
,

t ' l 1 *

w

FORTH UlrnEflSlONS
FORTH IWTIRI8T OROUP
P.O. Box 1105
S e n Carlos, CA 94070

Volume II
Number 6

Price 52.00

154 Forgiving FORGET

156 Some New Editor Extensions

162

165 SEARCH

166 Greatest Common Divisor

To VIEW or not to VIEW

168 Programming Hints

170 Development of a Dump

175 Letters

178 Announcements

Utility

180 Meetings

182 FORTH Vendor List

184 FORTH, nc. News

FUATH OlmEflSlUflS

EDITOR'S COLUMN

Published by Forth Interest Group

Volume I I No 6

Publisher

Guest Editor

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris
John James
Dave Kilbridge
Henry Laxen
George Maverick

March April 1981

RoyC Martens

C J Street

FORTH DIMENSIONS so;icits editorial material. com-
ments and letters No responsibility is assumed for accuracy
of material submitted ALL MATERIAL PUBLISHED BY
THE FORTH INTEREST GROUP IS IN THE PUBLIC
DOMAIN Information in FORTH DIMENSIONS may be
reproduced with credit given to the author and the Forth
Interest Group

Subscription to FORTH DIMENSIONS is free with mem-
bershipin theForth lnterestGroupat$1200peryear($24 00
overseas air) For membership. change of address and/or to
submit material. the address is

Forth Interest Group
P 0 Box 1105
San Carlos, CA 94070

The theme of this month s FORTH DIMENSION IS prdctl-
cal applications

During the last two years or so I have heard from many FIG
members who seem to have a common problem) No& that
I have FORTH where do I go from here' in addition m a n {
of us seem to be reinventing code thdt other5 hdit. d l r L J G y

running just because we are una%are of its existence

In short FIG members dre sufferiiy froni a C J - T ' ~ JV
problem-failure tn commcinicate Folunately this ' 5 a7
easily cured problern FORTH DIMENSIONS IS o,ir corn
municat,ons vehicle all we have to do is use it

The mechanics are simple FORTH DIMENSION5 is
seeking short universal tool type code segments for pubilca-
tion If you have some code tnat VOLJ have found especial y
useful and can explain its funrtior arid use please conlac!
the editor at FORTH DIMENSIONS

YOU DON T HAVE TO BE A WRITER' YOU wil l be sent d
publication kit that leads you through the writing procesr
You will also be given all the help necessary by the FORTh
DIMENSIONS editorial staff

FIG members already have a reputation as creatiJe
problem solvers now i f we will just share and exchange O u r
ideas. the permutations of that process boggle the mind I
am looking forward to enthusiastic response to this new
approach that will benefit all

C J Street

PUBLISHER'S COLUMN
HISTORICAL PERSPECTIVE

FORTH was created by Charles H. Moore in 1969 at the
National Radio Astronomy Observatory. Charlottesville, VA
It was created out of dissatisfaction with available program-
ming tools, especially for observatory automation.

Mr Moore and several associates formed FORTH, Inc in
1973 for the purpose of licensing and support of the FORTH
Operating System and Programming Language, and to
supply application programming to meet customers' unique
requirements

The Forth Interest Group is centered in Northern Caldor-
nia Our membership is over 2,800 worldwide It was formed
in 1978 by FORTH programmers to encourage use of the
language by the interchange of ideas through seminars and
publications

It's the end of the FIG year and renewals are Diling in
(Have you renewed?) Some of our newer members might
be confused about renewing I f you recently joined FIG
and received back issues of Volume I1 of FORTH DIMEN-
SIONS then it is time to renew for Volume Ill and your
March 1981 to March 1982 membership

A number of other items of interest
FIG now has over 2800 members. worldwide
FIG will have booths at the Computer Faire, April 3-5 in
San Francisco and at the Jersey Computer Show in
Trenton on April 25
There are a number of new listings - see order form
at back
Several reports from new chapters - lets see more
Proceeding of 1980 FORML Conference is now avail-

Looks like this is going to be our biggest year
able - see order form

Roy Martens

Page 153 FORTH DIMENSIONS II/6

FORGIVING FORGET
Dave Kilbridge

Ac know 1 edgme n t

I want t o describe a FORTH system
word which has come to be known as
"smart FORGET" or even "Dave
Kilbridge's smart FORGET." But the
ideas involved appear in the State
University of Utrecht, The Nether-
lands' FORTH system at least as early
as 2 3 May 1970. The code presented
here is a straightforward adaptation
t o the F I G model.

The Problem -
The principal function of FORGET

is t o reclaim memory by locating in
t h e dictionary the next word in the
input stream and resetting the
dictionary pointer (DP) to the
beginning of the definition of that
word. To avoid destroying vital
parts of the system, no FORGETting
is allowed below the address stored
in FENCE. In the "dumb FORGET" of
the original FIG model (see Screen
7 2) , this address check is made on
line 8.

But merely truncating the dic-
tionary, even at a safe place, is
not enough. The dictionary has a
linked-list structure which allows
it to be searched. If a link is
left pointing into the "never-never-
land" beyond the new value of DP,
then the system may crash the next
time a dictionary search uses that
link.

These links are of two types:
(1) VOCABULARY words have a link to
the latest word in the vocabulary
they name. "Dumb FORGET" ad juste
this link (line 9) to point to the
latest word which you don't FORGET,
but only for the CURRENT and CONTEXT
vocabularies. (Line 7 verifies that

these are the same; this test was
thought to give some extra protection
against crashing. Any vocabulary not
in CURRENT o r CONTEXT may be trashed.
(2) CURRENT and CONTEXT themselves
point to vocabularies. I f you FORGET
the name of the CURRENT vocabulary,
or any word before it in the dic-
tionary, you may crash.

The Solution

"Smart FOKGET" overcomes these
hazards so effectively that I have
never crashed by doing a FORGET.
This is made possible by linking all
the VOCABULARY words in the system
into another linked list, enabling
them to be located. The head of the
list is stored in VOC-LINK. See the
figure for the various fields in a
VOCABULARY word.

How It Works

Refer to the code on Screen 18.
On line 7 , the name-field-address of
the next input word is located in
the dictionary; this is the point at
which the dictionary will be cut off.
An error message issues if this
address is below the contents of
FENCE. This cutoff address is saved
on the return stack, and the head of
the vocabulary list is put on the
parameter stack. Now everything is
ready for the real work.

The BEGIN ... WHILE ... REPEAT
loop on lines 9-10 runs through all
VOCABULARY words above the cutoff
address and unlinks each from the
list. If any such vocabularies are
found, both CONTEXT and CURRENT are
pointed to FORTH. This removes any
links described as type (2) above.

Now the outer BEGIN ... UNTIL
loop on lines 11-13 runs through the
remaining VOCABULARY words. For
each such word, the loop on line 12
finds the highest word below the
cutoff address in the corresponding
vocabulary. The vocabulary head is

FORTH DIMENSIONS II/6 Page 154

then pointed to this word, thus
fixing the links of type (1) above.

Finally, DP is reset to point to
the cutoff address (line 14).

Improvements

Executing FORTH DEFINITIONS if
any VOCABULARY word is found beyond
the cutoff address is unnecessarily
drastic. One could test CURRENT and
CONTEXT and only change them if they
point beyond the cutoff, but it's
probably not worth the trouble.

Extensions

1. In systems which allow dynamic
chaining of vocabularies, one
must check whether a vocabulary
chained to is beyond the cutoff
address. If so, it I s replaced
by FORTH. (The Utrecht system
does exactly that.)

2 . In later versions of the author's
PACE system, a base-page pointer
is allocated for each new de-
fining word. These are released
by FORGET. This is done by com-
paring pointer values with the
cutoff address and does not
involve the vocabulary structure.

SCR # 72
0 (', FORGET, WFR-79APR28)
1 HEX 3 WIDTH !
2 : ' (FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING *)
3 -FIND 01 0 ?ERROR DROP [COMPILE] LITERAL ;
4 IMMEDIATE
5
6 : FORGET (FOLLOWING WORD FROM CURRENT VOCAIULARY *)
7 CURRENT @ CONTEXT @ - 18 ?ERROR
8 [COMPILE] ' DUP FENCE @ < 15 ?ERROR
9 DUP NFA DP ! LFA @ CURRENT @ ! ;

10
11
12
13 -->
14
15

SCR # 18
0 (Smart FORGET DJK-WFR-79DEC02)
1 : ' (FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING *)
2 -FIND o= 0 ?ERROR DROP [COMPILE] LITERAL ;
3 IMMEDIATE
4 HEX
5
6 : FORGET (Dave Kilbridge's Smart Forget)
7 [COMPILE] NFA DUP FENCE @ u< 15 ?ERROR
8 >R VOC-LINK @ (start with latest vocabulary)
9 BEGIN R OVER u< WHILE [COMPILE] FORTH DEFINITIONS

10 @ REPEAT DUP VOC-LINK ! (unlink from voc list)
11 BEGIN DUP 4 - (start with phantom nfa)
12 BEGIN PFA LFA @ DUP R u< UNTIL
13 OVER 2 - ! @ -DUP 01 UNTIL (end of list ?

15 This replaces Screen 72 of the F.I.G. Model.
14 R> DP ! ; -->

FORTA D I ~ S I O ? 8 11/6 Page 155

SOME NEW EDITOR EXTENSIONS
Kim Harris

This article shows how to add
t w o new commands to the FORTH editor
which permit the replacement or
insertion of multiple lines of a
screen. This is a mini-application
which demonstrates string input and
output, adding new commands to the
Forth editor, manipulating vocabu-
laries, and a "terminal input proces-
sor" which prompts for input then
processes it. Several variations in
implementation are shown to illus-
trate different styles and refine-
ments. If you are only interested
i n the final result, you can type in
Screen 4 5 (in this article) into any
standard fig-FORTH system which
already has the FIG line editor (from
screens 87 to 91 in the Installation
Manual).

The use of the new commands will
be illustrated by an example. Input
i s underlined; output is not. The
symbol (CR) means to push the
Carriage Return key (or equivalent).

To begin any editing of screen
100 you say

100 LIST EDITOR (CR)
0 (TEST SCREEN)
1 old 1st line
2 old 2nd line
3 old 3rd line . . .
To replace one or more lines

starting at line 2 , say

2 NEW (CR)
0 (TEST SCREEN)
1 old 1st line
2 -

The cursor is at the start of
line 2 and waiting for you to enter
new text. If you enter some text
and a (CR), it will prompt you for a
new line 3 and so on. This continues

until you replace line 15 or enter
only a (CR) at the etart of a line.
Then that line and any remaining ones
are listed unchanged.

2 NEW (CR)
0 (TEST SCREEN)
1 old 1st line
2 new text for line 2 (CR)

-~
3
4 (CR) old 4th line

something for line 3 (CR)
-

5 'old 5th line . . .
A similar command UNDER lets you

Insert one or more lines starting at
a specified line number.

2 UNDER (CR)
0 (TEST SCREEN)
1 old 1st line
2 new text for line 2
3 inserted line (CR)
4 another inserted line (CR)
5 - (CR) something for line 3
-

6 old 4th line
7 old 5th line . . .

Any lines pushed off line 15 are
lost

Let's design this application
starting from the top. First con-
sider the control flow for N E W and
draw a flowchart. The one below is
a traditional ANSI standard one.

I

FORTH DIMENSIONS II/6

This flow chart is poor. It is
unstructured (i.e. , "print line" is
improperly shared by two IF struc-
tures), the loop structure requires
two boxes which can be performed by
the single word DO, and no symbol
exists f o r the word LOOP. To program
this flowchart, you either have to
cheat or change the flowchart. An
example of cheating is in Screen 12.
This implementation of NEW is by Bill
Ragsdale and works fine. The tricks
are the words inside square brackets
on lines 6 and 8. These are manipu-
lating the stack at compile-time,
modifying the compiled branch struc-
tures. Such tricks reduce readabil-
ity and modifiability, increase
complexity, are neither "standard"
nor transportable to non-FIG
~ystems, and are not necessary.

Let's try modifying the flow-
chart to make it structured.
Repeating "print line" under the 2
top decision boxes makes this
proper. A different kind of flow-
chart prevents this kind of error
and is ideally suited to FORTH. It
is called D-charts and was described
in FORTH DIMENSIONS, Vol. 1, No. 3.
Not only is a D-chart inherently
structured, but also there 16 a
one-to-one correspondence between
the chart symbols and FORTH words.
In the D-chart of N E W , the correspon-
dence between symbols and words is
as follows:

+-- Do

1 LOOP

Y THEN

Line #=O to 15
1

prin't , line Y
I

enter new line? 6
read line

A null?

print line print line replace old
line with I new one

We will certainly want to use as
much of the existing editor as we
can to reduce our work. The line
Replace and Insert commands are good
candidates:

R line# -
Replace line with text from
PAD.

I line# -
Insert the text from PAD at
line line#, old line line#
and subsequent lines are
moved down. Line 15 is lost.

We can use FORTH as a Program
Design Language (PDL) by:

. L I NEII

1) starting with the top word
(e.g., N E W o r UNDER),

2) making up names for lower
words (i.e., forward
references),

3) and using the postfix order
and FORTH control structures
but not worrying about cor-
rect stack manipulation.

Later the result can be finished
by defining all the words used,
supplying necessary stack manipula-
tion operators, and typing them in
and debugging each in bottom-up
order.

From the previous D-chart we
could write the following
pseudo-definition for NEW:

: NEW 16 0
DO

CR .LINE#
ENTER? IF

ENTER NULL? IF
.LINE ELSE

(EDITOR'S) R THEN
ELSE

.LINE THEN
LOOP

*

This incomplete definition does
not take care of passing data on the
stack or switching vocabularies.
Look at the other command UNDER.
The only change needed to the above
code is t o use the EDITOR'S I
instead of R. Because the two
definitions are so similar, we will
want to share some of the common
parts.

To finish the definition of N E W ,
let's consider each undefined word.

needs to print the current l i n e
number right justified in 7
columns followed by a space.
But should the line# be passed
as a stack argument? The fol-
lowing definition sets it from
the stack:

; .LINE// (line# -) 3 .R
SPACE ;

The FORTH word I could be used
before the reference to .LINE#
in NEW'S definition to supply
the DO-LOOP index (which is the
current line number). But what
about using I inside .LINEll's
definition instead? Unf or-
tunately it's not the same. In
fig-FORTH DO keeps its indices
on the return stack, so I doesn't
return the index in another
definition even though it was
called from a DO-LOOP body.
Another word which does that is
called I I (pronounced I prime).
Then .LINE# could be written:

: .LINE# (- I' 3 .R
SPACE ;

A high level definition for I'
is :

: I'
FORTH R> R> R ROT ROT >R >R ;

(A CODE definition would be
preferred.)

Considering the inefficiency of
I' and readability, let's pass
the line number on the stack.

The next choice is should we use
a separate definition for .LINE#
(as above) or copy the contents
of its definition into NEW. Exe-
cution speed would be indistin-
guishable. Using the name .LINE#

FORTH DIMENSIONS II/6 Page 158

migh be more readable, but not Passing I on the stack would
much. The dictionary sizes are make ENTER? look like:
different for the two choices.
(Sizes are in bytes.) : ENTER? (start-line# current-line#-)

OVER = ;

.LINE# separate included in NEW
6 UNDER

literal 3 4 2 x 4 = 8
.R SPACE 4 2 x 4 = 8
.LINE# head 5 + name size= 10
9 2
references 2 x 2 3 4

So for only 2 references to
.LINE#, it doesn't pay to define
it separately. (3 references
would make it close: 24 to 26
bytes .)

ENTER?

This should be true:

1) when the current line #
equals the starting line #

2) while new text is being
entered

3) but not after a (CR) only
has been entered.

We never want to use a VARIABLE
for temporary storage if we can
help it. The starting line
number comes in from the stack,
so (1) is simple

start-line# I =

(The argument must be preserved
each iteration, so a DUP must be
added; a DROP will have to follow
LOOP to compensate.) Case (2)
can be achieved by incrementing
the start-line# while in enter-
mode. This can be done with a
1+ after the Editor's R. Finally
(3) falls out by not incrementing
it after either .LINE in NEW'S
definition.

But more words are needed in
NEW's definition to complete the
enter-mode control. As with
.LINE# before, the contents of
ENTER? could be copfed in NEW's
definition instead of being
defined separately. The size
tradeoffs would favor that, but
in this case readability would
be greatly enhanced by keeping
the name. This also eliminates
the need to comment each part of
that IF structure (as in the
version on Screen 12).

ENTER

must wait for terminate input,
then copy the entire line to PAD
for later use by the editor.

QUERY reads a line of input, and
TEXT can copy it to PAD:

TEXT c -
Copy text from the
Terminal Input Buffer
t o PAD until the
delimiter c is found.

So we could define ENTER with:

: ENTER (-)
QUERY 1 TEXT ;

h e 159 FORTE DIMENSIONS 11/6

NULL?

should be true only if a (CR)
was ENTERed. fig-FORTH puts a
null character (i.e., binary
zero byte) in the Terminal Input
Buffer (TIB) when a (CR) is
entered. To tell if it is at
the start of the buffer, we can
use:

: NULL? (- f)
TIB @ C@ 01 ;

Although keeping this definition
separate would take up more
space than using its contents
inside N E W and UNDER, readabil-
ity is improved, so we'll keep
it.

Finally, .LINE

needs a screen number and line
number. The line number can be
supplied by the DO-LOOP index.
So before each .LINE in N E W or
UNDER add:

I SCR @ .LINE

Incorporating all the above
refinements into the previous
pseudo-definition of N E W produces
the following code:

The only rm;n ing ; /21=ge~
needed concerns rocabulrricr- a -

add these definitions to t L Lwm
vocabulary, use the phrase

- *

EDITOR DEFIW1TIO.S

before the first deflnitiim, d tLr
phrase

FORTH DEFINITIONS

after the last. But within m's
definition we need to specify which
I and R are intended. FORTH uses
pairs of names to resolve such
ambiguities. It's like last names
in people's proper names:

JOHN DOE

JOHN DEERE

But in good postfix style, the
vocabulary name must precede the
word it applies to, and remains in
effect until changed. Vocabulary
names in fig-FORTH are IMMEDIATE, so
they can be used inside definitions
the same way as outside. Within
NEW'S definition, we need to insert
FORTH before DO to make sure all the
1's are DO-LOOP words and not editor
words.

: ENTER? (atart-line# current-line# - f) OVER - :

: E N T E R (-) QUERY 1l"T :

: NULL? (- f) TIB e ce 0- ;

: (atart-line# -) 16 0 DO

CR I 3 .a SPACE

I ENTER? IF

ENTER NULL? IF

I SQ e .LINE ELSE

I (EDIIOP'a) R 1+ TEEN

ELSE

I SCR @ .LINE THEN

LOOP

DROP :

FORTH DIMENSIONS 11/6 Page 160

NEW PRODUCT Also we need to put EDITOR before
the R (the editor's Replace command),
and FORTH after R to make the
remaining 1's be DO-LOOP words.

Adding the vocabulary names
makes the previous definitions
testable. Trying them reveals that
it all works except the line printed
after the (CR) o n l y was entered
(i.e., leaving enter-mode) has one
additional space before it. This
skews that line from a l l the others.
This is because fig-FORTH echos a
space when the (CR) is entered. To
fix this ugliness, back up the cursor
1 column before printing that line.
For most terminals, a Back Space
character will do the trick. (Not
so on a memory-mapped terminal.)
Defining the following will output a
Back Space:

: .BS (-) 8 EMIT' ;

It should be inserted after the
phrase NULL? IF in NEW'S definition.
Because this function is terminal-
dependent, it definitely should be a
separate definition.

The final working version
follows :

HOME GROWN APPLE I1 SYSTEM:

As an avid FORTH user, I would
like to share my work with other
Apple I1 users. Assembling the
fig-FORTH model source code on CP/M
and other systems with assembly
language development tools i s rela-
tively straight forward, but for the
primarily turn-key Apple a lot o f
additional, undocumented information
is required. To equalize this
situation I will supply my home
grown Apple I1 system on disk to
anyone for $30.00. No documenta-
tion, support, or instruction is
provided save for technical notes on
the disk supplementing the F I G
installation manual. An assembler,
screen editor, source code and asso-
ciated compiler are included. The
idea is to be able to upgrade and
patch the system in various ways
from listings (standards, any-
one?). Not for beginners, not a
commercial product, at your own
risk. Contact George Lyons, 280
Henderson St.; Jersey City, NJ 0 7 3 0 2

SCR # 45
0 (EDITOR EXTENSIONS: NEW UNDER KRH 9 F E B 8 1)
1 EDITOR D E F I N I T I O N S
2 : ENTER? (start-line# current-line# - f) OVER = ;
3 : ENTER (-) QUERY 1 TEXT ;
4 : NULL? (- f) T I B @ C@ 0 s ;

6
7 : NEW (start-line# -) FORTH 16 0 DO CR I 3 . R SPACE
8 I ENTER? I F ENTER NUL? I F .BS I SCR @ . L I N E ELSE
9 I EDITOR R FORTH 1+ THEN ELSE I SCR @ . L I N E

10 THEN LOOP DROP ;
11 : UNDER (start-line# -) FORTH 1+ 16 0 DO CR I 3 . R SPACE
12 I ENTER? I F ENTER NULL? I F .BS I SCR @ . L I N E ELSE
13 I EDITOR I FORTH 1+ THEN ELSE I SCR @ . L I N E
14 THEN LOOP DROP ;
1 5 FORTH D E F I N I T I O N S

5 : . B S (-) 8 EMIT ;

TO VIEW OR NOT TO VIEW

(TO VIEW OR TO VIEW NOT?)
George William Shaw I1

Sometime back, about one year
ago, a fig-FORTH package was distri-
buted t o the members at the monthly
FIG meeting. One of the programs in
the package was a command called
VIEW. This command would allow you
to find the source text for a com-
piled definition and list it on the
screen by simply typing VIEW, fol-
lowed by the name of the command you
wish to see the source text of.

I have been asked by Carl Street,
the guest editor for this issue of
Forth Dimensions, to write a commen-
tary on this command which is to
describe how the code originally
submitted in the goodies package
works and what other additions or
changes I would make to the code.

So why have VIEW? VIEW adds
convenience to writing and editing
programs. The command allows you to
get directly back to the source
screen of a compiled definition,
rather than trying to remember just
what screen it was an. Most of us
can remember approximately what
screen o r screens we have been
working on, but if we have been
working with more than a few screens,
we would usually have to list a
couple of screens to find the source
to review o r edit a given defini-
tion. VIEW eliminates this problem
by allowing us to reference the
source on the disk by the name of
the compiled definition.

VIEW also takes very little
system overhead. The entire com-
piled source for VIEW with all
extensions mentioned in this article

1

takes less than 170 bytes c ~ r av
system. The compiling overhead i s
just as small. Only one o r two bytes
per definition and a negligible
addition to compile time. V e r v
inexpensive for the convenience and
power it gives.

In order for VIEW to work, some
of the resident defining words must
be redefined. In pre-compiled fig-
FORTH systems, the defining words
CONSTANT, VARIABLE, VOCABULARY, :
(colon), and <BUILDS must be re-
defined to contain a word called
>DOC<. >DOC< will store in memory
the disk screen number which con-
tains the source of the definition
being compiled. (On systems which
can recompile themselves, >DOC< need
not be placed in each one of the
defining words. It need only be
placed in the word CREATE, which is
used by each of the defining words
to enter a definition into the
dictionary .)

With >DOC< in either CREATE o r
each of the defining words, the disk
screen number which contains the
source will be stored in memory to
allow later referencing by the
command VIEW. The command VIEW,
then, has the task of finding the
requested definition in the dic-
tionary, fetching the screen number
from memory, and listing the screen.
This entire procedure is quite
simple in FORTH and can be accom-
plished in a single line of source
code (excluding the comment):

The word [COMPILE] causes the
word ' (tick) to be compiled into
memory, rather than being executed
a t compile time (' is immediate).
When VIEW is later executed I will
search the dictionary for the name
which follows VIEW. NFA takes the

Page 162 FORT% DIMENSIONS II/6

address left on the stack by ' (the
parameter field address) and changes
it to the Name Field Address. 1 -
then gives the address of the byte
immediately preceding the name field.
C@ extracts the screen number (which
was stored at compile time) where
the source of the definition is
located. LIST prints the source of
the definition. The second [COMPILE]
allows EDITOR to be compiled (EDITOR
is immediate) to select the editor
vocabulary when VIEW is executed.
This last step allows convenient
entry into the editor for editing if
desired.

: >DOC< BLK @ B/SCR / C, ;

>DOC< stores a one byte screen
number in memory of the screen from
which source text is currently being
interpreted or compiled. BLK con-
tains the block number as above. In
fig-FORTH, the block number and the
screen number may not be the same
(there may be several blocks per
screen), so a division is performed
with B/SCR (blocks per screen) to
obtain the screen number. If in
your system B/SCR is one
may eliminate the division
and additionally speed the
of >DOC<.

(11, YOU
by B/SCR
execution

. CbNSTANT > M C < iCOWILL! COIISIAtiT ,

: VARIABLE >DOC< [C O W I L E l VALIMLL ,
: VOCMbLABY)DOC< [COWILL] V O C A B L U Y ;
. . . . >DOC< (COPWILE] :
. <IUILm >wc< [CoPWlLr! (ICIIDS ;

>DOC< is then placed immediately
preceding each defining word to
store into memory the screen number
currently being interpreted. Since
for most of us our fig-FORTH is
pre-compiled (we can't recompile the
basic FORTH system), each defining
word is simply redefined to be
preceded by >DOC<. The [COMPILE] in
each of the words is actually only
necessary in the redefinition of :
(colon) because it is immediate and
would attempt to execute at compile

time rather than being compiled a s
desired. The other words are riot
immediate and would not have this
problem.

Now, when any one o f the defining
words executes, >DOC< is executed,
storing the screen number being
compiled immediately preceding the
name field of the definition. The
area immediately preceding the name
field was selected because this area
can be addressed directly with
existing FORTH words. The parameter
field area of FORTH words i s of vari-
able length, so the area immediately
following the end of the definition
would not be as easily addressed.

When it is desired to VIEW a
viercompiled word, the source screen
number can easily be accessed and
the definition listed. If a word
which has not been compiled with the
screen number preceding it is VIEWed,
the screen determined by whatever
byte immediately precedes the defini-
tion will be listed.

The current definition of VIEW
works great except for a few minor
idiosyncrasies. First, only a single
byte is stored in memory for the
source screen number. If you have
screens above 255 and compile from
them, the source cannot be viewed
directly. A larger number is then
needed. By simply changing the C,
and C@ to , and @ in >DOC< and VIEW
respectively, any screen currently
accessible by the FORTH system could
be VIEWed. Note that the address
calculation must also be changed
from 1 - to 2 - to account f o r the
additional byte, as shown below:

Page 163 FORTH DTMENSIOffS t I /6

A l s o , to the list of words being
redefined I would add USER, CODE and
CREATE. Redefining USER will allow
the location of the definition of
the user variable. Redefining CODE
will allow the VIEWing of words
defined in assembler. Redefining
CREATE will cause all defining words
2 at e r compiled to bui Id VIEWable
(vo rds .

: USER >DOC< USER ;
: CODE >DOC< CODE ;
: CREATE >DOC< CREATE ;

It should be noted also that if
y o u have changed the structure of
y o u r dictionary by placing links
first (as I have) that the address
calculation in VXEW will have to be
changed as below:

The additional 2 - (to 4 -) is
necessary to skip the link which
precedes (rather than follows) the
name field in these systems.

And lastly, the current defini-
tion of VIEW will even try to list
the source screen for definitions
which have been created at the key-
board. The block number stored for
these definitions is zero (0), which
is not where the source is at all.
If you don't mind having block zero
(0) listed when you request to VIEW
a definition which you created at
the keyboard, then there is no
problem. But, if this does bother
you, you can put in the test below:

In addition to the above, a test
may be put in >DOC< to prevent the
storing of the screen number when
compiling from the keyboard:

FIGURE 6

Note that if the test for block
zero (0) is placed in >DOC<, then
VIEW will try to list those defini-
tions which would have had a s c r e e n
number of zero (0) with the same
result as attempting to VIEW a
definition which was not defined
with the redefined defining words.

George W. Shaw I1
SHAW LABS, LTD.
P.O. Box 3471
Hayward, CA 94540

NEW PRODUCT

FORTH-79 FOR APPLE:

MicroMotion has announced the
release of FORTH-79 for the Apple
computer. MicroMotion FORTH-79 is a
structured language that is claimed
to conform to the new FORTH-79
International Standard. MicroMotion
FORTH-79 :omes with a screen editor
and macro-assembler. Vocabularies
are included for strings, double
precision integers, LORES graphics
and modem communication. Its
operating system allows multiple
disk drives and is 13 or 16 sector
disk compatable. MicroMotion
FORTH-79 runs on a 48K Apple I1 or
Apple I1 Plus. Retail price is
$89.95 including a professionally
written tutorial and user's guide
designed to make learning FORTH-79
easy for the beginner. MicroMotion;
12077 Wilshire Blvd., Suite 506; Los
Angeles, CA 90025; (213) 821-4340

(Editor's note -- The manual is
excellent. It notes the differences
between fig-FORTH and FORTH-79 where
pertinent)

RENEW TODAY!

FORTH DIMENSIONS II/6 Page 164'

SEARCH
John S. James

When you are debugging or
modifying a prcgram, it is often
important to search the whole program
text, o r a range of it, for a given
string (e.g., an operation name).
The 'SEARCH' operation given below
does this.

To use 'SEARCH', you need to
have the FIG editor running al-
ready. This is because 'SEARCH' uses
some of the editor operations in its
o m definition. The 'SEARCH' source
code fits easily into a single
screen; it is so short because it
uses the already-defined editing
functions. Incidentally, the FIG
editor is documented and listed in
the back of FIG'S Installation
Manual.

Use the editor to store the
source code of 'SEARCH' onto a

Example of Use:

39 41 SEARCH COUNT
00 VARIABLE COUNT ER -

1 COUNT ER +! COlTNTER @
1 COUNTER +! COUNT ER @

12 EMIT 01 TEXT 0 COUNT ER !
56 > IF o COUNT ER-! - -

screen. Then when you need t o
search, load the screen. (Of course
if you are using a proprietary
version of FORTH, it may have an
editor and search function built in
and automatically available when
needed. This article-ette is mainly
for FORTH users whose systems are
the ten-dollar type-it-in-yourself
variety .)

Here is an example of u s i n g
'SEARCH'. We are searching f o r t i i t
string 'COUNT' in screens 39-41; the
source code of 'SEARCH' is on screen
40. The screen and line numbers a r c
shown for each hit. Incidentally,
the search string may contain blanks.
Just type the first screen number,
the last screen number, SEARCH fol-
lowed by one blank and the target
text string. Conclude the line with
return. ~ The routine will scan over
the range of screens doing a text
match for the target string. All
matches will be listed with the line
number and screen number.

Happy SEARCHing !

2 40
4 40
4 40
5 40
8 40 OK

CORRECTION:

CROMEMCO DISKETTES described on
page 145 of Vol. 11/5 are suppl i ed
by :

Inner Access Corp.
PO Box 888
Belmont, CA 94002
(4 1 5) 591-8295

AREYOUA-- - - - FIGGER?
YOU CAN BE!

RENEW TODAY!

