
A 

LCI 

4 \  

LL 

\A I 

Lm 
7 4  

FORTH INTEREST GROUP 
P.O. Box 1105 
Sen Carlos, CA 94070 

Volume 1 
Number 5 

Price $2.00 

lnSlUE 
U6 

sm 

53 I 

s7 

Historical Perspective 

Publisher’s Column 

CASE Statement Contest 

“To” Solution Continued 

Dictionary Headers 

FORTH-85 “CASE” Statement 

Another Generation of Mistakes? 

Installation Reports 

Meeting Notices 

Letters 

More From George 

New Products 

FORTH, Inc. News 



Published by F o r t h  I n t e r e s t  Group 

volume 1 NO. 5 JanFeb  1980 

Pub1 isher Ray C. Martens 

Ed i to r i a l  Review m r d  

B i l l  Ragsdale 
Dave Boulton 
K i m  Harris 
John James 
George Maverick 

FORTH DIIYENSIONS solicits editorial 
material, comments and let ters.  N o  
r e spons ib i l i t y  is assumed f o r  accuracy 
of material submitted. ALL MATERIAL 
PUBLISHED BY THE FORTH INTEREST 
IS I N  THE PUBLIC DOMAIN. Information 
i n  FORTH DIMENSIONS may be reproduced 
w i t h  credit given to the  author and the 
Forth I n t e r e s t  G r o u p .  

Subscription to E"H DIMENSIONS is 
free w i t h  membership i n  t h e  For th  
I n t e r e s t  Group a t  $5.00 per  y e a r  
($9.00 o v e r s e a s ) .  F o r  membership, 
change of address and/or t o  submit 
material, the address is: 

Forth I n t e r e s t  G r o u p  
P.O. Box 1105 
San Carlos, CA 94070 

Mr. Moore and s e v e r a l  associates 
formed F o r t h ,  Inc .  i n  1973 f o r  t h e  
purpose of l i c e n s i n g  and support of 
t h e  FORTH Opera t ing  System and Pro- 
gramming Language ,  and  to s u p p l y  
a p p l i c a t i o n  programming to  meet 
mstomers unique requirements. 

The Forth Interest Group is centered 
i n  Northern Cal i forn ia ,  although our 
menbership of 950 is worldwide. I t  
was formed i n  1978 by FORTH programers 
to encourage use of the language by the 
interchange of ideas through s e m '  inars 
and pub1 ica t ions .  

PUBLISHER'S COLUMN 

F o r t h  I n t e r e s t  Group h a s  come of  
age. FIG now has a publ isher  f o r  JKlFH 
DIMENSIONS. Roy Martens w i l l  handle 
a l l  f a c e t s  of p u t t i n g  together and 
g e t t i n g  o u t  f u t u r e  issues of  FORTH 
DIMENSIONS. He comes to FIG wi th  a 
s l i d  background da t ing  back to Hughes 
A i r c r a f t  Company i n  t h e  50's to  
Singer Business Machines and American 
Micro Systems i n  t he  70's. He has 
p u b l i c a t i o n  expe r i ence  ga ined  from 
Hayden Publishing Canpiny (Electronic  
Design, Canputer Decisions, etc.), CBS 
and €34 Cccmnunications. Welcame aboard, 
ROY I 

S. Figgie 

HISTORICAL PERSPECTIVE 

EOFrlTl was created by M r .  Charles H. 
Moore i n  1969 a t  t h e  N a t i o n a l  Radio 
Astronomy Observatory, Char lo t t e sv i l l e ,  
VA. I t  was created ou t  of d i s s a t i s -  
f a c t i o n  w i t h  a v a i l a b l e  programming 
tools, e s p e c i a l l y  f o r  o b s e r v a t o r y  
automation. 

Thanks. I look forward to working 
w i t h  FIG and hope t h a t  w e  can  make 
Fo#IH DIMENSICBE a usefu l  and timely 
tool f o r  a l l  members. Please send i n  
your letters, cases, suggestions. Y o u r  
i n p u t  w i l l  make FORTH DIMENSIONS 
successful.  

 cry C. Martens 

Page 46 rn- 

N 

be 

fK 

si 
pe 
St 

cc 

f i  

Fe 

SQ 
Pc 
ui 
PJ 

JU 

Fn 

ti 
vh 
se 
U 
yo 
ti 
Pl 
sh 
FJ 

UJ 



$$$$ CASE STATEMENT $$$$ 
CONTEST 

FIG is sponsoring a contest for the 
best CASE statement for FDRTH. 

Prize......$100 ($50 from FIG and $50 
from FORTH, Inc. ) 

Furthemre, entries will be am- 
sidered as experimental proposals for 
possible inclusion in the future FORTH 
Standard. 

C. An "English" explanation of how 
these words work 

D. Glossary entries for each 
word 

E. Examples of the use of this 
statement 

F. A discussion on the statement, 
including advantages and dis- 
advantages, limitations, appli- 
cations, etc. 

Contest Purpose. ..... 
Cmtest Rules...... 

Submit a CASE Statement, as speci- 
fied below, to 

FIG CASE CONTEST 
P.O. Box 1105 
San Carlos, CA 94070 

Postmarked on or before March 31, 1980. 

A l l  entries will be judged by 
selected, non-entering members of 
Forth Interest Group. All entries 
will become plblic domain and may be 
pub1 ished by FIG. 

Judging Criteria...... 

A. Cmformity to rules 
B. Generality of statement 
C. Simplicity of statement 
D. Self-identifying function 
E. "FtXLW-like" style 

Entry Requiremen ts...... 

Your entry should contain descrip 
tions of a collection of EWm words 
which allow the selection of one of 
several actions based on a selection 
criteria. The actions may be single 
words or groups of words. The selec- 
tion criteria may be simple or com-  
plicated. A variety of situations 
should be accorrmodated. Included in 
your entry should be.... 

A. An overview of the statement 

The selection of one of several 
procedures based on some criteria is a 
useful and cOmtlOn amtrol structure. 
Standard FDRTll provides two mechanisms 
for this structure: nested IF struc- 
tures and execution vectors. It is 
desirable to have a standard structure 
to handle a variety of situations. 

Hawever these do not appropriately 
satisfy all situations in terms of 
source mnvenience and execution-time 
efficiency. A simple situation where 
the selection criteria is a single 
integer index with a limited, con- 
tinuous range is adequately met by 
FORTRAN's computer GOT0 or FORTH's 
execution vectors 

At the other end of the complexity 
scale, if the selection criteria was an 
index with a non-contiguous range or a 
series of expressions, the simple 
statements would require manipulations 
at the source level and would appear 
less clear. Because of FORTH's 
hierarchial modularity, the range 
of oomplex situations can be met with a 
range of structures. The execut ion-t im 
overhead need not be greater than what 
the situation requires. The purpose of 
this contest is t;o produce a "kit" of 
compiler words which will allow the 
optim specification of case control 
by combining minimum execution-time 
overhead with a uniform source language. 

B. Source definitions in fig- 
FORTH words for the needed 
compiler and support words 



"TO" SOLUTION CONTINUED ...... 
"EASTER" 

As promised in  the last issue,  here 
is t h e  example for  the  calculation of 
t h e  d a t e s  of Easter from Paul Bart- 
holdi, Observatoire De Geneve, Switzer- 
land. 

SCR 19 
0 (Dates of Easter, Clavius A l g o r i t h m  
1 (This algorithm and variable names are) 
2 (from "Fundamental Algorithmsn by 
3 (D. Knuth. 
4 (by the sixteenth century astronomer 1 

6 
7 
8 0 VARIABLE %VAR ( i f  one, store ) 
9 : TD 1 %WG ! ; ( set to store ) 

10 : FROM 0 %VAR ! : ( set to fetch ) 
13 : ( (  (preserve %VAR f lag  ) 
1 4  R) %vAR @ >R >RFROM : 
15 : ) )  ( restore %VAR f lag  ) 
1 4  R) R> %VAR 1 > R ;  
15 
16 - 

The method w a s  originated 

5 (Clavius. 1 

SCR t10 

0 ( Simplified 'I0 DAB-79OCT29 ) 
1 
2 : VARu\BLE ( defined to observe TD ) 
3 (BUILDS 0 ,DOES> %vAR @ 
4 I F  ( set, so store ) 1 FROM 
5 ELSE ( clear, so fe tch ) @ THEN ; 
6 
7 
8VARIABLEC VARIABLED VARIABUE 
9VARIABUG V A R I A B I E N  VARIABLEK 

10 VARIABLE x VARIABLE z VARIABLE YEAR 
11 
12 
13 -> 
1 4  Note t h a t  t h i s  demonstration does not 
15 include the  newer UIO I AT etc. 
16 

9 c R  111 

0 ( Dates of Easter IY4B-79ocT29 ) 
1 :  (EASTER) ( Y e a r - d a Y  day 1 
2 (calculate date relative to March 1) 
3 DUP WP To YEAR 19 MODl+to G 
4 100 / 1+ DUP DUP TO C 
5 3 * 4 / 1 2 - T o x  
6 8 * 5 + 2 5 / 5 - T o Z  
7 Y E A R 5 * 4 / X - l O - T O D  
8 G 1 1 * 2 0 + 2 + X - 3 0 M O D  
9 DUP O< I F  30 + 'MEN 

10 D U P D U P T O E  
11 25 = G  1 > AND SWAP 24 = O R  
12 IF E 1+ TO E THEN 
13 4 4 E - W l P T D N  
14  2 1 < I F N 3 0 + T O " J ! H E N  
15 N D U P 7 + S W A P D +  
16 7 M U ) - D U P D U F ' T D N ; - - >  

SCR 112 

0 ( Dates of Easter lXB-79ocF29 ) 
1 : EASTER ( year --print one Easter 1 
2 (EASTER) 31 > 
3 IF 31 - 5 .R ." APRIL 
4 ELSE 5 .R ." MARCH " 
5 YEAR 5 . R ;  
6 
7 : IZASTERS (Begin year, end year - ) 
8 ( pr in t  Easter f o r  a range of years.) 
9 PAGE 32 SPACES ." IlATFS OF EASTER" CR 

10 1+ 0 Sw rn 
11 Do I EAsreR 1+ 
12 W P  4 MOD O= I F  CR THEN 
13 WP 240 Ma> O= IF PAGE THEN 
1 4  KIOP CR Pzu;E DR3P : 
15 
16 

EXAMPLE 

10 April 1955 1 April 1956 21 April 1957 6 April 1958 
2 April 1961 22 April 1962 29 March 1959 17 April 1960 

14 April 1963 29 March 1964 18 April 1965 10 April 1966 
26 March 1967 14 April 1968 6 April 1969 29 March 1970 

Fo6(TH D-1- I/S Page 48 



A MODEST PROPOSAL FOR 
DICTIONARY HEADERS 

Robert L. Smith 
Palo Alto, CA 

The new fig-FORTH mdel has improved 
the utility of FORTH by allowing 
dictionary MITES to be of any length, 
up to the current maxim of 31 charac- 
ters. Most previous implementations 
stored only the first three daracters 
of the name, along with a count field. 
Confusion could easily arise, say 
between the words "UXIK" and "IDOP". 
The maximum word length stored in 
the fig-FORTH model can be changed 
dynamically by changing the value of 
W I D T H .  If one wishes to return to the 
former restriction of 3 character 
names, the new model will still be an 
improvement because 1 and 2 character 
names will require less dictionary 
space. 

One advantage of the old dictionary 
format has been lost, namely a fixed 
relationship between the link field and 
the CFA (Control Field Address) or 
the parameter field. The following 
proposal will restore the fixed 
relationship, while at the same time 
keep the new fig-FORTH advantages. 
In addition, the maximum allowable word 
size is increased to 63. 

A model of the proposed dictionary 
entry is shown in Figure 1. The name 
of the word is stored in reverse order 
to simplify the dictionary searching. 
From the link field one can step 
backwards to obtain the name, or 
forwards to obtain the definition 
of the word. The leading bit of 
the machine representation of each 
character of the MIW is set to zero, 
except for the terminal character which 
has the leading bit set to one. Thus 
the effective end of the name can 
readily be determined. The name field 
is reversed to sinplify the dictionary 
search procedure, but it is an inple- 
mentation decision. Obviously one 

auld put the characters in the forward 
direction, but the dictionary search 
would take longer. The suggested 
structure increases the maximum 
allowable word length to 63 (or 
possibly 64). 

It would be possible to use the 
leading bit of the first character for 
the m d q e  bit, but it would somewhat 
complicate the dictionary search 
procedure. One character names would 
have to be a special case with no 
terminal bit specified, since that 
location would be designated for 
snudging purposes. 

This proposal eliminates the need 
for a nuher of special words in the 
fig-FORTH model (TRAVERSE, PFA, "A, 
CFA). The only obvious disadvantage is 
that the routine for printing the 
dictionary names would need to take 
characters in the opposite direction 
from other text. The advantages 
appear to outweigh the disadvantage. 

Terminal bit + last 
I l l  I I I 1 1 1 1 ,character of name 

lo1 1 1  I 1  I 1  1 Next to last character 
l m 1  o f m  

I . I Increasing Addresses . 4 
IOl11I11 I I First character of name 
-1 Precedence + Smudge + 

count field. Link 
field. Points to a n t  
field of previous 
dictionary word. 

M 1 CFA. minter to 

I m I  Beginning of Parameter 
Field. rn 

Figure 1. A proposed Dictionary Structure. 
t S  

mKI!fi DIMIUSIUG I/5 Page 49 



FORTH-85 "CASE" STATEMENT 

Richard 8. Main 
Zendex C o r p .  
Dublin, CA 

"E UES has recent ly  extended 
its FoKI'H-85 w i t h  a "CASE" statement. 
The CASE s t a t e m e n t  allows a n  n-way 
branch based on a a n d i t i o n .  Its u s e  
is v e r y  similar t o  t h e  PASCAL CASE 
statement. the IF..( this) . . .ELSE.. .  
( tha t ) . . .  THEN s t ruc tu re  is a twcway 
branch w h i l e  t h e  FORTH-85 DO-CASE 
ENPCASES allows 65,000 d i f f e r e n t  cases 
randomly a r r anged .  ( n + l  CASE may 
precede n C A S E . )  Each case c a n  
test on a 16-bit quant i ty .  The CASE 
s t r u c t u r e  must begin  w i t h  "DO-CASE" 
then "CASE...END-CASE" and f i n i s h  w i t h  
"END-CASES" . 

The test "CASE" structure s c r e e n  
gives an example of using CASE with in  
FORTH-85. An unknown v a r i a b l e  is 
passed to "MONITOR" for an  n-ay branch 
based m a match between the var iab le  
and one o f  the cases. "DO-CASE" places  
t h e  va r i ab le  passed on the stack i n t o  a 
l o c a t i o n  i n  memory. "41 CASE" w i l l  
fetch the var iab le  and ampare it to 
41.  I f  it is 4 1 ,  code between "41 
CASE" and "END-CASE" w i l l  be exe- 
cuted ( i n  this instance "ASSIGN" will 
be pr in t ed )  and then a direct junp to 
"EM)-CAsES". If the var iab le  is not 
41, then "41 CASE" w i l l  cause a junp to 
the next  case, and so on. 

The "n" for  "CASE" n e e d  n o t  be 
in- l ine a l e ,  mr absolute ,  nor known 
a t  cwnpile time. During run-time 'n" 
may be camplted, fetched or otherwise 
placed on t h e  s t a c k  just prior to 
execut ing case. The possibilities that 
e x i s t  for this, aombined with 16-bit 
CASE t e s t i n g  a n d  6 5 , 0 0 0  possible 
cases AND ( ! )  no r e s t r i c t i o n s  on the 
amount or type of code between CASE.. . 
E N D a S E ,  are imnense. SUE uses  that 
o c c u r  to m e  immediately are moni tor  
p r o g r a m  e x e c u t i v e s ,  m a c h i n e  code 
disassemblers, t e x t  i n t e r p r e t e r s ,  and 
d i s k  1/0 drivers. 

The screen showing I X H X j E  through 
END-CASES m u s t  be loaded i n t o  your  
system before they can be used. This 
screen will a c t u a l l y  extend your FORTH 
compiler beyong having  IF...ELSE... 
THEN, B E G I N . . . I F . . . E L S E .  . . W H I L E ,  
DO... LOOP, AND BEGIN...END. 

Line  1 e x t e n d s  t h e  assembler t o  
include JNC for use by the following 
code statements.  

Line 2 contains  code to set up the 
run-time var iab le  "VCASE" f o r  u s e  by 
"DO-CASE" and "CASE". 

Lines 3-9 code statements  define t h e  
run-time behavior of "W.CASE, CASE and 
END-CASE". While l i n e s  11-15 def ine  
t h e  compile-time b e h a v i o r  o f  t h e  

END-CASE, and END-CASE". 
compi l ing  words: "DO-CASE , CASE, 

D u r i n g  compile time "Do-CASE" 
assenbles the code "DO-CASE", places 
"HERE" a n d  jJ on t h e  compile-time 
s tack ,  and assembles ( temporar i ly)  a 
1 6 - b i t  B .  "CASE" t h e n  compiles 
code "CASE" swaps t h e  compile-time 
stack places "HERE" on t h e  s tack  to 
locate  "CASE" for  "END-CASE" a n d  
temporarily assembles an 8-bit zero. 
"END-CASE" now h a s  passed t o  it 
the loca t ion  of "CASE" and "DO-CASE". 
"END-CASE" w i l l  pass " W E "  loca- 
t i o n  on to "END-CASES" . "END-CASE" 
assembles code "END-CASE", p l a c e s  
"HEW" m t h e  cwnpile-time stack for 
nEND-CASES", csorrp3utes 'END-CASE" minus 
"CASE" and loads the r e s u l t  (assenbles 
d i f f e rence )  a t  "CASE" +2. "ENDCASE" 
f u r t h e r  assembles a 1 6 - b i t  zero 
t e m p o r a r i l y  f o r  "END-CASES " . "END- 
CASES" h a s  passed t o  i t ,  o n  t h e  
oompiletirne stack, a l l  the locations 
of "END-CASE" and the beginning "Do- 
CASE". Since the nufilber of cases is 
variable "DO-CASE" had put a zero on 
t h e  compile-time s t a c k  to  mark t h e  
bottom loca t ion  the  "BEGIN HERE m! - 
WP (a = END" takes every "ENDUSES" 
l o c a t i o n  and assembles "END-CASES" 
l oca t ion  there f o r  direct forward ]unpS 
fran "EM)-CASE" to "ENDUSES". 



The e f f e c t  of a l l  the compil ing 
machination was to  place 16-bi t  and 
8 - b i t  code f o r  use by t h e  a d d r e s s  
in te rpre te r  during execution. Review- 
ing the in t repre te r  during execution. 
Reviewing the in te rpre te r :  Compiled 
mlon de f in i t i ons  are s i w l y  s t r i n g s  of 
a d d r e s s e s  of r o u t i n e s  t o  execute .  
Therefore, the address s t r i n g  compiled 
for: "DO-CASE...CASE ... END-CASE... 
END-CASES" is: 

Fig 1 

AB....CD....EE'....( G).... 
where : 

A = 16-bit address of d e  "DO-CASE" 
B = 16-bit address (G) 
C = 16-bit address of code "CASE" 
D = 8-bit value of dis tance F+l 
E = 16-bit address of code "ENDCASE" 
F = 16-bit address of (G) and 
(G) is the locat ion to continue execu- 

t i on  a f t e r  case. 
I = i n t e rp re t e r  pointer  

How IT KIRKS (during execution) 

through (G)  in Figure 1. 
The  f o l l o w i n g  w i l l  r e f e r  to  A 

Before execu t ing  ( a d d r e s s  i n t e r -  
p re t ing) :  A (DO+Z?GE) the  case nm&r 
to execute 7 s  placed on the  run-time 
stack. Code DO-CASE is executed when 
is encountered and it w i l l  pop t h e  
s t a c k  and store i t  a t  t h e  memory 
locat ion "VCASE". A t  this poin t  there  
is no jump to mke based on condition 
so I is hcremented past g. B exis t s  
to provide a backward s t u b  l o c a h n  f o r  
the a x p i l i n g  of the  s t ructure .  Code 
between 8 and is executed ,  and by 
t h e  t ime-C  is encountered  the case 
a n d i t i o n  to  test f o r  is on the stack. - C is the  code "CASE" which w i l l  pap the 
s t a c k  and  d o  a 1 6 - b i t  compare to  
"VCASE". I f  t h e r e  is no match code, 
"CASE" increments I (hterp. poin ter )  
by D ( 8-bit ) . Control would then pass 
t o  F+1. If there is a match, I is 
incremented by one and poin ts  to Wl. 
Code till E is executed. E w i l l  cau8e 
code "ENDCASE" to execute and it w i l l  
load I with F. Now I po in t s  to (GI. 

The code described here may be used 
for your personal use and experimnta- 
t i o n  only .  Commercial u s e r s  should 
write to the  author. 

EXAMPLE 

Editors Note: 

This  article has been presented as a 
good exanple of the ease of addi t ion of 
amtrol s t ruc tures  to match appl icat ion 
d S .  

FoKM-85 is a UES software product 
derived from mic ro fo r th  (TM, FORTH, 
Inc . ) .  Both t h e s e  v e r s i o n s  c o n t a i n  
d e f i n i t i o n  names a t  v a r i a n c e  w i t h  
fig-EOKlS and EOFtIH-78. We present a 
reference table: 

FoKm-85 
mi- f ig-EOFtTH FOKL'H-78 

[ 

CiPlPIU None 
I 
I IP None 
en, M L  or END END 
ZHBJ ENDIF or THEN THEN 

I( n 

I I 

i s  



ANOTHER GENERATION 
OF MISTAKES? 

Roger L. Gulbranson 
University of Illinois 

Much has been said abut h w  ea& 
generation of computers the large 
mainframes, the minis, and now the 
micros - has repeated the mistakes 
of the past generation. There have 
even been comments on upward-com- 
patibility mistakes in going from one 
generation of microprocessor to its 
succeeding generation (s ) .  [ 11 I would 
like to take this further by m m n t -  
ing on the latest generation of 
microprocessors, the 16-bit CPUs. 

I was talking to an EE who tried to 
convince me that the yet-to-be released 
microprocessors are "so much better" 
than the existing ones because they 
have included all of the addressing 
modes in each instruction. Anrong other 
things, I am told, this reduces program 
size and makes the micro run faster, 
since its speed is directly related to 
the number of fetches it must do per 
instruction and the number of instruc- 
tions used. As a concept, in toto, I 
can mly reply, BUNK! 

If one were to design a micro- 
processor stack computer, [ 2 ]  it 
would be possible to incorporate an 
instruction set that has only one 
multi-addressing rode instruction, a 
"load effective address" instruction. 
Since this is perhaps a bit austere, it 
may be realistic to add appropriate 
load to stack, store from stack, 
conditional and unmnditional branch, 
and subroutine call instructions to the 
group of "addressed" instructions. The 
remaining instruction set need not 
contain more than 128 (if even that 
many) zero-address instructions. This 
instruction set can be arranged 
so that all zero-address instructions 
are 8 bits long. This means that most 
of the time an instruction word will 
aontain two instructions, decreasing 
the number of memory cycles per 
instruction. If, in addition, the 

stack is "cached" on chip, the nunb 
of memory cycles per instruction wil 
drop amsiderably. And if this lattc 
idea is properly extended to th 
instruction stream to create a 
"instruction stack," much like that c 
the CDC Cyber computer line or tk 
Cray-1, the number of memory cycle 
can be reduced even further. Thj 
reduction of memory cycles shoul 
noticeably increase the speed of a 
hypothetical microprocessor. 

Considering the impetus given t 
virtual stack machines by the Pascz 
P-code groups[3] and the Concurrer 
Pascal originators, [4 )  one wonders wf 
these ideas have not been efficient1 
implemnted in silicon. Must we waj 
for another generation? 

[ l l  L. Armstrong, "16-bit Wav 
Gathering Speed," Electronic2 
Vol. 51, No. 4, Feb. 16, 1976 
~ p .  84-85. 

[2] A good overview of stac 
machines can be found in th 
May 1977 issue of Computer 

(31 Referenes to these groups ca 
be found in Pascal News, 
publication of the Pascal User' 
Group. 

[4) Per Brinch Hansen, The Archi 
tecture of Concurrent Programr 
Prentice-Ifall Inc., Englewoc 
Cliffs, N.J . ,  1977. 

Reprinted frum Canputer, April, 197! 
Copyright 1979, IEEE 

0 
C 
i 
a 
I 
1 
C 

1 
j 
1 

t 

I 
1 

! 

t 

1 

I 

1 

, 

( 

I 



mt 
uj 
t t  
t 

t 
t 

:Z 
r h  
w 
C 

'I 

sc 
re 

Y 

nt 
wa 

Ja 
lic 
97 

:a(  
t' 

te 

a 

;er 
i, 

ch 
.- 
Ya 

L9? 

sl 

INSTALLATION REPORTS 

The d is t r ibu t ion  of fig-EORTH man 
on May 11, 1979 a t  t h e  Four th  West 
Coast Computer Fa i r e .  T h e  f i r s t  
i n s t a l l a t ion  to be brought up by a u s e r  
occurred whi le  t h e  Faire was st i l l  
running! Bob S t e i n h a u s  of Lawrence 
L i v e m r e  Lab got the 8080 l i s t i n g  on 
S a t u r d a y  a t  t h e  Faire .  H i s  w i f e  
read the hex code to him and he typed 
it  i n .  By Sunday morning, he was 
running! 

The nex t  t o  r u n  was Dwight Elvey 
of Santa  Cruz. He organized  f i v e  
proqramners on f i v e  I n t e l  developnental 
systems. Each e d i t e d  i n  1/5 of t h e  
source code. They then  merged t h e  
f i les,  assembled a t  the l i s t i n g  o r ig in  
and caught f ina l  edit ing errors by a 
byte-by-byte comparison. They then  
updated the 1-0 and re-origined. They 
were running in  four evenings work (of 
f i v e  people). 

The next to run w a s  Dave Carlton of 
Ceres, CA. Dave brought up fig-EORIV 
on h i s  TEIS-80. He did f i l l  h i s  edit 
b u f f e r  and then crash, which cost 
re-typing 25 pages! Dave d e m s t r a t e d  
h i s  system to FIG on June 25. H e  had 
j u s t  interfaced to h i s  floppy-disc and 
had the sample editor running. 

John Forsberg of Maracaibo, Vene- 
zuela should be up and running with h i s  
Prolog 8080 w i t h  32K RAM and casette, 
flom and d i sk  capabi l i ty  that he put 
together himself. 

Frank D. W g h e r t y  of Belvidere, I L  
has a IMDO5 V e r  2.05 w i t h  15 languages 
running. He s a y s  h i s  AXion EX-801 
p r i n t e r  works l ike  a charm. 

Many i n s t a l l a t i o n s  of t h e  PDP-11 
are operating. There is a short cu t  
i n  this case. John James (the hple- 
m e n t o r )  is also a c t i n g  a s  a d i s -  
t r i b u t o r .  He p r o v i d e s  a s o u r c e  
d i s k e t t e  t h a t  w i l l  assemble and run  
under KC-11 and RSX-1lM. Between 10 and 

20 installations shoulc be up by now. 
Jdvl has gone to great care to create a 
"portable" version for the various C W  
variations.  fig-EDRTH is kncm to be 
running on Heathkit and DEC LSI-11's up 
through the DPD-11/60. Installations 
are k.lawn i n  California,  Arizona, New 
Yak,  and t he  Netherlands. 

MEETING NOTICES 

EQRMAL, a meeting to gather input 
f o r  t h e  f u t u r e  implementation of 
FORTH, w i l l  be held January 8, 9, 
and 10, 1980 a t  Imperial College, 
London, England. A t  t ending  from 
FIG w i l l  be: K i m  Harr i s ,  B i l l  
R a g s d a l e ,  J o n  S p e n c e r ,  L a r r y  
Forsley and probably 2 or 3 mre. 
Look f o r  a report i n  t h e  n e x t  
issue of ~~ DIMENSICNS. 

NclmiEm CALIFORNIA 

FIG m t h l y  meetings w i l l  continue 
to be held the fourth Saturday of 
each month a t  t h e  Special Events 
FZmm of the Liberty H o u s e  depart- 
ment store i n  Hayward. ~ Informal 
l u n c h  a t  12 noon a t  . t he  s tore  
r e s t a u r a n t ,  followed by t h e  1 pm 
meeting. D i rec t ions :  Southland 
Shopp ing  C e n t e r ,  Highway 1 7  a t  
Winton Avenue, Hapard, CA, Third 
floor, rear of the  Liberty House. 
Dates : 1/26/80 , 2/23/80 , 3/22/80, 
etc. Allwelcome. 

send us notices of any meetings that 
you know about. 

i s  

RXlYi DIMENSIONS I/S Page 53 



LETTERS U/ UNSIGNED DIVIDE 

30,600 cycles  203 bytes  CASSADY 
2,495 cycles  76 bytes V I L L M X K  

Desp i t e  your  warn ings  r e g a r  i ng  
Programma I n t e r n a t i o n a l ' s  imp le -  
menta t ion  of FORTH f o r  t h e  PET, I 
b o u g h t  i t  j u s t  t o  h a v e  s o m e t h i n g  
to work with and g e t  a f e e l  f o r  ~~ 

(or a t  least a FYRTH-like system), and 
I have been having a b a l l  w i t h  i t  
( d e s p i t e  t h e  l i m i t a t i o n s  of t h i s  
vers ion) ,  a f t e r  adding 16K of RAM - I 
thought  t h e  t h i n g  would run  i n  8 K  
but found out  d i f f e ren t ly .  The f i r s t  
MCABULARY wri t ten  f o r  the PET was a 
DEFORTH r o u t i n e  to  disassemble t h e  
d i c t i o n a r y  . A f t e r  DEFORTHing t h e  
latter d ic t ionary  e n t r i e s  and saving 
them on tape, I was ab le  to t runca te  
t h e  dictionary to w i p e  ou t  10 unneeded 
words. T h i s  saved about 3 pages  of 
-rY. 
Edward B. Beach 
Arlington, VA 

Editor..  . 
People keep trying! 

You w i l l  f i n d  e n c l o s e d  a set o f  
soura? listings for t h e  8080 nucleus of 
MSL. (Editor's note: Incorporated i n  
f ig-FORTH 8080 Assembly  L i s t i n g ,  
Version 1.1 see N e w  P r o d u c t s . )  

A l l  my code rou t ines  are re-entrant. 
Not m l y  t h a t ,  but without exception, 
t h e y  use n o  more b y t e s  or time t h a n  
Cassady's rout ines .  In  fact, i n  m y  
cases, you w i l l  note t h a t  my routines 
use fewer bytes and r u n  faster. I n  
some cases, s u c h  as m u l t i p l y  a n d  
d iv ide ,  t he  improvement is enormous! 
viz 

U* UNSIGNED MULTIPLY 

4950 cycles 81 bytes CASSAm 
994 cycles 47 bytes VILIWOCK 

I was well  i n t o  t h e  d e s i g n  a n d  
cod ing  of MSL when I s tumbled upon 
FIG and its e f f o r t s .  Your documents 
( p a r t i c u l a r l y  the i n s t a l l a t  ion manual 
and James' work on t h e  11) have been 
mst usefu l  and have saved me consider- 
able time i n  p u t t i n g  t h e  f i n i s h i n g  
touches on MSL. I 'd  l i k e  to r e t u r n  the  
f a v o r  , so I hope  t h a t  my 8080  
rout ines  w i l l  be usefu l  to you. 

Many thanks again to FIG f o r  your 
excel lent  e f f o r t s .  

R. D. Villwock 
Pasadena, CA 

MORE FROM GEORGE 

Following are some observat ions on 
PASCAL and FORT¶3 inplementat im details 
made upon reading the  recent  article 
i n  Dr. Dobb's ~ournal. 

W i t h  t h e  emrgence of a law cost y e t  
elabarate mmpiler for PASCAC a t  USCD 
a m s i d e r a t i o n  might be given to PASCAL 
as an a l t e r n a t i v e  to FOWH. PASCAL is 
implemented w i t h  a se l f - compi l ing ,  
v i r t u a l - m a c h i n e  l a n g u a g e  s y s t e m  
o f fe r ing  transportability similar to 
FORTH, and is s u p p l i e d  by USCD w i t h  
f u l l  source &. From t h e  s tandpoint  
of sophis t ica ted  extensions to a s y s t e m  
s u b  as high-speed a r i thme t i c  p m s -  
sing hardware, mverting from floppy- 
d i s k s  to hard  d i s k s ,  adding memory 
beyond d i r e c t l y  a d d r e s s a b l e  space, 
however ,  PASCAL may be much more 
d i f f i c u l t  to work wi th .  The system 
involved very large programs including 
a ampilcr, an interpreter, a run t i m e  

I 

Page 54 FTmH DmENsIOeJS I/S 



execu t ive ,  and a debugger--all of  
which mst be mns i s t en t ly  modified in 
making extensions. The USCD authors 
may w e l l  turn out to be the only users  
able to  e f f i c i e n t l y  make expans ions  
themselves. 

An inportant advantage seems present 
i n  PASCAL, however, which is dynamic 
storage allocation-the nested globals 
and locals environment, and does 
n o t  seem t o  o f f e r  t h i s .  S e v e r a l  
methods f o r  accomplishing t h i s  i n  E"H 
might t h e r e f o r e  be noted. F i r s t ,  
e x i s t i n g  FORTH s y s t e m  words  c a n  
be used to create a Class of var iab les  
and m s t a n t s  whose code-address po in t s  
to a new defining-word which re turns ,  
not the address or data i n  the vari-  
able or cons t an t  i tself ,  but  i n  a 
d y n a m i c a l l y  r e s e r v e d  area on  t h e  
stack. The parameter f i e l d  of t h e  
v a r i a b l e  h o l d s  a n  a d d r e s s  off set 
generated a t  ampile time, r e l a t i v e  to 
an environment pointer  implemented as 
a n o t h e r  v a r i a b l e  whose parameter 
field is f i l l e d  w i t h  the  s tack  pointer  
value upon ent ry  to a procedure, before 
s h i f t i n g  t h e  SP t o  r e s e r v e  the  data 
area.  T h e  c o d e  a d d r e s s e d  by t h e  
v a r i a b l e  conbines  t h e  o f f s e t  w i t h  
t he  environment p o i n t e r  and r e t u r n s  
ei ther t h i s  addres s ,  or t h e  data a t  
that address on the stack. 

The process of  r e t r i e v i n g  dynam- 
i c a l l y  stored d a t a  would be slowest 
when implemented w i t h  r e g u l a r  FORTH 
language, so a second method is to 
provide mchine language for the basic 
mechanisms involved j u s t  as FOKl'H does 
fo r  i ts  s t a n d a r d  data  h a n d l i n g .  
Assumed i n  both cases is a provision 
for conpiling words (e.g. SVMIABLE- 
d e f i n e  a " s t a c k "  v a r i a b l e )  which  
creates the re l a t ed  d ic t ionary  e n t r i e s  
w i th  t h e  same ease as the regular 
VARIABLE and CONSTANT words do. 

An i n t e r e s t i n g  v a r i a n t  would be 
pointing the code-address of a vari-  
a b l e  a t  a modi f i ab le  jump-vector. 

I n i t i a l l y  t h e  v e c t o r  p o i n t s  to  code 
which reserves  space for the variable  
on t h e  s tack,  and is then  s w i t c h e d  
to  p o i n t  t h e  code r e t r i e v i n g  t h e  
data. Thus storage is automatically 
a l l o c a t e d ,  n o t  upon e n t r y  to a pro- 
cedure, but precisely when a var iable  
becomes used. 

The pr inc ip le  of the above, creat ing 
n e w  defining-rds, w l d  have other 
u s e s  as w e l l :  for example, data  f o r  
a v a r i a b l e  could r e s i d e  on d i s k  and 
t h e  code-address of i ts  d i c t i o n a r y  
en t ry  muld  point to a routine which 
r e t r i eves  i t  from disk.  What is needed 
is a n  e a s y  way t o  compile these 
structures. For instance,  i f  w e  want 
to create a var iable  X, to reside on 
d i s k ,  w e  need a n o t h e r  v a r i a b l e ,  Y, 
to  hold t h e  data,  and an operator 
RETRIEVE: X is t h e n  compi l ed  a s  
t h e  d e f i n i t i o n :  Y RETRIEVE so every  
reference to X r e t u r n s  the value from 
disk. Having defined the "Y Retrieve" 
word we need an easy way to te l l  the  
mnpiler that X should be compiled as 
that kind of def in i t ion ,  without having 
to write it all out .  

PASCAL implementation m y  be very 
well optimized, but FOm code accom- 
p l i shes  even mre i n  the  way of code 
compac t ion  b e c a u s e  of i t s  u n i q u e  
representation of operands as though 
they  were operators i n  object code. 
This means that no separate operator 
f o r  "load stack" to  push an  operand 
is needed  i n  object code, s a v i n g  
space. T h i s  is a kind of software 
inplementation of "tagged memory" on 
l a r g e  scale machines. FORTH still  
requires  16 b i t s  for each object code 
entry,  but fur ther  compaction implies 
what must be a time mnsuming unpacking 
operation every t i m e  a virtual-machine 
i n s t r u c t i o n  is executed. The same 
compaction i n  FORTH applies to pro- 
cedure  calls as w e l l  as to  data;  no  
separate "call" op code is needed as 
the  procedure referencing aperand is 
the call i t s e l f .  Since each procedure 

FORTH DIMENSIONS I/5 Page 55 




