
FORTH SEMINAR VIEWGRAPHS

After teaching FORTH for some time, a course structure was
shaped up as an eight session sequence, treating FORTH from the
introduction of stacks to the inner interpreters and to the
programming style. I have kept the notes as viewgraphs on
disks in the form of FORTH screens. The 16 by 64 format of
FORTH screens shows very well on viewgraphs if the text is
double spaced. Studies showed that a viewgraph or a slide
should not contain more than six distinct ideas on the same
graph. FORTH screens can be arranged very comfortably this
way. Although I am printing these screens three on one page,
they are ideally used one screen per viewgraph.

It is said that a small duckling follows the first moving
being it sees as its mother. In the same way I was influenced
by Kim Harris who gave me my first FORTH lectures. Many screens
in the introduction part are from his notes. It will not
be suprising if many of you find them familiar. Much
material in the last session on FORTH style was adopted from
his paper in the 1980 FORML Procedings. In the middle session on
the internal structures of the FORTH computer I used the Systems
Guide to fig-FORTH as reading assignments. Many of the figures
therein are useful in the presentations.

The sessions were designed with heavy orientation towards
professional engineers and programmers. The language
structure of FORTH and the mechanisms in the virtual FORTH
machine are emphasized. I saw quite a few blank looking eyes
and a number of sound sleepers in my audiences. I hope that

these symptoms of indigestion were only temporary and the
materials somehow would become obvious when they had to get
into the codes in a FORTH system and make use of them.

By presenting these screens in the form that can be
copied directly onto viewgraph transparencies, I hope that
those of you who may have to get up and explain FORTH to
other people have a reference point from which to start. The
selection, ommision, modification, or addition to these
materials will be determined by your style and preference, and
also on the needs of your audience.

211

C
O

M
PU

T
E

R

A
S

S
E

M
B

L
E

R
S

IL

L
A

N
G

U
A

G
E

_
_
_
_

A
P

P
L

I
C

A
I

I
0

N

A
P

P
L

IC
A

T
IO

N
H

L
L

H
L

L

—
P

A
S

C
A

L

----B
A

S
IC

--—
F

O
R

T
R

A
N

----C
O

B
O

L

A
D

A
-

(
I

M
A

C
R

O

P
L

/M

P
L

Z
-A

S
M

P
L

Z
-S

Y
S

-
C

A
PL

7
.

C
o
m

p
a
riso

n
o

f
C

o
m

p
u
te

r
L

a
n
g
u
a
g
e
s

SESSION I. ADVANTAGES OF FORTH

• HIGH SOFTWARE QUALITY

• LOW PROGRAMMING COSTS

• SHORT PROGRAM DEVELOPMENT TIME

• COMPACT AND ROMMABLE CODES

• INTERACTIVE ENVIROMENT

• USER PRGRAMMABILITY

SOFTWARE QUALITY

• PROOF OF PROGRAM CORRECTNESS

• STRUCTUREDNESS

• MODULARITY

• COMPACTNESS

EXTENSIBILITY OF THE SYSTEM

• USER DEFINED INSTRUCTIONS

• NEW SYNTAX AND DATA STRUCTURES (COMPILER/INTERPRETERS)

• SELF REGENERATION (TARGET COMPILATION)

213

U
SE

R
E

X
T

E
N

S
iO

N

A
P

P
L

IC
A

T
IO

N
IM

A
G

E
P

R
O

C
E

S
S

IN

‘-I
C’3

U
T

IL
IT

Y
E

D
IT

O
R

/
A

S
S

E
M

B
L

E
R

/
E

T
C

FO
R

T
H

IN
T

E
R

P
R

E
T

E
R

/
C

O
M

P
IL

E
R

/
I/O

H
A

R
D

W
A

R
E

S
H

O
ST

/
IM

A
G

E
P

R
O

C
E

S
S

O
R

/
P

E
R

IP
H

E
R

A
L

S

8
.

E
x

te
n

s
io

n
s

o
f

FO
R

T
H

C
o
m

p
u
te

r

INTERACTIVE OPERATIONS

• ALL FUNCTIONS DIRECTLY INVOKED BY ASCII NAMES

• IMMEDIATE COMPILATION AND TESTING

• DIRECT CONTROL OVER COMPUTER RESOURCES

• DIRECT ACCESS TO MEMORY AND I/O DEVICES

• FAST COMPILATION AND INTERPRETATION

WHAT IS FORTH ?

• A PROGRAMMING LANGUAGE

• AN OPERATING SYSTEM

• A STRUCTURED ASSEMBLY LANGUAGE

• A RELIGION AND A CULT

• AN UNREDEEMABLE ADDICTON

CHARACTERISTICS OF FORTH

• DUAL STACK ARCHITECURE

• MEMORY RESIDENT DICTIONARY

• COMPILER—INTERPRETER

• VIRTUAL MEMORY

• INDIRECT THREADED CODES

215

HLL

FORTH

9. Program Development Cycle

- 20 MINS

— 10 SECS

CYCLE TIME:

216

INSTRUCTION SET OF FORTH

• STACK MANIPULATION

• ARITHMETIC AND LOGIC OPERATIONS

• COMPILER AND STRUCTURE OPERATIONS

• TERMINAL AND DISK I/O OPERATIONS

• MEMORY AND DICTIONARY OPERATIONS

• MISCELLANEOUS OPERATIONS

10. Layered Structure of FORTH Computer

217

SESSION II. INTRODUCTION TO FORTH

OBJECTIVE
Learn to use FORTH to write simple programs and to test them
interactively.

TOPICS
• FORTH instruction set
• Data stack and return stack
• Numbers and data representations
• Execute FORTH instructions
• Compile new instructions
• Write simple FORTH programs
• Terminal input and output

FORTH LANGUAGE

WORD

A sound or a combination of sounds, or its representation in
writing, that symbolizes and communicates a meaning...

A command or an order.

(from the American Heritage Dictionary.)

FORTH SYNTAX

PROGRAM

A sequence of FORTH words, separated by spaces, or possibly

by a CR (carriage return).

WORD

A sequence of ASCII characters except spaces, CR’s, or

BS (Back Spaces which erases the previous character).

UNIQUENESS

words must be unique by their first 3 (or 31) characters and

the length of characters.

218

EXAMPLES OF FORTH WORDS

FORTH words must be either instructions or numbers.

Instructions:

FORTH DUP DROP AND XOR TYPE @ 1 +1 * / + — MOD

Numbers:

1 2 3 —l —2 —3 12345 123.45

STACK USAGE

Numbers entered are pushed onto a data stack and removed in the
last—in first—out (LIFO) order.

123 ok
• 1 ok
• 2 ok

3 Ok
• 0 STACK EMPTY

ARITHMETICS

The stack usage leads to the postfix order of operands and
operators.

Postfix notation = Reverse Polish Notation (RPN)

12+. 3ok
72*1+. 150k
32—. bk

219

NOTATIONAL CONVENTIONS

Word (input stack parameters ——— output stack parameters

top of stack listed last ———>

Abbreviations of data types:
Flag f (true..false)
ASCII character c (0..127)
Byte b (0..255)
Unsigned integer un (O..65355)
Signed integer n (—32768. .32767)
Address addr (0.. 65355)
Double integer d (—2147483648. .2147483647)

unsigned double integer ud (0..4294967295)

ARITHMETIC OPERATORS

o —1MIN . —10k
174MAX. 170k
—3ABS . 3ok
3 NEGATE —3 ok

The composite operators *1 and */f40D are useful for scaled,
fixed point calculations:

20000 5 100 *1 . 1000 Ok (5% of 20000)
20000 55 1000 */ 1100 ok (5.5% of 20000)

32 BIT DOUBLE INTEGERS

Each double integer takes 2 stack cells, the high order 16 bits
are on the top of the stack and the low order 16 bits below.

12.3 D. 123 ok
1.23 D. 123 Ok
123. D. 123 Ok
123. . . 0 123 ok
123 0 0. 123 ok

220

DROP 2 STACK INSTRUCTIONS
1 1

DUP 1
1 ——> 1

SWAP 2
1 ——> 2

OVER 1
2 ——> 2
1 1

ROT 3 1
2 3

2

EXAMPLES OF STACK INSTRUCTIONS

3DUP* . 9ok
5DUP*. 250k

SQUARE DUP * ; Ok

3SQTJARE. 9ok
5 SQUARE 25 ok

221

SESSION III. PROGRAMMING IN FORTH

OBJECTIVE

Learn the general procedures in writing FORTH programs.

TOPICS

• Constants
• Variables
• Colon Definitions
• Numbers and Arrays
• Strings

SYMBOLIC CONSTANTS

Defining a constant:

number CONSTANT name

Examples

Definitions Usage

10 CONSTANT TEN TEN • 10 ok
9430 CONSTANT MY—ZIP MY—ZIP • 9430 ok

MY—ZIP TEN 3 * +
• 9460 ok

SYMBOLIC VARIABLES ——— A symbol whose value can be changed.

Defining a variable

VARIABLE name

Examples

VARIABLE X
VARIABLE ZIP

Instructions operating on variables:

variable_name @ (fetch the value
new_value variable_name ! (change the value

222

HOW VARIABLES WORKS

variable_name ——— addr

BASE . 10294 ok
X . 7920 ok
ZIP . 7930 ok

BASE . 10294 ok
10294 @ . 10 ok
8 10294 ! ok
TEN. 120k
MY—ZIP ZIP I ok
ZIP @ . 22326 ok

BASE CONVERSION OF NUMBERS

Example:

16HEX. look
7FFF DECIMAL . 32767 ok
403*7÷DUP.HEX. 1277Fok

The conversion is controlled by the contents of variable BASE.

:HEX 16BASE I; ok
DECIMAL 10 BASE I ; Ok

:OCTAL 8BASEI ; ok
: BINARY 2 BASE 1 ; ok
TEN OCTAL . 12 ok
BINARY 100111 OCTAL . 47 ok

INSTRUCTIONS AND DICTIONARY

FORTH Instructions: Named, linked, and executable routines
stored in the memory of a FORTH computer.

FORTH Dictionary: The entire linked list of FORTH instructions
in the memory of a FORTH computer.

223

DEFINING NEW INSTRUCTIONS

new_instruction 1 ist_of_previously_def med_words ;

Examples:

8* 2* 2* 2* ; Ok
:% 100*!; ok

78*. 56ok
2005%. lOok

ADDRESS MANIPULATIONS

Define a variable array:

VARIABLE TABLE 6 ALLOT (Array size 4 cells)

1 TABLE ! (Array initializing)
2 TABLE 2 +
3 TABLE 4 +
4 TABLE 6 + I

TABLE@. 10k
TABLE4+@ . 30k

FORTH INSTRUCTIONS

Standard Instructions: Instructions provided by a FORTH
system. They are invoked by their names.

User Instructions: Instructions defined by the user. They
must first be defined before being invoked.
User instructions include high level colon instructions,
low level machine code instructions, constants, variables,
vocabularies, etc.

224

NUMBERS IN FORTH

Number: A sequence of digits delimited by spaces or CR’s.
Digits are ASCII characters starting from 0. The total
number of digits is determined by the contents of the
variable BASE. If the contents of BASE is greater than 10,
ASCII characters starting at A are included in sequence.

ADDRESS MANIPULATIONS: PSEUDO VARIABLE ARRAYS

Defining a variable array:

VARIABLE TABLE 6 ALLOT C Size 4 cells)

Initializing the array:
1 TABLE ! (1st cell)
2 TABLE 2 + I C 2nd cell)
3 TABLE 4 + I (3rd cell)
4 TABLE 6 + I (4th cell)

Accessing cells in the array:

TABLE @ . 10k
TABLE 4+@ . 30k

ACCESSING AN ARRAY

To simplify cell selection and to improve readability,
define:

C) (subscript array ——— addr) SWAP 2* + ;

Accessing the array elements:

o TABLE () @ . 1 ok
2 TABLE () @ . 3 ok

225

—-

CREATE AN INITIALIZED VARIABLE ARRAY

VARIABLE TABLE 2 , 3 , 4 , 1 TABLE I

Accessing the array:

2 TABLE () @ . 2 ok
—15 2 TABLE C) I Ok
TABLE 2 + ? —15 ok

STRING INSTRUCTIONS

String instruction is followed immediately by the string used
by the instruction. The string instruction may specify a
character other than space as the delimiter of the string.

Comment: C xxxx yyyy zzzz)
‘(‘ is the comment instruction and ‘)‘ is the delimiter.

String output: .“ xxxx yyyy zzzz”
‘.“‘ is the string instruction with ‘“‘ as its delimiter.

OTHER STRING INSTRUCTIONS

Defining instruction use the following string as the name of
the defined user instruction. Examples are : , CODE , CONSTANT
VARIABLE , and VOCABULARY

Editor instructions use strings for text entry and modification.

226

SESSION IV. STRUCTURED PROGRAMMING

Successive Refinement: Hierarchical decompositiion of a

problem into smaller parts.

Modular structures: Each part or module has only one entry

point and only one exit point.

STRUCTURES

Sequential Operations:

step 1 ——— step 2 ——— step 3

Selection:

test true part
false part

Loop:

step 1 ——— ... ——— step n ——— test

FORTH CONTROL STRUCTURE FOR SELECTION

value IF true_part ELSE false part THEN

The stack value=O meams false; value<>O means true.

TEST IF .“ TRUE” ELSE .“ FALSE” THEN ;

1 TEST TRUE ok
o TEST FALSE Ok
—15 TEST TRUE ok

227

D
O

-L
O

O
P

ST
R

U
C

T
U

R
E

IN
D

E
F

IN
IT

E
L

O
O

P
S

T
R

U
C

T
U

R
E

S

(N(N

IF
-E

L
S

E
S

IM
P

L
E

ST
R

U
C

T
U

R
E

ST
R

U
C

T
U

R
E

iL
,

S
tru

c
tu

re
s

in
FO

R
T

H
L

a
n
g
u
a
g
e

COMPARISON OPERATORS

o 0= TEST TRUE ok
1 0= TEST FALSE ok
—1 0< TEST TRUE ok
5 0< TEST NOT TRUE Ok

4 3 = TEST FALSE ok
—4 —3 < TEST TRUE ok
1 10 > TEST FALSE ok

0.0 D0= TEST TRUE Ok
5 0 D0= TEST FALSE ok
—2000.000 —1999.999 D< TEST TRUE ok

NESTED IF STRUCTURES

IF --- IF --- ELSE --— IF --— THEN -—- THEN -—- THEN
I I I I I
I

I

I

I I
I I I
I I I

DEFINITE LOOP STRUCTURES

final initial DO ——— LOOP

final initial DO ——— increment +LOOP

Functions:

DO remove 2 parameters, set loop index to initial

LOOP add 1 to index. Exit loop if index=> final.
Otherwise, branch back to DO.

+LOQP add increment to index. Same exit condition.

229

OTHER DO-LOOP INSTRUCTIONS

I current loop index

J next outer loop index

LEAVE set current loop index to limit and exit next time
at LOOP or +LOOP

Note:

DO , LOOP , +LOOP , I , J , and LEAVE can be used only
within : definitions.

EXAMPLES OF DO LOOPS

COUNT DO I . LOOP ; ok
40 COUNT 01230k
O4COt]NT 40k
—16. —20 COUNT —20 —19 —18 —17 ok

2+COUNT DO I . 2 +LQOP ; Ok
1002+COUNT 02468ok
912+COUNT 1357ok

10—COUNT DO I . —10 +LOOP ;
50 100 10—COUNT 100 90 80 70 60 ok

EXAMPLES OF DO LOOPS

INC-COUNT DO I • DUP 1-LOOP DROP ;
1 5 0 INC—COUNT 0 1 2 3 4 ok
2 5 0 INC—COUNT 0 2 4 Ok
—3 —lO 5 INC—COUNT 5 2 —1 —4 —7 Ok

+COUNT DO I . I 0= IF LEAVE THEN LOOP ; ok
51+COUNT 123 40k
5 —3 +COUNT —3 —2 —1 0 Ok

230

NON-DESTRUCTIVE STACK PRINT

DEPTH SO @ ‘S — 2/ 2— ; Ok

.S DEPTH IF ‘S SO @ 4 —

DO I @ . -2 +LOOP
ELSE .“ Empty” THEN

123.S 1230k
.S Empty ok

INDEFINITE LOOPS

BEGIN loop_body value UNTIL

Functions:

loop_body is always executed once.

UNTIL remove value, exit loop if value is 0 (true), or
branch to BEGIN if value is not 0 (false).

Note: BEGIN and UNTIL can be used only within : definitions

EXANPLES OF INDEFINITE LOOPS

COUNT-DOWN BEGIN DUP . 1— DUP 0= UNTIL DROP ;

5 COUNT-DOWN 5 4 3 2 1 0 ok

HALVES BEGIN DUP . 2/ DUP 0= UNTIL DROP ;

16HALVES 1684210ok

231

A MORE GENERAL INDEFINITE LOOP

BEGIN loop_body_i value WHILE loop_body_2 REPEAT

Functions:

loop_body_i is executed at least once.

WHILE remove value. Exit loop if value is 0 (false), or
execute loop_body_2 then branch to BEGIN.

REPEAT branch back to BEGIN

Note: BEGIN , WHILE and REPEAT can be used only in : definition

232

SESSION V. UTILITIES IN FORTH

OBJECTIVE
Learn to use FORTH editor to create large programs on disk,
and FORTH assembler to create machine level instructions.

TOP I CS
• Editor instructions set
• Virtual memory
• Disk input and output
• Program saving and loading
• FORTH assembler
• Memory access and device control

FORTH ASSEMBLER

CODE name assembly_instructions END—CODE

Attributes:

• Full machine speed
• Access to all hardware resources
• Interface exactly like : words with universal reference

and stack arguments.
• Macro capability
• Structured programming control structures
• Full support by the resident FORTH system

FORTH ASSEMBLER

CODE name assembly_instructions END—CODE

Functions

CODE create dictionary head for name and invoke the
assembler vocabulary.

assembly_instructions
assemble machine codes into the parameter field of
the code instruction ‘name’.

END—CODE complete the code instruction and make it available
for execution or compilation.

233

CODE INTERPRETER

The code interpreter must be the last executable code in the
code definition to execute the next instruction in sequence.

NEXT execute the next instruction whose address is
contained in the interpretive register IP.

POP JMP discard top of stack and jump to NEXT

PUSH JMP push register 0 onto stack and jump to NEXT

PUT JMP store register 0 into top of stack and jump to
NEXT

WAIT jump to multitasker like PAUSE.

ASSEMBLER INSTRUCTIONS

Instruction without operands:

HALT,TRAP,CLC,SEC,

Single operand instructions:

CLR , COM , INC , ASR , ASL

Double operand instructions:

MOV,ADD,SUB ,BIT,BIC,XOR,

FORTH REGISTERS

Machine register FORTH register Function

0 scratch
1 scratch
2 W current word pointer
3 U user area pointer
4 IP interpretive pointer
5 SP data stack pointer
6 RP return stack pointer
7 Pc program counter

234

ADDRESSING MODES

Immediate data
CODE ONE S) 1 $ NOV NEXT END—CODE

Relative addressing
CODE NEGATE S) NEG NEXT END-CODE

Post—increment relative
CODE DROP S)+ TST NEXT END—CODE

Pre—decrement relative
CODE DUP S) S -) MOV NEXT END—CODE

Indexed relative
CODE SWAP 0 2 S) MOV 2 S) S) MOV PUT JMP END—CODE

CONTROL STRUCTURES IN FORTH ASSEMBLER

flag IF true_part ELSE false_part THEN

BEGIN loop_body flag UNTIL

Flags:

0< negative flag set
0> negative flag clear
0= zero flag set
CS carry flag set
VS overflow flag set

FORTH ASSEMBLER MACROS

Definition:

macro name assembler_instructions ;

Examples:

NEXT W IF)± NOV W)+) JMP ;
BEGIN HERE
UNTIL NOT SWAP HERE 2+ — 2/ 377 AND + , ;

235

VIRTUAL MEMORY

Mass storages are divided into blocks of 1024 bytes. The blocks
are numbered consecutively and are accessed by the block numbers

A number of disk buffers (1024 bytes long) are reserved in the
RAM memory for temporarily storing data in disk blocks.

Disk data are accessed in the disk buffers using memory access
instructions.

Modified blocks in disk buffers are written back to disk when
buffers are reassigned to other blocks or when FLUSH is invoked.

ACCESSING THE VIRTUAL MEMORY

BLOCK C n ——— addr) is the fundamental tool to access
the virtual memory. Its functions are:

• Check the disk buffers to see if Block n is in one
of the buffers. If so, return the buffer address.

• Block n is not in the buffers. Choose the lest
accessed buffer for Block n. Flush the contents of
this buffer back to the mass storgae if it was
marked as updated.

• Read Block n from mass storage to this buffer, and
put its address on the stack.

With the buffer address, the user will be able to read or write
storage using memory accessing instructions.

238

ACCESSING THE VIRTUAL MEMORY

BUFFER C n -—— addr

• Select the lest accessed disk buffer for Block n.
If the contents of this buffer was marked as
updated, flush it back to the mass storage.

• Return the buffer address on the stack.

The difference between BUFFER and BLOCK is that BUFFER will not
read data from the mass storage. It is used to store raw data
into the mass storage. BLOCK is used to update and used the
data already stored in the mass storage.

DATA INTEGRITY

• Data can be read or written freely in the disk buffers.
Any changes may in the buffer are not written back to the
mass storage immediately.

• If it is desired that modified data are stored into the
mass storage, the instruction UPDATE must be given after
the modification.

Modified data in the updated buffer are written back to the
mass storage only when:

- The buffer will be used by another block as
commanded by BLOCK or BUFFER.

— Explicit write instruction FLUSH is executed.

DATA INTEGRITY

• Buffers can be scratched by EMPTY—BUFFERS, if data in the
buffers are known to be disturbed. EMPTY—BUFFERS clears
all the disk buffers so that the data on the mass storage
are not changed.

• The set of instructions BLOCK, BUFFER, UPDATE, and
EMPTY-BUFFERS provides a very efficient means to use large
volume mass storage with a high degree of data security.

239

SESSION VI. FORTH VIRTUAL COMPUTER

OBJECTIVE
Learn the internal structures of a virtual FORTH computer,
and the detailed mechanism of its operations.

TOPICS
• Registers and pointers
• Data and return stacks
• Dictionary
• Disk and terminal buffers
• Inner interpreters
• Machine instructions interpreter
• High level instruction interpreter
• Constants and variables

REGISTERS IN THE FORTH VIRTUAL COMPUTER

• Data stack pointer SP

• Return stack pointer RP

• Instruction pointer IP

• Current word pointer W

• User area pointer UP

INNER INTERPRETERS

The inner interpreters are the machine code routines which
executes different types of instructions in the FORTH computer.

The interpreter for the low level FORTH instructions:

NEXT: MOV (IP)+,W Pop the address of the next
instruction in to W register.
Increment IP, pointing to the
next instruction to be executed.

JMP @(W)+ Jump indirectly through the
address pointed to by W.
Increment W, pointing to the PFA
of the word being executed.

240

12. The Virtual FORTH Computer

OATA
STACK

IBLK I

[SCR I

DISK
BUFFERS

RE TURN
STACK DICTIONARY TERMINAL

BUFFERS

241

INNER INTERPRETERS

NEXT at the end of every code instruction pulls in the next
instruction to be executed. To start the chain of execution,
the instruction EXECUTE is used. EXECUTE assumes that the
execution address of the instruction to be executed is on the
data stack.

EXECUTE: MOV (SP)+,W Pop the execution address from the
data stack to W register.

JMP @(W)+ Execute the instruction by jumping
indirectly through its execution
address, which points to the
machine code routine to be
executed.

ADDRESS INTERPRETER

High level FORTH instruction contains a list of execution
addresses to be executed in sequence. The address interpreter
processes this list of addresses and execute them in sequence.

DOCOL: MOV IP,—(RP) Push the next execution address
on the return stack.

MOV W,IP Point IP to the list of execu
tion addresses of this high
level instruction.

MOV (IP)+,W Execute it by calling NEXT.
JMP @(W)+

ADDRESS INTERPRETER

At the end of the address list in every high level FORTH
instruction, there is an instruction which returns the control
to the calling instruction, very similar to the RETURN in
FORTRAN.

EXIT: MOV (RP)+,IP Pop the next execution address
from the return stack back into
the instruction pointer I?.

MOV (IP)+,W Call NEXT to execute it.
JMP @(W)+

242

TOP OF

DISK MEMORY

BUFFERS

USER
VARIABLES

RETURN
STACK

TERMINAL
INPUT
BUFFER

DATA

STACK

STACK
EXPANSION

FREE
MEMORY

DICTIONARY
EXPANSION

TEXT BUFFER

WORD BUFFER

IP

DICTIONARY

Ix!J

NUCLEUS

THE frIEMORY MAP
BOOT-UP BOTTOM OF
LITERALS

MEMORY

13. Memory Map and Pointers

243

CONSTANT INTERPRETER

The execution address in a constant instruction is pointing to
a code routine which pushes the integer number stored in the
constant instruction on to the data stack, achieving the
function of a constant. This code routine is the interpreter
for all constants used in FORTH system.

DOCON: MOV (W),—(SP) Push the constant onto the data
stack.

MOV (IP)+,W Call NEXT to continue the
execution sequence.

JMP @(W)+

VARIABLE INTERPRETER

The code routine which interprets all the variables defined
in FORTH pushes the address of the cell where the number is
stored onto the data stack.

DOVAR: MOV W,—(SP) Push the address of the variable
onto the data stack.

MOV (IP)+,W Call NEXT.
JMP @(W)+

USER VARIABLE INTERPRETER

The operational environment of each user in a multitasking FORTH
system are defined by a set of user variables private to each
user. These variables are accessed through the user area
pointer, allowing users to share a common dictionary of
instructions.

DOUSE: MOV (W),—(SP) Push the user area offset onto
the data stack.

ADD UP, (SP) Add the user area pointer to
get the address of the variable.

MOV (IP)+,W Call NEXT.
JMP @(W)+

244

PRECEDENCE COUNT

14. Instruction Format

I
LINK FIELD

+
CODE FIELD

T

NAME FIELD

PARAME TER
FIELD

I

245

POINTERS IN THE FORTH SYSTEM

Many pointers are needed by the FORTH system to manage the
resources and to perform system functions.

DP Top of dictionary and the word buffer.
PAD Text input/output buffer.
TIB Terminal input buffer.
PREy, USE Disk buffer pointers.
CONTEXT Pointer to the end of the context vocabulary.
CURRENT Pointer to the end of the current vocabulary.
BLK The block number of the disk block under processing.
>IN The character pointer for text parsing.

INSTRUCTION FORMAT

All FORTH instructions share a regular structure of format.
There are four fields in an instruction:

Name Field Variable length. The first byte is the length
byte. The ascii name can have up to 31 character

Link Field Pointing to the name field of the prior instruc
tion in the same vocabulary.

Code Field Pointing to the code routine, the interpreter of
this instruction.

Parameter Field Variable length. Containing necessary data
to perform the function designed of this
instruction.

DICTIONARY ORGANIZATION

• The dictionary is basically a linearly linked list of
instructions.

• Branches or vocabularies are allowed in the dictionary, so
that related instructions can be linked for specific
searching mechanism. Instructions must be uniquely
identifiable by their names and the vocabulary they belong.

CONTEXT and CURRENT are used to specify vocabularies to be
searched by the text interpreter.

246

HIGH LEVEL INSTRUCTION

ROT >R SWAP R> SWAP

LOW LEVEL INSTRUCTION

CODE <LOOP) -

15. High Level and Low Level Instructions

7
NAME
FIELD

LINK
FIELD.,

CODE
FIELD.

/
PARAIIE rE
FIELD

83

52

DL.

70

D7

OE

D5

03

SA

DL.

81

03

5A

DL.

03

3 COUNt

R

O NAME

T

0770 LINK

OSOE DOCOL

036F)R

DL.SA SWAP

0381 R)

095A SWAP

03L.l

COUNT

NAME

LINK

CODE

INC (RP)

ClIP <RP),2(RP)

8GE • I.

ADO (IP).IP

MDV (IP). .W

,JMP (W).

ADD M4.RP

ADD 12.IP

MOV UP). ,W

JMP (W)•

247

SESSION VII. FORTH OPERATING SYSTEM

OBJECTIVE
Learn the detailed functions of the text interpreter and its
interaction with user.

TOPICS
• FORTH main loop
• Text interpreter loop
• Interpreter and compiler
• Dictionary and vocabulary
• Number conversions
• Error handling

COLD START
COLD C COLD START, INITIATE

EMPTY-BUFFERS FIRST USE
18 +ORIGIN SO 24 CMOVE
14 +ORIGIN @ FORTH 6 +
ABORT ;

QUIT, ABORT)

USER AREA
1 FIRST PREV I

C MOVE 24 BYTES)
1 (STORE VOC-LINK)

QUIT (RESTART, INTERPRET FROM TERMINAL
0 BLK I [COMPILE) [
BEGIN RPI CR QUERY INTERPRET

STATE @ 0= IF •“ OK” ENDIF
AGAIN ;

ABORT C WARM RESTART, INCLUDING
SP! DECIMAL DRO
CR •“ FIG—FORTH”
[COMPILE] FORTH DEFINITIONS

REGISTERS)

QUIT ;

248

INTERPRET

INTERPRET (INTERPRET OR COMPILE SOURCE TEXT INPUT WORDS
BEGIN —FIND

IF (FOUND) STATE @ <
IF CFA , ELSE CFA EXECUTE ENDIF ?STACK

ELSE HERE NUMBER DPL @ 1+
IF [COMPILE] DLITERAL
ELSE DROP [COMPILE] LITERAL ENDIF ?STACK

ENDIF
AGAIN ;

(LITERAL, DLITERAL, [COMPILE), U< , ?STACK

[COMPILE] C COMPILE FOLLOWING IMMEDIATE WORD
-FIND 0= 0 ?ERROR DROP CFA , ; IMMEDIATE

: LITERAL C IF COMPILING, CREATE LITERAL)
STATE @ IF COMPILE LIT , ENDIF ; IMMEDIATE

DLITERAL C IF COMPILING, CREATE DOUBLE LITERAL)
STATE @ IF SWAP [COMPILE] LITERAL

[COMPILE) LITERAL ENDIF ; IMMEDIATE

>R 0 R> 0 DMINUS D+ SWAP DROP 0< ;

?STACK C CHECK STACK OVERFLOW OR UNDERFLOW)
SO @ 2 — SP@ U< 1 ?ERROR SP@ HERE 128 + U< 2 ?ERROR ; ;S

CONVERT, NUMBER, -FIND)
CONVERT (Dl ADDR1 --— D2 ADDR2)

BEGIN 1+ DUP >R C@ BASE @ DIGIT
WHILE SWAP BASE @ U DROP ROT BASE @ U
DPL @ 1+ IF 1 DPL +1 ENDIF R> REPEAT R> ;

NUMBER (ADDR --- D
OOROT DUP1+C@ 45=DUP >R+—1
BEGIN DPL ! CONVERT DUP C@ BL —

WHILE DUP C@ 46 — 0 ?ERROR 0 REPEAT
DROP R> IF DMINUS ENDIF ;

-FIND C ——— PFA COUNT TF OR FF
EL WORD HERE CONTEXT @ @ (FIND)
DtJP 0= IF DROP HERE LATEST (FIND) ENDIF ;

FIND —FIND IF DROP ELSE 0 THEN ; ;S

249

INTERPRET

16. Flow Chart of Text Interpreter

250

ERROR HANDLER

: (ABORT) ABORT ; C USER ALTERABLE ERROR ABORT)

: ERROR (WARNING: —1 ABORT, 0 NO DISC, 1 DISC
WARNING @ 0< (PRINT TEXT LINE REL TO SCR #4)
IF (ABORT) ENDIF HERE COUNT TYPE .“ ? “

MESSAGE SPI IN @ BLK @ QUIT ;

: ID. (PRINT NAME FIELD FROM ITS HEADER ADDRESS)
PAD 32 95 FILL DUP PFA LFA OVER -

PAD SWAP CMOVE PAD COUNT 31 AND TYPE SPACE ;

WORD
WORD (CHAR --- , MOVE STRING TO HERE)

BLK @ IF BLK @ BLOCK ELSE TIB @ ENDIF
IN @ ÷ SWAP (ADDR CHAR)
ENCLOSE (ADDR START END COUNT
HERE 34 BLANKS (CLEAR WORD BUFFER)
IN +! C STEP OVER THIS STRING)
OVER - >R (SAVE CHARACTER COUNT)
R HERE C! (STORE LENGTH BYTE FIRST)
+ HERE 1+
R> CMOVE ; (MOVE STRING FROM BUFFER TO HERE+1)

;S

CREATE

HEX
CREATE (MAKE A SMUDGED CODE HEADER TO PARAMETER FIELD)

-FIND C CHECK IF UNIQUE IN CURRENT AND CONTEXT)
IF (WARN USER) DROP NFA ID.

4 MESSAGE SPACE ENDIF
HERE DUP C@ WIDTH @ MIN 1+ ALLOT ?ALIGN
DUP A0 TOGGLE HERE 1 - 80 TOGGLE (DELIMIT BITS)
LATEST , CURRENT @ I
HERE 2+ ,

DECIMAL ;S

251

SESSION VIII. FORTH PROGRAMMING LANGUAGE

OBJECTIVE
Learn the syntax rules of FORTH with its instruction set,
extensions, and language standards.

TOPICS
• Character set
• Words, numbers, and instructions
• Standard instructions
• String instructions
• User instructions
• Defining instructions
• FORTH standards

PROGRAMMING LANGUAGE

A programming language is a set of symbols with rules for
combining them to specify execution procedures to a computer
or to communicate the problem solving procedures between
programmers.

Essence of a programming language:

• Symbols or character set

• Rules or syntax

CHARACTER SET

FORTH employs the full ASCII character set:

• Upper and lower case alphabets
• Numerals 0 to 9
• All the printable punctuations and symbols
• All the non—printable control characters

Exceptions:

• Ascii NTJL and CR as absolute delimiters
• Ascii SP as default delimiter
• Ascii RUB and BS as backspaces
• Other characters temporarily designated as delimiter

252

U
i

•
,

_
I

z
-
.

aH
3

I
I
.

C
D

Z
Jo)Iii

C(!I
II-.

I(J)
o

‘Ii
Lii

11.

I
Z

I-
H

(0
I

0)
F-

HE
0IL

IIIZ
H

o
a

0

7

T
h

7C
z

I

I—

‘-I

I

7
7

0

7

7
U

,

If1
1

lv
i

lvi

0I7
7

I
-

•-
0

.
0

.
UIUUC0III-LI

a.0C

flU
,7

a.VCIz7a.

0r.z414.4
0

ox4-)>
1

U
)

‘-4

L3a0

—
4

“
a

0a“
a

‘
a

‘
a

00

U
,

‘-4

I-’
-JU

i
0

70ILI,
7

7a‘-4

I-,

LI,
7I-.

U
,

U
’

a.0za.
j

<L_
9
FU

,

aC

U
i

r7

z0‘-4

I-f
DLu7CC7U
,

PROGRAM AND WORDS

Program: A list of words, separated by delimiters, to be
processed by a FORTH computer.

Word:

Syntax: A group of characters separated from each
other by delimiters.

Semantics: An instruction or a number.

NUMBER

A group of Ascii characters enumerated from 0 to 9, and then
from A up. The number of this set is determined by the current
base value used in the system.

Semantics: Numbers are used to represent:

Flags, Ascii characters, bytes, signed and unsigned
integers, signed and unsigned double integers, and
addresses.

INSTRUCTIONS

Instruction: A named, memory resident, and executable entity
in the FORTH computer. It is invoked by its
name and the vocabulary it was linked into.

Types of FORTH instructions:

Standard instructions ——— Provided by system.
User instructions ——— Created by the user.
String instruction ——— With special syntax.

254

STRING INSTRUCTIONS

String instruction processes the character string immediately
following it, delimited by a delimiter specified by the string
instruction itself.

Two string instructions are generally provided by the system:

Comment
Print message

STANDARD INSTRUCTIONS

A set of instructions provided by the FORTH system, creating
an enviroment in which most programming problems can be
conveniently solved.

Standard instructions are usually grouped as:

• Nucleus instructions
• Interpreter instructions
• Compiler instructions
• Extension instructions

USER INSTRUCTIONS

Instructions that can be defined by the user to extend the
FORTH system towards the solution to his problem.

User instructions are usually grouped by the defining
instructions used to create them:

High level instructions or Colon instructions
Low level instructions or code instructions
Constants
Variables
Vocabularies

255

COLON OR HIGH LEVEL INSTRUCTIONS

A colon instruction is a named equivalence to a list of words.
When this instruction is executed, this list of words are
actually executed.

A more precise definition of colon instruction:

A colon instruction is a named equivalence to a list of
‘structures’.

STRUCTURES

A structure is a list of words and/or structures, which has
generally only one entry point and one exit point during
execution.

A structure may include:

• Nothing
• A word/structure list
• IF—THEN—structure
• DO—LOOP—structure

BEGIN—UNTIL—structure

256

DEFINING WORDS-—-COMPILER/ INTERPRETERS

FORTH provides an unique facility to create new classes of
instructions or data structures with user designated execution
procedures.

Three steps in using this facility:

1. Create a defining word ——— a compiler—interpreter pair.

2. Use the compiler to define new words.

3. Use the interpreter to execute the new word.

: AS A DEFINING WORD

(Colon) defines high level FORTH instructions.

Example:

? @.;

It compiles a new word ? into the dictionary when : is executed.
When the new word ? is executed, the functions of @ and . are
executed in sequence.

257

VARIABLE AS A DEFINING WORD

VARIABLE itself is created by : as follows

: VARIABLE CREATE 2 ALLOT DOES> ;

Functions:
Compiler———create a new name in dictionary and allocate 2 bytes

for the parameter field to store data.
Interpreter———leave the parameter field address on the stack so

that the data can be read or modified.

VARIABLE X ok
3X! Ok
X? 3ok

DEFINING 1 DIMENSIONAL BYTE ARRAY

Create the array defining word:

: CVECTOR CREATE ALLOT DOES> + ; Ok

Create a 5 byte array:

5 CVECTOR LINE ok

Usage:
: OLINE 5 0 DO 0 I LINE Cl LOOP ;

.LINE 5 0 DO I LINE C@ . LOOP ;
ILINE 5 0 DO I I LINE Cl LOOP ;

VARIATIONS ON THE BYTE ARRAY

Symmetric subscripts:

CVECTOR CREATE ALLOT DOES> + 1 ; Ok

Clear the array as defined:

CLEAR DUP HERE SWAP ERASE ALLOT ;

CVECTOR CREATE CLEAR DOES> +

258

VARIATIONS ON THE BYTE ARRAY

Add range check:

CVECTOR CREATE DtJP , ALLOT
DOES> 2DUP @ < IF + ELSE .“ RANGE ERROR”

..THEN ;

Pure code in ROM:

: CVECTOR CREATE THERE , ALLOT DOES> @ + ;

DEFINING VIRTUAL ARRAY ON DISK

CVECTOR CREATE DISK-DP@ , DISK-ALLOT
DOES> DUP ROT 1024 /MOD

ROT + BLOCK + ;

U PCOUNTER

UPCOUNTER CREATE ,

DOES> 1 OVER +1 ;

o UPCOUNTER LINE#

LINE# ? 1 ok
LINE# ? 2 ok
LINE# ? 3 ok

259

MESSAGE OUTPUT)

Compile a named message. Type the message by invoking the name.

: MESSAGE CREATE (build the head)
1 WORD C Accept the following string to body.)
HERE C@ (The length byte of the string.)
1+ ALLOT (The parameter field.)
DOES>
COUNT TYPE ; (Type out the string.)

MESSAGE HELLO HOW ARE YOU? Ok
MESSAGE ANSWER I AM FINE. AND YOU? ok
HELLO HOW ARE YOU? ok
ANSWER I AM FINE. AND YOU? ok

C ASCII MESSAGES)

This is the poly—FORTH message compiler/interpreter.)
Any ASCII character can be compiled, including NUL.)

MSG CREATE (Create the head only. Parameters will be)
(explicity compiled by the user.)

DOES> COUNT TYPE ;

HEX
MSG PAGE OCO1 , (Compile byte count 1 and ASCII code 12.)
MSG NAME 5404 , 4E49 , 2047 ,

DEC IMAL

PAGE
NAME TING ok

C DOUBLE NUMBER CONSTANTS AND VARIABLES)

2CONSTANT CREATE , , (Compile two integers of f stack.)
DOES> 2@ ; (Push it on stack.)

2VARIABLE CREATE 4 ALLOT (Allot extra 2 bytes.)
DOES> ; (The address is on stack already.)

1.23456 2CONSTANT RATIO Ok
RATIO D. 123456 ok
2VARIABLE PAY Ok
RATIO PAY 2! Ok
PAY 2@ D. 123456 ok

260

SESSION IX. FORTH PROGRAMMING STYLE

OBJECTIVE
Learn the stylistic problems in writing and documenting
large FORTH programs and projects.

TOPICS
• Source code layouts
• Modular structure in blocks
• Reducing program complexities
• Factorization of modules
• Layered program structures
• Top—down program design
• Program documentation standards

STYLISTIC CONSIDERATIONS IN FORTH PROGRAMMING

Some materials in this session are adopted from Kim Harris’
paper on ‘Software quality & FORTH Programs’, 1980 FORML Proc.,
p. 140—172.

The rneasurment on software quality is based upon following
considerations:

PERFORMACE Execution time, memory size, etc.

MAINTAINABILITY Documentation, modifications, etc.

PERFORMANCE

EXECUTION TIME can be reduced by:
Rewriting critical routines in assembly codes.

• Bundling high level words.

MEMORY SIZE can be reduced by
• Factorizing reusable phrases into new words.
• Dynamic memory allocation using stack or PAD.
• Invoke virtual memory for data storage.

Execution time and memory size are the two conflicting
factors which have to be traded off one against the other.

261

SOFTWARE MAINTAINANCE --— DOCUMENTATION

EXTERNAL (USER) DOCUMENTATIONS
• Specification and overview
• User manuals
• Help screens and help commands
• Input prompts

INTERNAL (SYSTEM) DOCUMENTATIONS
• Implementation overview
• Glossary in alphabetic and functional order.

Source listings

SOURCE LISTING ORGANIZATIONS

Group related items together on listings
• Screen = paragraph
• Triad = page
• 30 Screens = chapter

Configuration control
• Keep date and author of last change on each screen
• Use load screens as contents of applications

LAYOUT OF SOURCE ON A SCREEN

• Include only related items on one screen

• Use line 0 as a comment with contents, author and date

• Leave line 15 blank for future expansion

• Only one definition per line

• Specify stack effects after the name of definition

• Separate phrases with 3 spaces

262

PROGRAMMING FOR MAINTAINABILITY

Avoid side effects by:

• Use structured programming restrictions

• Avoid global references to variables and data

• Factoring incidental or unrelated functions into
separated definitions

Side effects are hard to document, hard to understand, and
not obvious. These are the bugs which refuse to be flushed
out. They are to be avoided as plagues.

FACTORING VERSUS BUNDLING

The trade off between factoring and bundling:

• One function per defintion enhances maintainability.

• Reusable defintions reduce memory size.

• Bundling functions together reduces execution time.

• Bundling functions reduces the number of names.

FACTOR LONG DEFINITIONS

In cases where the following considerations are important,
factor long defintions into short definitions:

• Reduce internal complexity

• Reusability

• Transportability

263

MAINTAINING

DOCUMENTING

TESTING

DOCUMENTING

TESTING
-

CODING CODING

DESIGN DESIGN

CONVENTIONAL LANGUAGES FORTH

18. Software Costs

2 4

PROGRAMMING COST REDUCTION

The cost of programming is directely related to its
complexity. Minimizing program complexity can be translated
to cost reduction.

TECHNIQUES FOR MINIMIZING COMPLEXITY

• Decompose problems into sub—problems or modules
• Minimize interface complexity between modules by

restricting data flow between them.
Minimizing complexity within modules using control
structures.

With the simplest syntax and internal structures, FORTH is
the best software tool to arrive at the simplest solutions.

THE FORTH COMMANDMENTS

I. WORDS MUST BE SEPARATED BY SPACES OR CARRIAGE RETURNS.

II. A WORD MUST BE UNIQUE IN ITS FIRST 3 (OR 31) CHARACTERS,

THE CHARACTER COUNT, AND THE VOCABULARY IT IS LINKED.

THE FORTH COMMANDMENTS

III. ALL INSTRUCTIONS MUST REMOVE THEIR PARAMETERS FROM THE

DATA STACK, AND LEAVE ONLY EXPLICIT RESULTS ON THE STACK.

IV. THE RETURN STACK MUST BE RESTORED AT EVERY LEVEL OF

DO-LOOP AND BEFORE THE END OF AN INSTRUCTION.

265

THE FORTH COMMANDMENTS

V. STRUCTURE INSTRUCTIONS MUST BE PROPERLY PAIRED.

VI. STRUCTURES CAN BE NESTED, BUT NOT OVERLAPED.

THE FORTH COMMANDMENTS

VII. NUMERIC DATA MUST PRECEPE THE INSTRUCTION WHICH USES

THEM.

VIII. STRING INSTRUCTION MUST BE FOLLOWED BY THE STRING TO

BE PROCESSED.

THE FORTH COMMANDMENTS

IX. COMMENT ON THE FIRST LINE IN A SCREEN.

X. COMMENT ON THE STACK EFFECTS OF A DEFINITION.

266

r
THE FORTH COMMANDMENTS

XI. PUT ONLY RELATED WORDS IN ONE SCREEN.

XII. DO NOT OVERPACK SCREENS.

THE FORTH COMMANDMENTS

XIII. DEFINE SHORT DEFINITIONS.

XIV. FACTOR OUT REUSABLE FUNCTIONS.

267

