Wrth its unlque
modular structure, polyFORTH even
helps you test and debug custom hard-
ware ~nteract~vely, and 11 IS ovo~lable for
most 8.16. and 32-b~t computers

FORTH. lnc also prov~des dscustomers
wlth such profess~onal support services
as custom oppllcot~on progrommlng,
polyFORTH programming courses, and
the FORTH, Inc 'Hotllne"

For more information and a free
brochure, contact FORTH, Inc todoy
FORTH, Inc, 111 N Sepulvedo Blvd ,
Manhattan Beach, CA 90266 Phone
(213) 3728493.

is compared to BL. Printable characters
are,transferred to MOD-BUF and control
characters are converted to blank
spaces.

(LOAD) fires up the interpreter after
the file has been read into memory. It
combines the functions of the normal
OPEN and (LOAD) commands. After
LOAD is revectored to the UNSCREEN
version of (LOAD), all you have to do is
type "LOAD filename.extV and the file
will be opened, read into memory and
interpreted.

If there are no detectable errors in
the source file, you will receive the all-
familiar "ok" from the interpreter. Of
course, you will have to revector LOAD,
SOURCE and ?ERROR back to FORTH
vocabulary versions if you want to play
with screens for any reason.

Any detectable source file error will
trigger a memory dump from the first
byte of the source file buffer MOD-BUF
to the end of the offending word. This
will let you know exactly where the
error was found. If a standard message
is associated with the error, it will be
displayed as well.

(SOURCE) is a slightly modified ver-
sion of same. BLK is now used as a flag
which indicates whether the input
stream is coming from the keyboard or
from the module buffer. MOD-BUF sup-
plies the address, and BlFlLE supplies
the number of bytes to be interpreted.

?ERROR is again a modification of
the FORTH vocabulary's version. But
instead of leaving parameters for the
WHERE command, it dumps the module
buffer up to and including the word
that triggered the abort. Of course, if
you happen to be interpreting from the
keyboard, it just flags the error as
before.

The only thing left to do now is
revector LOAD, SOURCE and ?ERROR.
Once this is done, you had better not
try any screen manipulations unless
you first revector back to the FORTH
versions, because you will probably
crash.

But now you are free to load one or
more ASCII text files and they will be
interpreted just as though they were
screen files. To demonstrate how this is
done, and how easily files can be
chained, here's a little sample session.
It .assumes that three files of Forth
code have already been created. It also
assumes that the last two lines of code
in FILEA.BLK look like this:

CR .(LOAD FILEB.BLK)

LOAD FILEB.BLK

and that the last two lines of code in
FILEB.BLK look like this:

CR .(LOAD FILEC.BLK)

LOAD FILEC.BLK

Now, assuming that the UNSCREEN
definitions have been loaded, all you
have to d o is type LOAD FILEA.BLK and
wait. If the files are large (near 4K), it
will go down something like this:

The selected drive will come on and
FILEABLK will be read into memory.
After the drive goes off, it will seem as
though nothing is happening. Actually,
the file is now being interpreted. As
soon as the interpreter gets to the end of
FILEA.BLK you will see LOAD FILEB.BLK
appear on the screen and the drive will
come on again. FILEB.BLK will now be
read in and interpreted. LOAD FILEC.BLK
will then appear, and FILEC.BLK will be
read in and interpreted.

At this point, you are ready to run
your application. You may leave your
image by entering "SAVE-SYSTEM file-
name.com" and boot right into it by
entering "' program IS BOOT".

In any case, 1 think you will find that
editing source modules will become a
bit more enjoyable. And as an added
bonus, you will find they take up a
great deal less disk space - screens are
notorious disk hogs because of all the
white space they require. As a result,
you will probably be more likely to
structure (indent) your Forth source
code the way it was intended, instead
of squeezing it into that 16x64 box like
most of us.

FORTH Dimensions 14 Volume VIII. No. 5

Tracking the Beast
Nathaniel Grossman

Los Angeles, California

Humankind has been fascinated by
numbers throughout all of its recorded
history. To its one hand lay mathemat-
ics, with the abstract theory of numbers
and more exotic developments. We
have cuneiform evidence that the Pyth-
agorean Theorem was known to the
ancient Babylonians, and abundant
testimony from the Greek tradition of
a feverish devotion to the study of
integers. At its other hand lay the
pseudo-scientific (as we now call it)
numerology, with ample evidence be-
ginning with the oldest surviving liter-
ary texts to show that this study of the
influence of numbers upon human
affairs developed parallel Io and,
sometimes, hand-in-hand with the sci-
entific study of numbers1. Up to recent
times, certain numbers or combina-
tions of numbers were thought to have
special significance for humanity or for
particular humans. Many, if not most,
of us retain traces of these ancient su-
perstitions, no matter how rational we
deem ourselves to be2.

Religious writings are a fertile source
of numerological lore. The Bible is no
exception, as Hooper fully illustrates1.
Biblical numerology has been devel-
oped in both the Jewish and the Chris-
tian traditions. The Jewish Kabbalists
refined Old Testament numerology
into the real-time numerological art of
gematria. Early Christian numerology
developed gematria-like techniques
based upon the fact that the letters of
the Greek alphabet, like those of the
Hebrew, carried dual meanings as
numbers.

Perhaps the most notorious numero-
logical passage in the Bible occurs in
the New Testament, in the Book of

The Beast has been considered from
early Christian times to be an apocalyp-
tic enemy of mankind, the Antichrist.
Original numerological attempts to
identify The Beast with a historical man
produced various candidates. Most
prominent among these is the Roman
emporer Nero,, the calculation being
based on the values of the letters in the
Greek alphabet, in which the earliest
available versions of the New Testament
were written. During the medieval peri-
od, calculations in Roman numerals
were common. Also, in more recent
times, attempts were made to pin the
label of The Beast on contemporary
persons such as Martin Luther. In our
time, the likes of Franklin Delano
Roosevelt were Beastified by their
enemies.

These identifications seem not to
have had much influence on human
affairs, but they may have conferred
some benefits on their devisers. We
recognize nowadays that it is more
desirable to break pencil points than
heads. Next time you feel compelled to
take up the cudgel, use the boot instead:
boot up this program and, with its help,
identify your adversary as The Beast.

Type in the twelve screens. When you
execute 1 LOAD, a startup message will
appear on your display with instructions
on how to begin. Follow the prompts.
Figure One shows how one session
went. 1,loaded the program and read the
prompt, then executed BE~ST?. Re-
sponding to the prompt, 1 entered the
name of a friend, Ignia Incendiari.
When I pressed the carriage return, I
was asked whether the calculation
should make the special identifications
U->v, Y->I and w->vv (the calculation
proceeds, medieval style, in Roman
numerals). I answered yes, whereupon
the numerical value of the name was

that I was sixty-one short. The addition-
al letters D and C were therefore barred,
but various combinations of L, X, V
and 1 were available. A few mystic
passes over these letters, Scrabble-style,
and Lisa appeared, so I responded to
the prompt "Another name?" with yes
and entered the fuller name, lgnia Lisa
1ncendiari:lt was clear that the remain-
ing deficiency was ten. Now I realized
that my friend had withheld her middle
name; she is lgnia Alexis Incendiari.
When 1 entered her full name, the
proclamation came back to me: her
number is the number of The Beast.
That satisfied me, and 1 told the pro-
gram that 1 was through with it. But
wait! You ask: How can 1 assume that
her name is lgnia Ale-~is Incendiari?
Isn't that fudging? 1 am forced to admit
that, indeed, 1 have fudged, but in
doing so I am only following the lead of
the great numerologists of the past, who
fudged mightily. And perhaps 1 have
discovered a truth that is unknown even
to Ignia lncendiari herself. Numbers
don't lie - or d o they?

Revelation of St. John the Divine analytically displayed. The value was 2.
(13.18): 605. (At this point in the program, I

would have liked to put in a whistle to
Here is wisdom. Let him that hath inform me whether the total was greater
understanding count the number of the than or less than 666 and by how much,
beast: for it is the number of a man; but I decided to keep to twelve screens
and his number is Six hundred three- in order to print the program on two
score and six. pages.) A bit of pencil work showed me

References

1. Hopper, Vincent Foster. Medieval
Number Symbofism. Cooper Square
Publishers, New York, 1969. The
word "medieval" in the title does
not disqualify this book as a
reference on current-day numerol-
ogy.
Bell, Eric Temple. Numerology.
Baltimore, 1933. Reprinted 198 1.
This little book, scarce but well
worth finding to read, was written
by an eminent mathematician who
also published popular science fic-
tion under the pseudonym "John
Taine. "

Volume VIII, NO. 5 15 FORTH D~mens~ons

PORTABLE 1
POWER

Whether you program
on the Macintosh, the
IBM PC, an Apple II ser-

TM ies, a CP/M system, or the
Commodore 64, your -- - -
program will run un-
changed on all the rest. ==='=TM

If you write for yourself,
MasterFORTH will protect
your investment. If you write
forothers, it will expand your

marketplace.
Forth is interactive -

you have immediate feed- cK
backas you program, every . TM

step of the way. Forth is
fast, too, and you can CP/M use its built-in as-

TM sembler to make it
even faster. Master-

FORTH's relocatable utilities and
headerless code let you pack a lot
more program into your memory. The
resident debugger lets you decom-
pile, breakpoint and trace your way
through most programming prob-
lems. A string package, file interface
and full screen editor are all standard
features. And the optional target com-
piler lets you optimize your applica-
tion for virtually any programming
environment.

The package exactly matches Mas
tering Forth (Brady, 1984) and meets
all provisions of the Forth-83 Standard.

. MasterFORTH standard package.. $1 25
(Commodore 64 with graphics). $100

Extensions

Floating Point.. $60
Graph~cs (selected systems) $60
Module relocator(with utility sources). . $60
TAGS (Target Appllc. Generation System)-
MasterFORTH, target compiler and
relocator.. $495

Publications 8 Application Models
Printed source listings (each) $35
Forth-83 International Standard.. $1 5
Model Library, Volumes 1-3 (each). ... $40

8726 S. Sepulveda BI., #A? 71
Los Angeles, CA 90045

1 load

...........
This program w i l l help your c ~ l c u l ~ t i o n s toward
ident i fy ing the Beast of Revelation:

Here i s wisdom. Let him that h r th understmding
count the number of the beast: for i t i s the number
of r man: and h i s number i s S i x hundred threescore
and six. -- The Revelation of St . John the Divine, 13: 18

Type BEfiST? <return> t o begin.

Type a 'nam' of no more than 80 characters,
including spacrr and uppw and l o w care le t ters ,
then press <return>.

I Ignia Incmdiar i i I Shall UIcu (vme), Y&y (eye), and W t w (two v r r r) be counted? I
(Y : N) : y

Ignia Incendiaris

I ho tho r n u ? Y N : y I
Type a ' n u r ' of no more than 80 characters,
including spaces and uppw and l o w case le t ters ,
then press <return>.

(Ignia Lisa Incmdiar i I
Shall U&u (vee) , Y&y (eye), and W&rr (two veer) be counted?
(Y : N) : v

Ignia Lisa Incendiari a I
o wns = o
1 PDs = 500
1 #Cs = 100
1 #Ls = 50
0 # X s = 0
O W s = 0
6 #Is = 6 --

656

FORTH Dimensions 16 Volume VIII. No. 5

SCR# 3
\ Characters that are Roman numerals

\ Stack the ASCII chars: (--- UC l c 1
I u L n ~ ASCI I n ASCI I B ;
: ULDd ASCII D ASCIId 1
: ULCc ASCII C ASCII c ;
: ULL1 ASCII L ASCI I 1 ;
: ULXx ASCII X ASCII x ;
: ULVv ASCII V ASCII v ;
: ULIi ASCII 1 ASCII i ;
: ULUu ASCI 1 U ASCII u 1
: ULJj ASCII J ASCII j ;
: ULYy ASCII Y ASCll y ;
: ULWw ASCII Y ASCII w ;

SCR# 4
N8 04118186 0 \ N6 04118186

1
2 1 DDUP (n --- n n n 1 DUP DUP ;
3
4 : ?ASCII= (n n n l n2 --- f
5 \ Trur i f n = n l or n 3 n2; the n's w i l l b0 ASCII characters
6 ROT = >R = R) OR ;
7
8 : It! (add? --- 1 \ add 1 t o contents of addr
9 1 SWV t! ;

10
11
12 : INIT-#REGS \ I n i t i a l i z e the count registers to 0
13 o t n ! o m ! o x ! O # L ! o t x ! o w ! o t r ! ;
14
15

SCRI 5 SCR# 6
\ Fudge for extended Roman numerals N6 04/18/86 0 \ Count occurences of the numrrals 116 01118186

1
\ The next variable i s t rue i f the fudges 2 : ?ROMAN# (n --- n) \ count an occurence of a roman #
\ J and Y t o I, U t o V, Y t o V t V are on. 3 DDUP ULk ?ASCII= IF #M lt! ELSE
VARIABLE #FUDGE 4 DDUP ULDd ?RSCII= 1F #D It! ELSE

5 DDUP ULCc ?ASCII= IF #C lt! ELSE
: ?FUDGE (--- f) 6 DDUP ULLl ?ASCII= IF t L I+ ! ELSE

#FUDGE Q ; 7 DDUP ULXx ?ASCII= IF # X lt! ELSE
8 DDUP ULVv ?ASCII= IF #L 1+! ELSE

: FUDGE (n f --- 1 \ count occwences of fudged num'ls 9 DDUP ULli ?ASCII= IF # I I+! ELSE
IF 10 THEN THEN THEN THEN THEN THEN THEN ;

DDUP ULUu ?ASCI 1. IF #V it! ELSE 11
DDUP ULYy ?ASCII* IF # I it! ELSE 12 : ?EXTENDED-ROMAN# (n --- n 1 \ also count U, Y, Y
DDUP ULYw ?ASCII= IF 2 #V t! ELSE - \ Y i s twa vws 13 ?ROMAN#

THEN THEN THEN 14 DUP ?FUME (u, y ,w too? 1 I F FUDGE THEN ;
THEN ; 15

SCR# 7 SCRI 8
\ Values of numtrals, calc value of name N6 04/18/86 0 \ Letter discriminators N6 04121186

1 : .PATTERNBESSA6E (--- 1
: PATTERN-SCAN --- 1 2 CR .' Type a 'name' of no more than 80 characters, '

SPAN? Q 0 DO \ fo r each character i n the pattern 3 CR .' including spaces and upper and lower case let ters, '
NAllE I t C t \ fetch i t from the NM-buffer 4 CR .' t h m press (return). ' CR ;
?EXTENDED-ROHAN# \ count i t i f a roman numeral 5
DROP ' \ discard tho character 6 : YES? I char --- f) \ True only i f one of Y or y

LOOP ; 7 DUP ASCl I Y = SYAP ASCII y = OR ;
8

: NUHEER? I --- n) 9 : NO? (char --- f 1 \ Trus only i f one of N w n
\ cumpute value of name from counts stored by the scan 10 DUP ASCIINa SYW ASCI In= OR ;

0 #MP lOOO++ # D C 5 0 0 @ + # C P 1 0 0 + + K # 5 0 + + 11
X I 1 0 t t # V @ 5 + t # I t + i 12 : YES-MI-NO? (char --- f 1 DUP YES? SWAP NO? OR ;

13
14 : YIN-MESSAGE CR CR BEEP
15 .' You rust respond with V or N, then (return)!' CR ;

(Continued on page 27.)

FORTH Dimensions 18 Volume VIII, No. 5

FORTH INTEREST GROUP MAIL ORDER FORM
P.O. Box 8231 San Jose, CA 95155 (408) 277-0668

MEMBERSHIP
IN THE FORTH INTEREST GROUP

108 - MEMBERSHIP in the FORTH INTERESTGROUP &Volume8
of FORTH DIMENSIONS. No sales tax, handling fee or
discount on membership. See the back page of this order
form.

The Forth lnterest Group is a worldwide non-profit member-supported
organization with over 4,000 members and 90 chapters. FIG membership
includes a subscription to the bi-monthly publication, FORTH Dimensions.
FIG also offers its members publication d~scounts, group health and life
insurance, an on-line data base, a large selection of Forth literature, and
many other services. Cost is $30.00 per year for USA, Canada & Mexico; all

other countries may select surface ($37.00) or air ($43.00) delivery. I
The annual membership dues are based on the membership year, which
runs from May 1 to April 30.

When you join, you will receive issues that have already been circulated for
the current volume of Forth Dimensions and subsequent issues will be
mailed to you as they are published.

You will also receive a membership card and number which entitles you to a
10% discount on publications from FIG. Your member number will be
required to receive the discount, so keep it handy.

HOW TO USE THIS FORM
1. Each item you wish to order lists three different Price categories:

Column 1 - USA, Canada, Mexico
Column 2 - Foreign Surface Mail
Column 3 - Foreign Air Mail

2. Select the item and note your price in the space provided

3. After completing your selections enter your order o n the fourth page of this form.

4. Detach the form and return it with your payment to the Forth lnterest Group

FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May - April)
101 - Volume 1 FORTH Dimensions (1 979180)$15116118 -
102 - Volume 2 FORTH Dimensions (1 980181)$15116118 -
103 - Volume 3 FORTH Dimensions (1 981182)$15116/18 -
104 - Volume 4 FORTH Dimensions (1 982/83)$15116118 -
105 - Volume 5 FORTH Dimensions (1 983184)$15116/18 -
106 - Volume 6 FORTH Dimensions (1 984185)$15116118
107 - Volume 7 FORTH Dimensions (1 985/86)$20121 124

ALL 7 VOLUMES $75.00 SAVE $35.00

FORML CONFERENCE PROCEEDINGS
FORML PROCEEDINGS - FORML (the Forth Modification Laboratory) is
an informal forum for sharing and discussing new or unproven proposals
intended to benefit Forth. Proceedings are a compilation of papers and
abstracts presented at the annual conference. FORML is part of the Forth
lnterest Group.
310 -FORML PROCEEDINGS 1980 . . . $30133140

Technical papers on the Forth language and extensions.

31 1 - FORML PROCEEDINGS 1981 . $45148155
Nucleus layer, interactive layer, extensible layer, metacom-
pilation, system development, file systems, other languag-
es, other operating systems, applications and abstracts
without papers.

312 -FORML PROCEEDINGS 1982 . $30133140
Forth machine topics, implementation topics, vectored
execution, system development, file systems and lan-
guages, applications.

31 3 - FORML PROCEEDINGS 1983 . $30133140
Forth in hardware, Forth implementations, future strategy,
programming techniques, arithmetic & floating point, file
systems, coding conventions, functional programming
applications.

31 4 - FORML PROCEEDINGS 1984 . $30133140
Expert systems in Forth, using Forth, philosophy, im-
plementing Forth systems, new directions for Forth, inter-
facing Forth to operating systems, Forth systems tech-
niques, adding local variables to Forth.

31 5 -FORML PROCEEDINGS 1985 . . . $35138145
Also includes papers from the 1985 euroFORML Con-
ference. Applications: expert systems, data collection,
networks. Languages: LISP, LOGO, Prolog, BNF. Style:
coding conventions, phrasing. Software Tools: decom-
p i le r~ , structure charts. Forth internals: Forth computers,
floating point, interrupts, mulitasking, error handling.

Volume VIII, No. 5 19 FORTH Dlmenslons

-

BOOKS ABOUT FORTH
200 -ALL ABOUT FORTH $25126135

Glen B. Haydon
An annotated glossary for MVP Forth; a 79-Standard Forth.

216 -DESIGNING & PROGRAMMING
PERSONAL EXPERT SYSTEMS . . $1 9120129
Carl Townsend & Dennis Feucht
Introductory explanation of Al-Expert System Concepts.
Create your own expert system in Forth. Written in
83-Standard.

21 7 - F83 SOURCE $25126135
Henry Laxen & Michael Perry
A complete listing of F83 including source and shadow
screens. Includes introduction on getting started.

218 -FOOTSTEPS IN AN EMPTY VALLEY
(NC4000 Single Chip Forth Engine) $25126135
Dr. C. H. Ting
A thorough examination and explanation of the NC4000
Forth chip including the complete source to cmForth from
Charles Moore.

21 9 -FORTH: A TEXT AND REFERENCE $22123133
Mahlon G. Kelly & Nicholas Spies
A text book approach to Forth with comprehensive referen-
ces to MMS Forth and the 79 and 83 Forth Standards.

220 -FORTH ENCYCLOPEDIA $25126135
Mitch Derick & Linda Baker
A detailed look at each fig-Forth instruction.

225 -FORTH FUNDAMENTALS, V.l . $1 611 7120
Kevin McCabe
A textbook approach to 79-Standard Forth

230 -FORTH FUNDAMENTALS, V.2 . . $1 311 411 8
Kevin McCabe
A glossary.

232 -FORTH NOTEBOOK $25126135
Dr. C. H. Ting
Good examples and applications. Great learning aid.
PolyFORTH is the dialect used. Some conversion advice is
included. Code is well documented.

233 -FORTH TOOLS $22123132
Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-
based applications.

235 -INSIDE F-83 $25126135
Dr. C. H. Ting
Invaluable for those using F-83.

237 -LEARNING FORTH $1 711 8/27
Margaret A. Armstrong
Interactive text, introduction to the basic concepts of Forth.
Includes section on how to teach children Forth.

240 -MASTERING FORTH $1 811 9122
Anita Anderson & Martin Tracy
A step-by-step tutorial including each of the commands of
the Forth-83 International Standard; with utilities, exten-
sions and numerous examples.

. . . 245 -STARTING FORTH (soft cover) $22123132
Leo Brodie
A lively and highly readable introduction with exercises.

246 -STARTING FORTH (hard cover) . . $20121 130
Leo Brodie

. . . 255 -THINKING FORTH (soft cover) $1 611 7120
Leo Brodie
The sequel to "Starting Forth". An intermediate text on
style and form.

265 -THREADED INTERPRETIVE
. LANGUAGES $25726135

R. G. Loelinger
Step-by-step development of a non-standard 2-80 Forth.

267 -TOOLBOOK OF FORTH
(Dr Dobb's) $23125135

E Edlted by Marlin Ouverson

w Expanded and revlsed verslons of the best Forth art~cles
collected In the pages of Dr Dobb's Journal

270 -UNDERSTANDING FORTH $3 501516
Joseph Reymann
A brlef lntroductlon to Forth and overview of ~ t s structure

ROCHESTER PROCEEDING8
The Institute for Applied Forth Research. Inc. is a non-profit organization
which supports and promotes the application of Forth. It sponsors the
annual Rochester Forth Conference.
321 -ROCHESTER 1981

(Standards Conference) $25128135
79-Standard, implementing Forth, data structures, vocabu-
laries, applications and working group reports.

322 -ROCHESTER 1982
(Data bases & Process Control) . $25128135
Machine independence, project management, data struc-
tures, mathematics and working group reports.

323 -ROCHESTER 1983
(Forth Applications) $25128135
Forth in robotics, graphics, high-speed data acquisition,
real-time problems, file management, Forth-like languages,
new techniques for implementing Forth and working group
reports.

324 -ROCHESTER 1984
(Forth Applications) $25128135
Forth in image analysis, operating systems, Forth chips.
functional programming, real-time applications, cross-
compilation, multi-tasking, new techniques and working
group reports.

325 -ROCHESTER 1 985
(Software Management & Engineering) $20121 130
Improving software productivity, using Forth in a space
shuttle experiment, automation of an airport, development
of MAGICIL, and a Forth-based business applications
language; includes working group reports.

THE JOURNAL OF FORTH APPLICATION & RESEARCH
A refereed techn~cal journal publ~shed by the lnstltute for Appl~ed Forth
Research, Inc
401 -JOURNAL OF FORTH RESEARCH V 1

RobotlcslData Structures $30133138
403 -JOURNAL OF FORTH RESEARCH V.2 # I

Forth Mach~nes $1 511 611 8
404 -JOURNAL OF FORTH RESEARCH V 2 #2

Real-Tlme Systems $1 511 611 8
405 -JOURNAL OF FORTH RESEARCH V 2 #3

Enhancing Forth $1 511 611 8
406 -JOURNAL OF FORTH RESEARCH V 2 #4

Extended Address~ng $1 511 611 8
407 -JOURNAL OF FORTH RESEARCH V 3 # I

Forth-based laboratory systems and data structures
$1 511 611 8

409 -JOURNAL OF FORTH RESEARCH V 3 #3
$1 511 611 8

410 -JOURNAL OF FORTH RESEARCH V 3 #4
$1 511 611 8

FORTH Drmens~ons
-

Volume VIII. No 5

DR. DOBB'S JOURNAL
Th~s magazlne produces an annual spec~al Forth Issue wh~ch ~ncludes
sourcecode l~st~ng for varlous Forth appl~cat~ons
422 -DR DOBB'S 9182 $51617
423 -DR DOBB'S 9/83 $51617
424 -DR DOBB'S 9/84 $51617
425 - DR DOBB'S 1 0185 $51617
426 -DR DOBB'S 7186 $51617

HISTORICAL DOCUMENTS
501 - KITT PEAK PRIMER $25127135

One of the first institutional books on Forth. Of historical
interest.

502 -Fig-FORTH INSTALLATION MANUAL $1 511 611 8
Glossary model editor - We recommend you purchase
this manual when purchasing the sourcecode listing.

503 -USING FORTH
FORTH. Inc.

REFERENCE
305 -FORTH 83-STANDARD $1 511 611 8

The autoritative description of 83-Standard Forth. For
reference, not instruction.

300 -FORTH 79-STANDARD $1 511 611 8
The authoritative description of 79-Standard Forth. Of
historical interest.

REPRINTS
420 -BYTE REPRINTS $51617

Eleven Forth articles and letters to the editor that have
appeared in Byte Magazine.

ASSEMBLY LANGUAGE SOURCE CODE LISTINGS
Assembly Language Source Listings of fig-Forth for Specific CPUs and
machines with compiler security and variable length names.
514 -6502lSEPT 80 $1 511 611 8
515 -6800lMAY 79 $1 511 611 8
516 -6809lJUNE 80 $1 511 611 8
51 7 -8080lSEPT 79 $1 511 611 8
51 8 - 8086188lMARCH 81 $1 511 611 8
519 -99001MARCH 81 $1 511 611 8
521 -APPLE IIIAUG 81 $1 511 611 8
523 - IBM-PCIM ARCH 84 $1 511 611 8
526 -PDP-I 1 /JAN 80 $1 511 611 8
527 -VAX/OCT 82 $1 511 6/18
528 -Z80/SEPT 82 $1 511 611 8

MISCELLANEOUS
601 -T-SHIRT SIZE

Small, Medlum, Large and Extra-Large
Wh~te design on a dark blue shirt. $1 011 111 2

602 -POSTER (BYTE Cover) $51617
616 -HANDY REFERENCE CARD FREE
683 -FORTH-83 HANDY REFERENCE CARD FREE

FORTH MODEL LIBRARY
The model applications disks described below are new additions to the
Forth Interest Group's library. These disks are the first releases of new
professionally developed Forth applications disks. Prepared on 5 114"
disks, they are IBM MSDOS 2.0 and up compatible. The disks are
compatible with Forth-83 systems currently available from several Forth
vendors. Macintosh 3 112" disks are available for MasterFORTH systems
only.

Forth-83 Compatibility IBM MSDOS
LaxenlPerry F83 LMI PCIFORTH 3.0
MasterFORTH 1.0 TaskFORTH 1.0
PolyFORTHQ II

Forth-83 Compatibility Macintosh
MasterFORTH

ORDERING INFORMATION
701 - A FORTH LIST HANDLER V.l . $40143145

by Martin J. Tracy
Forth is extended with list primitives to provide a flexible
high-speed environment for artificial intelligence. ELlSA
and Winston & Horn's micro-LISP are included as ex-
amples. Documentation is included on the disk.

702 -A FORTH SPREADSHEET V.2 . . $40143145
by Craig A. Lindley
This model spreadsheet first appeared in Forth Dimensions
Volume 7, Issue 1 and 2. These issues contain the
documentation for this disk.

703 -AUTOMATIC STRUCTURE CHARTS V.3 $40143145
by Kim R. Harris
These tools for the analysis of large Forth programs were first
presented at the 1985 FORML conference. Program docu-
mentation is contained in the 1985 FORML Proceedings.

Please specify disk size when ordering

Volume VIII, NO. 5 2 1 FORTH D~rnenstons

A Simple Translator:

Tinycase
Alien An way

Superior, Wisconsin

I recently wrote several menu-driven
programs and observed the following:
frequently, the operator must press a
key for the desired response, but the
programmer wants a value output
other than that of the pressed key.
Thus, the programmer must translate
an arbitrary ASCII keystroke into
another arbitrary number. If program-
med once, the CASE structure is a good
solution because of its clear, easy-to-
change structure. If programmed of-
ten, CASE and all of its branches con-
sume quite a few bytes.

So I wrote the compact TINYCASE to
inspect a similarly ordered-array of
sixteen-bit numbers for matches and to
output to the stack the translated num-
ber when a match is found. If no match
is found, it outputs a default number,
just as can be done in CASE. Screens 80
and 81 show TINYCASE implemented
both in high-level Forth and in ;CODE
assembler. The high-level BEGIN . . .
WHILE . . . UNTIL construction comes
from the remarkable article by Harral-
son (Forth Dimensions VI/2). It takes
some stack gymnastics for the high-
level word to work out, so the ;CODE
word is much preferred both for rea-
sonable compactness and for blazing
speed.

Screen 83 shows identical examples
of TEST1 and TEST2 with stack effects
of (#entered -- #result). One must tell
TINYCASE in advance how many groups
there will be, four in this case. One
does not have to put in a default value,
negative twelve in this case. But lacking
such only means that if one enters the
TINYCASE default condition, one most
likely will get part of the header of the
next word in the dictionary. CASE must
explicitly have a default or no other
number will be put on the stack.

Both TESTI and TEST2 operate as
follows:

2 TEST1 . 234 ok
3 TEST1 . -12 ok
97 TEST1 . 979 0k

SCR X 80
0 (Y 080) (T INYCASE p r o g r a m) FORTH-83
1 (A 1 1en h w a y , UW-Super1 or 4 -1 -85)

2
3 : TINYCASE CREATE 4 * 2- , DOES>
4
5 (# e n t e r e d \ p f a)

6
7 DUP @ >R - 4
8
9 BEG1 N

10
11 6 + ZDUP + 8 3 P I C K -
12
13 WHILE
14
15 2- DUP RB U >
16
1 7 U N T I L
18
19 RDROP 2+ + B SWAP DROP (# r e s u l t) ;
20
21 ;s
22 c o m p i l e (X - o f - t e s t s ---
23 e x e c u t e (# e n t e r e d --- X r e s u l t)

SCR # 81
0 (# 081) (TINYCASE p r o g r a m)

1 HEX
2
3 : TINYCASE CREATE 4 it , ;CODE
4
5 2 .Y LDY, W) Y LDA, N STA, INY,
6 BEGIN, INY,
7 W j Y L D A , I N Y , B O T CMP,
8 ZS IF, (<BNE> type of b r a n c h)

9 W) Y LDA, BOT 1+ SBC,
10 THEN,
11 O 6 F 0 , (b r a n c h) INY, INY, N C P Y ,
12 CS UNTIL , (<BCC> type of branch)

13 (b r a n c h here f r o m F O 06 <BEQ +O6>)

14 INY,
15 W) Y LDA, pm, INY,
6 W) Y LDCI, PUT JHP, END-CODE
17
18 DECIBAL
19
20 -->
2 1
22 c o m p i l e (# - o f - t e s t s ---)

23 e x u u t e (Y e n t m r e d --- # r e s u l t)

SCR X 82
0 (# 082) (TINYCASE e x a m p l e)

1
2 4 TINYCASE TEST1 2 , 234 ,
3 7 , 789 ,
4 18 , 181 ,
5 97 , 979 ,
6 -12 ,
7
8
9 (30 bytes of c o d e t o t a l , 10 of header)

10
11
12
13 : TEST2 CASE 2 OF 234 ENDOF
14 7 OF 789 ENDOF
15 18 OF 181 ENDOF
16 97 OF 979 ENDOF
17 (a l t e r n a t e l y DUP OF -12 ENDOF)

18 -12 SWAP
19 ENDCASE ;
20
21 (77 bytes of c o d e to ta l , 10 of header)

22

Volume VIII. NO. 5 23 FORTH Dlmens~ons

Classes in Forth
Vince D. Kimball

Ipswich, Massachusetts

If one wishes to d o object-oriented
programming in Forth, one must first
add the class concept to the language.
A ~orth-like'solution to the problem, a
minor modification of the vocabulary
concept, is proposed.

Overview

The principles of transparency and
localization seem to be central to the
current interest in object-oriented pro-
gramming. Transparency emphasizes
the wish to use generic operators across
data structures, and localization em-
phasizes the desire to partition a group
of data structures and operations upon
them into a separate entity which may
be understood more or less on its own.
Currently, Forth does not seem to
support these principles in any direct
way. Multiple-code-field words are a
first step toward generic operators, but
they are flawed for general use in that
they do not allow adding to the original
class of operators to be used with a
given data structure. They are useful,
however, for the very basic operators
which are common to most data struc-
tures. Vocabularies seem to provide
localization, but at present they are
insufficient to the task because they d o
not allow easy mixing of different
vocabularies or the explicit specifica-
tion of linkages among vocabularies.

If we accept these principles as use-
ful but want to retain the flexibility and
performance of Forth, we must dis-
cover how to add structures to Forth to
support them without making Forth
into a pale echo of Smalltalk. The
proposed solution is to implement the
class as a modified vocabulary and to
enable the use of the class name as a
prefix operator for modifying the dic-
tionary search sequence. 1 believe that
this unique concept will provide the
power of object-oriented programming
without sacrificing any of Forth.

Plan

An extremely simple method of add-
ing classes to Forth involves the use of
Forth's built-in vocabulary system as a
foundation. The addition of six new
words plus a modification of Forth's
dictionary lookup sequence will pro-
vide the core of object programming
while maintaining the idiom and flexi-
bility of Forth. The first three new
words CLASS, CLASS@ and <SUPER
allow for the definition of classes. The
last three new words CLASSVAR, DEFER
and CLASS> ~ r o v i d e the useful abilitv
to defer binding the name of a class tb
a word until run time. Other words
may suggest themselves as more ex-
perience with this style of program-
ming is gathered.

Class Definition Words

Classes would be defined according
to the following form:

CLASS ClassName
<SUPER SuperClassName
CLASS@ ClassName DEFINITIONS

(definitions in class ClassName)
FORTH DEFINITIONS

The word CLASS would create (in the
compilation vocabulary) a dictionary
entry for ClassName which specifies a
new list of word definitions forming
the class being defined. Subsequent
execution of ClassName will be as a
prefix operator making the words in
the class the first part of the search
order during the next dictionary look-
up. Thus, the phrase "ClassName
WordName" would find the word
WordName in the class ClassName, if
there was one, and the search order
would be the same after the phrase as it
was before it. The word <SUPER would
be used to indicate the superclass of the
class just defined. It would chain the
class indicated by ClassName to the
class indicated by SuperClassName.
When a dictionary search of Class-
Name is exhausted, SuperClassName
would be searched. Those classes with-
out superclasses could be declared as

CLASS ClassName <SUPER Object

The Object class would be the prim-
ary class, holding definitions common
to all classes. Classes defined without
using the <SUPER word would not be
chained to any superclass, which might
be useful in some cases. The word
CLASS@ would be used in the phrase
"CLASS@ ClassName" to make the
following class name the first vocabu-
lary in the regular search order, rather
than the active class as it normally is.

Class Variables and
Deferred Binding

As defined above, the class of an
object must be known when the word
involved is defined. In some cases it
may be convenient not to have to
specify the name of a class in advance.
This ability is provided by employing
the following phrase:
ClassVarName DEFER WordName

When this phrase is executed, Word-
Name is looked up in the vocabulary in
the class which is currently referenced
by ClassVarName and then is exe-
cuted. This lookup will take a certain
amount of time, but the increase in
flexibility may be worthwhile at times.
It would be an error if WordName is
undefined at run time, of course.

Class variables are defined by using
the standard form:

CLASSVAR ClassVarName

This phrase would define a null class
variable which would have to be as-
signed a real class to be of use. Unlike
classes, class variables are not consid-
ered prefix operators because they ex-
ecute at run time to provide informa-
tion to DEFER. The method of assigning
a class to a class variable had perhaps
be best left to the discretion of the
implementor, although the following
form may be satisfactory:

CLASS> ClassName ClassVarName

The difficulty in implementing this
operation is ensuring that ClassName
is not executed as a prefix operator.

FORTH Dimensions 24 Volume VIII. No. 5

Dictionary Lookup

The final change to Forth to provide
classes would be to modify its diction-
ary lookup sequence in order to enable
the use of class names as prefix opera-
tors which modify the search order
only on a temporary basis. The im-
plementation of this new lookup se-
quence would seem to require that there
be an ACTIVECLASS vocabulary to be
searched before CONTEXT and CURENT.
The execution of a class name would
patch the ACTIVECLASS variable to al-
low searching the appropriate class.
At the end of the search order, the
ACTIVECLASS vocabulary would be set
null. This implementation should not
conflict with any other special vocabu-
lary constructs, such as ONLY.

Application and Implementation

The general use for classes is to
organize the dictionary according to
the types of objects being used. For
example, one could use the phrases
"SINGLE +" to add single-length inte-
gers, "DOUBLE +" to add double-length
integers and "FLOAT + " to add floating-
point numbers if the classes SINGLE,
DOUBLE and FLOAT had been defined to
describe single-length integers, double-
length integers and floating-point num-
bers respectively. Figure One lists the
code for the same sample application
which is used in the Smalltalk book. I
have used the ONLY concept to avoid the
necessity of writing SINGLE before each
of the single-length operations, and I
have left the implementation of an in-
teger dictionary class to the readers. The
example uses three operations from the
IntDictionary class: (I) at to access the
value corresponding to a certain code;
(2) isAt to store a value corresponding to
a certain code; and (3) new to create a
new IntDictionary given the maximum
number of codes involved. The Forth
code and the usage examples should be
relatively straightforward. However, it
may be useful to point out that the
words corresponding to the dictionary
codes for income and expense categories
are not defined in the example; these
definitions are not essential to under-
standing the example and are of the
form

codevalue CONSTANT codeName

Figure Two lists the code for imple-
menting the words I have proposed
under the Laxen/Perry F83 model. The
code should be relatively straightfor-
ward, so I will only review some of the
more challenging sections. The CLASS
defining word produces a dictionary
entry similar to that of the VOCABU-
LARY defining word with the addition
of space for a pointer to the class's
superclass and a different run-time

action. DEFER compiles the code ad-
dress of its run-time word (DEFER) and
a counted string representation of the
word which follows it in the input
stream. (DEFER) extracts the address of
the string which follows it, moves the
instruction pointer past the string,
looks up the word in the dictionary and
either executes it or types an error
message a n d aborts. FIND is modified
by the addition of a call to SEARCH-
CLASS before searching the CONTEXT
and CURRENT vocabularies if the word

ONLY FORTH ALSO CLASS3 SINGLE

CLASS F i n a n c i a l H i s t o r y <SUPER Ob jec t
CLASS3 F i n a n c i a l H i s t o r r DEFINITIONS

: cashOnHand (S ' h i s t -- ' n 11

: incomes !S ' h i s t -- 'diet 1 Z+ a ;
: expend i t u res I S ' h i s t -- ' d i c t :) 4 + 3 ;

: i n i t i a l B a l a n c e i S ' d i c t l ' d i c t ? n -- j

CREATE , SWAP ? , ;
: new i s ' d i c t l '

CREATE 0 , SWAP , ! :

: totalReceivedFrclm ,S code h i s t -- n
incomes I n t D i c t i o n a r : ? a t :

: t o t a l SpentFor (S code h i s t -- n :)

e xpend i t u res I n t D i c t i o n a r y a t :

: r e c e i v e i iS code n h i s t -- :I

2DUP cashOnHand + !
SWAP i R 2DUP totalReceivedFrorn R > + SWAP
incomes I n t D i c t i o n a r y i s A t :

: spend I S code n h i s t -- 1)
OVER NEGATE OVER cashOnHand + !
SWAP > R ZDUP to ta lSpen tFo r R:: + SWAP
expendi t u r e s I n t D i c t i ona ry i s A t ;

FORTH DEFINITIONS

100 I n t D i c t i o n a r y new Houseincome
100 I n t D i c t i o n a r y new HouseExpenses
ONLY FORTH ALSO CLASS@ F i n a n c i a l H i s t o r y
Houselncome HouseExpenses 350 i n i t i a l B a l a n c e Household
u t i l i t i e s 32 Household spend
f ood 30 Household spend
r e n t 400 Household spend
wages 1000 Household rece i ve
taxRef und 200 Household rece i v e
Household cashOnHand @ .

Figure One
Example Application

Volume VIII, No. 5 25 FORTH D~rnensions

is not found in the active class and by
the addition of code to set the active
class to null at the end of the search
process. SEARCHCLASS simply follows
the class's superclass chain while
calling (FIND) to search each class's
linked list of words along the way.

One possible concern in implementing
this proposal is that it introduces another
kind of prefix. operator to the code-field
prefix operators already proposed with

multiple-code-field words. One might
run into situations where a phrase of
the form "Codeprefix ClassName
WordName" must be handled. The
implementor must ensure that the pre-
fix operators act properly without in-
terfering with each other. One would
not want to try to execute the nonexis-
tent second code field of ClassName,
for instance. A simple solution would
be to implement the code field prefix

VARIABLE ACTIVECLASS C p o i n t e r t o c l a s s t o b e s e a r c h e d i
VARIABLE NEWCLASS I p o i n t e r t o c l a s s b e i n g d e f i n e d i
#THREADS 2 + 2+ CONSTANT 'SUPER I o f f s e t t o s u p e r c l a s s p t r . i

I 0 ACTIUECLASS ! I
C l a s s D e f i n i t i o n W o r d s I
: CLASS (S --)

CREATE IMMEDIATE HERE NEWCLASS '
#THREADS 0 DO 0 , LOOP
HERE VOC-LINK 3 , 'JOC-LINK ! 0 ,
DOES:} ACTIVECLASS ! ;

: <SUPER i S -- :)

' >BODY NEWCLASS 3 'SUPER + ! ;
: CLASS3 (S -- :)

' >BODY CONTEXT ! :

: CLASSl.,)AE < 3 -- :I

CREATE 0 ,
DOES:} a ACTIVECLASS ! :

: CLASS:} (s -- . 1

' >BODY ' :?BODY ! ;
: !DEFER:! (S -- i

R> COUNT 2DUP + >R DROP F I N D I F EXECUTE
ELSE COUNT TYPE TRUE ABORT" i s u n d e f i n e d . " THEN ;

: DEFER I s -- >
COMPILE (DEFER! BL WORD C3 1+ ALLOT ; IMMEDIATE

I C l a s s V a r i a b l e s

D i c t i o n a r y L o o K u p M o d i f i c a t i o n s I

I

: SEARCHCLASS I S a d d r -- c f a f l a g I a d d r f a l s e i
FALSE BEGIN

DUP ACTIVECLASS 3 SWAP O= OVER AND WHILE
DUP 'SUPER + a ACTIVECLASS !
SWAP DROP OVER SWAP HASH 3 (F I N D)

REPEAT ;
: F I N D (S a d d r -- c f a f l a g i a d d r f a l s e)

SEARCHCLASS DUP O= I F
i F I N D a s d e f i n e d i n F 8 3 1)

THEN 0 ACTIUECLASS ! ;
Figure Two

Example Implementation

operators so that they check for inter-
vening class prefix operators or so that
the code-field prefix operator sets a
system variable which is referred to in
determining which code field of a
multiple-code-field word to execute;
there &re many ways that this might be
done. It seems logical to require that
there be no intervening prefix opera-
tors between the class name and the
word name.

An Open Question

One of the most difficult questions
to answer in the object-oriented pro-
gramming model concerns the han-
dling of generic classes of composite
objects, such as arrays or stacks. How
can one efficiently implement a generic
array class where subclasses may be
simply instantiated for byte arrays, bit
arrays, double-length arrays or multi-
dimensional arrays of these as they are
needed? The solutions I have seen
written in Smalltalk seem to be rather
inefficient. Charles Moore did not in-
clude an ARRAY word in his initial
design of Forth for basically this
reasoli. I am considering several tech-
niques, but perhaps someone out there
already has a solution.

Conclusion

The principal benefit of the pro-
posed approach is that it seems to solve
the perceived problems without dras-
tically complicating or changing the
present character of Forth. Marriages
of Forth and Smalltalk such as Kriya
Systems's Neon provide more of
Smalltalk's explicit structure at the
expense of Forth's flexibility. I find
that approach to be overly complex,
although I should express my thanks to
the implementors of Neon for provok-
ing me to think about this subject.
Ultimately, in the author's opinion, the
responsibility for the production of
elegant, clear and powerful software
rests with the programmer. A language
should provide a few simple yet power-
ful and carefully integrated constructs;
the discipline and imagination of the
programmer provide the rest.

-

FORTH D~rnens~ons 26 Volume VIII, No. 5

Bibliography
1. Duff, Charles and Norman Iver-

son. "Forth Meets Smalltalk" in
Journal of Forth Application and
Research. Vol. 2, no. 3, pp. 7-26.

2. Goldberg, Adele and David Rob-
son. Smalltalk-80: The Language
and its Implementation. Reading,
MA: Addison-Wesley Publishing
Company, 1983.

3. Lyons, George. "Type Declara-
tions" in 1980 FORML Proceed-
ings. pp. 72-74.

4. Moore, Charles. Interview on fac-
torization in Leo Brodie. Thinking
Forth. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1984. pp.
196-197.

5. Laxen, Henry and Michael Perry.
Forth-83 Implementation Model.

6 . Perry, Michael. "Vocabulary
Mechanisms in Forth" in 1980
FORML Proceedings. pp. 39-41.

7. Ragsdale, William. "The ONLY
Concept for Vocabularies" in 1982
FORML Proceedings. pp. 109-1 16.

8. Rosen, Evan. "High Speed, Low
Memory Consumption Structures"
in 1982 FORML Proceedings. pp.
191-196.

(Continued from page 18.)

SCRt 9 SCRI 10
\ Pattern and fudge handlers N6 04/21/86 0 \ Constant of the Beast N6 04118186

1
: FUDGE-MESSAGE I --- 2 666 CONSTANT BEASTI \ The k a r t revealed!!!

CR .' Shall U&U Ivre), Y&y (eyr), m d Uu I t r o veesl ' 3 .' be counted? IYIN); ' 1 4 : THE-BEAST? (n --- f) \ True i f the nwber i s The Beast)
5 BEASTI = ;

: COAX-IFUDGE I --- I \ prorpt user 6
BEGIN FUDGE-MESSA6E KEY DUP EHIT DUP YES-OR-NO? 7 : PROCLAIM I f --- 1 \ Announcing the discovery

IF YES? (FUDGE ! TRUE \ yes?, then fudge on 8 DARK BEEP CR CR CR 5 SPKES
ELSE DROP Y1N-HESSAGE FALSE \ inva l id response 9 .' Tho number of ' NAME SPAN? t TYPE SPACE .' i s 666,' CR
THEN 10 .' th r nurbw of The Beast of the Book of Rrvelation!'

UNTIL ; 11 12ODO CR LOOP ;
12

: COAX-PATTERN --- I 13 : PLOP (addr --- n 1 t WP 3 .R SPACE ;
.PATTERN-MESSAGE I prorpt) READNAME I receive n a r) 14
CR COAX-#FUDGE I also fudged nur ' l s I 1 15 1 FLOP I n --- 1 * S.RCR 1

SCRI 11 SCRt 12
\ Pr in t analysis of nare N8 04/lB/86 0 \ Ward t o c a l l t h r Brast N6 04/21/86

1
: ANALYZE 2 r DONE? I --- f I \ False means another t r y
\ Pr int formatted analysis of the pattern name 3 BEGIN CR .' Another nare? (VlNI: ' KEY DUP EHlT

CR CR HAHE SPAN? t TYPE ASCII r EMIT CR CR 4 WP YES-OR-NO? NOT WHILE VIM-HESSA6E REPEAT
M PLOP .' H s =' 1000 FLOP 5 CR YES? NOT ;
t D PLOP .' IDS =' 500 FLOP 6
I C PLOP .' ICs =' 100 FLOP 7 : BEAST? \ Runs the analysis. User is prompted during LOADing.
I L PLOP .' tLs a' 50 FLOP 8 BEGIN
t X PLOP .' tXs =' 10 FLOP 9 INIT-#REGS
t V PLOP .' IVs =' 5 FLOP 10 COAX-PATTERN PATTERN-SCAN
(1 PLOP .' # Is =' 1 FLOP 11 NUMBER? DUP THE-BEAST?
10 SPKES 4 0 DO ASCII - EMIT LOOP CR 12 IF DROP PROCLAIM ELSE ANALYZE THEN
14 .R CR 1 13 DONE?

14 UNTIL
15 CR CR CR CR .' DONE!' 12 0 DO CR LOOP ;

Volume VIII, NO. 5 27 FORTH Dlmens~ons

NGS FORTH
A FAST mm,
OPTIMIZED MIR THE IBM
PERSONAL COMH7TER AND
MS-DOS COMPATIBLES.

INCLUDE:

a79 STANDARD

*DIRECT 1/0 ACCESS

*FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

*ENVIRONMENT SAVE
& LOAD

.MULTI-SEGMENTED FOR
LARGE APPLICATIONS

.EXTENDED ADDRESSING

.MEMORY ALLL)CATION
CONFIGURABLE ON-LINE

.AUTO IDAD SCREEN BOOT

*LINE & SCREEN EDITORS

*DECOMPILER AND
DEBUGGING AIDS

W088 ASSEMBLER

GRAPHICS & SOUND

mNGS ENHANCEMENTS

mDETAIIJ3D MANUAL

*INEXPENSIVE UPGRADES

A C O M P W E FORTH
DEVELoPMEm SYSTEM.

PRICES BTART AT $70

NEW+BP-150 & HP-110
VERSIONS AVAILABLE

NEXT GENERATION SYSTEM1
PoOoBOX 2 9 8 7
SANTA CLARA, CA. 9 5 0 5 5

ATTENTION FORTH AUTHORS!
Author Recognition Program

To recognize and reward authors of Forth-related articles, the
Forth lnterest Group adopted the following Author Recognition
Program, effective October 1, 1984.

Articles
The author of any Forth-related article published in a periodi-

cal or in the proceedings of a non-Forth conference is awarded
one year's membership in the Forth lnterest Group, subject to
these conditions:

a. The membership awarded is for the membership year
following the one during which the article was published.

b. Only one membership per person is awarded in any year,
regardless of the number of articles the person published in
that year.

c. The article's length must be one page or more in the
magazine in which it was published.

d. The author must submit the printed article (photocopies
are accepted) to the Forth lnterest Group, including identifica-
tion of the magazine and issue in which it appeared, within
sixty days of publication. In return, the author will be sent a
coupon good for the following year's membership.

e. If the original article was published in a language other
than English, the article must be accompanied by an English
translation.

f. Articles are eligible under this program only if they were
first published after October 1, 1984.

Letters to the Editor
Letters to the editor are, in effect, "mini-articles," and so

deserve recognition. The author of any Forth-related letter to an
editor published in any magazine except Forth Dimensions, is
awarded $10 credit toward FIG membership fees, subject to
these conditions:

a. The credit applies only to membership fees for the mem-
bership year following the one in which the letter was
published.

b. The maximum award in any year to any person will not ex-
ceed the full cost of the membership fee for the following year.

c. The author must submit to the Forth lnterest Group a
photocopy of the printed letter, including identification of the
magazine and issue in which it appeared, within sixty days of
publication. The author will then be sent a coupon worth $10
toward the following year's membership.

d. If the original letter was published in a language other
than English, the letter must be accompanied by an English
translation.

e. Letters are eligible under this program only if they were
first published after October 1, 1984.

FORTH Dimensions 28 Volume VIII, No. 5

Ultimate CASE Statement
Wil Baden

Costa Mesa, California

Many citizens of the Forth commun-
ity have lamented the lack of a CASE
statement in standard Forth language
specifications. Since the first rule of
Forth programming is, "If you don't
like it, change it," there have been
many proposals, and Forth Dimen-
sions even held The Great CASE Con-
test in Volume 11. Although the win-
ning entry of that contest, submitted
by Charles Eaker, has been widely
implemented and even offered as part
of many vendors' systems, the flood of
proposals has not ceased. There have
been many articles and letters on the
subject in Forth Dimensions.

All proposals to date have had
problems. Portability is one. Another
is that they all have been too
specialized and restricted in their area
of application. Generalization is
accomplished by designing another
special case of CASE.

Strictly speaking, a CASE statement
is unnecessary. It is "syntactic sugar"
to make a program easier to write, read
and understand. It is so helpful in
doing this that it is a standard feature
of all other modern programming lan-
guages.

Figure One-a is a rather futile pro-
gram written in C to illustrate a com-
mon pattern of logical decisions in
many programs. (" = = " is "equal
to" for comparing two things, to dis-
tinguish it from " =" for assignment
as in Fortran or Basic.) An equivalent
Forth version would look something
like Figure One-b.

Most people will agree that Figure
One-a would be better written as in
Figure Two-a. An even better way is
found in some dialects of C, illustrated
by Figure Two-b. In this extension,
following syntax from Pascal, values
separated by "," indicate a set of
values, and values separated by " . . "
indicate a range.

Some Forth proposals have one def-
inition for individual values and anoth-
er definition for a range of values.
There would have to be another defini-
tion for a set of values. No earlier

Forth proposal that I know of allows
sets and ranges together, as in:

case 2 . .3, 12:

What is proposed here is a single
CASE statement for Forth which will
include all these variations, and many
more, that can be implemented in fig-
FORTH, Forth-79, Forth-83 and any
other Forth.

Figure Two-a would look as shown
in Figure Three. Let's add two more
spoons of syntactic sugar, as in Figure

Four. As has been noted elsewhere, too
much syntactic sugar causes semantic
diabetes. Our CASE is sweet enough.
Figure Five is an example to show some
of the possibilities.

Now for a real life example. Figure
Six is a recension of a word in John
James' "Universal Text File Reader"
(Forth Dimensions VII/3). One of my
favorite examples is "Thirty days hath
September, April, June and November
. . . ." See Figure Seven.

If NUMBER in your system is vectored,
you may want to replace it in some

craps (n)
int n;

if (n == 7)
printf ("You win") ;

else if (n == 11)
printf ("You win" ;

else if (n == 2)
printf ("You losen) ;

else if (n == 3)
printf ("You lose") ;

else if (n == 12)
printf ("You losen) ;

else print£("%d is your pointn,n);
1

Figure One-a

: CRAPS (n --)
DUP 7 =
I F DROP ." You winn
ELSE DUP 11 =

I F DROP ." You winn
ELSE DUP 2 =

I F DROP ." You losen
ELSE DUP 3 =

I F DROP ." You losen
ELSE DUP 12 =

I F DROP ." YOU win"
ELSE . ." is your pointn THEN

THEN THEN THEN THEN THEN ;

Figure One-b

craps (n)
int (n);

switch(n) I
case 7: printf("You win"); break;
case 11: print£("You winn); break;
case 2: printf ("You losen) ; break;
case 3: printf("You lose"); break;
case 12: print£("You lose"); break;
default: print£("%d is your pointn,n);
1

Figure Two-a

Volume VIII. No 5 29 FORTH D~mens~ons

' FOR TRS-80 MODELS 1,3,4,4P
IBM PC/XT, AT&T 8300, ETC. 1
DATABASE I
WITHOUT THE WAIT!

DATAHANDLER and DATAHANDLER-PLUS are
fast, easy database programs which accept any
length of field, sort and key on any fields, never pad
with usel898 blanks. And they integratewith FORTH-
WRITE, FORTHCOM, and the rest of the MMS-
FORTH System

The power, speed and compactness of MMSFORTH
drlve these major appi~catcons for many of YOUR
home, school and business tasks! lmagineasopMs-
ticated database management system with flexibii-
~ t y to create, maintain and pnnt mailing tiits with
mult~pie address lines, Canadian or %digit US. ZIP
code8 and multiple phone numbers, plus the speed
to load hundreds of records or sort them on several
fleids In 5 secondsl Manage Inventories with setec-
tton by any character or combtnatlon. Balance
checkbook records and do CONDlTiONAL report-
ing of expenses or other calculations. Fife any
records and recall selected ones with optional
upper/lower case match. in standard or custom
formats. Personnel, membership lists, bibtiogra-
phies, catalogs of record, stamp and coin coilec-
tions-you name it1 All INSTANTLY, withoutwasted
bytes, and wlth cueing from screen so good that
non-progremmersqu~ckly master its usel With man-
ual, sample data files and custom words tor mall list
and checkbook use.

DATAHANDLER IS available on all MMSFORTH
Systems, ustls 64K or less of memory, and includes
sourcecode. DATAHANDLER-PLUSrequices MMS-
FORTH for IBM PC, uses all but 64K of available
RAM for large-file buffering, and adds advanced
features. active editing wlndow. optimal sprsed-
sheet data dlsplay, user-trainable function keys.
and much more.

and

c r a p s (n)
i n t n ;
I s w i t c h (n 1 {

c a s e 7 , 11: p r i n t f (" Y o u w i n ") ; b r e a k ;
c a s e 2 . . 3 , 1 2 : p r i n t f ("You l o s e n) ; b r e a k ;
d e f a u l t : p r i n t f (" % d i s y o u r p o i n t n , n) ;
1

1
Figure Two-b

I : CASE DUP ;

: CRAPS (n --)
CASE 7 = I F DROP ." You w i n " E X I T THEN
CASE 11 = I F DROP ." You w i n " E X I T THEN
CASE 2 = I F DROP ." You l o s e n E X I T THEN
CASE 3 = I F DROP ." You l o s e n E X I T THEN
CASE 1 2 = I F DROP ." You l o s e n E X I T THEN . ." i s y o u r p o i n t " ;

Figure Three

DATAHANDLE'PLUS

The total softwareenvironment for
IBM PC/XT, TRS-80 Model 7,3,4
and close friends.
*Personal License (required):

. WWSMRTH Vzt Sp@m OU SlZa11
(TRSO Modal t raqUinr ~wUW. WW, t 40-WeCk d h ,)

*Personal License (additional modules):
. . . . FORTHCCHI communic8IloM module $ 48.95

UTILITIES 48.~1
. WuEs 39s

. EXPERT-2 expert ~ystem 6S.H
. DATAMANDLm JPW

DATWIIWR-PLUS (PC only. 128K W.) 99-06
. FORTHWRfTe word promwr a11

*Corporate Site License
Extensions hwn trm

*Bulk Distribution . . . t r o m ~ ~ u n b

*Some recommended Forth books:
. . . . FORTRATEXT&REF.(berttexP) $18.11
. . . THIMINO FORTH (best ontechnique) 16.06

. STARTINO FORTH (popu!artexI) 1@.95
Shipping/hdndllng 6. tax extra. No returns on software.
Ask your dealer to show you the world of

MMSFORTH, or request our free brochure.
MILLER MICROCOMPUTER SERVICES
61 Lake Shore Rord, Natick, MA 01780

(81 7) 653.61 36

FpRTH Olmenslons

: O F (n f l a g --) [C O M P I L E I I F COMPILE DROP ; IMMEDIATE
: =OR (n f l a g n -- n f l a g) 2 P I C K = OR ;

: CRAPS (n --)
CASE 7 = 11 =OR O F ." You w i n " E X I T THEN
CASE 2 3 BETWEEN 1 2 =OR O F ." You l o s e " E X I T THEN . ." i s y o u r p o i n t " ;

Figure Four

: WHATEVER (n --1
C A S E O =
CASE O<
CASE DUP 1- AND O=

O F ." Z e r o " E X I T THEN
O F ." N e g a t i v e " E X I T THEN
O F ." Power o f 2" E X I T THEN

CASE A S C I I 0 A S C I I 9 BETWEEN O F ." D i g i t " E X I T THEN
CASE A S C I I , A S C I I / BETWEEN

A S C I I : =OR O F ." P u n c t u a t i o n ,-./: " E X I T THEN
DROP . " W h a t e v e r " ;

Figure Five

: ?OUT (c -- 1 1 2 7 AND
CASE 0= 13 (r e t u r n) =OR

O F ?NEW-LINE E X I T THEN
CASE 1 0 (l i n e f e e d) = 1 2 (f o r m f e e d) =OR

O F #BLANK-LINES @ 0 =
I F ?NEW-LINE THEN
E X I T THEN

0 #BLANK-LINES 1
CASE 32 <

O F (D o n o t h i n g .) E X I T THEN
E M I T ;

I : LEAPYEAR? (-- t f : t r u e w h e n t h e y e a r i s a l eap y e a r .) - -

I #Y:EE@400 MOD O= OF TRUE E X I T THEN
CASE 1 0 0 MOD O= OF FALSE E X I T THEN
CASE 4 MOD O= OF TRUE E X I T THEN
DROP FALSE ;

: DAYS (m o n t h # -- d a y s - i n - m o n t h
CASE 9 = 4 =OR 6 =OR 11 =OR OF 3 0 E X I T THEN
CASE 2 = NOT OF 31 E X I T THEN
DROP LEAPYEAR? I F 2 9 ELSE 2 8 THEN ;

I Figure Seven

: CBASE! (a c -- a ')
CASE A S C I I $ = OF HEX 1 + E X I T THEN
CASE A S C I I @ = OF OCTAL 1 + E X I T T H E N
CASE A S C I I % = OF BINARY 1 + E X I T THEN
CASE A S C I I & = OF DECIMAL 1 + E X I T THEN
DROP ;

: BASE-NUMBER (a -- d 1
BASE @ >R DUP 1 + C @ CBASE!
NUMBER? R > BASE ! O= ABORTn ?" ;

Figure Eight

HEX
: CLASSIFY (n --

CASE 2 0 < 7 F =OR OF ." C o n t r o l c h a r a c t e r " E X I T THEN
CASE 2 0 2 F BETWEEN
OVER 3 A 4 0 BETWEEN OR
OVER 5 B 6 0 BETWEEN OR
OVER 7 B 7 E BETWEEN OR OF ." P u n c t u a t i o n n E X I T THEN
CASE 3 0 3 9 BETWEEN OF ." D i g i t n E X I T THEN
CASE 4 1 5 A BETWEEN OF ." U p p e r case l e t t e r n E X I T THEN
CASE 6 1 7 A BETWEEN OF ." L o w e r case l e t t e r n E X I T THEN
DROP ." N o t a c h a r a c t e r n ;

Figure Nine

CREATE CASE ' DUP (CFA) @ ' CASE (CFA 1 !

Figure Ten-a

: =OR (n t f n -- n t f) 3 P I C K = OR ;

Figure Ten-b

: =OR (n t f n -- n t f) >R OVER R > = OR ;

Figure Ten-c

: WITHIN (n n l n 2 -- t f : t r u e w h e n n l <= n & n < n 2 .)
OVER - >R - R > U< ;

: BETWEEN (n n l n 2 -- t f : t r u e w h e n n l <= n & n <= n 2 .)
WITHIN 1 + ;

: A S C I I (A c -- c : i n t e g e r v a lue o f c h a r a c t e r c .)
BL WORD COUNT 1- ABORTn ?" C @ STATE @
I F [COMPILE] LITERAL THEN ; IMMEDIATE

Figure Eleven-a

: HEX (-- 1 1 6 BASE ! ;
: OCTAL (--) 8 BASE ! ;
: BINARY (--) 2 BASE ! ;
: DECIMAL (--) 1 0 BASE ! ;

: NUMBER? (addr -- d n t f 1 0 0 ROT CONVERT C@ BL = ;

Figure Eleven-b

applications with a version that selects
the numerical radix according to the
first character. Figure Eight implements
a convention used on Motorola systems
(e.g., 68000). Laxen's CLASSIFV example
(FD VII/l) can be written without re-
dundant classes with no additional
definitions, as in Figure Nine.

Since DUP is assembler code, in most
systems you can optimize its definition
with something like that in Figure Ten-
a. The Forth-79 definition of =OR is
given in Figure Ten-b. If you do not
have PICK, as in fig-FORTH, or if PICK
is not an assembler code definition, see
Figure Ten-c.

A CASE statement in any program-
ming language is intended for a series
of tests to classify a value. To do this in
other languages without using a CASE
structure would require repeating the
value at each test, giving a tedious
appearance to the source. In Forth, the
data stack allows us to avoid such
explicit references to the value. In
Forth, a CASE statement has the pat-
tern DUP . . . IF DROP We have
sweetened this to CASE . . . OF

The trivial nature of the implementa-
tion emphasizes that a CASE statement
is not essential to Forth. Those Forth
practitioners who pride themselves on
how lean and mean their Forth is will
find it superfluous. My intent is not to
propose this definition of CASE for
standardization; but on the other hand,
any further CASE proposal should be as
simple to implement, as portable and as
powerful.

Auxiliary Definitions

You may already have some of
these. Your definitions may be dif-
ferent from those shown in Figure
Eleven-a. #BLANK-LINES and ?NEW-LINE
are words peculiar to the application.
#BUNK-LINES is a variable counting the
number of successive blank lines.
?NEW-LINE does a CR when the value of
#BLANK-LINES is less than two.

Figure Eleven-b provides definitions
for several fundamental Forth words.
It also presents a naive version of
NUMBER? that ignores details such as
sign and punctuation, and is not in-
tended for actual use.

Volume VIII. NO. 5 31 FORTH Dtrnensions

Volume Seven Index
This reference guide to Volume VII was prepared as a service to our readers. Items are referenced by issue number and page number; the
first entry refers to an article in volume VII, issue I , page 36.

A E M
Another Forth-83 LEAVE 1/36 Elola, Mike 4/10 Macros
Another Subroutine Technique 2/25 Eratosthenes Sieve 4/ 16 Benchmark Readability 4/16
Application Tutorials euroFORML '85 6/15 Forth Timer Macros 3/19

A Generic Sort I / 10 Extending the Multi-Tasker: Macro Generation in Forth 1/27
Universal Text File Reader 3/7 Mailboxes 4/25 Synonyms and Macros 3/11, 3/14
Wordwrapping Tool 4/8 Mailboxes, Extending the

Applications
F Multi-Tasker 4/25

An Application of the Recursive Making Numbers Pretty 5/7
Sort 5/12 F83 Mass Transit Forth 2/28

Forth on the Front 2/12 Extending the Multi-Tasker: Math
Forth Spreadsheet I / 14, 2/30 Mailboxes 4/25 Making Numbers Pretty 5/7
Mass Transit Forth 2/28 String Functions 6/23 A Universal Stack Word 5/25
Quick D P in Forth 5/14 Word Usage Statistics 4/12 McGregor, Cecil 2/27

An Approach to Reading Fast Evaluation of Polynomials 5/27 Menus
Programs 3/34 Feucht, Dennis L. 3/28 Menus in Forth 2/15

Apra, Ronald E. 6/21 Formatting, CRT The Moving Cursor Writes 6/10
Ask the Doctor The Hacker's LOCKER 2/27 Metacompilation

Evaluation 1/8 Formatting, number Improved Forth-83 DO LOOP 3/28
Forth on the Front 2/12 Making Numbers Pretty 5/7 Modules

Atari Painting Forth 4/28 FORML at Asilomar 5/35 Forth Component Libraries 4/38
Forth Component Libraries 4/38 The Moving Cursor Writes 6/10

B Forth Spreadsheet 1/14, 2/30 Multi-Tasker, F83
Benchmark Readability 4/ 16 Forth Timer Macros 3/19 Extending the Multi-Tasker:

Forth-83 Mailboxes 4/25
C Improved Forth-83 DO LOOP 3/28

Case statements Not ONLY But ALSO 1/32

YACS, Part Two 1/38 Franske, David 5/16 N

Code inspections
An Approach to Reading

Programs 3/34
Code Modules and Data

Structures 5/23
Conferences

1985 Forth National
Convention 4/41

euroFORML '85 6/15
FORML at Asilomar 5/25
Rochester Forth Conference

1985 2/38
Control structures

Teaching Forth: Let's Keep It
Simple 6/21

C;

Graphics, Atari 4/28
Grossman, Nathaniel 5/27

H
The Hacker's LOCKER 2/27
Ham, Michael 3/34, 4/8, 5/7, 6/10
Harris, Kim 3/34
Hoekman, Doneil 5/25

I
Improved Forth-83 DO LOOP 3/28
Interrupts, pseudo 3/30

Not ONLY But ALSO 1/32
Novix 2/12
Number Editing Utility 3/37

0
ONLY. . .ALSO 1/32
Ouverson, Marlin 4/41, 5/35

P
Pappas, Nicholas 1/29
Probabilistic Dictionaries 2/40

 he- ~ o v i n g Cursor Writes 6/10 J

Number Editing Utility 3/37 James, John S. 2/40, 4/38, 5/23
James, Stephen 4/28

D
Data compression

Probabilistic Dictionaries 2/40
Data processing

Quick D P in Forth 5/14
Data structures, code modules

and 5/23
Databases

An Application of the Recursive
Sort 5/12

Debugging
WALK' on Bugs 5/16

Dictionaries, probabilistic 2/40
Dobbins, R.W. 4/25

K
Kent, Clifford 6/23
Keywords; Where Used 1/29
Koopman, Phil, Jr. 4/36

L
LEAVE

Another Forth-83 LEAVE 1/36
Libraries

Code Modules and Data
Structures 5/23

Forth Component Libraries 4/38
Lindley, Craig A. 1/14

-
Quick D P in Forth 5/14

R
Ragsdale, William F. 2/12
Recursion

An Application of the Recursive
Sort 5/12

Redefining Words 4/36
Reiling, Robert 6/15
Reviews

1985 Forth National
Convention 4/41

euroFORML '85 6/15
FORML at Asilomar 5/35
Rochester Forth Conference

1985 2/38

FORTH Dimensions 32 Volume VIII. No. 5

S
Schmauch, Ed 3/30
Sirnard, Donald 2/25
Smith, Kevin 2/28
Sorting

An Application of the Recursive
Sort 5/12

Spreadsheets, Forth 1/14, 2/30
Stack operations

Fast Evaulation of Polynomials 5/27
A Universal Stack Word 5/25

Stoddart, Bill 1/32
Strings

F83 String Functions 6/23
Subroutines

Another Subroutine Technique 2/25
Synonyms and Macros 3/11, 3/14

T
Takara, Ken 3/37
Taylor, Don 1/27
Teaching Forth: Let's Keep I t

Simple 6/21
Techniques Tutorial

YACS, Part Two 1/38
Ting, C.H. 4/12
Turpin, Dr. Richard H. 5/12

u
A Universal Stack Word 5/25
Utilities

Fast Evaluation of Polynomials 5/27
Keywords; Where Used 1/29
Number Editing 3/37
The Hacker's LOCKER 2/27
A Universal Stack Word 5/25
Universal Text File Reader 3/7
WALK' on Bugs 5/16
Word lndexer 4/10

Van Duinen, Frans 2/ 15
Vocabulary

Not ONLY But ALSO 1/32

W
WALK' on Bugs 5/16
Weinstein, Iram 3/19
Word lndexer 4/10
Word Usage Statistics, F83 4/12

Y-z
Yngve, Victor H. 3/11, 3/14, 4/16
Zettel. Len 5/14

1 with LMI FORTHTM 1

For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth183 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

l ~ a b o r a t o r ~ Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295

credit card orders to: (213) 3067412

Overseas Distributors.
Germany: Forth.Systeme Angellka Flesch. Titlsee-Neustadt, 7651-1665
UK: System Sclence Ltd., London, 01-248 0962
France. Mlcro-Sigma 3.A.R L.. Paris. (1) 42.6595.16
Japan: Southern Pac~flc Ltd.. Yokohama. 045.314-9514
Australia. Wave-onlc Assoc~ates. W~lson. W.A., (09) 451-2946

Volume VIII, NO. 5 33 FORTH D~rnenslons

'86 National Forth Convention
Nearly one thousand people gath-

ered in November to explore the state
of "Forth Engines." Crowds in the
exhibition area were larger and more
animated than at previous years'
events, showing great interest in the
research and large commercial ventures
based on Forth software and hard-
ware. The annual event was held at the
new Santa Clara Trade and Conven-
tion Center in California's Silicon Val-
ley. The spacious facility easily accom-
modated the large lecture hall, exhibi-
tion hall and three separate meeting
rooms, where concurrent sessions were
held for the two days.

Speakers explained several proven
approaches to embedding Forth in
hardware. Novix's NC4000 and
NC6000 chips, and products incor-
porating them, were of the expected
interest to attendees, as was the
Hartronix engine's use as a robotics
controller. Other systems discussed by
featured speakers were Zilog's Super
2-8 and Rockwell's R65Fll and
F68HC11 chips. New to most attendees
were the thirty-two-bit Forth chip de-
veloped by Johns Hopkins University
and the multi-stack, writeable instruc-
tion set computer (WISC) from
Haydon Enterprises. The spectrum of
design approaches was well represent-
ed; it is to be hoped that a well-written
set of Forth benchmarks will appear in
order to efficiently compare the rela-
tive strengths of each.

Future of Forth Engines

The last speakers' session was dedi-
cated to a panel that discussed forsee-
able trends in this field. The panel
consisted of experts who have done
extensive work in the theory, design
and development of Forth engines.
Chaired by Martin Tracy of Forth,
Inc., the panelists were Gary Feierbach
(Inner Access), Glen Haydon (Haydon
Enterprises), Charles Moore (Cornput-
er Cowboys) and John Rible (Novix,
Inc.). Questions were taken from the
audience.

What would you like to see in terms of stacks, multi-processors in a single chip,
recognition of Forth? etc.). He doesn't think future genera-

tions will have the same thousand-fold
Charles Moore stated that he would increases or the same imvact.

like to see Forth on the list of govern-
ment-approved languages. Gary Feier-
bach would like Forth to be recognized
across a broad spectrum of application
areas. The relocatable library question
should be addressed satisfactorily.
That some Forth systems permit com-
pilation at the same rate as linking in
other languages should be a factor in
gaining recognition - a complete in-
vestigation would be persuasive, but
initial exposure to a less-than-optimal
Forth system can slow acceptance.

Glen Haydon then pointed out that
Phil Koopman has a Forth iibrary
system available through Mountain
View Press. Regarding the merits of
advertising, the best approach to get-
ting something across is having a job
well done and well received, which
addresses and solves the problem at
hand. When we show that, Forth
predominates. Charles Moore respond-
ed by saying that advertising convinces
users we are a serious entry in the
marketplace, so we must maintain a
public relations image.

Where are the optimizing compilers
that will make the Forth engine more
widely useful?

John Rible said Small-C is available
for the Novix 4000. Others are under
negotiation and they are expensive. But
why do it six to seven times faster (than
an IBM AT) in C on top of Forth
hardware, when it could be forty times
faster in native Forth?

What will the second generation of
Forth engines look like?

Charles Moore stated that any engine
one wants is producible. One conse-
quence of the simplicity of the Forth
processor is that it can be easily com-
bined with other hardware (on-chip

John Rible added that the behavior
of the processor is dependent on the
rest of the world. They are doing what
they can with the current technology.
Hopefully, the computer theorists will
learn that one or two stacks will speed
things up dramatically. Gary Feierbach
expects us to see thirty-two-bit chips
and custom chips for specific applica-
tions. He also believes we need a tar-
geted education effort so prospective
users can see what can be done with
Forth in hardware.

Glen Haydon concluded that five
years from now we will still have eight-
bit processors, and the sixty-four-bit
processors will be where the thirty-two-
bit ones are at today. Whatever hap-
pens, keeping it simple will keep it on
track with Forth theory. The bottle-
neck today is still memory speed. The
cost of memory will continue to lower,
and speed will increase. Designs for
Forth engines will change according to
what there will be time to do between
memory accesses.

How can Novix address a customer's
need for a bugless engine, a full im-
plementation of the chip as it was orig-
inally intended and reliable delivery?

John Rible related that Novix has
licensed some rights to Harris Semi-
conductor, and that they are working
with it in their core cell library. Novix
is upgrading to the NC6000 and is
committed to fixing the NC4000. The
rest is up to the marketplace and to
management.

Charles Moore compared the situa-
tion to the chicken-and-egg syndrome:
if anyone had ordered 10,000 chips, it
would have been different. It is clearly
not desirable to order a chip with bugs
or which may not be readily available.
Novix is trying its best in a field
dominated by giants.

FORTH Dimensions 34 Volume VIIl. NO. 5

The pinout is very large for these
processors, keeping them expensive.
What about Forth chips with fewer
pinouts?

Charles Moore said he could visual-
ize a twenty-four pin, eight-bit proces-
sor, but couldn't see anything useful
smaller than that. It is a manufacturing
and quantity problem, not so much
one of design. Pins are cheap in terms
of cost/benefit tradeoffs, especially
considering the finding in neural net
research that a high degree of intercon-
nectivity can yield interesting results.

How do you see casting Forth into
hardware engines as changing the
Forth language?

Charles Moore: By keeping the pro-
gram memory small but giving lots of
space to the stack.

John Rible: They are providing im-
proved addressing space, but it won't
be terribly useful except in stacks.
Using stack pointers into larger areas
of memory becomes interesting. There
isn't enough experience at program-
ming these chips to know what kind of
operations can usefully occur in an
overlapped manner. Someday we will
be able to write truly portable code that
can be compiled into these processors
to give us the full power of that proces-
sor without the programmer having to
serve as the compiler.

Glen Haydon: Chuck outlines the
forty-five or so necessary functions for
Forth as it stands. That should be
fairly solid. In the future we will look
at what other functions will be simple
and necessary, and whether they can be
combined efficiently with other opera-
tions. The basic Forth kernel may grow
by twenty or so words.

Concurrent Sessions

Well-known Forth experts conduct-
ed tutorials on subjects such as multi-
tasking, target compilation, vectored
I/O and control structure extensions.
Groups of users met with the vendors
of Mach 1 and Mach 2 (68000 systems),

polyFORTH, MVP-FORTH, Mac-
Forth and MultiForth, F83, and the
NC4000. Special seminars discussed
managing Forth programmers and
writing Forth-related articles. There
was a report from the 1986 FORML
journey to present technical papers in
China; a meeting of FIG Chapters
representatives; a FIGGRAPH caucus
about Forth's use in current graphics
technology; and the annual "fireside
chat" with Mr. Charles Moore, origi-
nal developer of the Forth language.

National FIG Meeting

This year's convention saw a special
meeting for FIG members, chaired by
President Robert Reiling. Other Board
members, all present at this meeting,
include Martin Tracy, Vice-President;
Kim Harris, Secretary; John Hall,
Treasurer; and Thea Martin. Mr. Reil-
ing described the Forth Interest Group
as a non-profit organization that is tax
exempt, reporting to the State of
California and to the U.S. Internal
Revenue Service. It has about 4000
members, one quarter of whom live
outside the United States. FIG services
and activities are supported by mem-
bers' dues, by a modest income from
the sale of publications and by adver-
tisers in Forth Dimensions. The Forth
National Convention itself has been
managed so that income and expenses
are about equal.

Early last year, a small group of
board members and other key figures
met at their own expense in a two-day,
think-tank style retreat. They addres-
sed issues such as membership, ser-
vices, growth and how FIG's position
addresses the general software/lan-
guages community. A good deal of
information was solicited in advance
from a cross-section of members and
Forth vendors, and aided greatly in all
the discussions. This event, and any
similar meetings that may follow, will
serve to focus attention on key issues
of cowern and benefit to the entire
community.

FIG's growth mandated this kind of
intensive session for planning and
definition of important directions.

35 FORTH D~rnens~ons

L ;

FORTH
The computer

language for
increased.. .

EFFICIENCY
reduced.. . . .

MEMORY
higher.

SPEED
M V P - F O R T H
SOFTWARE

Stable.. .Transportable.. .
Public Domain.. .Tools

M V P - F O R T H
PROGRAMMER'S KIT

for IBM, Apple, CP/M,
MS/DOS, Amiga, Macintosh

and others. Specify computer.
$1 75

MVP-FORTH PADS,
a Professional Application

Development System. Specify
computer.

$500

MVP-FORTH EXPERT-2
SYSTEM

for learning and developing
knowledge based programs.

$1 00
Word/Kalc,

a word processor and
calculator system for IBM.

$150

Largest selection of FORTH
boob: manuals, source listings,
software, development systems

and expert systems.
Credit Card Order Number:

800-321 -41 03
(In California 800-468-41 03)

Send for your
FREE

FORTH
CATALOG

MOUNTAIN VIEW
PRESS

PO BOX 4656
Mountain View, CA 94040

All the parts needed to make the I
SMALLEST 1

PROGRAMMABLE (
FORTH SYSTEM: I

!
TTL Serial In

TTL Serial Out
Ground

$50 covers price of parts and manual
in singles, $20 covers cost of chip alone
in 10,000 quantity. $20 gold piece (not
included) shown covering chip to illus-
trate actual size.

The F68HC11 features: 2 Serial Chan-
nels, 5 Ports, 8 Channel 8-bit AID, major
timer counter subsystem, Pulse
Accumulator, Watchdog Timer, Com-
puter Operating Properly (COP) Moni-
tor, 512 bytes EEPROM, 256 bytes
RAM, 8K byte ROM with FORTH-83
Standard implementation.

Availability: F68HC11 Production units
with Max-FORTH" in internal ROM avail-
able 4Ql86. Volume quantity available
1Q187. X68HC11 emulator with Max-
FORTH" in external ROM available
now. NMIX-0022 68HC11 Development
System boards available now: $290.00.

New Micros, Inc.
808 Dalworth

Grand Prairie, TX 75050
(21 4) 642-5494

Some results of this initial retreat were
the FIG Model Library developed by
Martin Tracy, health and life insurance
options for members, the mechanism
for adding or deleting publications
from FIG's ordering list, streamlined
financial operations (including improv-
ed monthly reporting on budget, P&L
and inventory) and changes in FIG's
by-laws.

Revision of the FIG by-laws is of
particular note among recent actions
taken by the Board of Directors. Board
member Thea Martin saw defficiencies
in the provisions regarding members'
responsibilities. Only five people had
started FIG, and only the Board was
officially imbued then with both re-
sponsibility and authority to act on
FIG's behalf. It was a close-knit and
efficient way of conducting business.

After thorough review, the Board
has formally amended the by-laws. The
essential change now directs a Nomi-
nating Committee to report to the
entire FIG membership (probably in
Forth Dimensions). The committee can
accept nominations for board member
candidates from the membership at
large. Names must be submitted to the
committee along with the supporting
signatures of ten FIG members. The
committee will notify the membership
of nominees' names, election dates and
a vote-by-proxy mechanism.

FIG's normal business activities are
directed by a volunteer business group
that meets monthly in San Jose, Cali-
fornia, with several Board members
normally in attendance along with
other professional associates and inter-
ested members. Day-to-day operations
are carried out by the Association De-
velopment Center (Shepherd Associ-
ates), a paid service with whom FIG
works closely.

FIG Chapters exist in many parts of
the world. At the time of this meeting,
there were eighty-seven active chapters,
with others in various stages of forma-
tion. In many ways, they are the
volunteer-based foundation of the or-
ganization. On the 1986 FORML tour
that visited China, Forth experts there
exhibited great interest in forming a
FIG Chapter. Such a chapter would be
the first on the mainland and would

serve a great number of Forth users.
Like a number of countries, however,
certain currency regulations make it
difficult to get the five FIG members
necessary to form an official FIG
Chapter. As a result, Shanghai's pres-
tigious Jiao Tong University was made
an Associate FIG Chapter for a period
of two years. Welcome!

The keynote speaker of the conclud-
ing FIG banquet was John Peers,
President and CEO of Novix, Inc. His
amusing style, strong convictions and
philosophy, combined with his exten-
sive high-tech background, made Mr.
Peers an informative and entertaining
guest. Also at this banquet, Dr. C.H.
Ting was announced as the recipient of
the "Figgy" award, for volunteer ac-
tivities that have done much to advance
the cause of Forth during the past year.
In addition to work that includes sever-
al popular books on the FIG Order
Form, Dr. Ting was the Program
Chairman for this year's convention. A
good job, well done!

-Marlin Ouverson

Index to Advertisers

Bryte - 1 l
Computer Cowboys - 7
Dash, Find & Associates - 8
Forth, Inc. - 14
Forth Interest Group - 19-22, 28, 37
Harvard Softworks - 17
Laboratory Microsystems - 33
MicroMotion - 16
Miller Microcomputer Services - 30
Mountain View Press - 35
New Micros - 36
Next Generation Systems - 28
Palo Alto Shipping Company - 2
Software Composers - 4
Talbot Microsystems - 37

FORTH O~mens~ons 36 Volume VIII. No 5

ATTENTION FIG MEMBERS!
WE NEED YOUR HELP

At the FORTH Interest Group we know Forth is being used in many
sophisticated and complicated projects. Unfortunately, the Forth community has
never compiled a complete reference document summarizing how and where
Forth is being used. We believe this type of document would be very helpful to
both the novice considering learning Forth and the professional experiencing
corporate resistance to using it.

Would you please help us put one together? All you need to do is complete the
questionaire below and return it directly to us by March 15! All completed
questionaires should be mailed to: Forth Interest Group, P.O. Box 8231, San
Jose, CA 95155.

1. Company name and address:

2. Name of the programmer
(Note: for internal use only. Will not be published.).

3. Project or product name

4. Date project or product completed

5. Was the project: For sale to an end user? yes no
For in-house use? yes no
For OEMs? yes no

6 . Indicate approximate number of users: 1-50 30 1 -400
50-100 40 1-600
100-200 ?

2 0 0 - 3 0 0

7. Is Forth hidden from the user? . yes no

8. Briefly describe the project (30 words)

9. Briefly describe the benefits of using this project or product.

Thank you for your participation. If you would like a copy of the results please
complete the following.

Name

Company

Address

City, State, Zip

1 FORTH-83 ST AWARD I
6809 Systems available for

FLEX disk sustems $150
OS9/6809 $1 !50 I
I 680x0 Systems available for

MACINTOSH $125
CP/M-68K $1 50 I

I tFORTH/20 for 68020
Shgk Board CWU~W I
Disk bawd development sy stem

under OS9/68K . . . $290
EpROM set for complete stand-

alone S8C. $390
Forth Model Librrru - List

handler, spreadsheet, Automatic
structure charts . . . each . $40

I
1927 Curtis Ave
Redondo Beech

CA 90278
(2 13) 376-9941 I

60020 SBC, 5 1 /4" floppy site

board with mB RAM, 4 x 64K

EpROM sockets, 4 RS232 ports,

Centronics parallel port, timer,

battery backed dateitime,

interface to 2 5 1 /4" floppies

and a SASl interface to 2
winchester disks $2750

68881 flt pt option. $500
OS9 multitask&user 0s. . $350

VolumeVIII. NO. 5 37 FORTH Dimensions

U.S.

ALABAMA
Huntsville FIG Chapter
Call Tom Konantz
205/881-6483

ALASKA
Kodiak Area Chapter
Call Horace Simmons
907/486-5049

ARIZONA
Phoenix Chapter
Call Dennis L. Wilson
602/956-7678

lbcson Chapter
Twice Monthly,
2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
Call John C. Mead
602/323-9763

ARKANSAS
Central Arkansas Chapter
Wice Monthly, 2nd Sat., 2p
4th Wed., 7 p.m.
Call Gary Smith
501/227-7817

CALIFORNIA
Los Angeles Chapter
Monthly, 4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Call Phillip Wasson
213/649-1428

Monterey/Salinas Chapter
Call Bud Devins
408/633-3253

Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings
Talbert & Brookhurst

Fountain Valley
Monthly, 1st Wed., 7 p.m.
Mercury Savings
Beach Blvd. & Eddington
Huntington Beach
Call Noshir Jesung
714/842-3032

San Diego Chapter
Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3100 ext. 4784

Sacramento Chapter
Monthly, 4th Wed., 7 p.m.
1798-59th St., Room A
Call Tom Ghormley
916/444-7775

Bay Area Chapter
Silicon Valley Chapter
Monthly, 4th Sat.
FORML 10 a.m., Fig 1 p.m.
H-P Auditorium
Wolfe Rd. & Pruneridge,
Cupertino
Call John Hall 415/532-1115
or call the FIG Hotline:
408/277-0668

Stockton Chapter
Call Doug Dillon
209/93 1-2448

COLORADO
Denver Chapter
Monthly, 1st Mon., 7 p.m.
Cliff King
303/693-3413

CONNECTICUT
Central Connecticut Chapter
Call Charles Krajewski
203/344-9996

FLORIDA
Orlando Chapter
Every two weeks, Wed., 8 p.m.
Call Herman B. Gibson
305/855-4790

Southeast Florida Chapter
.m. & Monthly, Thurs., p.m.

Coconut Grove area
Call John Forsberg
305/252-0108

Tampa Bay Chapter
Monthly, 1st. Wed., p.m.
Call Terry McNay
813/725-1245

GEORGIA
Atlanta Chapter
Monthly, 3rd Tues., 6:30 p.m.
Computone Cotilion Road
Call Nick Hennenfent
404/393-3010

ILLINOIS
Cache Forth Chapter
Call Clyde W. Phillips, Jr.
Oak Park
312/386-3147

Central Illinois Chapter
Urbana
Call Sidney Bowhill
217/333-4150

Fox Valley Chapter
Call Samuel J. Cook
3 12/879-3242

Rockwell Chicago Chapter
Call Gerard Kusiolek
312/885-8092

INDIANA
Central Indiana Chapter
Monthly, 3rd Sat., 10 a.m.
Call John Oglesby
317/353-3929

Fort Wayne Chapter
Monthly, 2nd Tues., 7 p.m.
IPFW Campus
Rm. 138, Neff Hall
Call Blair MacDermid
219/749-2042

IOWA

Iowa City Chapter
Monthly, 4th 'Ibes.
Engineering Bldg., Rm. 2128
University of Iowa
Call Robert Benedict
319/337-7853

Central Iowa FIG Chapter
Call Rodrick A. Eldridge
515/294-5659

Fairfield FIG Chapter
Monthly, 4th day, 8:15 p.m.
Call Gurdy Leete
515/472-7077

KANSAS
Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker Co.
532 Market
Wichita, KS
Call Arne Flones
316/267-8852

LOUISIANA
New Orleans Chapter
Call Darryl C. Olivier
504/899-8922

MASSACHUSETTS
Boston Chapter
Monthly, 1st Wed.
Mitre Corp. Cafeteria
Bedford, MA
Call Bob Demrow
617/688-5661 after 7 p.m.

MICHIGAN
Detroit/Ann Arbor area
Monthly, 4th Thurs.
Call Tom Chrapkiewicz
313/322-7862 01 313/562-8506

MINNESOTA
MNFIG Chapter
Even Month, 1st Mon., 7:30 p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall Univ. of MN
Minneapolis, MN
Call Fred Olson
612/588-9532

MISSOURI
Kansas City Chapter
Monthly, 4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Call Linus Orth
913/236-9189

St. Louis Chapter
Monthly, 1st Tues., 7 p.m.
Thornhill Branch Library
Contact Robert Washam
91 Weis Dr.
Ellisville, M O 6301 1

NEVADA
Southern Nevada Chapter
Call Gerald Hasty
7021'452-3368

NEW HAMPSHIRE
New Hampshire Chapter
Monthly, 1st Mon., 6 p.m.
Armtec Industries
Shepard Dr., Grenier Field
Manchester
Call M. Peschke
603/774-7762

NEW MEXICO
Albuquerque Chapter
Monthly, 1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
J o n Bryan
Call 505/298-3292

NEW YORK

FIG, New York
Monthly, 2nd Wed., 7:45 p.m.
Manhattan
Call Ron Martinez
21 2-749-9468

Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m.
Hutchinson Hall
Univ. of Rochester
Call Thea Martin
716/235-0168

Syracuse Chapter
Monthly, 3rd Wed., 7 p.m.
Call Henry J. Fay
3 15/446-4600

OHIO
Akron Chapter
Call Thomas Franks
216/336-3167

Athens Chapter
Call Isreal Urieli
614/594-3731

Cleveland Chapter
Call Gary Bergstrom
2 16/247-2492

Cincinatti Chapte:
Call Douglas Bennett
513/831-0142

Dayton Chapter
Wice monthly, 2nd 'Ibes., &
4th Wed., 6:30 p.m.
CFC 11 W. Monument Ave.
Suite 612

FORTH Dimensions 38 Volume VIII

Dayton, OH
Call Gary M. Granger
513/849-1483

VIRGINIA IRELAND
Irish Chapter
Contact Hugh Doggs
Newton School
Waterford
051/75757 or 05 1/74124

ITALY

CANADA
First Forth of Hampton Roads
Call William Edmonds

Alberta Chapter
Call Tony Van Muyden
403/962-2203 804/898-4099

OKLAHOMA
Nova Scotia Chapter
Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2E5
902/477-3665

Central Oklahoma Chapter Potomac Chapter
Monthly, 3rd Wed., 7:30 p.m. Monthly, 2nd Tues., 7 p.m.

Health Tech. Bldg., OSU Tech. bz~ itay at Lexington St. Call Larry Somers
2410 N.W. 49th Arlington, VA
Oklahoma City, OK 73112 Call Joel Shprentz

703/860-9260

FIG Italia
Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

JAPAN
Japan Chapter
Contact Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-2111 ext. 7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas
Hallskaret 28
Ulset
+47-5-187784

REPUBLIC OF CHINA
R.O.C.
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg., Rm. 312
McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4KI
416/525-9140 ext. 3443

Richmond Forth Group
OREGON Monthly, 2nd Wed., 7 p.m.

Greater Oregon Chapter 154 Business School
Monthly, 2nd Sat., 1 p.m. Univ. of Richmond
Tektronix Industrial Park Call Donald A. Full
Bldg. 50, Beaverton 804/739-3623
Call Tom Almy
503/692-2811 WISCONSIN

Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C5J2

PENNSYLVANIA
Philadelphia Chapter

Lake Superior FIG Chapter
Monthly, 2nd Fri., 7:30 p.m.
Universitv of Wisconsin

~ o n t h l ~ . , 4th sat:, 10 a.m. Superior
Drexel University, Stratton Hall Call Allen Anway
Call Melanie Hoag or Simon Edkins 715/394-8360
215/895-2628 Milwaukee Area Chapter

COLOMBIA
Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
2 14-0345

TENNESSEE
Call Donald H. ~ i m e i
414/377-0708

East Tennessee Chapter MAD Apple Chapter
Monthly, 2nd 'he. , 7:30 p.m. Contact Bill Horzon
Sci. Appl. Int'l. Corp., 8th Fl. 129 S. Yellowstone
800 Oak Ridge lkrnpike, Oak Ridge Madison, WI 53705
Call Richard Secrist
615~483-7242 FOREIGN

ENGLAND
Forth Interest Group - U.K.
Monthly, 1st Thurs.,
7p.m., Rm. 408
Polytechnic of South Bank
Borough Rd., London
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

SWEDEN
Swedish Chapter
Hans Lindstrom
Gothenburg
+46-31-166794

SWITZERLAND
TEXAS

Austin Chapter

AUSTRALIA
Melbourne Chapter
Monthlv. 1st Fri.. 8 D.m.

Contact ~ a t t Lawrence ~ o n t a c i iance ~o11ir;s Swiss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-lndustrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

P.O. Box 180409 65 Martin Road FRANCE
Austin, TX 78718 Glen Iris, Victoria 3146

03/29-2600 French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
3 1 100 Toulouse
(16-61)44.03.06

Houston Chapter
Call Dr. Joseph Baldwin
713/749-2120

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.
Rm. LC19
Univ. of New South Wales
Sydney
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
02/524-7490

SPECIAL GROUPS
Apple Corps Forth Users
Chapter
Tivice Monthly, 1st &
3rd n e s . , 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
41 5/626-6295

Baton Rouge Atari Chapter
Call Chris Zielewski
504/292- 1910

FIGGRAPH
Call Howard Pearlmutter
408/425-8700

MMS Forth User Groups
(More than 30 locations.)
For further information call:
617/653-6136

Periman Basin Chapter
Call Carl Bryson
Odessa
915/337-8994

GERMANY
Hamburg FIG Chapter
Monthly, 4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

UTAH
North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem, UT 84057

BELGIUM
Belgium Chapter
Monthly, 4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20

HOLLAND
Holland Chapter
Contact: Adriaan van Roosmalen
Heusden Houtsestraat 134
4817 We Breda
31 76 713104

VERMONT
Vermont Chapter
Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Rm. 210, Monkton Rd.
Vergennes, VT
Call Don VanSyckel
802/388-6698

2120 Schoten
03/658-6343

Southern Belgium FIG Chapter
Contact Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
Belgium
071/213858

FIG des AIpes Chapter
Contact: Georges Seibel
19 Rue des Hirondelles
74000Annely
50 57 0280

Volume VIII, No. 5 FORTH D~mens~ons

NOW AVAILABLE

Dr. Dobb's Toolbox of Forth is a
comprehensive collection of useful Forth
programs and tutorials that contain
expanded and revised versions of DDJ's
best Forth articles along with new Forth
material.

You'll also find appendices that will help you
convert fig-Forth to Forth-83, and tell you
how to stay up-to-date on the latest

: , . t ~ d D Y t l n i l i . ' G u r c r i o n developments of Forth.

F O R T H
INTEREST
G R O U P B $23 EACH

FROM THE FORTH INTEREST GROUP

FORTH INTEREST GROUP
BULK RATE

U.S. POSTAGE

P. O. BOX 8231 Permit NO. 3107

Sari Jose, CA 95155 San Jose, CA

F O R T H
INTEREST
G R O U P

