FOSTH IIMEISID TS

FORTH INTEREST GROUP Volume 1
P.O. Box 1105 Number 6
San Carlos, CA 94070 Price $2.00

59 Historical Perspective
' Publisher’'s Column

60 FORTH, The Last Ten Years
and The Next Two Weeks
by
Charles H. Moore, Creator of
FORTH and Chairman of the
Board of FORTH, Inc.

76 Information

77 Meeting Notices

78 FIG Doings

FORTH ITIENSIDNS

Published by Forth Interest Group

Volume 1 No. 6 March/April 1980

Publisher Roy C. Martens

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
George Maverick

FORTH DIMENSIONS solicits editorial
material, comments and letters. No
responsibility is assumed for accuracy
of material submitted. ALL, MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP
IS IN THE PUBLIC DOMAIN. Information
in FORTH DIMENSIONS may be reproduced
with credit given to the author and the
Forth Interest Group.

Subscription to FORTH DIMENSIONS is
free with membership in the Forth
Interest Group at $12.00 per year
($15.00 overseas). For membership,
change of address and/or to submit
material, the address is:

Forth Interest Group
P.0O. Box 1105
San Carlos, CA 94070

Mr. Moore and several associates
formed FORTH, Inc. in 1973 for the
purpose of licensing and support of
the FORTH Operating System and Pro-
gramming Language, and to supply
application programming to meet
customers unique requirements.

The Forth Interest Group is centered
in Northern California, although our
membership of 950 is world-wide. It
was formed in 1978 by FORTH prograrmmers
to encourage use of the language by the
interchange of ideas through seminars
and publications.

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H.
Moore in 1969 at the National Radio
Astronomy Observatory, Charlottesville,
VA, It was created out of dissatis-
faction with available programming
tools, especially for observatory
‘automation.

PUBLISHER'S COLUMN

This is a special issue of FORTH
DIMENSIONS. It is the regular issue
but it is also very special. It
includes the complete text of Charles
Moore's speech at FORTH Convention,
October 1979, in San Francisco.
The founder of FORTH has given us a
historical and futuristic view of
FORTH. Thank you, Chuck!

This issue completes Volume 1 of
FORTH DIMENSIONS and what a way to
finish. The largest issue to date and
the complete Charles Moore article.
Look for Volume 2, Number 1 soon.

Roy Martens

Page 59

FORTH DIMENSIONS 1/6

'S

34

s h e B A

.

FORTH, The Last Ten Years and The Next Two Weeks ...

Charles H. Moore
Chairman of the Board
FORTH, Inc.

WELCOME

Thank you. You honor me just by
being here and being so involved
in something that I never really
expected would be this interesting to a
group of people. I think way back in
the Dark Ages I had in mind maybe some
day addressing the Rotarians about
FORTH. This is a rather more select

group.

It turns out that FIG's estimate
of this being the tenth birthday party
for FORTH is remarkably accurate. By
way of explanation, this is not
intended to be a history of FORTH. For
one reason, I do not have a very good
memory for such events and I am not
going to be particularly accurate nor
particularly complete -- I am just
going to give you my impression of
what's happened for ten years. I
am not up with what's happening in
Europe or even in San Francisco and I
apologize for that, but there never
seems to be a need to delve into the
history of FORTH. There is a history
but first I want to talk a little bit
about what FORTH is. This has been a
subject of some speculation.

ASPECTS

Is FORTH an operating system? Is
it a language? Is it a state of mind?
I propose to trace five threads of
history through ten years. I am going
to do it in such an order that if we
cut off the end nobody will care.

The five aspects of FORTH are
philosophy, language, implementations,
computers, and organizations, (meaning
groups like FIG). If you talk about
FORTH, the language, you can talk about
some of these things and if you talk

about FORTH the ocompany you can talk
about other things. This is a reason-
able organization for what is really a
broadly based attack upon the problems
of society.

When I was very young I don't
think I would have liked myself very
much. I recollect being rather
arrogant — that is a little bit too
strong —- I wanted to do things my way,
I was not convinced that I should not
be permitted to, and I think I was a
bit hard to get along with. That's all
changed now. But in particular I was
insecure. I was promoting certain
ideas which everyone told me were wrong
and that I thought were right. But if
I were right, then all those other
people had to be wrong and there were a
lot more of them than me. It took a
lot of arrogance to persist in the face
of rather massive disinterest.

You may have noticed that FORTH is
a polarizing concept. It is just like
religion or politics, there are people
who love it and people who hate it and
if you want to start an argument, just
say -— "Boy, FORTH is really a great
language".

I think there were some of you
around ten years ago who may be aware
of tte problems that a programmer would
encounter. They are exactly the same
problems that a programmer encounters
today! There has been no progress in
the software industry for the last
twenty years. This was apparent ten
years ago and it was unsettling.
It did not seem that the last thought
had been "thunk" when FORTRAN was
invented and yet nobody seemed to
question that. It was the unspoken
assumption that things are the way
they are and they cannot become
substantially different.

Speech at FORTH Convention, October 1979, San Francisco. CA.

FORTH DIMENSIONS I/6

Page 60

PHILOSOPHY

Let me about philosophy now. I
was a free-lance programmer once upon a
time (1968). I went to work for a
carpet manufacturer and learned COBOL
partly out of financial necessity and
partly with the thought "here's a
language I don't know — let's pick up
one more”. These people acquire a
graphics system. It was an IBM 1130
with a 2250 graphic display unit, a
very nice state-of-the-art outfit,
expensive! Speculation was that this
would help us design carpets or maybe
furniture. Nobody was really sure but
they wanted to try. The 1130 was a
very important computer. It had the
first cartridge disk. It also had a
card reader, a card punch, and a
console typewriter. The backup for the
disk was the card punch! I don't
think I ever backed-up the disk but I
do remember reloading the operating
system numerous times.

The 1130 went away one day because
without color it really wasn't worth
anything for manufacturing carpets.
They also had a Burroughs 5500 which
was running ALGOL at a time when ALGOL
was not popular. A very nice machine.
They were programming in OOBOL, which
was the first good COBOL. These were
progressive people and want to credit
them -- Mohasco Industries. I put
FORTH on the 5500 -- this is fairly
unusual. It was cross-compiled to the
5500 from the 1130, since there is no
assembler on the 5500. There is a
dialect of ALGOL called ESBOL that
Burroughs used to compile operating
systems (it was not available to the
users). But I learned about push-down
stacks from this machine and had a
lot of fun. It was third-shift work
because the 5500 was busy. It was
replaced by a Univac 1108, so I imple-
mented FORTH on the 1108. It con-~
trolled the interactions of a bunch of
COBOL modules which did all the real
work. The 1108 was cancelled due to
anticipated financial reverses; the
programming staff quit; and I went to
work for the National Radio Astronomy
Observatory (NRAO).

Before I left -- my last week -- I
wrote a book. It was entitled Program—
ming a Problem Oriented Language and it
expressed my philosophy at the time.
It is very amusing reading. It also
describes what was then FORTH. It
makes amusing reading because, unknown
to anyone, 1 was expressing opinions,
attitudes, not designing a programming
language.

FORT™H first appeared on that 1130
and it was called FORTH. It had all
the essential characteristics of FORTH
and I will return to that point later.

F-O-R-T-H is a five letter
abbreviation of "fourth," standing for
four th-generation computers. This was
the day, you may remember, of third-
generation computers and I was going to
leapfrog all of that. But FORTH ran
on the 1130 which only permitted
five-character identifiers.

The first thing that was modern
FORTH was the Honeywell 316 program at
NRAO. I was hired by George Conant
to program a radio telescope data
acquisition program. I was given a
camputer (to the envy of other people
who felt they deserved it). I was
turned loose to do whatever I could
with it, provided I came up with a
product. I just went off and nobody
really wanted or appreciated what they
ended up with,

We developed a number of systems at
NRAO and encountered the issue of
patenting software. Programs cannot be
patented; ought not to be patented;
would be very expensive to patent.
NRAO has an agreement with Research
Corporation, a company that tries to
pull from universities some technology
spinoffs that can be used to better
mankind. (They patent things for
people who don't know (or care) how.)
FORTH seemed like something that
perhaps should be patented, so we spent
a year writing proposals, investigating
and getting lawyers' opinions. The
conclusion was that maybe it could be
patented, but it would take Supreme
Court action to do it. NRAO wasn't

Page 61

FORTH DIMENSIONS 1/6

interested. As inventor, I had fall-
back rights but I didn't want to spend
$10,000 either, so FORTH was not
patented. This probably was a good
thing. I think that if any software
package would qualify for patenting
FORTH would. It has no really innova-
tive ideas in it, yet the package would
not otherwise have been put together.
If you apply this reasoning to hard-
ware, hardware is patentable. It is
one of my disillusionments that the
establishmen. refuses to provide any
effective protection for software.
Probably it is the lack of vocal
objection from within the industry
and the willingness to acquiesce,
knowing that today's software will be
obsolete in a year anyway.

Given interest from other astron-
omers, a few believers formed FORTH,
Inc. We developed miniFORTH (FORTH on
minicomputers) with the idea to have a
programming tool. The first important
realization of that tool came when we
put an ISI~-11 and FORTH into a suit-
case, 1 think I became the first
computer-aided programmer, in that I
had my computer and took it around. I
talked to my computer, my computer
talked to your computer and we could
communicate much more efficiently than
I could directly. Using this tool we
put FORTH on many computers. My goal
in all of this was to make myself a
more productive programmer. Before
all this started, I had figured that
in forty years I could write forty
programs at the rate I was going. That
was it. Period! That was my destiny
but I wanted to write more programs
than that. There were things out in
the world to be done and I wanted to
do them.

It has taken a long time. I still
don't have the computer I want, but I'm
working at ten times that rate and I
see other computer-aided programmers
now. I am amazed that it should not
have been obvious that programmers
had to be computer-aided. To expect
the programmer to deal with an intrin~
sically unfriendly machine on his own

is not in keeping with the attitude
that we preach for other people to
follow.

As time went on it became apparent
that FORTH is an amplifier. A good
programmer can do a fantastic job with
FORTH; a bad programmer can do a
disastrous one. I have seen very bad
FORTH and have been unable to explain
to the author why it was bad. There
are characteristics of good FORTH:
very short definitions and a lot of
them. Bad FORTH is one definition per
block, big, long, dense. It is quite
apparent, but very hard to point to an_
example of samething that went awry or
explain why or how. BASIC and FORTRAN
are much less sensitive to the quality
of the programmer. I was a good
FORTRAN programmer. I felt that I was
doing the best job possible with
FORTRAN and it wasn't much better than
what everyone else was doing. I
indented things a little more nicely,
maybe, and I declared some things that
everybody else left to get declared by
default. What more can you do?
In a sense 1 said, "let me do it
right. Let me use a tool which I
appreciate and if everyone can't use
this tool well, I am sorry, but that is
not my goal." In that sense FORTH is
an elitist language. On the other
hand, I think that FORTH is a language
that a grade-school child can learn to
use quite effectively if it's presented
in the proper bite-size pieces, with
the proper motivation.

Finally, polyFORTH is a con-
densation of everything we have learned
in the last ten years of developing
FORTH. I think it is a very good
package. I foresee no fundamental
changes in the design of the language
except for accommodation to the
standards which are becoming in-
creasingly important. Up until
now there has been no reason for
standards. There are internal stan-
dards of FORTH, Inc. internal standards
at Kitt Peak for the effectiveness of
the organization, but there has never
been a demand for portability. 1In

FORTH DIMENSIONS I/6

Page 62

fact I know very few programs that
portability has ever been seriously
attempted with. The time has clearly
come to change that.

There will be developments in
other areas and one was brought home
most forcibly today. It may be that
FORTH 1is not merely a programming
language. It may be saying something
much more important about communication
— between people, between computers,
between animals. This is startling!
It had never occwrred to me that anyone
would really "speak FORTH" in an
attempt to communicate with anything
else than a computer; it is not any
longer clear that that is the case.
There may be concepts embodied in FORTH
of greater general utility to the basic
problem of communication.

Now in concluding the philosophy
section, I would like to read a poem.
This is a poem that some of you have
heard. It is a translation of a
classic of English literature and it
goes as follows:

+ SONG
SIXPENCE !
BEGIN RYE @ POCKET +! ?FULL END
24 ¢ DO BLACKBIRD 1 + @ PIE +! LOOP
BAKE BEGIN ?0PENED END
SING DAINTY-DISH KING ! SURPRISE ;

The author is Ned Conklin, who is
very good at that sort of thing and
is the first FORTH poet. 1Is there a
place for this in the world of com-
munication? I don't know. It is
remarkably easy to come up with such
paraphrasing of just about anything
that you care to paraphrase. It's not
clear that it's not an efficient
means of communication.

INTRODUCTIONS

Let me introduce two people since
I have touched upon the subject.
It is ten years since there was one
FORTH programmer. I would estimate
that there are now 1,000 FORTH pro-

grammers, which is 2 to the 10th
power and comes out nice and round -- a
doubling time of one year. Actually, I
think the doubling time is slightly
shorter than that -- 10 times in three
years and that comes out to 2,000 as
some people would prefer. What we
conclude is that next year there will
be twice as many programmers; the year
after that twice as many, and if you
believe numerology these projections
are unarquable. There is a curve, you
extrapolate the curve and draw the
conclusions. We don't know how it is
going to come about. FORTH, Inc. can't
train twice as many people next year —
well, maybe we can. But, somehow the
FORTH community as a whole has got to
train twice as many people next year
and thereafter. Maybe the Apples ar-
the Radio Shacks are going to be the
method of accomplishing that. It seems
that capabilities come along just about
quickly enough to keep the exponential
curve growing. I have fairly great
confidence that 1) the doubling time
is a year, and 2) it is going to
continue. Now there is collateral
evidence to support this, if you plot
the number of FORTH systems or the
dollar value of FORTH systems or
percent penetration of markets. Each
way, you get about the same growth
curve, so I think the growth curve is
honest.

Ten years ago there was one
FORTH programmer. The second FORTH
programmer is in the audience; please
meet Elizabeth Rather. Now that is
quite a guantum jump, from one to two.
The next step was four and they came
out of Kitt Peak and the growth can be
traced from there, for awhile, if
anyone cares to. Actually the first
FORTH user is in the audience and
that is Ned Conklin. He was head of
the station at Kitt Peak for NRAO,
running the telescope, responsible for
committing his telescope to this risky
venture. It is an important telescope
because it is responsible for half of
the interstellar molecules discovered
in the last ten years.

Page 63

FORTH DIMENSIONS I/6

Again, I didn't exactly ask
permission to commit these people to
this course of action. Nobody realized
what the consequences were going to
be. It doesn't seem to have worked out
too badly. FORTH is still running on
that telescope at Kitt Peak and on a
lot of other telescopes.

LANGUAGE

Now let's talk about the language
and how FORTH came to be what it is
today. There is a pre-history which
goes back much further than ten years
and I have some slides showing that
time. These are strictly pre-history
-- I found an old pile of listings
and I photographed them. The first
component of FORTH to occur was the
interpreter. [Figure 1] This is an
example of an early interpreter
programmed in ALGOL. This was done at
Stanford Linear Accelerator Center back
in the early sixties. This is a
program which still exists and it
is called TRANSPORT. It designs
electton-beam transport systems. You
see an early dictionary there. The
word ATOM shows the LISP influence.
ATOM is an indivisible entity, which we
now call a "word." Having read a word
DRIFT from an input card, I would
execute the drift routine and so on.
I have looked through innumerable
listings and found this style of
programming gquite consistent — it's
the way I wrote programs in those
days. I had an input deck which got
interpreted with a structure pretty
much as you see it today: words
separated by spaces, no particular
limits on the length of the words (as
you can see from SOLENOID), only
the first characters, however, were
significant.

IF ATOM="DRIFT* THEN DRIFT FIGIRE 1.
ELSE IF ATOM="QUAD" THEN QUAD
ELSE IF ATOM="BEND" THEN BEND
ELSE IF ATOM="FACE" THEN FACE (-1)
ELSE IF ATOM=ROTATE® THEN ROTATE
ELSE IF ATOM="SOLENO" THEN SOLENDID
ELSE IF ATOM="SEX" THEN SEX
ELSE IF ATOM="ACC" THEN ACC
ELSE IFf ATOM«~"MATRIX" THEN BEGIN IF NOT PITTING THEN BEGIN
%‘:ﬁ:,o.o.mlsn; LINE {~({B+42x({ORDER-1)));
FOR J=1 STEP 1 UNTIL 6 DO BEGIN
FOR K=] STEP] UNTIL 6 DO WRITE1(2,8,RI[J,X)xUNIT (K] ANIT(JL,2),

LINE(0) END;
IF ORDER=2 THEN FOR C=) STEP 1 UNTIL 6 DO BEGIN

Here is another example, quite
similar. [Figure 2.] Here ATOM has
become W and I am looking up + and -
and T, R, A and I — which represent an
early version of our text editor. That
again is ALGOL. I am not campletely
clear what was being edited. I think
it was some kind of files sort program,
maybe on cards that were getting
printed or rearranged.

120 CYCLE; PILL CUTPUT WITH BUFFER|[}].BUFFER[2]:
WHILE WORD NEQ “END " Do
IF W=(M1 THEN REPLY {“OK *)
ELSE IF NUMERIC THEN L:-MIN{W-1, EOF)
ELSE If W="4 “THEN L: =M IN({L+WORD.EOF)
ELSE IF We"- “THEN L: *MAX(L~WORD.O)
ELSE IF wW="T “THEN BEGIN
IF WORD=G 1 THEN W:=l; W:MIN(L-1, EOF};
FOR L:=L STEP | UNTIL W DO BEGIN
POSITION: TYPE END; L:=L-1 END
ELSE IF w="R “THEN BEGIN
POSTITION; REPLACE END
ELSE IF W="A “THEN BEGIN
L:=EOF:=BOF+1; REPLACE END
ELSE IF W="1 “OR W="D “THEN BEGIN
IF NOT RECOPY THEN BEGIN
RECOPY : *TRUE ; REWIND(CARD) END;
POSITION; (F W ="1 “THEN BEGIN
PLACE: REPLACE END
ELSE BEGIN EMPTY:=TRUE; IF WORD NEQ QM1 THEN BEGIN
L:aMIN(1+-1, BOF}; SPACE(CARD, L-LO+1); LO:=L+]
BND END END

Here is another way of setting up
a dictionary. [Figure 3.] I am
filling an array with strings of text
and I am going to search that array for
a match, take the index and vector
through a computed 30-TO. A

LABEL UNDEFINED, BACKWARD!, TYPE2, FIND, INSERT, DELETE, ERASE,
START, REPEAT], BOUNDARY1, BEGIN2, END2, QUIT1, ALODL, FORTRAN,
COBOL, DATA, PACK};

SWITCH SW:=UNDEF INED, BACKWARD! TYPE2, FIND, INSERT, DELETE, ERASE,
BACKWARDL, TYPE2, FIND, INSERT, DELETE, ERASE, START, REPEAT1, BACK,
BOUNDARY], BEGIN2, END2, QUIT1, ALGOL, PORTRAN, COBOL, DATA, PACK!:
ALPHA ARRAY COMMAND{1:132};

FILL COMMAND{*] WITH
. - wp -

FIGURE 2.

-
w
HFOWE YA VNBA LN~ OB® IOV RN~

e
-

gwaw

. SUET "D “ e -
*BACKWAR", “TYPE ®, "FIND ", "INSERT ", "DELETE ", "ERASE *,
"START *, “REPEAT *, " “, "BOUNDAR *, "BEGIN ", “END
“EXIT *, "ALOOL ", "FORTRAN®, “COBOL ", “DATA ", "PACK
- ", COUNT:=0; RETURN; COPY ("EDIT#RE™ U “ADY ");
TRANSMIT ;

BACK: SOURCE(]); WORDL;
IF Wa" “THEN GO QUIT1; GO TO SW{MEMBER{COMMAND.W)+l1];

»~
ne-Boouenawn-

Here is another way of imple-
menting the dictionary. [Figure 4.]
This is the first appearance I have on
record of a stack. I am looking up
the words in a conditional statement
and setting NEXT to the index. And
that's the first appearance of NEXT

which I can find. FIGURE 4.
8 PROCEDURE RELEVANCE; BEGIN REAL T,NO;
J:#0; 1:e-1; WHILE WORD NEQ "END o
1 IF Wam= “THEN NEXT:=3

ELSE If We"GT “THEN NEXT:=4
ELSE IF w="LT “THEN NEXT:aS
ELSE IF W="NOT “THEN NEXT:=6
ELSE IF W="AND “THEN NEXT:=7
ELSE IF w="OR "THEN NEXT:=§

ELSE IF Wa"+ “THEN NEXT:=9
ELSE IF We"- “THEN NEXT:=10
ELSE IF wW="# STHEN NEXT:=11
ELSE IF w="/ “THEN NEXT:=12
1 ELSE IF KO:=SEARCH1(W) GEQ O THEN BEGIN
NEXT:=1; NEXT:«k:=KO END

ELSE BEGIN
NEXT:=2;
IF BASE{K]=" THEN NEXT:=WORDG (0|
ELSE NEXT:= W END;

NEXT: =0 END;

ouwa-SooqowbuNo-s»o

FORTH DIMENSIONS 1/6

“Page 64

Here is the other half of that --
this is the implementation of the
stack. [Figure 5.] This is a variant
of ALGOL called BALGROL that lets you
put assignment statements inside other
statements. “"Stack of J replaced by
J-1" is how you push something onto the
stack., One of my "less-liked" features
of ALGOL was that I had to play
games like "real of boolean of stack of
J and boolean of ..." just in order to
get around the automatic typing that
ALGOL was insisting that I apply. Now
this was specifically intended to let
me manipulate parameters that were
interpreted from the card deck as
arguments to the routines. In other
words, if I wanted the sine of an
angle, I oould say ANGLE SINE but if I
wanted to convert the angle from one
unit to another, I needed at least some
simple arithmetic operators and this
provided them. This is again at
Stanford. FIGURE 5.

7 BOOLEAN PROCEDURE RELEVANT; BFGIN
I:=J:=1; STACK(0]:=1; 0O CASE NEXT OF S8EGIN
NEE S
STACK [.J: wJ+1) : «CONTENT ;
STACK [J:=J+1) : =NEXT;
STACK [J:=J~1] : =REAL{STACK [J) =STRCK (J+1));
STACK [J:=J-1} :=REAL({STACK [J] GTR STACK(J+1]);:
STACK [J:aJ-1) : =REAL{STACK [J] 1S5 STACK[J+1));
STACK [J] : =REAL(NOT BOOLEAN{STACK[J]}))7
STACK (J:=J~1] : sREAL(BOOLEAN(STACK [3]) AND BOOLEAN{STRCK(J+11)));
STACK {J:=J~1) : *REAL(BOOLEAN(STACK{J]) OR BOOLEAN(STRCK{J+1])});
STACK{J:aJ~1] :=STACK[J | +STACK [J+1) ;
STACK (J:mJ-1] : =STACK |J | -STACK [J+]] ;
STACK (J:=J-1] : *STACK [J) xSTACK [J41] ;
STACK [J:=mJ~1} :#STRCK [J | /STACK [J41];
END UNTIL J LSS 0;
RELEVANT : sBOOLEAN(STACK [0)) END;

~
~
SV® e

N
~
AWN-FOY D UR U E N

Now here is a PL/1 program doing
very much the same thing at a con-
siderably later date. (Figure 6.] At
the top you see JCL (Job Control
Language) which was also not a pleasant
thing to deal with. One of the
criticisms of programming languages
that I mentioned in my book was that a
programmer at a typical computer
center, in order to function, needed to
know nineteen languages. This covered
writing PFortran programs, submitting
card decks, etc. These languages
were all subtly different with commas
here and spaces there and equal signs
meaning different things — nineteen
languages, just to function. Nobody
advertised the fact. Nobody sat
down and took a course in nineteen
languages, but you had to pick them

up in the course of several weeks
or several months in order to be
effective. FORTH, I figured could
replace all of them.

Here is NEXT: PROCEDURE CHARAC-
TER. {Figure 7.] I don't remember
that syntax but that I think it is the
first definition of NEXT as a procedure
that went off and got the next word and
did something with it. This is still
all pre-FORTH. We haven't gotten to
what I would consider the first FORTH
system.

1 /ATILITY JOB SYSTEM OVERHEAD

V4 EXEC PGM=I1FBUPDTE, PARM=NEW

//SYSPRINT m SYSOUT»A

//SYSIN D DATA

3
4
S ./ AU NAME-WORD, LEVEL=00, SOURCE=0, LIST=ALL
6 NEXT: PROCEDURE CHARACTER(4);
7
8

FIGURES 6 & 7

DECLARE KEYBOARD STREAM INPUT, PRINTER STREAM OUTPUT PRINT;
DECLARE (1 TEXT CHARACTER (8l) XNITXAL((BI)' “1.

9 2 C(81) CHARACTER(1), I INITIAL(E™ *,W CHARACTER(4

10 WORD CHARACTER(12} VARYING BASED{),P,NUMERIC BI‘NU) EXTERNAL;
11 P-MDR(C(I))

12 IF C(1)="-* OR C{I)="." OR "0" LE C{1) THEN BEGIN; NUMERIC="1"B;

13 1F C{I) NOT="_" THEN 0O I=I+l BY] WHILE "O" LE C(1); END;

14 IF C(1)="_." THEN DO Ixl+¢l BY ! WHILE "0" LE C(I}; END; END;

15 ELSE DO; NUMERIC=*0"8;

16 IF A* L& C(1) THEN DO Is=1+] BY 1 WHILE “A" LE C(I) OR C(I)="-"

17 END; ELSE; I=I141; END;
18 WsWOKD; RETURN(W):

Here is a rather later version of
FORTH coded for the IBM 360. [Figure
8.] Those are the routines PUSH and
POP. PUSH cost 15 microseconds on an
IBM 360-50. It includes stack limit
checking, which doubled the cost and
was one of the things that led me to
feel that execution-time stack checking
was not desirable and in fact not
necessary. However, up to that point,
the consequences of a runaway stack
were terrifying. POP is there also.
It was coded in a macroassembler that
did not have stack operations. It was
not possible to refer to a previous
"anything” so the deck is full of "L19
data oonstants, address, AL2(*-L18)"
to give me a relative jump to the
previous one. It could all be done but
it wasn't pleasant.

FIGURE 8.

830 L18 DC AL2(*-Li7)

831 NAME 3,X'+4555)",0 DUP

B32¢+ o AL1(3},x"445550 *
833+ I o X'
834+ WG *-2-W0
835+ s ™
836+ ORG *+ 04)
837+ oC ALL{O*X* lo +X'40°) .AL2(4)
838 PUSH A SP,MPOUR COSTS 15 0S

839 ST T,0(,SP)

840 cB sp,0P

841 BCR 2,NEXT BHR

842 B ABORT

843 L19 DC AL2(*-L1@)

844 OC ALI(4),X°4402CF50°, X 40 AL2(8) DRCP
845 LA SP,4(,SP)

B46 POP L T,4(,SP) COSTS 21 US

847 LA SP,4(,SP)

848 € 8p, SFOO

849 BCR 12, NEXT BNHR

850 B ABORT

Page 65

FORTH DIMENSIONS 1/6

Here is a version of FORTH coded
in COBOL. [Figure 9.]) This was done
at Mohasco, of course. I am setting up
a table of identified words which
I am going to interpret from an input
string. The attitude is so pervasive
that I begin to think that I was
talking myself into something here.
COBOL is fairly difficult to write
subroutines for. They have sub-
routines, they can be performed, but
they may not have any parameters. This
makes it a little bit awkward to do
anything meaningful.

FIGURE 9.

“CONF IGURATION® TO IDENTIFY(4);
“DATA® TO IDENTIFY(S);

"FILE®" TO IDENTIFY(6);

"FD* TO IDENTIFY(?);

“MD" TO IDENTIPY(8);

“SD" 10 IDENTIFY(9);
"WORKING-STORAGE® T0 IDENTIFY(10);
“CONSTANT* TO IDENTIFY(1l);
“PROCEDURE”™ TO IDENTIFY(12);

MOVE °INPUT-QUTPUT" TO IDENTIFY(13);

P

~

Here's the first example of FORTH
text. [Figure 10.] This came out of
Stanford again. The word DEFINE
begins (that is,:) a definition and the
word END (that is,;) ends it. The
"OPEN is obscure. "NAME seems to be
the way the name was introduced.
Apparently there did not have to be a
space between the quote and the word.
There are the definitions of a number
of stack operators. Top of the line is
CODE - "OPEN DEFINE MINUS + END ;
I guess that is subtraction. SEAL
was an early word for sealing the
dictionary for some reason. BREAK, I
guess broke the seal. "< : OPEN
DEFINE - < END ; is the same
definition we use today, in a very
early state. That was from a thing I
called "Base Two," intended to be some
kind of base programming language — I
can't remember any more about it.

PIGURE 10.

SEAL "< "OPEN DEFINE - < END BREAK
"NOT "OPEN DEFINE MDWS 1+ END

"¢ “OPEN [EFINE .< BND

"AND "OPEN [EFINE x END

OR "OPEN DEFINE NOT .NOT AD NOT BND
T 1 1 "REAL DECLARE

*= "OPEN DEFINE Te; DUP T< . T> OR NOT BND
¥ "OPEN [EFINE = NOT BND

"< "OPEN DEFDE, > NOT END

*> "OPEN [EFINE < NOT 8D

“OPEN [EFINE NAME 10 "ALPHA WRITE; 3 10 "REAL WRITE 0 LINE

This is a version of. FORTH source
for the 5500. [Figure 11.] Again,
very early — the second computer that
FORTH was put on. Apparently ¢ stands

g

for CODE and these are the code
definitions of the stack operation
on a 5500. Now the 5500 is a stack
machine at a time when stack machines
were not at all popular. They did a
very good job with their stack. All
of these were implemented with one
12-bit instruction and the present
names of these operations are directly
derived from the names of the 5500
operations. That's where DUP came
from, for instance. Notice that the
Z#OR was a way of distinguishing the
assemblers OR from the FORTH OR before
vocabularies were available.

FIGURE 11.

List
0001
0002
0003

0011 ¢ MOD #MOD RETURN

Here's an example of FIND coded for
the 5500. [Figure 12.] Notice that
the word SCRAMBIE is referred to, which
is a colon-definition for doing a
hashed search. Apparently here I had
eight threads, just as we put in
polyFORTH last year. These ideas go
way, way back. This is FORTH after the
threshold was crossed, ten years ago,
almost exactly. One can become a
little bit depressed at the "tremen-
dous" rate of progress in the last ten
years when you see that it was all back
there. PIGURE 12.

0013 ¢5M ¢FIND SCRAMBLE <SD gOUP
0014 41 A 41 >B ¢BEGIN V < 1771, f#IF

0015 MECIN VO <U 1771, £IF
0016 1 <L RESULT

0017 LHEN ADDR #DUP 1 <L <S
0018 US WORD <J fEQUAL #IP
0019 Vi _J US RESULT

001A LTHEN ¢DUP <SD #BACK

0018 £THEN GET ¢BACK
001C : FIND TOP #FIND #£IF (R <UD /8 ¢THEN;

Here is another example of
source. [Figure 13.] This was from
the Univac 1108. These are very
early record descriptions. This is the
layout of a record in a file with the
name of the field and the number of
bytes in the field. That was the Dun &
Bradstreet reference file for looking
up bad debts.

FORTH DIMENSIONS I/6

Page 66

