
CHAPTER 2. THE VIRTUAL FORTH MACHINE

2.1. SEGMENT AND REGISTER ASSIGMENT

This version of LaForth is implemented for IMB-PC/XT/AT and the clones, which uses MS-DOS as the underline
operating system. The Virtual Forth Machine is the mechanism which turns the 8088 CPU under DOS into a
computer which execute Forth instructions. Forth must reside in the memory of the CPU somewhere, and it must
use some of the registers in the CPU for its specific purposes.

LaForth needs a 64K byte segment of memory to store the dictionary, the data stack, and working space. This
segment will be assigned by DOS when LaForth is loaded under DOS. The actual location of this code-data-stack
segment is returns by the LaForth word DSADDR. Thissegment address is stored in the CS, DS, and SS segment
registers.

LaPorth uses an extra segment to store text from source files and the return stack. This segment is immediately
above the code-data-stack segment, and its address is loaded into the ES segment register. Thus the most important
register assignments of LaForth are:

IP CS:SI Instruction pointer
SP SS:SP Data stack pointer
RP ES:Dl Return stack pointer
W DS:AX Current word pointer, can be used for scratch.
Scratch
Registers BX,CX,DX,BP These registers do not have to be restored before NEXT.

2.2. THE INNER INTERPRETERS

The inner interpreters in Forth are the machine routines which executes one Forth word after another. The two most
important inner interpreters are the NEXT routine which jumps from one code word to the next code word, and the
NEST/UNNEST pair of routines which scan a list of addresses in a colon definition. These inner interpreters are
defined as macros in LaForth:

NEXT MACRO
LODSW ;; Pick up next address
JMP AX ;; Jump to it

ENDM

LODSW loads the address of the next Forth word, pointed to by CS:SI, into the AX register. The SI register is
automatically incremented by 2 and then points to the next word to be executed. JMP AX jumps to the beginning
of the Code Field of the word an executes the machine code stored in it. The macro NEXT assembles these two
machine instructions at the end of every code word in LaForth. Because of the auto-incrementing feature in the SI
register, 8088 is quite efficient in supporting a Virtual Forth Machine.

NEST MACRO
DB OE9h ;; Long Jump instruction
DW DOLIST-$-2 ;; Offset

ENDM

DOLIST: ADD AX,3
XCHG AX,SI
STOSW

XNEXT: NEXT

8

NEST is the instruction executed by a high level colon word in LaForth. It makes a long jump to the colon word
inner interpreter DOLIST. DOLIST adds 3 to AX, which then points to the beginning of the word list in the colon
defmition. This list pointer is copied into the II’ (CS:SI) register, while the contents of I? are pushed on the return
stack, ES:DI, by the next instruction STOSW. Now, executing the NEXT macro will cause the first Forth word in
the colon list to be executed, while the address of the unfinished colon word is saved on the return stack. The last
word in a colon list must be UNNEST, which undoes what NEST did and resumes the execution of the unfinished
colon word.

RET
Return from a level of nesting. Returns control to word which called the present one. Generated by semi-colon.
Return address must be on top or R-stack, hence cannot be used inside of #[J# or if >R values are on R-stack. It can
be used within conditionals to abort.

HEADER TER,R
UNNEST: SUB DI,2

MOV SI,ES:[DI]
NEXT

Bk-Tab A synonym of RET
DB 0,15 ; Will become “back-tab”
CHAIN H

RETRN: JMP UNNEST

2.3. EXECUTE FORTH WORD DIRECTLY

High level Forth words can be executed directly by placing the execution address of a word on the data stack and
invoking EXECUTE. EXCUTE pops the execution address into AX and jumps to this address. As LaForth is based
on the Direct Threaded Code and the execution address points to executable code, the control is passed directly to the
word we want to execute.

EXECUTE (addr--)
The I? word on top of stack. Execute the word whose address is on top.

HEADER ETUCEXE,E
EXEC: POP AX

JMP AX

To call a machine language subroutine, we have to use GO. -

GO (addr--)
Call a machine language subroutine. A Jump-to-Subroutine is executed going to the address in top. The ;JSR
instruction leaves its return address on top, unless ;preserved in the subroutine the RTS will remove it.

HEADER 00,0
GO: POP BX

CALL [BXJ
NEXT

2.4. STARTING THE FORTH MACHINE

At the beginning of LaForth object code, there is a short machine code routine which initialize the 8088 under DOS
and reconfigure the CPU so that it starts to execute Forth code. The preparation word is done by the routine at
ORIGN. ORIGN first saves the interrupt vectors used by DOS and replaces them by the ones required by LaForth,
and then initializes the IP, SP, and RP registers. The IP register is pointing to the cold start word COLD, which
eventually invokes the LaForth text interpreter to interact with the user.

9

ORION: MOV AX,CS ; One-time code.
MOV DS,AX
MOV AX,35lBh
TNT 21h ; Get mt. Vect. for lB (KB Break)
MOV BBKIVBX ; Save IV in BIOS Break tnt Vect.
MOV BBKIV+2,ES
MOV DX,OFFSET BIOSBK
MOV AX,25lBh
TNT 21h ; Set new BIOS Bk Handler
MOV DX,OFFSET DOSBK
MOV AX,2523h
TNT 21h ; Set new DOS Bk Handler
MOV DX,1
MOV AX,3301h
TNT 21h ; Set Break-On Feature.
MOV AX,3500h
TNT 21h ; Save Divide by zero vector.
MOV DBOIV,BX
MOV DBOIV+2,ES
MOV DX,OFFSET DIVBYO
MOV AX,2500h
TNT 21h ; Set Division By Zero trap
LIMP CINif ; Cold start

WIMT: MOV SI,OFFSET WARM÷3 ; Warm start
IMP SHORT CINIT3

CINIT: MOV SI,OFFSET COLD÷3
MOV AX,CS
MOV SS,AX ; Set up Stack Segment
MOV DS,AX ; and Data Segment
ADD AX,l000h
MOV ES,AX ; and Extra Segment
MOV BOTB+2,AX
MOV LBUP-i-2,AX
MOV AX,BOTB
MOV TPTR,AX
MOV LBUF,AX

CINIT3: MOV SP,TOES ; Just control stack
IMP RCLR

10

