FORTH ﬂlMENSIDNS

AUGUST/SEPTEMBER 1978 VOLUME 1 NoO.
/' CONTENTS \

HISTORICAL PERSPECTIVE PAGE 11

FOR NEWCO MERS PAGE 11

EDITORIAL PAGE 12

EXTENSIBILITY WITH FORTH PAGE 13
KIM HARRIS

GERMAN REVISITED PAGE 15
JOHN JAMES

FORTH LEARNS GERMAN PAGE 15

W.F, RAGSDALE

THREADED CODE PAGE 17
JOHN JAMES

FORTH DEFINITION PAGE 18

HELP PAGE 19

MANUALS PAGE 20

\_ y

FORTH lNTERESTV GROUP ----- PO. Box 1105 <<+ San Carlos, Ca. 94070




HISTORICAL PERSPECTIVE

FORTH was created by Nr, Charles H.
Moore in about 1969 at the National Radio
Astronomy Observatory, Charlottesville, VA,
It was «created out of his dissatisfaction
with avaliable programming tools, especially
for automation. Distribution of his work to
other observatories has made
de-facto standard
automation,

FORTH the
language for obaervatory

Mr., Moore and several asaociates
formed Forth Inc. in 1973 for the purpose
of licensing and support of the FORTH
Operating System and Programming Language,
and to 3supply application prograaming to
meet customers’  unique requirements.

FORTH enjoys a synergism of its
features. It has none of the elsphantine
charagcteristics of PL/1 or FORTRAN. It has
a density and speed far surpassing BASIC,
but retains an interactive nature during
program development. Since ic is

extensible, special words are eaaily defined

to give it the terseneas of APL, Its
clarity and consistency result from Dbeing
the product of a single mind. (as were APL
and PASCAL).

Although the language specification and

many implemontations are 4in the publie
domain, many other implementations and
application packages are avajilable as

program products of commercial suppliers,

The FORTH Interest Group is centered in
Northern California, It was formed in 1978
by local FORTH programmers to encourage use
of the language by the interchange of ideas
though seminars and publications, About 300
members are presently associated 1into a
looae national organization. ("Loose  means
that no budget exists to support any formal
effort,.) All effort is on & volunteer basis
and the group is associated with no vendors.

;8 W.F.R 8/20/78

FOR NEWCOMERS

FORTH listings consist of sequences of "words" thet
execute and/or compile., When you have studied o glosary
and a few sample listings, you should develop the ability to
understand the action of new words in terms of their defin-
ition components, For the time being, we present a simp-
lified glossary of the undefined words in this issve of FORTH
DIMENSTIONS, For g fuller listing send for the F.I1.G
Glossary.

¢ XXX eeses G

':* creates a new word named Yook’ and compiies the
following words (represented at ,...) until reaching *;'.
When 'xxx' is later used, it executes the words right after its
name until the ';',

CONSTANT  VARIABLE
Each creates a new word with the following name, which
takes its volue from the number just before,

IF ELSE THEN

A test is mode at 'IF', If true, the words execute until the
' ELSE' and skip until THEN, If false, skip untl|ELSE and
execute until THEN,

BEGIN END

At END q test is made; if false, execution returns to BEGIN;
atherwise continue ahead.

DO LOOP LEAVE

At DO o limit and first index are soved, At LOOP, the
index is incremented; until the limit is reached, execution
retums to DO, LEAVE forces execution to sxit ot LOOP,

DUP DROP OVER SWAP ROT + - ® /
These words operate on numbers in a stock just as then do
in a HP calawlator, If you like HP, you'll love FORTH,

ROR

R moves the top stack number to ancther stock., R
retreives it back to the original stack,

PAGE I

@ @
@ Fetches the 16 bit cordents of an address, C@ does the
same for o byte, C@ may be also called 8@ or \@,

':‘h.colwdlnmthomnodtmwb«dfh.mm
address on the tap of the stack, Cl stores only a byte; it
may be nomes B1 or \1 on some systens,

TYPE fypes o string by memory address and character count,
SPACE types o space,

CR typm a carriage retum/line feed,

MOVE moves within memory by addresses and byte count,
« prints a number,

R prints o number In a tobulated column,

2+ okh two to the stack top number,

STATE Is a varicble, trve when compiling.

( skips over comments until finding a *)'.

EXECUTE executes the word whase addrass is on the stack,
' flds the address of the next Input name,

AND s a bitwise logical and,

. ploe-ownb.innmycpdofmﬂlw.

= ¥ < ore loglcal comparisors of stack numbers.

20 WORD fetches the next Input word string.

HERE s a temporary memary worlapaoe,

IMMEDIATE <BUILDS DOES> are too involved to
discus here. They are described In some detail a the tet,

FORTH INTEREST GROUP ----- PO. Box 1105 ---++ San Carlos, Ca. 94070



EDITORIAL

FORTH DIMENSIONS is dedicated to the promotion of
extensible, threaded languages, primarily FORTH. Currently we
are seeing a proliferation of similar languages. We will
review all such implementations, referring to sources and
availability.

Oour policy |is to use the developing "FORTH 77"
International Standard as our benchmark.

variant languages, such as STOIC, URTH, and CONVERS, will
be evaluated on their advantages and disadvantages relative to
FORTH. However, in evaluating languages named FORTH, we will
note their accuracy in imolementing all FORTH features. We
expect complete versions named FORTH to contain:

1. indirect threaded code

2. an inner and outer interpreter

3. standard names for the 40 major primitives

4. words such as ;CODE, BLOCK, DOES>, (or ;:), which
allow increased performance.

We hope to enable prospective users/purchasers to
correctly select the version and performance level they wish,
to foster long-range growth in the application of FORTH.

W.F.R.

CONTRIBUTED MATERIAL

FORTH Interest Groups needs the following material :

1. Technical material for inclusion in FORTH DIMENSIONS. Both
expositions on intemal features of FORTH and application programs are appreciated,

2. Nome and address of FORTH Implementations for inclusion in our
publications. Include computer requirements, documentation and cost,

3. Manuals available for distribution, We can purchase copies and distribute,
or print from your authorized original .

4, Letters of general interest for publication in this newsletter,

5. Users who may be referenced for local demonatration to newcomers,
PAGE 12

FORTH INTEREST GROUP ----- PQ. Box 1105 :---- San Carlos, Ca. 94070




EXTENSIBILITY WITH FORTH

The purpose of any computer language
tand 1its compiler or interpreter) is to
bridge the gap between the "language” the

machine understands (low level) and a
language people understand (high level
programming language). There are many

choices for human-understandable languages:
natural languages and artificial languages.
Ihe choice of language should allow
convienient, terse, and unasbiguous
specification of the problem to be solved by
the computer, Ordinarily only a few
computer languages are availadle (e.8.
BASIC, FORTRAN, APL), These were designed
for certain classes of problems (such as
mathematical equations) but are not suitabdle
for others. The level of a language 1s a
measure of suitability of that language for
a particular application,. The higher the
level, the terser the progranm. By
definition, [q the highest level would
allow a given problem to be solved with one
operator (or command) and as many operands
as there are input data required.

A natural language (e.g. English)
might appear to be the best choice for a
human-understandable computer language, and

for some applications 1t may be. But
natural languages suffer from three
limitations: verbosity, ambiguity, and

difficulty to decipher. This s partly
because the meaning of a given word ia
dependent on 1its wuseage 4in one or more
sentences (called ™"context sensitive™) and
because they require complex and nonuniform
grammar roles with many exceptions.
Specialized vocabularies and grammars permit
terse and precise expression of concepts for
restricted sets of problens. For example,
[éi consider the following definition of a
syllogism from propositional caloulus:

((P12>p2)D((P2DP3) D(P1DP3))

This sentence may be translated into English
as "Given three statements which are true or
false, if the truth of the first implies the
truth of the second, this implies that 1ir
the truth of the second implies the truth of
the third, then the truth of the first
implies the truth of the third." Ambigulty
is hard to avoid in most natural languages.
The English phrase “"pretty 1little girls
school"™ (when unpunctuated) has 17 possible
interpretationst (Try it,) [3]

As for the suitability of traditional
programming languages (e.g. BASIC, FORTRAN,
COBOL, PASCAL, APL) for "algost all
technical problems™, try coding the
following ™sentences" in your

favorite
computer language:

PAGE 13

Quantum Mechanics:

HY =y
£ <(H3 24sv
:An:.'flfs ﬂ'f{s 4%?%3 of the cpslenm

Electricity and Magnetism:
v-D*®
V'B'g aB
UYxE = "’;2-
UxHe= ;% |§%

Matrix Algebra:

The trace of a matrix i{s equal to the suw of
its eigenvalues,

Organic Chemistry:

3CHgCH,OH + Cr, 0,7+ W 3(H,CHO()
+ 2c;*’4 7“10

Knitting:

K2 tog.3(5) times, *k1, p2, k1, k3, tog.,
kt,

p2, k!, pt, k1, p3 tog., ki, pi, p1® ;
repeat

between * s once more, ki1, p2, k', k3 tog.,

k1, p2, ki; k2 tog. 3(5) times; 47(51) sts,

Poetry:

Shakespearean sonnets are in iambic
pentameter and

consist of three quatraina followed by a
couplet.

FORTH is capable of being matched to
each of the above relations at a high level.
Furthermore, using the FORTH concept of
vocabdbularies, several different applications
can be resident simultaneously dut the scope
of reference of component words can be

restricted (il.e., not global), This
versatility is because the FORTH language is
extensible. In fact the normal act of

programming in FORTH (1.e., defining new
words in terms of existing worda) extends
the language! For each problem programmed
{in FORTH, the language 13 extended as
required by the special needs of that
probdblem. The final word defined which
solves the whole problem 1is both an operator
within the FORTH language (which (s also a
wsommand") and the highest level operator
for that problem. Further, the lower level
vords defined for this problem will
frequently be uaeadble for the programming of
related problesms.

It 48 true that popular computer
languages allow new functions to be added
using SUBROUTINES and FORTRAN-11ike
FPUNCTIONS. However these cannot be used
syntactically the same as the operators 1in
the language.

FORTH INTEREST GROUP ----- PO. Box 1105 ----- San Carios, Ca. 94070

NPT Y. XX L]



for example, 1let’s assuse a BASIC
interpreter does not have the logical AND
opsrator. To be oconsistent with sisilar,
existing operators one would 1like to use
"AND®" in the following syntax:

A AND B

(A,B are any valid operands). Furthermore,
one would want this new operator to have a
priority higher than “OR® and lower than
"NOT" so that

NOT A AND B OR C
would mean
(NOT A) AND (B OR C)

The only way to do this is to modify one’s
BASIC interpreter. Although not impossibdble,
this is usually very diffiocult because of
the following reasons:

(1) Most BASIC s are distributed without the
interpreter source code (or not in
machine~readable fora)., (2) One would have
to learn this program and design a change.
One modification might be "patched in®, bdut
many probdably could not, Such a modified
interpreter might not be ocompatidle with
future releases from the manufacturer.
Errors might be introduced into other parts
of the interpreter by this modification.
(3) The process of changing is time
consuming. Before one could try the new
version, one would have to assembdle, 1link,
load, and possibdbly write a PROM. (How long
would this take on your system?)

Another altarnative would be to use a BASIC

PUNCTION to add the AND operator, but it
would have to be referenced as:

AND (&,B)

If NOT and OR were also FUNCTIONS, (NOT &)
AND (B OR C) would have to be written as:

AND (NOT(A), OR(B,C))

This later form 1is lower level, lesa
readable, and inconsistent with the
intrinsic operators.,

The addition of an AND operator in
FORTH 4is as simple as any other programming
addition; it would require one line of
.source code, The FORTH assembler could be
used to take advantage of a partiocular
processor’s instruction, or the oompiler
could be used, resulting in machine
transportability! Other differences from the
example of modifying BASIC are: (1) MNothing
existing in the FORTH system needs to be
changed, 80 no learning 1is required, no
errors are introduced to the existing
system, and compatibility with future
releases i3 preserved. The source of the
FORTH kernel is not even necessary. (2) The
new operator can be tried immediately after
it 18 defined; ir it 1is wrong it ocan be
fixed ©before any further use is made of it.
(3) This new operator is used exactly the
same as any FORTH operator. So it may bde
mixed with existing operators in a totally
consistant msanner.

APL fans will point out that all the
avove 18 true for APL also. For something
as simple as "AND" there is little
difference. However, APL allows only
monadic (single operand) and diadic (two
operand) operators; FORTH operators can bde
written to accept as many operands as the
progranmer desires.

The previous discussion addressed the
extension of the FORTH language, but 1t is
almost as easy to extend the FORTH
compiler! New compiler control structures
(e.g., the CASE oonstruct) ocan be added
without changing any of the existing
compiler, Or the existing compiier can be
modified to do something different. To
maintain compatibility with the existing
compiler, the modifications could be part of
a user~ defined "vocabulary® so that bvoth
versions would be selectively available.
Furthermore, one can write an entirely new
ocompller which accepts either the FORTH
language or another language. (Complete
BASIC interpreters have been written in
FORTH.)

The choice of a computer language for a
given application (inoluding system
development) should optimize the following
attributes: (1) Be terse (i.e., the highest
level for the application) (2) Be
unambiguous (3) Be extensible (e.g.,
language, data types, compiler) (&) Be
efficient (5) Be understandable (e.g., self
documentation) (6) Be correct (e.g.,testing,
proving assertions, consistency checks) (7)
Be struotured (e.g., structured programming,
reentrant, recursive) (8) Be maintatnable
(e.g., modular, no side effects)

FORTH is a ocompromise among these gozls, but
ocomes closer than most existing programming
languages.,

+S KIM HARRIS

REFERENCES

1 Halstead, Maurice, Language Level: A
Missing Conocept
in Information Theory,
Performance Evaluation
Review, ACM SIGMETRICS, Vol. 2
March ‘73,

2 MoKeeman, Horning, and Wortman, A
Compiler Generator,
Prentice-Hall, 1970.

3 Brown, James Cooke, Loglan 1: A
Logical Language,
Loglan Institude, 2261 Soledad
Rancho Road,
San Diego, CA (714) 270-9773

PAGE 14

FORTH INTEREST GROUP :-+-« PO. Box 1105 ----+ San Carlos, Ca. 94070




GERMAN REVISITED

In the last issue of FORTH DIMENSIONS
we showed how to create a bi-lingual (or
multi-lingual) version of FORTH, and 1listed
a s9imple program (set of FORTH definitions)
for doing so. In respect to translation,
there are three different classes of FORTH
words:

(A) Those such as mathematical symbols which
don’t need to be translated.

{(B) Words such as DO and IF which cannot be
translated dy a simple colon definition; the
existing definitions must be re-copied and
given German names. (all the definitions
are short - one line - however)

(C) Other words, which could either be
re-copled, or re-defined by a colon
definition.

In any case, separate vocabularies can
be used to prevent spelling clashes, no
matter how many languages are spoken by one
FORTH system. It can be possible to change
languages as much as desired, even in the
middle of a line.

The article stated that there was no
run~time overhead. Such performance 1is
possible, but the example given does have a
run-time overhead of one extra level of

nesting for each use of a word translated by
a colon definition.

The following article by Bill Ragsdale
is a more advanced treatment of language
translation methods. It is written at the
level of the FORTH systems programmer, and
it uses a more standard FORTH version than
the DECUS-supplied version which was used in

the article which appeared in FORTH
DIMENSIONS 1.

JOHN S, JAMES

PAGE 15

FORTH LEARNS GERMAN

In the last issue of FORTH DIMENSIONS,
we featured an article on natural language
name conversions for FORTH, This article
will ad¢d osome additional i1deas on the same
topic.

First, the method shown (vectoring thru
code) does have some run-time overhead.
Also, some code definitions cannot execute

properly when vectored in this manner, for
example:

R> R> H
will pull the call of R> from the return

stack and crash, We would ultimately like
to translate names with:

1. Precisely correct operation during
execution and compiling.

2. A winimum of memory cost.

3. A pinimum of run-time cost.

8§, A minimum of compile-time cost.

Let us now look at three specific examples
to further clarify some of the trade-offs
involved,

EXAMPLE 1 ~ COMPILING WORD

Let us see how UBER ocan be oreated to
self-compille.

HEX
: D=E >R 2+ € (2+ optional on some aystems)
STATE € IF (compiling) DUP 8 - C@ 80 <

IP 2 - , ELSE (immediate ) EXECUTE THEN
ELSE EXECUTE

THEN ;

: DO ENGLISH EMPLACE D-E ° , IMMEDIATE ;

IMMEDIATE
UBER DO.ENOLISH OVER ;

LADEN DO.ENGLISH LOAD ; etec.

When bulilding the translation
vocabulary, the oolon ‘:’ creates the word
UBER and then executes the immediate word
DO.ENGLISH. DO.ENGLISH first emplaces the
run~time procedure 'D-E° and then uses " c o,
" to emplace the parameter field address of
the next source word ( OVER). Finally, the
new word (UBER) is marked immediate, so that
it will execute whenever later encountered.

FORTH INTEREST GROUP ----- P Q. Box 1105 ----- San Carlos, Ca. 94070

T N

Ca e mm o -



Now we see how UBER executes. When it
is interpreted from the terminal keyboard,
‘D-E’ will execute to fetch the emplaced PFA
within the definitions of UBER (by R> 2+ @).
After checking STATE the ELSE part will
execute OVER from its parameter fileld
addreass.,

When UBER 1is encountered by the
compiler ¢n a colon definition, it will
execute, as do all compiling words. Again
R> 2+ @ will fetch the PFA of OVER to the
stack. The check of STATE will be true and
DUP 8 =« C@ will fetch the byte containing
the precedence bit, When compared _to hex
80, a true will result for non-immediate,
and 2 - , will compile the ocode T[leld
address.

However, if the word had been immediate
{ OVER 4sn't ) the ELSE part will execute
the word as in any compiling word.

-

The space cost of example 2 is 14 bytes
per word ( 8 bytes per header and 6 bytes in
the parameter fileld). The compile time cost
is the execution of 'D~E.” There is no

ultimate run~time cost in compiled
definitions.
EXAMPLE TWO - <BUILDS - DOES)>

Another vay is to define a

‘BUILDS-DOES° word E>G (English to German).
It s then wused to build a set of
translation words similar to & FORTH
mnemonic assembler,

E>G <BUILDS ° , IMMEDIATE
DOES> €@ STATE @
IF (oompiling ) DUP 8 - Cce¢ 80 <
IF 2 - , ELSE EXECUTE THEN
ELSE EXECUTE THEN ;

E>G UBER OVER
E>G LADEN LOAD
E>G BASIS BASE esees @to.

E>G is a defining word that builds each
German word (UBER) and emplaces the
parameter field address of the English word
(OVER) into the new parameter field ( of
UBER ), and finally makes UBER ismediate.
When UBER 1is encountered by the outer
interpreter, it does the DOES> part. The
parameter of UBER, (the PFA of OVER ) will
be fetched and STATE tested. Since
executing, the ELSE part will execute OVER
from its parameter field address ( as in the
example 1 ),

When compiling, the DOES> part will bde
executed, again asimilarly to ‘D-E° as in
Example 1, The space cost of the
BUILDS-DOES method is 10 bytes per word ( 8
in the header, 2 in the parameter field).
The compile time is the same as in EBxample 1
and there is no run-time cost.

EXAMPLE THREE - RENAME

This last method is the most fool-proof
of all. We will Jjust re-label the name
field of each resident word to the German
equivalent,

: RENAME °~ 8 - DUP C¢ b0

AND (precedence Dbit )

20 WOAD HERE Ce «

HERE C! (store into length)
HERE SWAP 4 MOVE ;

( overlay old name )
RENAME OVER UBER
RERAME LOAD LADED

RENAME BASE BASIS

This method extracts the precedence bit of
the o0ld (English) definition and adds it to
the length count of the new (German) name.
The new name ia then overwritten to the old
name field. There s no space or time
cost ! The dictionary is now truely
translated.

A final caution 1s in order for
Examples 1 and 2. Some FORTH methods may
still give trouble. If you should try:

UBER

you will find the PFA of UBER which is a
translating definition, and not the ultimate
run-time procedure, {(which 1is really in
OVER). This would have disasterous results
if you were attempting to alter what you
thought was the executing procedure, and you
were really altering the complling word.
For this reason, the method of Example 3 is
the only truly ‘fool-proof’ method. The
renamning method has the added use of
allowing you to change names in your running
systeam, For example, it is likely that the
old <R will be renamed >R in the
international standard FORTH-T7. You can
simply update your system by the use of the
word RENAME.

;S W.P. RAGSDALE 8/27/98

PAGE 16

FORTH INTEREST GROUP :---+ PO. Box 1105 ----- San Carlos, Ca. 94070



THREADED CODE

Bell (1) and Dewar (2) have described
the concepts of Threaded Code (also called
Direct Threaded Code, or DTC), and an
improvement called 1Indirect Threaded Code,
or ITC. DTC was used to implement Fortran
IV for the PDP-11, and ITC was used for a
machine- independent version of Spitbol (s
fast form of the string-processing language
Snobol) . Forth 1is a form of 1ITC, but
different from the scheme presented in (2).

In DTC, a program consists of a liat of
addresses of toutines. DTC s fast; in
fact, only a single PDP-1l1 instruction
execution is required to 1link from one
routine to the next (the instruction is 'JOMP
€(R)+', where 'R' s one of the general
registers). Overall, DTC was found to be
about three percent slower than straight
code using frequent subroutine Jjumps and
returns, and to require 1@-20 percent less
memory. But one problem {s that for each
variable the compiler had to generate two
short routines to push and pop that variable
on the {nternal run-time stack.

In ITC, a program {s a list of
2ddresses of addresses of routines to be
executed. As used in (2), each variable had
pointers to push and pop routines, followed
by its value. The major advantage over DTC
1s that the compiler does not have to
generate separate push and pop routines for
each variable; instead these were standard
library routines. The compiler d4i4 not
generate any routines, only addresses, so it
was more machine independent. 1In practice,
ITC was found to run faster than DTC despite
the extra level of i{ndirection. It also
used less memory.

Forth is a form of ITC, with additional
features.,

Forth operations are lists of addresses
pointing into dictionary entries. Each
dictionary entry contains:

(A) Ascii operation name, length of the
name, and precedence bit; these are used
only at compile time and will not be
discussed further.

(8) A 1link
dictionary entry.
compile time.)

pointer to the
(This {s

previous
used only at

{(C) A pointer called the code

address,
always points

which to executable machine

code.

(D) A parameter

field, which can
contain machine

instructions, or Forth
address 1lists, or variable values or
pointers or other {nformation depending on
the variable type.

PAGE 17

By the way,
Forth {s part

virtually everything {n
of a dictionary entry: the
compiler, the run-time routines, the
operating system, and vyour programs. In
most versions, only a few bytes of code are
outside of the dictionary.

The code address is crucial; this s
the ‘indirect’ part of ITC. Every
dictionary entry contains exactly one code
address. If the dictionary entry is for a
"primitive” (one of the 44 or so operations
defined in machine language), the code
address points two bytes beyond itself, to
the parameter field, which contains the
machine-language routine.

If the dictionary entry is for a Forth
higher-level operation {(a colon definition),

the code address points to a special “"code
routine” for colon definitions. This short
routine (e.g. 3 PDP-11 jinstructions) nests

one level of Forth execution, pushing the
current ‘I’ register (the Forth "instruction

counter”) onto a return-address stack, then
beginning Forth execution of the
address-list in the new operation’'s

parameter field.

If the dictionary entry 1is for a
varjable, then the code address points to a
code routine unique to that variable's type,.
The parameter field of a variable may
contain the variable's value - or pointers
if re-entrant, pure-code Forth is desired.

Results of Forth-type ITC include:

(A) Execution {s fast, e.g. two PDP-1l
instruction executions to transfer between
primitives, about ten to nest and un-~nest a
higher-lavel definition. (Because of the
pyramidal tree-structure of execution, the
higher~level nesting is done less often.)
Yet the language is fully interactive.

{(addresses)
regardless of
primitives or

(B) Forth operation names
are used exactly the same
whether they represent
higher-level definitions (nested to any
depth). Not even the compiler knows the
difference. In case run-speed optimization
ts desired, critical higher-level operations
(such as inner loops) can be re-coded as
primitives, running at full machine
and nothing else need by changed.

speed,

(C) Porth code is very compact. The

language implements an entire operating
system which can run stand-alone, including
the Forth compiler, optional assembler,
editor, and run-time system, in about 6k

bytes. (Forth can also run as & task under
a conventional operating system, which sees

FORTH INTEREST GROUP :-... PO. Box 1105 ----- San Carlos, Ca. 94070



rdinary assembly-language program,
:ﬁda;o::hocan llxk to other lungpngos this
way.) Code is so compact th::
application-oriented utility routines can
left in the system permanently, where they
are immediately available either as keyboard
commands or instructions in programs, and
they are used in exactly the sasme way in
either case. No linkage editing is needed,

and overlays are unusual.

REPERENCES

(1) Bell, James R. 'rhrggc;ed code. C. ACM
6, 5 (June 1973), 37€-372.

tzf Deéar, Robett'n. K. Indirect threaded

code. C. ACM 18, 6 (June 1975), 33a-331.

FORTH DEFINITION

FORTH 1is the combination of an

extensibdle programnnming language and
interactive operating system. It forms &
consistent and complete prograaming

environment which is then extended for each
application situation.

FORTH s structured to be interpreted
from indirect, threaded code. This code
consists of sequences of machine independent
compiled parameters, each headed by a
pointer to executable machine code. The
user creates his own applioation procedures
(called ‘words’), from any of the existing
words and/or machine assembly language. New
classes of data structures or procedures may
be created; these have assoociated
interpretive aids defined in either wnmachine
code or high level fornm.

The user has access to a computation
stack with reverse Polish conventions.
Another stack is available, usually for
execution control. In an interactive
environment, each word contains a syabolic
identifier ajding text interpretation. The
user may execute or compile source text from
the terminal keyboard or mass storage
device, Resident words are provided for
editing and accessing the data stored on
mass storage devices (disk, tape).

In applications that are to run
‘stand-alone”’, a compaot croas~-compiled foram
is used, It oconsists of compiled words,
interpretive aids, and machine code
procedures. It is non-extensible, as the

symbolio identifiers are deleted from each

word, and 1little of the usual operating
aystea need be included,

;S W.F.R, 8/26/78

STAFF

The volunteer staffing of FORTH DIMENSIONS
s a bt fluld, For thl e, our staff consisted
of ;

EDITOR JOHN JAMES
CONTRIBUTORS KIM HARRIS
W.F.RAGSDALE
TYPESETTING TOM OLSEN
JOHN JAMES
ARTWORK ANNE RAGSDALE
CIRCULATION DAVE BENGEL

DATA PROCESSING PD P -11

NOTES

- The second meeoting of the FORTH
International Standards Team will occur in
Los Angeles on Ootober 16~19, Contact FORTH
Inc. for additional information.

- A partially miocro-coded FORTH~-1l1ike
language is described in "Threaded Code for
Laboratory Computers™ bdy J,.B, Phillips,
M.F. Burke, and G.S. Wilson, Dept. of
Chemistry, University of Arizona, Tucson, AZ
85721, The article is published in Software
- Practioce and Experience, Volume 8, opages

2571-263, Implementation is on a HP2100.
The article also doscribes the advantages of
threaded languages for laboratory
applications.

- A "form"™ of FORTH for the Apple and PET
6502 based ocomputers 13 availladle from
Programsma Consultants, 3400 Wilshire Blvd.,
Los Angeles, CA 90010. We have not used
these enough to review them for this 1ssue
but they have been shipped and do work. For
more information write to Progranna
Consultants or watch future issues of FORTH
DIMENSIONS.

« FORTH Ino, 4is looking for a progranmer
with some systems-level experience using
FORTH or similar languages. Interested
peraons should contact FORTH 1Ine., 815
Manhattan Avenue, Manhattan Beach,
California 90266, (213) 372-8493 .

PAGE 18

FORTH INTEREST GROUP ... RO, Box 1105 ----- San Carlos, Ca. 94070



VRIOWUNDWO~O

VMRARIOUDWNO~O

) el e S
WA LR LR N D WD —0O

fa
15

SCR # 6 HELP

THE °*HELP® COMMAND IS FROBABLY THE MOST USEFLL OPIION FOR
A FORTR SYSTEM. IT ALLOWS YOU 7O VIEW THE DICTIONARY WORDS
AND LOCATE THEM IN MEMORY. WHEN YOU ARE TESTING NEW
DEFINITIONS, IT WILL SHOW RE-DEFINITIONS. 1T IS5 A WAY TO
LOCATE WHERE A MISSING WORD SHOW.D BE» BUT ISN'T.

IF YOU MAKE A COMPILE ERROR FROM DI SC» ‘HELP® WILL SHOW
THE WORD IN WHICH THE ERROR OCCURED-

YOU SHOW.D MODIFY THE FOLLOWING DEFINITIONS TO THE FORMAT
YOU WANT. FOR OBJECT CODE EXAMINATION, 1 LIKE THE CODE FIELD
ADDRESSES AS SHOWN, SINCE THIS 1S WHAT RESWTS IN THE COMPILED
CODE-. FOR A QUICK SNAP-SHOT OF THE DICTIONARY» I JUST PRINT
THE LENGTH AND NAMES.

JUST TYPE °HELP® AND HI1 THE °'BREAK® KEY TO STOP.

SCR ¢ 7

¢ HE.P ) HEX
00 CONSTANT LAST.LIAK ¢ 1S $8000 ON MICRO-FORTH )
4 CONSTANT #/LI1INE ( WORDS PRINTED PER LINE )

8 <NAME C ENTER WITH ADDRESS OF LENGTH BYTE )
DUP Ce 7F AND DECIMAL 3 R SPACE 1+ 3 TYPE SPACE

] OCODE:ADDRESS ¢ ENTER WITH ADDRESS OF LENGTH BYTL )
6 ¢ HEX S R SPACE

t +HEADER ¢ ENTER WITH ADDRESS OF LENGTH BYTE )
DUP NAME «CODE-ADDRESS

! PTERMINAL 0 3 ( USER'S MACHINE DEPENDENT TERMINAL BREAK )
¢ RETURN °00°'°FOR NO BREAK,» AND '01°’ FOR A BREAK )
8 LOAD $S 87217718 WFR

SCR # 8
¢ MHELP, CONTe. )

t oLINE ¢ PRINT A LINE OF NAMES AND CODE ADDRESSES )
#/LINE O C ENTER WITH ADDRESS OF LENGTH BYTE )
DO DUP .HEADER SPACE 4 ¢ 0 DUP LAST.LINK »

IF LEAVE THEN LOOP ¢ EX1T WITH NEXT ADDRESS )

t HELP ¢ PRINT DICTIONARY FROM TOP CURRENT WORD DOWN )
( 70 BOTYOM. FORMAT 1S LENGTH COUNT, 3 LETTERS OF )
( NAME, AND CODE FIELD ADDRESS. WILL TERMINATE )
¢ UPON LAST LINK VALUE OR A TERMINAL BREAK. )
BASE Ce >R CURRENT o @
BEGIN CR .LINE DUP LAST.LINK = 7?TERMINAL +
END DROP ¢ LAST LINK ) R> BSBASE C!

DECIMAL ] 87287178 WFR

PAGE 19
FORTH INTEREST GROUP :--.. PQ. Box 1105 :-+-+ San Carlos, Ca. 94070



HELP
7 HE 1E80 13 .CO 1E68
4 WD, 1EBB  S.LY 3T0 O le JEeF 4 TAS iEes

. 6 #/L
3823 }gg g ~-> 1B8A 4 TUB 1857 3 TIY 1Baa OK

*HELP® COMMAND
ABOVE WE SEE AN EXAMPLE OF THE LOADING OF THE

FROM DISCe IT THEN 1S TESTED, AND DUMPS THE DI CTIONARY .

WE SEE THE LISTING OF °*HELP® AND THE WORDS IS USES) LI1STING
CONTINUES INTO THE RESIDENT DICTIONARY.

600D LUCK» WFR

MANUALS

DECUS PDP-11 FORTH
by Owens Valley Radio Observatory, California Institute of
Technology, Martin S. kwing. (alias 7The Caltecn FORTH
Manual) Available from DECUS, 129 Parker Street, PK3/E55,
Haynard, Mass. 01754, Ordering information: Program No.
11-232, Write~up, $5.00 .

FORTH Systems Reference Manual
W. Hichard Stevens, Sep 76. Kitt Peak National Observatory,
Tueson, AZ b572b., (NOT FUR SALE)

LABFORTH
An Interactive Language for Laboratory Computing,
Introductory Prineciples, Laboratory Software Systems, Inc.,
3634 Mandeville Canyon, Los Angeles, CA 90049, $8.00 .,

STOIC
(Stack Oriented Interactive Compiler) by MIT and Harvard
Biomedical E£ngineering Center, Documentation and listings

for 8080 from CP/M Users Group, 164 west 83rd Street, lew
York, N.Y. 10024, $4.00 membership, $8.00 per 8" floppy, 2
floppies needed.

CONVERS
The Digital Group, Box 6528, Denver, CO 80226 !lanual:
DOC=-CONVERS $12.50 .

URTH
(University of Rochester FORTH), Tutorial Manual, Hardwick
Forsley, Laboratory for Laser Energetics, 250 E. River Rd.,
Rochester, NY 14021 ,

microFORTH Primer
FURTH, Inc. U815 Manhattan Ave.,, Manhattan GbBeach, CA 90260
{moving soon) $15.00 ,

(Page 21, 22 Blank) PAGE 20
FORTH INTEREST GROUP ----+ PO. Box 1105 -+ San Carlos, Ca. 94070




