
 1

430eForth for LaunchPad

Chen-Hanson Ting

Offete Enterprises, Inc.

2012

 2

Chapter 1. eForth for LaunchPad

1.1 LaunchPad as a Firmware Development Platform

All these years, I have been looking for microcontroller platforms on which I can
teach people how to program in the FORTH language. I designed a training course I
called Firmware Engineering Workshop. I could train an open minded engineer to
program in FORTH in about a week, with a reasonable capable platform, i.e., a
microcontroller evaluation board with a FORTH operating system loaded. Good
platforms are expansive, and low cost platforms are inadequate. What I did was to
grab any microcontroller board at hand and used it. It did not work well because
what I taught could not be easily replicated by people at home. People got frustrated
when they could not reproduce results I demonstrated. Then, TI gave us the
LaunchPad Kit.

The microcontroller evaluation board I need must have a microcontroller with
reasonable capabilities. An 8-bit microcontroller with a fast clock is adequate.
16-bit of 32-bit microcontrollers are of course much better. The board must have at
least 8 KB of ROM memory and 1 KB of RAM memory. It must also have a
USART port to communicate with a terminal emulator on a host PC. Any other I/O
devices will be icings on the cake. The more the better.

LaunchPad has all the components I listed above. It is also inexpensive, costing only
$4.30, including shipping. It is a joke. I guess TI is desperate to compete against
Auduino and Basic Stamps. It uses MSP430G2553, a very interesting 16-bit
microcontroller which has 16 KB of flash memory, enough to host a FORTH
operating system, 512 Bytes of RAM and many I/O devices to build substantial
applications. LaunchPad Kit also has a USB port which connects a PC and an
USART device in MSP430G2553. This serial interface is necessary for a FORTH
system so that you can run and program MSP430G2553 interactively from a terminal
emulator on the PC.

LaunchPad is a lovely kit. You connect it through a USB cable to your PC, and you
can program it to do many interesting things. Its microcontroller MSP430G2553,
running at 1.1 MHz, is very capable of doing many interesting applications.

It is a very nice platform to program MSP430G2553 in the FORTH language.
FORTH exposes MSP430G2553 to you. You can interactively examine its RAM
memory, its flash memory, and all the I/O devices surrounding the CPU. You can
incrementally add small pieces of code, and test them exhaustively. An interactive
programming and debugging environment greatly accelerates program development,
and ensures the quality of the program.

The ealier version of LaunchPad used MSP430G2231 chip, which has only 2 KB of
flash memory. It is too small to host a complete FORTH system. I built a
430uForth system for it, with only an interpreter and a small set of commands. It
demonstrated that we could use the LaunchPad to do something interesting. Now
that TI delivers it with MSP320G2553, we can have a complete FORTH system with

 3

interepreter and compiler. It is a good platform for firmware engineering projects.

Since 1990, I have been promoting a simple FORTH language model called eForth.
This model consists of a kernel of 30 some primitive FORTH commands which have
to be implemented in machine instructions of a host microcontroller, and 190
compound FORTH commands constructed from the primitive commands and other
compound commands. By isolating machine dependent commands from machine
independent commands, the eForth model can be easily ported to many different
microcontrollers. This model is ported to MSP430G2553, and the result is the
430eForth system, which runs very nicely on LaunchPad Kit.

430eForth is written in MSP430 assembly. The code is provided so that you can
modify it to suite your application. The entire system takes up about 6000 bytes of
the flash memory, leaving lots of room for your application.

Needless to say, the heart of an LaunchPad is the MSP430G2553 microcontroller. If
you like to fully understand LaunchPad and make the best use of it, eventually you
have to deal with MSP430G2553 directly. You will have to come back and read the
"MSP430x2xx Family User's Guide" (slau144) from TI Corp, which is a huge 658
page document. It is a dry technical document, not for casual reading. Actually, it
is not that bad. Only when you have to drive one of the devices, like the I/O devices,
the control and status registers, etc., in MSP430G2553, you open the respective
chapter and learn all about this device, line by line, word by word. If you have
430eForth running, you can examine the associated registers, and all the bits in these
registers will gradually make sense. Change these bits interactively, and observe the
effects. There is no better way to learn these devices, and to make them work the
way you want them to work. And, 430eForth is your best friend to do that.

1.2 What is FORTH?

FORTH was invented by Chuck Moore in the 1960s as a programming language.
Chuck was not impressed by programming languages, operating systems, and
computer hardware of that time. He sought the simplest and most efficient way to
control his computers. He used FORTH to program every computer in his sight.
And then, he found that he could design better computers, because FORTH is much
more than just a programming language; it is an excellent computer architecture.

So what is FORTH really?

Many books and many papers had been written about FORTH. However, FORTH is
still elusive because it has many features and characteristics which are difficult to
describe. Now that it has moved from software to hardware, with technologies like
FPGA and custom IC, it is even more difficult to accurately put it into words. Here I
will try to look at it from a completely different angle.

FORTH is a list processor. It is very similar to LISP in spirit, but totally different in
form. Both languages assume that all computable problems can be expressed and
solved in nested lists.

FORTH has a set of commands, and an interpreter to process lists of commands.

 4

FORTH commands are records stored in a memory area called a dictionary.

A record of a FORTH command has three fields: a link field linking commands to
form a searchable list, a name field containing the name of this command as an ASCII
string which can be searched, and a code field containing executable code and data to
perform a specific function for this command. It may have an optional parameter
field, which contains additional data needed by this command. The link field and
name field allow the interpreter to look up a command in the dictionary, and the code
field provides executable code to perform the function assigned to this command.

A FORTH command has two representations: an external representation in the form of
a text string with ASCII characters; and an internal representation in the form of a
token, which invokes executable code stored in a code field. In many FORTH
systems, the tokens are addresses. However, tokens can take other forms depending
on implementation. For example, Java, which is a variant of FORTH, uses byte
tokens.

There are two types of FORTH commands: primitive FORTH commands having
machine code in their code fields, and compound FORTH commands having token
lists in their code fields.

The FORTH interpreter processes lists of commands in text strings. A list of
FORTH commands contains a sequence of strings representing FORTH commands,
separated by white spaces and terminated by a carriage return. The interpreter parses
out commands in the text strings into tokens and executes code represented by these
tokens. When the FORTH interpreter encounters a primitive command, it executes
the machine code in its code field. When it encounters a compound command, it
processes the token list in its code field. How it processes the token list depends
upon how tokens are defined and implemented.

The text interpreter operates in two modes: interpreting mode and compiling mode.
In the interpreting mode, a list of command names is interpreted; i.e., commands are
parsed and executed. In the compiling mode, a list of command names is compiled;
i.e., commands are parsed and corresponding tokens are compiled into a token list.
This token list is given a name to form a new compound command, adding a new
command record in the dictionary.

New compound commands are compiled to represent new token lists. This is the
most powerful feature of FORTH, in that you can compile new compound commands,
which replace lists of existing commands, both primitive and compound. The syntax
to compile a new compound command is:
 : <name> <list of existing commands> ;

Nested token lists are added as new compound commands until the final compound
command becomes the solution of your problem. Lists are compiled and tested from
the bottom up. The solution space can be explored wider and farther, and an
optimized solution can be found more quickly.

Linear, sequential token lists are enhanced by control structures like branch structures

 5

and loop structures. A structure is a token list inside which the execution sequence
can be modified dynamically. The following figure shows a sequential structure, a
branch structure and a loop structure.

A structure has only one entry point and one exit point, although it may have many
branches inside. Structures can be nested, but may not overlap with one another. A
structure can therefore be considered an enhanced token. A compound command is
a structure given a name.

Using the concept of structures, a new compound command has the following syntax:
 : <name> <list of structures> ;

The fundamental reason why FORTH lists (command lists and token lists) can be
simple, linear sequences of commands is that FORTH uses two stacks: a return stack
to stored nested return addresses, and a parameter stack to pass parameters among
nested commands. Parameters are passed implicitly on the parameter stack, and do
not have to be explicitly invoked. Therefore, FORTH commands can be interpreted
in a linear sequence, and tokens can be stored in simple, linear token lists. Language
syntax is greatly simplified, internal representation of code is greatly simplified, and
execution speed is greatly increased.

A FORTH Virtual Machine thus needs two stacks, efficient means to traverse nested
token lists, and a CPU within a reasonable instruction set and memory device to
support a small number of primitive commands. eForth is such an implementation
which has been ported to many commercial microprocessors and microcontrollers.

 6

Auduino Kit with an MSP430G2553 microcontroller, is an ideal platform for an
eForth implementation, 430eForth system.

1.3 FORTH for Firmware Development

To use FORTH to develop applications for MSP430G2553 with LaunchPad Kit, you
have to have the following components:

First, you need the $4.30 LaunchPad Kit with an USB cable connecting to PC.
Second, on the PC, you need Code Composer Studio 5.2, an Integrated Development
Environment (IDE) from TI Corp to assemble 430eForth. You can download it for
free from www.ti.com.

Code Composer Studio 5.2 contains an MSP430 assembler, C and C++ compilers,
and a debugger. It also loads assembled or compiled object code to MSP430G2553
through the USB cable. I only use the MSP430 assembler to assemble the source
code of 430eForth. Once 430eForth is loaded to MSP430G2553, all programming
and debugging operations are performed from a terminal emulator on PC, through the
USB cable connected to LaunchPad Kit. USB drivers are installed automatically
when you install Code Composer Studio.

On the PC, I use HyperTerminal to communicate with LaunchPad Kit.
HyperTerminal comes with Windows, and can be accessed through \Start\All
Programs\Accessories\Communication\HyperTerminal. Starting at Windows 7,
Microsoft stopped bundling HyperTerminal with Windows. However, you can still
download HyperTerminal application from MSDN website.

There are other terminal emulators for PC to communication with LaunchPad.
RealTerm can be downloaded from SourceForge (http://realterm.sourceforge.net/).
It has many more options than HyperTerminal, but they work similarly.

You have to set up communication protocols on HyperTerminal or RealTerm so that
they will communication with LaunchPad. The set up parameters are 2400 baud, 1
start bit, 8 data bits, no parity, 1 stop bit, and no flow control.

To develop programs for embedded systems, the conventional methodology is to write
source code in C or in assembly. The source code is compiled or assembled.
Object code is linked by a linker to produce execution code, which is loaded to the
target system. Now, you cross your fingers and turn on power. Most likely, the
system does not work, and you enter into the debugging phase of development.

To debug a program in an embedded system, you need lots of sophisticated tools, like
simulator, in-circuit emulator (ICE), an oscilloscope, and a good logic analyzer. You
set up break points, and trace the microcontroller instructions cycle by cycle. It is
very difficult when the application program is large and complicated, especially when
you can only observe the microcontroller from the outside.

The Code Composer Studio streamlines the programming process. You write your
code in its edit perspective. You press the compile button to compile the assembley
code. Then, you cross your fingers and press the load/run button. If it works, great

 7

for you. If it does not work, you can get lots of help in the debugger perspective.
You can set up break points, You can single step through the code. You can watch
memory, registers and IO devices. Debugging is not an easy job, even with Code
Composer Studio.

FORTH provides you the proper tools. You embed the debugging tools inside the
microcontroller in the form of an interactive FORTH operating system. Source code
in the form of many small commands is compiled by the target microcontroller in the
embedded system. You can control the microcontroller from within, and observe its
behavior from inside out. Break points are not necessary, because FORTH
commands naturally break at their ends, and you can query their results interactively.
New commands are compiled, tested, and debugged incrementally. The solution
space can be explored quickly, and almost exhaustively. Reliable system can thus be
built quickly. FORTH commands are lists of nested lists, and are very compact.
Substantial applications can be stored in very small memory area.

 8

Chapter 2. 430eForth for MSP430

2.1 Introduction

For a very long time, firmware engineering meant to program a UV Erasable PROM
chip and to insert it on a board which contained a microcontroller, some RAM
memory chips, and some I/O chips, and a socket for the UV EPROM. Then flash
memory chips replace UV EPROM's. And then everything is integrated into a single
microcontroller chip, and we now have ISP, In System Programming, which allows
you to program the microcontroller in its own socket. LaunchPad Kit integrates an
MSP430G2553 microcontroller with all necessary hardware components on a small
printed circuit board, and captures the fancy of a new generation of will-be firmware
engineers and DIY hobbyists. After 20 years of implementing eForth on many
different microcontrollers, I am certainly of the opinion that eForth is the FORTH best
suited for microcontroller.

The original eForth was implemented in Direct Thread Model by myself and Bill
Muench. Dr. Richard Haskell implemented the first Subroutine Thread Model in
86se4th.asm for 8086 and 68000. I took the original eforth86.asm file and modified
it so it could be assembled by the MSP430 assembler in Code Composer Studio 5.2
development system from TI. I call it 430eForth because it is configured specifically
for MSP430G2553, used on LaunchPad Kit.

The most important features of 430eForth are the following:

1. Subroutine Thread Model.
2. Using byte addresses to access flash and RAM memory.
3. All assembly code are in a single 430eForth.asm file.
4. New FORTH code are written directly to flash memory.
5. No interrupts and no multitasking.
6. Information flash memory Segment D is used to initialize variables.
7. Ease in building turnkey applications

These features make 430eForth a very simple, easy to use, easy to understand and
easy to modify. That why FORTH is prefixed with an "e".

2.2 Installing Tools

Here are the steps you can follow to get everything running.

Get an LaunchPad Kit board from DigiKey for about $4.30.

Download the Code Composer Studio 5.2 from TI web site:
http://www.ti.com

Install Code Composer Studio 5.2. Do not connect the USB cable until the software
installation is complete.

To check on these USB drivers, plug in the cable and go to
Start\Control-Panel\System\Hardware\Device-Manager. Under Ports (Com & LPT),

 9

you will see MSP430 Application UART(COM X). Remember the COM port
number X for use with HyperTerminal or RealTerm.

2.3 Assembling 430eForth

You have to be thoroughly familiar with Code Composer Studio 5.2 in order to get it
assembling 430eForth and get the LaunchPad to work. Follow the two CCS
documents Slau157 (Code Composer Studio v5.1 User’s Guide for MSP430) and
Spru509 (Code Composer Studio Development Tools v3.3 Getting Started Guide). I
will not repeat the steps that you must go through to get CCS up. I will only
highlight the steps that are essential to get the 430eForth system assembled and
running.

Code Composer Studio presents its window in "Perspectives". A perspective is a
collection of panels showing relevant information about the project at certain stage of
program development. The first perspective is the "Edit Perspective", which
contains a Project Navigation Panel to the left, and text editing panel to the upper
right, and Console Panel at lower left, and a Problem Panel at lower right. This is
where you enter source code, do your editing, and assemble your code.

In the CCS window, select Project>New CCS Project. In the New CCS Project
window, enter a project name, like 430eforth, in the Project Name box. A default
path is shown in the Location panel. You can change this path by clicking the box to
the right of Location panel, and then navigate to the folder you want.

Select MSP430G2553 as the Device.

In the Advanced Setting Options, change Output Format from ELF to COEF. This is
very important. If the assembler sends out an ELF file, the linker will not recognize
it and produces a fatal error. No .out file will be produced and you will be stuck in a
deep hole. At this point the New CCS Project window looks like the following:

 10

In the Project Template Options and Examples panel, select Empty Projects>Empty
Assembly-Only Project option and the New CCS Project window looks like this:

 11

.

Click Finish button and the Studio 5.2 Window shows you the new project. You are
ready to go to work.

In the workspace folder CCS built for you, you will file the new project 430eForth as
a new folder. Copy 430eForth.asm into this folder, and open this file in the Edit
perspective. The CCS window appears like the following:

 12

Pull down the Project Menu and select the Build All option. CCS starts assembling
430eforth.asm, and displays lots of messages in the Console panel at the bottom of the
Edit panel. Its final message is: "Build Fiinshed”. Scroll up the Console panel, and
you will see the most important message:
'Finished building target: 430eForth.out'

Assembling is successful. However, above it are 13 warnings. In the Problems
panel to the right, it also shows the results: “0 error, 13 warnings, 0 others”. The
linker does not find many of the interrupt vectors and is not happy. Ignore the
warnings. If you are curious, you can Google the text “warning# 10374-D”, and find
out its meaning. It there are error messages, you will have to correct the mistakes
until the linker produces and .out file.

Pull down Run menu and select Debug option. You are now presented with a Debug
Perspective, where you can test, debug and run 430eForth. In the following figure I
show you my favorite perspective panels. The Debug panel is at upper left. The
Registers/Breakpoints panel is at upper right. The Edit panel is at lower left. The
Memory/Disassembly is at lower right.

 13

In the Debug panel, the tool bar contains 12 buttons, since I cannot draw the graphs, I
just list the buttons and show you what they do:

1. Remove all terminated launches
2. Resume
3. Suspend
4. Terminate
5. Step Into
6. Step Over
7. Assembly Step Into
8. Assembly Step Over
9. Step Return
10. Reset
11. Restart
12. Refresh

I mostly use Resume to start running, Suspend to stop running, and Terminate to stop
debugging and return to the Edit Perspective.

When debugging, I use Assembly Step Into and Assembly Step Over. In the
Registers panel, I always display registers R0 to R6, as R4 is TOS(Top of parameter
stack) and R5 is the parameter stack pointer. In the Memory panel, I generally
display RAM memory from 200H to 3FFH. The return stack is from 3F8H down,
and the parameter stack is from 378H down. Watching the parameter stack generally

 14

allows me to find problems and ways to correct them.

OK. In the Edit panel, the line of code after MAIN is highlighted, showing the
instruction about to be executed. You can push the Step Into or Step Over buttons to
step through the code. As 430eForth is fairly well debugged, you can push the
Resume button to run it.

2.4 The Terminal Interface

I forgot to mention that the LaunchPad Kit must be plugged in to the PC through the
USB cable, and that you will have to have HyperTerminal started. HyperTerminal is
bundled in Windows until Windows 7. If you are using Windows 8, Google it and
find how to install it.

On the HyperTerminal console pull down the Call menu and select Disconnect option.
Then, pull down the File menu and select Properties option. In the Connect Using
dialog box, select the COM port you saw earlier in the USB device assignment.

On my PC, the HyperTerminal in in Chinese, and I have not learnt how to turn it back
into English. You have to bear with me showing you the HyperTerminal windows in
Chinese. However, I hope you are familiar with HyperTerminal and know what I am
talking about.

Click the Configuration button and a COMx Properties window pops up. Select
2400 baud, 8 data bits, no parity, 1 stop bit, and no flow control. Then click OK
button to dismiss the COMx Properties window.

 15

In the main Properties window, click on the Settings tab and the click the ASCII Setup
button, and an ASCII Setup window pops up. Enter 900 in the Line Delay dialog
box to insert 900 msec delay after sending each line of text. Later you will
download source code files and you will need this end of line delay.

Click OK button to dismiss the ASCII Setup window. Click OK button in the main
Properties window and dismiss this window also.

When HyperTerminal is set up, and the Resume button is pushed in CCS Debugger ,
both the red LED and green LED on the LaunchPad Kit lit up. 430eForth enters into
a waiting loop for a “B” key. Not, hit the “B” key on your keyboard. Receiving a
“B” key, 430eForth determines the baud rate, set up the software UART and enters
into the text interpreter of FORTH. You will see the sign-on message generated by
430eForth:
 430eForth v1.0

 16

Now you can type in FORTH commands and 430eForth will execute them.

430eForth, like the original eForth Model, is case sensitive. Most of the FORTH
commands are in the upper case. So, you probably want to push Caps Lock key to
look the HyperTerminal in upper case mode.

Hitting Return key several times, and you should see ok messages are displayed on
the HyperTerminal console. You can now type in FORTH commands to interact
with 430eForth on LaunchPad Kit.

2.5 Testing 430eForth on LaunchPad Kit

To recapitulate, you have to install Code Composer Studio 5.2. You have to connect
your LaunchPad Kit board to a USB port on your PC. Assemble 430eForth.asm, and
download its 430eForth.out file to LaunchPad Kit. Open HyperTerminal on your
Windows and you get the sign-on message:
 430eForth v1.10

Type these FORTH commands to test the system:
 WORDS
 HEX
 200 DUMP
 C000 DUMP
 D700 DUMP

Note that 32eForth is in the hexadecimal base.

After bring up 430eForth, type WORDS and you will see a list of eForth commands on
the HyperTerminal console:

 17

HyperTerminal breaks up a word at the right margin of the window console. You
will have to read across lines to see whole words. There are about 200 FORTH
commands visible in 430eForth system.

These eForth commands are documented in the Appendix for your reference.

Make sure that HyperTerminal inserts a 900 ms delay after sending each line of text.
Then, you can download a text file by pulling down Transfer Menu and select Send
Text File option. From the file selection window, select a file and push the Open
button. Or, double clicking the selected file. Text from the selected file will be
sent to 430eForth, one line at a time, and you will see how 430eForth responds to
these lines.

2.6 Learning More about eForth

If you are new to the FORTH programming language, or has some prior knowledge
on a different FORTH system, you may want to look into a series of tutorials I
prepared for the earlier eForth systems. There are 17 lessons in that many text files.
Your are encourage to take these lessons and type in the commands. You can also
download these files in HyperTerminal, and then type in the final commands to test
loaded applications. These lessonXX.txt files are included in the distribution
package with 430eForth.asm.

The contents of these lesson files are listed in the following table:

Lesson Contents
1 Hello, World!
2. Big characters
3. Forth Interest Group
4. Repeated patterns

 18

5 The theory that Jack built
6 Help
7 Money exchange
8 Temperature conversion
9 Weather reporting
10 Multiplication table
11 Calendars
12 Sines and cosines
13 Square roots
14 Number conversion
15 ASCII character table
16 Random numbers
17 Guess a number

 19

Chapter 3. Features in 430eForth Implementation

3.1 Memory Map

There are 16 Kbytes of flash main memory, and 512 bytes of RAM in MSP430G2553.
In addition it has 256 bytes of flash information memory. These memories, CPU
registers, and IO device registers are arranged as show in the following table:

Start Address End Address Name and Function

0 0FFH Special Function Registers
10H 0FFH 8-Bit peripheral registers

100H 1FFH 16-Bit peripheral registers
200H 21FH RAM, system variables
220H -- RAM, free space

-- 378H RAM, parameter stack
380H -- RAM, Terminal Input Buffer

-- 3F8H RAM, return stack
3F9H 3FFH RAM, free space

1000H 103FH Segment D, flash information memory
1040H 107FH Segment C, flash information memory
1080H 10BFH Segment B, flash information memory
10C0H 10FFH Segment A, flash information memory

0C000H 0FFDFH Flash main memory
0FFE0H 0FFFFH Reset and interrupt vectors

Two pointers are used by eForth to manage the RAM and flash memories. CP points
to the top of the dictionary In the flash main memory. When new commands are
compiled, DP is increased to make room for new code and data. DP points to the top
of the free space in RAM. When new variables and arrays are defined, DP is
increase to allocate space in RAM.

Currently, the eForth system occupies flash memory from 0C00H to 0D788H.
About 10 Kbytes are available for you to add new FORTH commands.

Initial values of system variables are stored in Segment D of the flash information
memory. This segment can be erased independently from the flash main memory.
When you are satisfied with the application you have developed, erase Segment D and
copy the current values of variables into it. When MSP430G2553 chip is reset, or
when the LaunchPad is powered up, your application will run immediately. This is
how you build turnkey systems on the LaunchPad.

3.2 Flash Programming

MSP430G2553, with its flash memory, is very friendly to FORTH. When 430eForth
is downloaded from CCS to LaunchPad, the flash memory above the eForth
dictionary is all erased, and new commands and data can be written into the flash
memory with the eForth command I!.
From I!, a set for commands are defined to make it possible to compile new FORTH

 20

commands. These commands are shown in the following table:

Command Stack Effects Function
I! n a -- Write data n into flash memory at address a.
, n -- Compile data n to the top of dictionary. CP is

incremented by 2. It is the primitive FORTH compiler.
ERASE a -- Erase one page of flash memory. One page is 512

bytes for flash main memory, and 64 bytes for flash
information memory.

WRITE src dest n -- Copy n bytes from src to dest. Dest must be an
address to the flash memory.

When you compile new words, they are added to flash, but there is no easy way to
"forget" them. The flash must be erased in 512 byte pages, and it is difficult to
compile words in independently erasable pages. We do not have enough RAM
memory to store a page of code, erase this page in flash, make changes in RAM, and
write the new page back into flash memory.

This is the way to do code development:

1. Compile and test you code. Redefine the code repeatedly until flash is full.
2. Reload 430eForth, and flash is erased. Compile verified code first. Then go to

Step 1. Compile and test new code. And so forth.
3. When an application is done, load the application into a fresh 430eForth system.
4. Erase Information Flash Segment D by: HEX 1000 ERASE
5. Copy system variables back to Segment D by: 200 1000 20 WRITE

Now you have a turnkey application, which will boot up when 430 is reset or power-up.

3.3 Software UART

MSP430G2553 on the LaunchPad does not have an external clock. It runs on the
DCOCLK, internal digitally controlled oscillator, at 1.1 MHz. This clock is not
accurate enough to generate baud rate clocks for a UART. 430eForth therefore
includes a software UART which can lock to an external UART device by detecting a
“B” character from the external UART. When 430eForth boots up, if falls into a
waiting loop for the “B” character. With the “B” character, it calculates the baud rate
of the external UART and uses this baud rate to transmit and receive characters.

Although MSP430G2553 does have a hardware UART device, it uses two TX/RX
pins incompatible with the USB interface on the LaunchPad Kit. For compatibility
reasons, I keep the software UART. The limitation is that it runs well at 2400 baud.
It becomes unstable at higher baud rates.

3.4 Files

MSP430G2553 has only 512 bytes of RAM memory, and it is not enough to handle
files and other mass storage requirements. At present source files are sent to
430eForth for compiling through the serial terminal USB/COM port. To allow for
interpretation and compilation, a pause must be inserted at the end of each line of text

 21

sent to 430eForth. I set the end of line delay in HyperTerminal to 900 ms. It
probably could be half this value. Upon a compiling error an error message will be
shown, but execution continues as the next lines of text are still streaming out of the
serial port. You must manually watch for compilation errors. Generally, one error
will cause many other errors, and 430eForth would crash if it encounters serious
errors. When this happens, reload 430eForth from CCS.

3.5 Case Sensitivity

eForth is case sensitive, and must of its commands are in the upper case. It is
possible to make it case insensitive, like what I did in 328eForth for Auduino. Let’s
see if there is a demand.

3.6 What 430eForth Does Not Have

430eForth has no compiler security to check on the pairing of conditionals when
compiling structures. Having an extra THEN in a colon definition will almost
certainly crash the system. In this case, execution will show odd errors; and you
have to reload the 430eForth hex images. Do be careful when writing these
structures:
 IF…THEN
 IF…ELSE…THEN
 BEGIN…AGAIN
 BEGIN…UNTIL
 BEGIN…WHILE…REPEAT
 FOR…NEXT
 FOR…AFT…THEN…NEXT

Remember: Structures can be nested but cannot overlap.

430eForth does not support interrupts, multitasking, user variables, and local
variables.

All commands in the 430eForth dictionary are linked in a single vocabulary. No
multiple vocabularies.

430eForth does not have an assembler. If you have to code assembly routines, use
the MSP430 assembler in Code Composer Studio 5.2.

All these features can be added to 430eForth. But, it is better to keep it simple so
people can understand if fully. If you have specific needs for specific tasks, I am
sure you can somehow implement them or have people to help you.

MSP430G2553 is a small microcontroller. 430eForth is a seed we plant in it. You
can make it to grow into something useful for you.

 22

Chapter 4. 430eForth Source Code

MSP430G2553 is a very interesting microcontroller from TI Corp. It has a 16 bit
CPU with 16 registers, 16 KB of flash memory, 512 bytes of RAM memory, 256
bytes of flash information memory, and a host of I/O devices. It is produced in a 16
pin DIP package, with 14 I/O pins. It is ideally suitable for many embedded
applications. Being a 16-bit CPU, it is a very nice host for a FORTH Virtual
Machine.

In 430eForth system, we adopt the Subroutine Threading Model, in which command
tokens are represented by subroutine call instructions, and a compound command
consists of a list of subroutine call instructions. Nested token lists, as nested
subroutine lists, are executed naturally by MSP430G2553 CPU with very little
overhead in the nesting and un-nesting of subroutine calls and returns. It is also
possible to mix tokens with CPU machine instructions when optimizing FORTH
commands.

Using the Subroutine Threading Model, physically the compound commands has the
identical structure as the primitive commands, and both types of commands are
generally terminated by a ret machine instruction.

The CPU stack pointer register sp is used as the return stack pointer in the FORTH
Virtual Machine, and the register r5 is used as the parameter stack pointer. Both the
return stack and the parameter stack are located in the high end of the RAM memory
area. The top element of the parameter stack is cached in register r4, called tos, and
it significantly increases the speed in accessing the parameter stack.

Besides the stacks, the RAM memory area also contains 12 system variable, the
terminal input buffer, a word buffer to parse input strings, and a text buffer to build
numeric strings for output.

In the original eForth Model, only 30 primitive commands were defined to enhance its
portability to a wide range of microcontrollers. In the 430eForth implementation, to
make it run faster, many compound commands are re-written in MSP430 assembly
code.

In the following sections, I will present the 430eForth system in its complete source
listing. The source code is commented liberally. However, in-line comments are
only adequate to document the functions of the source code, but not sufficient for the
intentions behind the source code. To give myself enough room to discuss the
structures and the design requirements of all the commands, for one section of source
code, I add another section for comments. I hope this format will let me explain
more fully what the commands do and what was intended for them to do.

 23

;;; ;;;;;;

;;;;;;;;;;;;;;;;;

;

 .list

 .title "msp430 eForth 1.0"

 .cdecls C,LIST,"msp430g2553.h" ; Include device h eader

file

;

;;; ;;;;;;

;;;;;;;;;;;;;;;;;

; 7/7/2012 430eForth1.0, from eForth86.asm and 430u Forth

;

; 7/4/2012 Move 430uForth2.1 from IAR to CCS 5.2

; 430eForth2.2

;

; 4/21/2011 430uForth

; Build for and verified on MSP430G2 LaunchPad from TI

; Assembled with IAR Embedded Workbench IDE

; Only the following FORTH commands are visible to the user:

; + - ! @ C! C@ DUP DROP SWAP OVER AND OR XOR

; . CR TYPE EXECUTE EXIT RED GREEN OFF

; Numbers are unsigned 16-bit integers in hexadecim al only.

; A software UART is implemented. TXD on P1.1. RX D on P1.2.

; On power-up, press "B" or "b" to set baud rate.

; Set terminal baud rate to 2400 baud. Not stabl e at higher

rates.

; Do not disturb TXD and RXD, else the UART will not talk.

;

; Try:

; RED turn on red LED

; GREEN turn on green LED

; OFF turn off both LEDs

; 20 C@ read P1 inputs. Press S2 switch to s ee the

effects.

;

;;; ;;;;;;

;;;;;;;;;;;;;;;;;

;

 24

; Subroutine Thread Model of eForth

; Only the interpreterr is implemented due to memor y

limitation.

; Return stack pointer is SP, TOS is R4, and data s tack pointer

is R5.

; Variables TEMP, CONTEXT, #TIB, >IN and DP are in CPU registers

; R14 and R15 are used by the software UART, for ba ud rate

control.

; It works on MSP430G2231, but may work on other 43 0 chips.

; The only peripheral used in P1 GPIO port.

;

;;; ;;;;;;

;;;;;;;;;;;;;;;;;

;

; Inspired by the tinyForth by Luke Chang in Taiwan FIG Chapter

;

;;; ;;;;;;

;;;;;;;;;;;;;;;;;

4.1 FORTH Virtual Machine on MSP430G2553

msp430g2553.h contains all the register names and names of bits in these registers.

It is included here first so that we can refer to the registers and bits with mnemonic

names.

In the original eForth Model, a small group of FORTH commands were identified as

kernel commands, low level commands, or primitive commands. These commands

were coded in machine instructions of the host microprocessor. They allow the

underlying microcontroller to become a FORTH Virtual Machine. All other

commands were written as lists of commands, and are called high level commands or

compound commands. Compound commands are lists of primitive commands and

other compound commands. This division of commands was very useful in porting

eForth to many different microprocessors, because only primitive commands needed

to be rewritten when moving eForth to a new microprocessor.

In 430eForth, we retained this division. However, we use the Subroutine Threading

Model and optimize many compound commands so that the system executes at the

highest speed and occupies the least memory space. All commands that can be

optimized are re-coded in assembly.

 25

The CPU registers are assigned various functions required in a FORTH Virtual
Machine (FVM) as follows:

Register FVM Name Function
R0(PC) Program counter
R1(SP) Return stack pointer
R2(SR) Status register
R3 Constant generator
R4 tos Top of parameter stack
R5 stack Parameter stack pointer
R6 temp0 Scratch pad
R7 temp1 Scratch pad
R8 temp2 Scratch pad
R9 temp3 Scratch pad
R10 Not used
R11 Not used
R12 Not used
R13 Not used
R14 r14 UART delay counter
R15 r15 UART delay

;; CPU registers
tos .equ R4

stack .equ R5

temp0 .equ R6

temp1 .equ R7

temp2 .equ R8

temp3 .equ R9

;; R14-15 used by software UART

Assembly Macros

LOADTOS Pop the external parameter stack and copy the popped item into tos

register. It is used to implement DROP commands, and many

other commands consuming the top two items on the parameter

stack. It uses stack register in post-increment addressing mode

SAVETOS Push the top item on the parameter stack, which is cached in tos

register, on the external parameter stack. It is used to implement

DUP command, and commands which pushes new data on the

parameter stack. It uses stack register in the pre-decrement

addressing mode.

 26

loadtos .macro

 mov.w @stack+,tos

 .endm

savetos .macro

 decd.w stack

 mov.w tos,0(stack)

 .endm;; Constants

Constants Used by Assembler

Constant Value Function

COMPO $40 Lexicon compile-only bit

IMEDD $80 Lexicon immediate bit

CELLL 2 Size of a cell in bytes

BASEE 10 Default radix for number conversion

BKSPP 8 Back space ASCII character

LF 10 Line feed ASCII character

CRR 13 Carriage return ASCII character

CALLL $12B0 Machine code of call instruction

UPP $200 Start of user area

DPP $220 Start of free RAM space

SPP $378 Top of parameter stack (SP0)

TIBB $380 Terminal input buffer (TIB)

RPP $3F8 Top of return stack (RP0)

CODEE $C000 Start of FORTH dictionary

COLDD $FFFE Reset vector

EM $FFFF Top of flash main memory

Flash memory allocation of 430eForth in bytes:

Address Contents

$1000 Information flash memory, Segment D

$C000 Start of FORTH dictionary

$FFFE End of FORTH dictionary

$FFFF End of flash memory

RAM memory allocation of 430eForth in bytes:

 27

Address Contents

$0 Special function and I/O registers

$200 System variables

$220 Free RAM space

$270 Initial PAD for number conversions

$378 Top of parameter stack

$380 Terminal input buffer

$3F8 Top of return stack

COMPO .equ 040H ;lexicon compile only bit

IMEDD .equ 080H ;lexicon immediate bit

MASKK .equ 07F1FH ;lexicon bit mask

CELLL .equ 2 ;size of a cell

BASEE .equ 10 ;default radix

VOCSS .equ 8 ;depth of vocabulary stack

BKSPP .equ 8 ;backspace

LF .equ 10 ;line feed

CRR .equ 13 ;carriage return

ERR .equ 27 ;error escape

TIC .equ 39 ;tick

CALLL .equ 012B0H ;NOP CALL opcodes

UPP .equ 200H

DPP .equ 220H

SPP .equ 378H ;data stack

TIBB .equ 380H ;terminal input buffer

RPP .equ 3F8H ;return stacl

CODEE .equ 0C000H ;code dictionary

COLDD .equ 0FFFEH ;cold start vector

EM .equ 0FFFFH ;top of memory

4.2 Startup Code

Flash memory location 0FFFEH is allocated for a reset vector. The reset vector

contains an address pointing to the reset routine main. When MSP430G2553 boots

up, it jumps to main and starts running. It first initializes the return stack pointer sp,

the parameter stack pointer stack, and the top of stack tos. It uses the default internal

 28

clock DCOCLK at about 1.1 MHz. The Sub Main Clock SMCLK is derived from

DCOCLK, divided by 2, and will be used by the flash memory controller to read and

write the flash memory.

It then executes the command IO!, and falls into a waiting loop, waiting the user to

type a “B” character on the keyboard. When it receives a “B” character, it

determines the UART baud rate for the software UART. It the jumps to the eForth

cold boot routine COLD, which starts the eForth text interpreter to execute commands

typed in by the user.

;;; ;;;;;;

;;;;;;;;;;;;;;;;;

;; Main entry points and COLD start data

 .text

main:

init:

 nop ; main program

 mov #RPP,SP ; set up stack

 clr tos

 mov #SPP,stack

 mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop watchdog ti mer

 mov #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2

 bis.b #043h,&P1DIR ; P1.0 output

; call #DIAGNOSE

 call #STOIO

;setup2

; call #KEY

; call #EMIT

; jmp setup2

 br #COLD

4.3 Device Dependent I/O

MSP430G2553 on the LaunchPad does not have an external clock. It runs on the
DCOCLK. This clock is not accurate enough to generate baud rate clocks for a
UART. 430eForth therefore includes a software UART which can lock to an
external UART device by detecting a “B” character from the external UART. When
430eForth boots up, if falls into a waiting loop for the “B” character. With the “B”
character, it calculates the baud rate of the external UART and uses this baud rate to

 29

transmit and receive characters.

The software UART uses P1.1 pin to transmit and P1.2 pin to receive.

KEY Wait until a character is received from the RX line of UART. The ASCII
code of the received character is returned on stack.

EMIT Transmit a character to TX line of UART.

!IO Initialize software UART. Wait for “B” character received from RX line.

Determine the baud rate of UART.

Delay Delay 1 bit time for UART transmitter and receiver. A loop count is

stored in R15 register, as determined by !IO. This count is copied from

R15 to R14, and R14 is decremented to 0. At 2400 baud, the loop count

is 61 when the master clock DCOCLK is running at 1.1 MHz.

;; Device dependent I/O

; KEY (-- c)

; Return input character.

 .word 0

 .byte 3,"KEY"

KEY

 savetos

 clr tos ;receiver buffer

key1

 bit.b #4,&P1IN ;wait for start bit

 jnz key1

; bis.b #1,&P1OUT ;turn on red LED

 mov r15,r14

 rra r14

 call #delay1 ;delay half bit time

 mov #8,temp0

key2 call #delay ;

 bit.b #4,&P1IN

 rrc.b tos

key3 dec temp0

 jnz key2

 call #delay ;stop bit

; bic.b #1,&P1OUT ;turn off red LED

 ret

 30

delay mov r15,r14

delay1

 bit.b #4,&P1IN

 dec r14

 jnz delay1

 ret

; EMIT (c --)
; Send character c to the output device.

 .word KEY-4

 .byte 4,"EMIT",0

EMIT

; bis.b #40h,&P1OUT ;turn on green LED

 bic.b #2,&P1OUT

 mov #8,temp0 ;send 8 data bits

emit1 call #delay ;start bit

 rrc.b tos ;shift LSB to carry

 jc emit2

 bic.b #2,&P1OUT

 jmp emit3

emit2

 bis.b #2,&P1OUT

emit3 dec temp0

 jnz emit1

 call #delay ;last bit

 bis.b #2,&P1OUT ;idle TXD

 call #delay ;stop bit

; bic.b #40h,&P1OUT ;turn off green LED

 loadtos

 ret

; !IO (--)

; Initialize the serial I/O devices.

 .word EMIT-6

 .byte 3,"!IO"

STOIO

 clr r15 ;wait for a "B" character from receive r

 bis.b #043h,&P1OUT ;idle, TXD, turn on bot h LED"s

iosto1

 31

 bit.b #4,&P1IN ;wait for start bit

 jnz iosto1

 bic.b #041h,&P1OUT ;idle TXD, turn off bot h LED"s

iosto2 inc r15

 bit.b #4,&P1IN ;wait for a "B"

 jz iosto2 ;R15 has count for 2 bi ttime

 rra r15 ;1 bittime

 bic.b #041H,&P1OUT ;turn off LED"s

 ret

4.4 Kernel

doLIT Start a literal structures in compound commands. It allows numbers to
be pushed on the parameter stack when the compound command is
executed.

next Terminate an indexed loop structures in compound command. A loop
starts when the loop index is pushed on the return stack. When next is
executed, it decrements this loop index on the return stack. If resulting
index is not negative, jump back to repeat the loop. If the resulting
index is negative, pop the return stack to discard the index, and exit the
loop.

The literal structure and the indexed loop structure are show in the following figure:

 32

;; The kernel

; doLIT (-- w)

; Push an inline literal.

 .word STOIO-4

 .byte COMPO+5,"doLIT"

DOLIT

 savetos

 pop temp0

 mov @temp0+,tos

 br temp0

; EXIT (--)

; Terminate a colon definition.

 .word DOLIT-6

 .byte 4,"EXIT"

EXIT

 pop temp0

 ret

 33

; EXECUTE (ca --)

; Execute the word at ca.

 .word EXIT-6

 .byte 7,"EXECUTE"

EXECU

 mov tos,temp0

 loadtos

 br temp0

; next (--)

; Run time code for the single index loop.

; : next (--) \ hilevel model

; r> r> dup if 1 - >r @ >r exit then drop cell+ > r ;

 .word EXECU-8

 .byte COMPO+4,"next",0

DONXT

 pop temp0

 dec 0(SP) ;decrement index

 jge NEXT1

 pop temp1 ;discard index

 incd temp0

 br temp0

NEXT1:

 br @temp0

Flow Control

?branch and branch commands are used to build control structures and loop

structures in compound commands. In the following figure, an IF-ELSE-THEN

branch structure and a BEGIN-WHILE-REPEAT loop structure are illustrated:

 34

?branch Build a conditional branch in compound commands.

branch Build an unconditional branch in compound commands.

EXECUTE Jump to an execution address on the top of the parameter stack. As

the execution address is a byte address, it must be converted to a cell

address for jumping. The cell address is pushed on the return stack

and a RET instruction is executed to cause the jump.

EXIT Terminate a compound command. Since it is executed as a call

EXIT command, the return address must be popped off the return

stack and then a ret instruction is executed. It is retained for

compatibility. The call EXIT command can be simply replaced by a

ret machine instruction.

; ?branch (f --)

; Branch if flag is zero.

 .word DONXT-6

 .byte COMPO+7,"?branch"

QBRAN

 pop temp0

 bit #0xFFFF,tos

 35

 loadtos

 jz BRAN1

 incd temp0

 br temp0

; branch (--)

; Branch to an inline address.

 .word QBRAN-8

 .byte COMPO+6,"branch",0

BRAN

 pop temp0

BRAN1:

 br @temp0

RAM Memory Access

MSP430G2553 has separated RAM memory and flash memory. The same set of
memory read commands can be used to read either RAM or flash memory.
However, a different set of commands is necessary to write to flash memory. The
flash memory writing commands will be discussed later in the compiler section.

@ Read a 16-bit data stored in the address on top of the parameter stack.
The address is a byte address pointing to a location in RAM memory.

! Store the 16-bit data as the second item on parameter stack into the
address on top of the parameter stack.

C@ Read an 8-bit data stored in the address on top of the parameter stack.
C! Store an 8-bit data as the second item on parameter stack into the address

on top of the parameter stack.

These 4 memory commands access data stored in RAM memory. Since in
MSP430G2553, the I/O registers are mapped to the RAM memory space from 0 to
$1FF, we can control MSP430G2553 interactively using these commands. This is
the greatest advantage 430eForth has over the C/C++ programming environment
which is a Compile-Load-Test no-interactive system.

To write flash memory, we have the I!, ERASE , and WRITE commands. They
are discussed in a later section.

; ! (w a --)

; Pop the data stack to memory.

 .word BRAN-8

 .byte 1,"!"

STORE

 36

 mov.w @stack+,0(tos)

 mov.w @stack+,tos

 ret

; @ (a -- w)

; Push memory location to the data stack.

 .word STORE-2

 .byte 1,"@"

AT

 mov.w @tos,tos

 ret

; C! (c b --)

; Pop the data stack to byte memory.

 .word AT-2

 .byte 2,"C!",0

CSTOR

 mov.b @stack+,0(tos)

 inc stack

 mov.w @stack+,tos

 ret

; C@ (b -- c)
; Push byte memory location to the data stack.

 .word CSTOR-4

 .byte 2,"C@",0

CAT

 mov.b @tos,tos

 ret

Return Stack

430eForth system uses the return stack for two specific purposes: to save addresses
while recursing through a token list, and to store the loop index for a FOR-NEXT
loop.

Return stack is used by the FORTH Virtual Machine to save return addresses to be
processed later. It is also a convenient place to store data temporarily. The return
stack can thus be considered as an extension of the parameter stack. However, one
must be very careful in using the return stack for temporary storage. The data
pushed on the return stack must be popped off before ret is executed. Otherwise, ret

 37

will get the wrong address to return to, and the system generally will crash. Since
>R and R> are very dangerous to use, they are designed as compile-only commands
and you can only use them in the compiling mode.

In setting up a loop, FOR compiles >R, which pushes the loop index from the
parameter stack to the return stack. Inside the FOR-NEXT loop, the running index
can be recalled by R@. NEXT compiles call next with an address after FOR. When
next is executed, it decrements the loop index on the top of the return stack. If the
index becomes negative, the loop is terminated; otherwise, next jumps back to the
command after FOR.

>R Pop a number off the parameter stack and pushes it on the return stack.
R> Pop a number off the return stack and pushes it on the parameter stack.
R@ Copy the top item on the return stack and pushes it on the parameter stack

without disturbing the return stack
SP@ Push the current parameter stack pointer on top of parameter stack. It is

used to determine the depth of parameter stack.

; R> (-- w)

; Pop the return stack to the data stack.

 .word CAT-4

 .byte 2,"R",3EH,0

RFROM

 savetos

 pop temp0

 pop tos

 br temp0

; R@ (-- w)

; Copy top of return stack to the data stack.

 .word RFROM-4

 .byte 2,"R@",0

RAT

 savetos

 pop temp0

 pop tos

 push tos

 br temp0

; >R (w --)

; Push the data stack to the return stack.

 .word RAT-4

 38

 .byte COMPO+2,">R",0

TOR

 pop temp0

 push tos

 loadtos

 br temp0

; SP@ (-- a)

; Push the current data stack pointer.

 .word TOR-4

 .byte 3,"SP@"

SPAT:

 mov.w stack,temp0

 savetos

 mov.w temp0,tos

 ret

Parameter Stack

 The parameter stack is the central location where all numerical data are processed,
and where parameters are passed from one command to another. The stack items
have to be arranged properly so that they can be retrieved in the Last-In-First-Out
(LIFO) manner. When stack items are out of order, they can be rearranged by the
stack words DUP, SWAP, OVER and DROP. There are other stack words useful in
manipulating stack items, but these four are considered to be the minimum set.

DROP Pop the parameter stack discards the top item on it.
DUP Duplicate the top item and pushes it on the parameter stack.
SWAP Exchange the two two item on the parameter stack.
OVER Duplicates the second item and pushes it on the parameter stack.

; DROP (w --)

; Discard top stack item.

 .word SPAT-4

 .byte 4,"DROP",0

DROP

 loadtos

 ret

; DUP (w -- w w)

 39

; Duplicate the top stack item.

 .word DROP-6

 .byte 3,"DUP"

DUPP

 savetos

 ret

; SWAP (w1 w2 -- w2 w1)

; Exchange top two stack items.

 .word DUPP-4

 .byte 4,"SWAP",0

SWAP

 mov.w tos,temp0

 mov.w @stack,tos

 mov.w temp0,0(stack)

 ret

; OVER (w1 w2 -- w1 w2 w1)

; Copy second stack item to top.

 .word SWAP-6

 .byte 4,"OVER",0

OVER

 mov.w @stack,temp0

 savetos

 mov.w temp0,tos

 ret

Logic

The only primitive command which cares about logic is ?branch . It tests the top
item on the stack. If it is zero, ?branch will branch to the following address. If it
is not zero, ?branch will ignore the address and execute the command after the
branch address. Thus we distinguish two logic values, zero for false and non-zero
for true. Numbers used this way are called logic flags which can be either true or
false. Logic flags thus cause conditional branching in control structures.

0< Examine the top item on the parameter stack for its negativeness. If it is
negative, 0< will return a -1 for true. If it is 0 or positive, 0< will return a
0 for false.

AND Remove top two items on the parameter stack and pushes their bitwise
logic AND results on the parameter stack.

 40

OR Remove top two items on the parameter stack and pushes their bitwise
logic OR results on the parameter stack.

XOR Remove top two items on the parameter stack and pushes their bitwise
logic exclusive OR results on the parameter stack.

UM+ Add top two unsigned number on the data stack and replaces them with the
unsigned sum of these two numbers and a carry on top of the sum.
FORTH does not have access to the carry flag in MSP430G2553 CPU, and
UM+ preserves the carry flag to be used in double integer arithmetic
operations. In 430eForth, most arithmetic commands are coded in
assembly and UM+ is not used often.

; 0< (n -- t)

; Return true if n is negative.

 .word SWAP-6

 .byte 2,"0",3CH,0

ZLESS

 tst tos

 mov #0xFFFF,tos

 jn ZLESS1

 clr tos

ZLESS1:

 ret

; AND (w w -- w)

; Bitwise AND.

 .word ZLESS-4

 .byte 3,"AND"

ANDD

 and @stack+,tos

 ret

; OR (w w -- w)

; Bitwise inclusive OR.

 .word ANDD-4

 .byte 2,"OR",0

ORR

 bis @stack+,tos

 ret

; XOR (w w -- w)

; Bitwise exclusive OR.

 41

 .word ORR-4

 .byte 3,"XOR"

XORR

 xor @stack+,tos

 ret

; UM+ (w w -- w cy)

; Add two numbers, return the sum and carry flag.

 .word XORR-4

 .byte 3,"UM+"

UPLUS

 clr temp0

 add @stack,tos

 rlc temp0

 mov tos,0(stack)

 mov temp0,tos

 ret

4.5 System Variables

In 430eForth, all variables used by the system are merged together and are called
system variables. They are allocated in a RAM memory array starting from location
$200. They are all initialized by copying a table of initial values stored in flash
information memory, Segment D, starting from location $1000.

When you finish a application, copy these variables back to Segment D, and the
application, hopefully, will boot up on reset.

Variable Address Function
'BOOT 200H Execution vector to start application command.
BASE 202H Radix base for numeric conversion.
tmp 204H Scratch pad.
HLD 206H Pointer to a buffer holding next digit for numeric

conversion.
>IN 208H Input buffer character pointer used by text

interpreter.
#TIB 20AH Number of characters in input buffer.
'TIB 20CH Address of Terminal Input Buffer.
'EVAL 20EH Execution vector switching between $INTERPRET

and $COMPILE.
CONTEXT 210H Vocabulary array pointing to last name fields of

dictionary.
CP 212H Pointer to top of dictionary, the first available flash

memory location to compile new command

 42

DP 214H Pointer to the first available RAM memory
location.

LAST 216H Pointer to name field of last command in
dictionary.

;; System and user variables

; BASE (-- a)

; Storage of the radix base for numeric I/O.

 .word UPLUS-4

 .byte 4,"BASE",0

BASE

 savetos

 mov #202H,tos

 ret

; tmp (-- a)

; A temporary storage location used in parse and fi nd.

 .word BASE-6

 .byte COMPO+3,"tmp"

TEMP

 savetos

 mov #204H,tos

 ret

; #TIB (-- a)

; Hold the character pointer while parsing input st ream.

 .word TEMP-4

 .byte 4,"#TIB",0

NTIB

 savetos

 mov #206H,tos

 ret

; >IN (-- a)

; Hold the character pointer while parsing input st ream.

 .word NTIB-6

 .byte 3,">IN"

INN

 43

 savetos

 mov #208H,tos

 ret

; HLD (-- a)

; Hold a pointer in building a numeric output strin g.

 .word INN-4

 .byte 3,"HLD"

HLD

 savetos

 mov #20AH,tos

 ret

; 'EVAL (-- a)

; A area to specify vocabulary search order.

 .word HLD-4

 .byte 7,"'EVAL"

TEVAL

 savetos

 mov #20CH,tos

 ret

; CONTEXT (-- a)

; A area to specify vocabulary search order.

 .word TEVAL-6

 .byte 7,"CONTEXT"

CNTXT

 savetos

 mov #20EH,tos

 ret

; CP (-- a)

; Point to the top of the code dictionary.

 .word CNTXT-8

 .byte 2,"CP",0

CP

 savetos

 mov #210H,tos

 44

 ret

; DP (-- a)

; Point to the bottom of the free ram area.

 .word CP-4

 .byte 2,"DP",0

DP

 savetos

 mov #212H,tos

 ret

; LAST (-- a)

; Point to the last name in the name dictionary.

 .word DP-4

 .byte 4,"LAST",0

LAST

 savetos

 mov #214H,tos

 ret

4.6 Common Functions

Arithmetic

This group of FORTH commands are commonly used in writing FORTH applications.

?DUP Duplicate the top item on the parameter stack if it is non-zero.
ROT Rotate the top three items on the parameter stack. The third item is

pulled out to the top. The second item is pushed down to the third
item, and the top item is pushed down to be the second item. ROT is
unique in that it accesses the third item on the parameter stack. All
other stack commands can only access one or two stack items. In
FORTH programming, it is generally accepted that one should not try to
access stack items deeper than the third item. When you have to
access deeper into the data stack, it is a good time to re-evaluate your
algorithm. Most often, you can avoid this situation by factoring your
code into smaller parts which do not reach so deep into the parameter
stack.

2DROP Discard the top two items on the parameter stack.
2DUP Duplicate the top two items on the parameter stack.
+ Add the top item on the parameter to the second item, and then pops the

top item off the parameter stack. It is recoded in assembly for speed.

 45

INVERT Invert each individual bit in the top item on the parameter stack. It is
often called 1's complement operation.

NEGATE Negate the top item on the parameter stack. It is often called 2's
complement operation.

DNEGATE Negate the top two items on the parameter stack, as a 32-bit double
integer.

- Subtract the top item on the parameter stack from the second item, and
then pops the top item off the parameter stack.

ABS Replace the top item on the parameter stack with its absolute value.

;; Common functions

; ?DUP (w -- w w | 0)

; Dup tos if its is not zero.

 .word LAST-6

 .byte 4,"?DUP",0

QDUP

 tst tos

 jnz DUPP

 ret

; ROT (w1 w2 w3 -- w2 w3 w1)

; Rot 3rd item to top.

 .word QDUP-6

 .byte 3,"ROT"

ROT

 call #TOR

 call #SWAP

 call #RFROM

 call #SWAP

 ret

; 2DROP (w w --)

; Discard two items on stack.

 .word ROT-4

 .byte 5,"2DROP"

DDROP

 call #DROP

 CALL #DROP

 ret

 46

; 2DUP (w1 w2 -- w1 w2 w1 w2)

; Duplicate top two items.

 .word DDROP-6

 .byte 4,"2DUP",0

DDUP

 call #OVER

 call #OVER

 ret

; + (w w -- sum)

; Add top two items.

 .word DDUP-6

 .byte 1,"+"

PLUS

 add @stack+,tos

 ret

; D+ (d d -- d)

; Double addition, as an example using UM+.

;

 .word PLUS-2

 .byte 2,"D+",0

DPLUS

; call #TOR

 call #SWAP

 call #TOR

 call #UPLUS

; call #RFROM

 call #RFROM

 call #PLUS

 call #PLUS

 ret

; NOT (w -- w)

; One's complement of tos.

 .word DPLUS-4

 .byte 3,"NOT"

 47

INVER

 inv tos

 ret

; 2/ (w -- w)

; Divide by 2.

 .word INVER-4

 .byte 2,"2/",0

TWOSL

 rra tos

 ret

; NEGATE (n -- -n)

; Two's complement of tos.

 .word INVER-4

 .byte 6,"NEGATE",0

NEGAT

 inv tos

 inc tos

 ret

; DNEGATE (d -- -d)

; Two's complement of top double.

 .word NEGAT-8

 .byte 7,"DNEGATE"

DNEGA

 call #INVER

 call #TOR

 call #INVER

 call #DOLIT

 .word 1

 call #UPLUS

 call #RFROM

 call #PLUS

 ret

; - (n1 n2 -- n1-n2)

 48

; Subtraction.

 .word DNEGA-8

 .byte 1,"-"

SUBB

 sub @stack+,tos

 inv tos

 inc tos

 ret

; ABS (n -- n)

; Return the absolute value of n.

 .word SUBB-2

 .byte 3,"ABS"

ABSS

 call #DUPP

 call #ZLESS

 call #QBRAN

 .word ABS1

 call #NEGAT

ABS1: ret

Comparison

 The primitive comparison commands in 430eForth are ?branch and 0<.
However, ?branch is at such a low level that it is not used in compound
commands. ?branch is secretly compiled into compound commands by IF as an
address literal. For all intentions and purposes, we can consider IF the equivalent
of ?branch. When IF is encountered, the top item on the parameter stack is
considered a logic flag. If it is true (non-zero), the execution continues until ELSE,
then jump to THEN, or to THEN directly if there is no ELSE clause.

 The following logic words are constructed using the IF...ELSE...THEN structure
with 0< and XOR. XOR is used as a "not equal" operator, because if the top two
items on the parameter stack are not equal, the XOR operator will return a non-zero
number, which is considered to be true.

 = Compare top two items on the parameter stack. If they are equal, replace
these two items with a true flag; otherwise, replace them with a false flag.

U< Compare two unsigned numbers on the top of the parameter stack. If the
top item is less than the second item in unsigned comparison, replace these
two items with a true flag; otherwise, replace them with a false flag. This
command is very important, especially in comparing addresses, as we
assume that the addresses are unsigned numbers pointing to unique
memory locations. The arithmetic comparison operator < cannot be used

 49

to determine whether one address is higher or lower than the other.
Using < for address comparison had been the single cause of many failures
in the annals of FORTH. We don not have this problem in
MSP430G2553 since it has only 32 KB of flash memory. However,
watch out when you move 430eForth to a bigger chip.

< Compare two signed numbers on the top of the parameter stack. If the
top item is less than the second item in signed comparison, replace these
two items with a true flag; otherwise, replace them with a false flag.

MAX Retain the larger of the top two items on the parameter stack. Both
numbers are assumed to be signed integers.

MIN Retain the smaller of the top two items on the parameter stack. Both
numbers are assumed to be signed integers.

WITHIN Check whether the third item on the parameter stack is within the range as
specified by the top two numbers on the parameter stack. The range is
inclusive as to the lower limit and exclusive to the upper limit. If the
third item is within range, a true flag is returned on the parameter stack,
replacing all three items. Otherwise, a false flag is returned. All
numbers are assumed to be signed integers.

; = (w w -- t)

; Return true if top two are equal.

 .word ABSS-4

 .byte 1,3DH

EQUAL

 call #XORR

 call #QBRAN

 .word EQU1

 call #DOLIT

 .word 0

 ret ;false flag

EQU1: call #DOLIT

 .word -1

 ret ;true flag

; U< (u u -- t)

; Unsigned compare of top two items.

 .word EQUAL-2

 .byte 2,"U",3CH,0

ULESS

 mov @stack+,temp0

 cmp tos,temp0

 subc tos,tos

 50

 ret

; < (n1 n2 -- t)

; Signed compare of top two items.

 .word ULESS-4

 .byte 1,3CH

LESS

 call #DDUP

 call #XORR

 call #ZLESS

 call #QBRAN

 .word LESS1

 call #DROP

 call #ZLESS

 ret

LESS1: call #SUBB

 call #ZLESS

 ret

; MAX (n n -- n)

; Return the greater of two top stack items.

 .word LESS-2

 .byte 3,"MAX"

MAX

 call #DDUP

 call #LESS

 call #QBRAN

 .word MAX1

 call #SWAP

MAX1: call #DROP

 ret

; MIN (n n -- n)

; Return the smaller of top two stack items.

 .word MAX-4

 .byte 3,"MIN"

MIN

 call #DDUP

 51

 call #SWAP

 call #LESS

 call #QBRAN

 .word MIN1

 call #SWAP

MIN1: call #DROP

 ret

; WITHIN (u ul uh -- t)

; Return true if u is within the range of ul and uh .

 .word MIN-4

 .byte 6,"WITHIN",0

WITHI

 call #OVER

 call #SUBB

 call #TOR ;ul <= u < uh

 call #SUBB

 call #RFROM

 call #ULESS

 ret

Divide

UM/MOD and UM* are the most complicated and comprehensive division and
multiplication commands. Once they are coded, all other division and multiplication
operators can be derived easily from them. It has been a tradition in FORTH
programming that one solves the most difficult problem first, and all other problems
are solved by themselves.

UM/MOD Divide an unsigned double integer by an unsigned single integer. It
returns the unsigned remainder and unsigned quotient on the parameter
stack. It is coded in assembly and the double integer dividend is stored
in 4 registers temp0 to temp3. Division is carried out similar to long
hand division.

M/MOD Divide a signed double integer by a signed single integer. It returns the
signed remainder and signed quotient on the parameter stack. The
signed division is floored towards negative infinity.

/MOD Divide a signed single integer by a signed integer. It replaces these two
items with the signed remainder and quotient.

MOD Divide a signed single integer by a signed integer. It replaces these two
items with the signed remainder only.

/ Divide a signed single integer by a signed integer. It replaces these two

 52

items with the signed quotient only.

;; Divide

; UM/MOD (udl udh u -- ur uq)

; Unsigned divide of a double by a single. Return m od and

quotient.

 .word WITHI-8

 .byte 6,"UM/MOD",0

UMMOD

 call #DDUP

 call #ULESS

 call #QBRAN

 .word UMM4

 call #NEGAT

 call #DOLIT

 .word 15

 call #TOR

UMM1:

 call #TOR

 call #DUPP

 call #UPLUS

 call #TOR

 call #TOR

 call #DUPP

 call #UPLUS

 call #RFROM

 call #PLUS

 call #DUPP

 call #RFROM

 call #RAT

 call #SWAP

 call #TOR

 call #UPLUS

 call #RFROM

 call #ORR

 call #QBRAN

 .word UMM2

 53

 call #TOR

 call #DROP

 add #1,tos

 call #RFROM

 call #BRAN

 .word UMM3

UMM2:

 call #DROP

UMM3:

 call #RFROM

 call #DONXT

 .word UMM1

 call #DROP

 call #SWAP

 ret

UMM4:

 call #DROP

 call #DDROP

 call #DOLIT

 .word -1

 call #DUPP

 ret ;overflow, return max

; M/MOD (d n -- r q)

; Signed floored divide of double by single. Return mod and

quotient.

 .word UMMOD-8

 .byte 5,"M/MOD"

MSMOD

 call #DUPP

 call #ZLESS

 call #DUPP

 call #TOR

 call #QBRAN

 .word MMOD1

 call #NEGAT

 call #TOR

 call #DNEGA

 54

 call #RFROM

MMOD1:

 call #TOR

 call #DUPP

 call #ZLESS

 call #QBRAN

 .word MMOD2

 call #RAT

 call #PLUS

MMOD2:

 call #RFROM

 call #UMMOD

 call #RFROM

 call #QBRAN

 .word MMOD3

 call #SWAP

 call #NEGAT

 call #SWAP

MMOD3: ret

; /MOD (n n -- r q)

; Signed divide. Return mod and quotient.

 .word MSMOD-6

 .byte 4,"/MOD",0

SLMOD

 call #OVER

 call #ZLESS

 call #SWAP

 call #MSMOD

 ret

; MOD (n n -- r)

; Signed divide. Return mod only.

 .word SLMOD-6

 .byte 3,"MOD"

MODD

 call #SLMOD

 call #DROP

 55

 ret

; / (n n -- q)

; Signed divide. Return quotient only.

 .word MODD-4

 .byte 1,"/"

SLASH

 call #SLMOD

 call #SWAP

 call #DROP

 ret

Multiply

UM* Multiply two unsigned single integers and returns the unsigned double
integer product on the parameter stack. UM* command takes advantage of
the multiply machine instructions in MSP430G2553 chip. The multiply
instructions in MSP430G2553 operate on 8 bit values, and the 16 bit
products have to be added properly to form a 32 bit double integer product.

* Multiply two signed single integers and returns the signed single integer
product on the parameter stack.

M* Multiply two signed single integers and returns the signed double integer
product on the parameter stack.

*/MOD Multiply the signed integers n1 and n2 , and then divides the double integer
product by n3 . It in fact is ratioing n1 by n2/n3 . It returns both the
remainder and the quotient.

*/ Multiply the signed integers n1 and n2 , and then divides the double integer
product by n3 . It returns only the quotient.

FORTH is very close to assembly languages in that it generally only handles integer
numbers. There are floating point extensions in many more sophisticated FORTH
systems, but they are more exceptions than rules. The reason why FORTH has
traditionally been an integer language is that integers are handled faster and more
efficiently in the computers, and most technical problems can be solved satisfactorily
only using integers. A 16-bit integer has the dynamic range of 110 dB which is far
more than enough for most engineering problems. The precision of a 16-bit integer
representation is limited to one part in 65535, which could be inadequate for small
numbers. However, the precision can be greatly improved by scaling; i.e., taking the
ratio of two integers. It was demonstrated that pi, or any other irrational numbers,
can be represented accurately to 1 part in 100,000,000 by a ratio of two 16-bit
integers.

 The scaling commands */MOD and */ are useful in scaling number n1 by the ratio
of n2/n3 . When n2 and n3 are properly chosen, the scaling commands can

 56

preserve precision similar to the floating point operations at a much higher speed.
Notice also that in these scaling operations, the intermediate product of n1 and n2 is
a double precision integer so that the precision of scaling is maintained.

;; Multiply

; UM* (u u -- ud)

; Unsigned multiply. Return double product.

 .word SLASH-2

 .byte 3,"UM*"

UMSTA

 call #DOLIT

 .word 0

 call #SWAP

 call #DOLIT

 .word 15

 call #TOR

UMST1: call #DUPP

 call #UPLUS

 call #TOR

 call #TOR

 call #DUPP

 call #UPLUS

 call #RFROM

 call #PLUS

 call #RFROM

 call #QBRAN

 .word UMST2

 call #TOR

 call #OVER

 call #UPLUS

 call #RFROM

 call #PLUS

UMST2: call #DONXT

 .word UMST1

 call #ROT

 jmp DROP

; * (n n -- n)

 57

; Signed multiply. Return single product.

 .word UMSTA-4

 .byte 1,"*"

STAR

 call #UMSTA

 jmp DROP

; M* (n n -- d)

; Signed multiply. Return double product.

 .word STAR-2

 .byte 2,"M*"

MSTAR

 call #DDUP

 call #XORR

 call #ZLESS

 call #TOR

 call #ABSS

 call #SWAP

 call #ABSS

 call #UMSTA

 call #RFROM

 call #QBRAN

 .word MSTA1

 call #DNEGA

MSTA1: ret

; */MOD (n1 n2 n3 -- r q)

; Multiply n1 and n2, then divide by n3. Return mod and

quotient.

 .word MSTAR-4

 .byte 5,"*/MOD"

SSMOD

 call #TOR

 call #MSTAR

 call #RFROM

 call #MSMOD

 ret

 58

; */ (n1 n2 n3 -- q)

; Multiply n1 by n2, then divide by n3. Return quot ient only.

 .word SSMOD-6

 .byte 2,"*/"

STASL

 call #SSMOD

 call #SWAP

 call #DROP

 ret

4.7 Miscellaneous

CELL+ Increment the top item on the parameter stack by 2.
CELL- Decrement the top item on the parameter stack by 2.
ALIGNED Modify the byte address on top of the parameter stack so that it points to

the next word boundary.
BL Push a blank or space character (ASCII 32) on parameter stack. BL is

often used in parsing out space delimited strings.
>CHAR Convert a non-printable character to a harmless underscore

character(ASCII 95). As 430eForth is designed to communicate with a
host computer through a serial I/O device, it is important that 430eForth
will not emit control characters to the host and thereby causes
unexpected behavior on the host computer. >CHAR thus filters the
characters before they are sent out by EMIT.

DEPTH Push the number of items currently on the parameter stack to the top of
the stack.

PICK Take a number n off the parameter stack and replaces it with the n'th
item on the parameter stack. The number n is 0-based; i.e., the top
item is number 0, the next item is number 1, etc. Therefore, 0 PICK is
equivalent to DUP, and 1 PICK is equivalent to OVER.

;; Miscellaneous

; CELL+ (a -- a)

; Add cell size in byte to address.

 .word STASL-4

 .byte 5,"CELL+"

CELLP

 add #2,tos

 ret

; CELL- (a -- a)

 59

; Subtract cell size in byte from address.

 .word CELLP-6

 .byte 5,"CELL-"

CELLM

 sub #2,tos

 ret

; CELLS (n -- n)

; Multiply tos by cell size in bytes.

 .word CELLM-6

 .byte 5,"CELLS"

CELLS

 rla tos

 ret

; ALIGNED (b -- a)

; Align address to the cell boundary.

 .word CELLS-6

 .byte 7,"ALIGNED"

ALGND

 add #1,tos

 bic #1,tos

 ret

; BL (-- 32)

; Return 32, the blank character.

 .word ALGND-8

 .byte 2,"BL",0

BLANK

 savetos

 mov #20H,tos

 ret

; >CHAR (c -- c)

; Filter non-printing characters.

 .word BLANK-4

 .byte 5,">CHAR"

TCHAR

 60

 call #DUPP ;mask msb

 call #BLANK

 call #DOLIT

 .word 127

 call #WITHI ;check for printable

 call #QBRAN

 .word TCHA1

 ret

TCHA1:

 call #DROP

 call #DOLIT

 .word "_" ;replace non-printables

 ret

; DEPTH (-- n)

; Return the depth of the data stack.

 .word TCHAR-6

 .byte 5,"DEPTH"

DEPTH

 call #SPAT

 call #DOLIT

 .word SPP

 call #SWAP

 call #SUBB

 jmp TWOSL

; PICK (... +n -- ... w)

; Copy the nth stack item to tos.

 .word DEPTH-6

 .byte 4,"PICK",0

PICK

; add #1,tos

 call #CELLS

 call #SPAT

 call #PLUS

 call #AT

 ret

 61

Memory Access

A memory array is generally specified by its starting address and its length in bytes.

In a count string, the first byte is a count byte, specifying the number of bytes in the
following string. String literals in compound commands and the name strings in the
headers of command records are all represented by count strings.

Following commands are useful in accessing memory arrays and strings.

 +! Add the second item on the parameter stack to the cell addressed by
the top item on the stack.

COUNT Fetch one byte from RAM memory pointed to by the address on the
top of the parameter stack. This address is incremented by 1, and the
byte just read is pushed on the stack. COUNT is designed to get the
count byte at the beginning of a counted string, and returns the
address of the first byte in the string and the length of this string.
However, it is often used in a loop to read consecutive bytes in a byte
array.

HERE Push the address of the first free location in the RAM memory.
FORTH text interpreter stores here a string parsed out of the Terminal
Input Buffer and then searches the dictionary for a command with this
name.

PAD Push on the parameter stack the address of the text buffer where
numbers to be output are constructed and text strings are stored
temporarily. It is 64 bytes above HERE.

TIB Push the address of the Terminal Input Buffer on the parameter stack.
Terminal Input Buffer stores a line of text from the serial I/O input
device. FORTH text interpreter then processes or interprets this line
of text.

@EXECUTE Fetch a code field address of a command which is stored in the
address on the top of the parameter stack, and jumps to it to execute
this command. It is used extensively to execute vectored commands
stored in RAM memory. The behavior of a vectored command can
be changed dynamically at the run time.

CMOVE Copy a byte array from one location to another in RAM memory.
The top three item on the parameter stack are the source address, the
destination address and the number of bytes to be copied.

UPPER Convert the ASCII character on the top of the parameter stack to an
upper case character. This command is used to convert input text
string to an upper case string so that the text interpreter is now case
insensitive.

FILL Fill a memory array with the same byte. The top three items on the
parameter stack are the address of the array, the length of the array in
bytes, and the byte value to be filled into this array.

;; Memory access

 62

; +! (n a --)

; Add n to the contents at address a.

 .word PICK-6

 .byte 2,"+!",0

PSTOR

 call #SWAP

 call #OVER

 call #AT

 call #PLUS

 call #SWAP

 call #STORE

 ret

; 2! (d a --)

; Store the double integer to address a.

 .word PSTOR-4

 .byte 2,"2!",0

DSTOR

 call #SWAP

 call #OVER

 call #STORE

 call #CELLP

 call #STORE

 ret

; 2@ (a -- d)

; Fetch double integer from address a.

 .word DSTOR-4

 .byte 2,"2@",0

DAT

 call #DUPP

 call #CELLP

 call #AT

 call #SWAP

 call #AT

 ret

 63

; COUNT (b -- b +n)

; Return count byte of a string and add 1 to byte a ddress.

 .word DAT-4

 .byte 5,"COUNT"

COUNT

 mov.b @tos+,temp0

 savetos

 mov temp0,tos

 ret

; HERE (-- a)

; Return the top of the code dictionary.

 .word COUNT-6

 .byte 4,"HERE"

HERE

 call #DP

 call #AT

 ret

; PAD (-- a)

; Return the address of a temporary buffer.

 .word HERE-6

 .byte 3,"PAD"

PAD

 call #HERE

 add #50,tos

 ret

; TIB (-- a)

; Return the address of the terminal input buffer.

 .word PAD-4

 .byte 3,"TIB"

TIB

 Savetos

 Mov #TIBB,tos

 Ret

; @EXECUTE (a --)

 64

; Execute vector stored in address a.

 .word TIB-4

 .byte 8,"@EXECUTE",0

ATEXE

 call #AT

 call #QDUP ;?address or zero

 call #QBRAN

 .word EXE1

 call #EXECU ;execute if non-zero

EXE1: ret ;do nothing if zero

; CMOVE (b1 b2 u --)

; Copy u bytes from b1 to b2.

 .word ATEXE-10

 .byte 5,"CMOVE"

CMOVE

 call #TOR

 call #BRAN

 .word CMOV2

CMOV1: call #TOR

 call #COUNT

 call #RAT

 call #CSTOR

 call #RFROM,

 add #1,tos

CMOV2: call #DONXT

 .word CMOV1

 call #DDROP

 ret

; FILL (b u c --)

; Fill u bytes of character c to area beginning at b.

 .word CMOVE-6

 .byte 4,"FILL",0

FILL

 call #SWAP

 call #TOR

 call #SWAP

 65

 call #BRAN

 .word FILL2

FILL1: call #DDUP

 call #CSTOR

 add #1,tos

FILL2: call #DONXT

 .word FILL1

 call #DDROP

 ret

4.8 Input Output

Numeric Output

FORTH is interesting in its special capabilities in handling numbers across a
man-machine interface. It recognizes that machines and humans prefer very
different representations of numbers. Machines prefer binary representation, but
humans prefer decimal Arabic representation. However, depending on
circumstances, a human may want numbers to be represented in other radices, like
hexadecimal, octal, and sometimes binary.

FORTH solves this problem of internal (machine) versus external (human) number
representations by insisting that all numbers are represented in binary form in CPU
and memory. Only when numbers are imported or exported for human consumption
are they converted to external ASCII representation. The radix of the external
representation is stored in system variable BASE. You can select any reasonable
radix in BASE, up to 72, limited by available printable characters in the ASCII
character set.

The output number string is built below the PAD buffer in RAM memory. The least
significant digit is extracted from the integer on the top of the parameter stack by
dividing it by the current radix in BASE. The digit thus extracted is added to the
output string backwards from PAD to the low memory. The conversion is terminated
when the integer is divided to zero. The address and length of the number string are
made available by #> for outputting.

An output number conversion is initiated by <# and terminated by #>. Between
them, # converts one digit at a time, #S converts all the digits, while HOLD and SIGN
inserts special characters into the string under construction. This set of commands is
very versatile and can handle all different output formats.

DIGIT Convert an integer digit to the corresponding ASCII character.
EXTRACT Extract the least significant digit from a number n on the top of the

parameter stack. n is divided by the radix in BASE and the extracted
digit is converted to its ASCII character which is pushed on the

 66

parameter stack.
<# Initiate the output number onversion process by storing PAD buffer

address into system variable HLD, which points to the location next
numeric digit will be stored.

HOLD Append an ASCII character whose code is on the top of the parameter
stack, to the numeric out put string at HLD. HLD is decremented to
receive the next digit.

Extract one digit from integer on the top of the parameter stack,

according to radix in BASE, and add it to output numeric string.

#S Extract all digits to output string until the integer on the top of the

parameter stack is 0.

SIGN Insert a - sign into the numeric output string if the integer on the top of

the parameter stack is negative.

#> Terminate the numeric conversion and pushes the address and length of

output numeric string on the parameter stack.

str Convert a signed integer on the top of the parameter stack to a numeric

output string.

HEX Set numeric conversion radix to 16 for hexadecimal conversions.

DECIMAL Set numeric conversion radix to 10 for decimal conversions.

;; Numeric output, single precision

; DIGIT (u -- c)

; Convert digit u to a character.

 .word FILL-6

 .byte 5,"DIGIT"

DIGIT

 call #DOLIT

 .word 9

 call #OVER

 call #LESS

 call #DOLIT

 .word 7

 call #ANDD

 call #PLUS

 add #"0",tos

; call #DOLIT

; .word "0"

; call #PLUS

 ret

 67

; EXTRACT (n base -- n c)

; Extract the least significant digit from n.

 .word DIGIT-6

 .byte 7,"EXTRACT"

EXTRC

 call #DOLIT

 .word 0

 call #SWAP

 call #UMMOD

 call #SWAP

 call #DIGIT

 ret

; <# (--)

; Initiate the numeric output process.

 .word EXTRC-8

 .byte 2,"<#",0

BDIGS

 call #PAD

 call #HLD

 call #STORE

 ret

; HOLD (c --)

; Insert a character into the numeric output string .

 .word BDIGS-4

 .byte 4,"HOLD",0

HOLD

 call #HLD

 call #AT,

 sub #1,tos

 call #DUPP

 call #HLD

 call #STORE

 call #CSTOR

 ret

 68

; # (u -- u)

; Extract one digit from u and append the digit to output

string.

 .word HOLD-6

 .byte 1,"#"

DIG

 call #BASE

 call #AT

 call #EXTRC

 call #HOLD

 ret

; #S (u -- 0)

; Convert u until all digits are added to the outpu t string.

 .word DIG-2

 .byte 2,"#S",0

DIGS

DIGS1:

 call #DIG

 call #DUPP

 call #QBRAN

 .word DIGS2

 call #BRAN

 .word DIGS1

DIGS2: ret

; SIGN (n --)

; Add a minus sign to the numeric output string.

 .word DIGS-4

 .byte 4,"SIGN",0

SIGN

 call #ZLESS

 call #QBRAN

 .word SIGN1

 call #DOLIT

 .word "-"

 call #HOLD

 69

SIGN1: ret

; #> (w -- b u)

; Prepare the output string to be TYPE'd.

 .word SIGN-6

 .byte 2,"#",3EH,0

EDIGS

 call #DROP

 call #HLD

 call #AT

 call #PAD

 call #OVER

 call #SUBB

 ret

; str (n -- b u)

; Convert a signed integer to a numeric string.

 .word EDIGS-4

 .byte 3,"str"

STR

 call #DUPP

 call #TOR

 call #ABSS

 call #BDIGS

 call #DIGS

 call #RFROM

 call #SIGN

 call #EDIGS

 ret

; HEX (--)

; Use radix 16 as base for numeric conversions.

 .word STR-4

 .byte 3,"HEX"

HEX

 call #DOLIT

 .word 16

 call #BASE

 70

 call #STORE

 ret

; DECIMAL (--)

; Use radix 10 as base for numeric conversions.

 .word HEX-4

 .byte 7,"DECIMAL"

DECIM

 call #DOLIT

 .word 10

 call #BASE

 call #STORE

 ret

Numeric Input

The 430eForth text interpreter must handle numbers input to the system. It parses
commands out of the input stream and executes them in sequence. When the text
interpreter encounters a string which is not the name of a command in the dictionary,
it assumes that the string must be a number and attempts to convert the ASCII digit
string to a number according to the current radix. When the text interpreter succeeds
in converting the string to a number, the number is pushed on the parameter stack for
future use, if the text interpreter is in the interpreting mode. If it is in the compiling
mode, the text interpreter will compile the number to the dictionary as an integer
literal so that when the command under construction is later executed, the integer
value will be pushed on the parameter stack.

 If the text interpreter fails to convert the string to a number, this is an error condition
which will cause the text interpreter to abort, post an error message to you, and then
wait for your next line of commands.

 DIGIT? Convert an ASCII numeric digit c on the top of the parameter stack to
its numeric value u according to current radix b. If conversion is
successful, push a true flag above u. If not successful, return c and a
false flag.

NUMBER? Convert a count string of ASCII numeric digits at location a to an
integer. If first character is a $, convert in hexadecimal; otherwise,
convert using radix in BASE. If first character is a -, negate converted
integer. If an illegal character is encountered, the address of string and
a false flag are pushed on the parameter stack. Successful conversion
pushes integer value and a true flag on the parameter stack.
NUMBER? is very complicated because it has to cover many formats in
the input numeric string. It also has to detect the error condition when
it encounters an illegal numeric digit. .

 71

;; Numeric input, single precision

; DIGIT? (c base -- u t)

; Convert a character to its numeric value. A flag indicates

success.

 .word DECIM-8

 .byte 6,"DIGIT?",0

DIGTQ

 call #TOR,

 sub #"0",tos

; call #DOLIT

; .word "0"

; call #SUBB

 call #DOLIT

 .word 9

 call #OVER

 call #LESS

 call #QBRAN

 .word DGTQ1

 sub #7,tos

 call #DUPP,

 call #DOLIT

 .word 10

 call #LESS

 call #ORR

DGTQ1: call #DUPP

 call #RFROM

 call #ULESS

 ret

; NUMBER? (a -- n T | a F)

; Convert a number string to integer. Push a flag o n tos.

 .word DIGTQ-8

 .byte 7,"NUMBER?"

NUMBQ

 call #BASE

 call #AT

 call #TOR,

 72

 call #DOLIT

 .word 0

 call #OVER

 call #COUNT

 call #OVER

 call #CAT,

 call #DOLIT

 .word "$"

 Call #EQUAL

 call #QBRAN

 .word NUMQ1

 call #HEX

 call #SWAP

 add #1,tos

 call #SWAP

 sub #1,tos

NUMQ1: call #OVER

 call #CAT,

 call #DOLIT

 .word "-"

 Call #EQUAL

 call #TOR

 call #SWAP

 call #RAT

 call #SUBB

 call #SWAP

 call #RAT

 call #PLUS

 call #QDUP

 call #QBRAN

 .word NUMQ6

 sub #1,tos

 call #TOR

NUMQ2: call #DUPP

 call #TOR

 call #CAT

 call #BASE

 call #AT

 73

 call #DIGTQ

 call #QBRAN

 .word NUMQ4

 call #SWAP

 call #BASE

 call #AT

 call #STAR

 call #PLUS

 call #RFROM

 add #1,tos

 call #DONXT

 .word NUMQ2

 call #RAT

 call #SWAP

 call #DROP

 call #QBRAN

 .word NUMQ3

 call #NEGAT

NUMQ3: call #SWAP

 call #BRAN

 .word NUMQ5

NUMQ4: call #RFROM

 call #RFROM

 call #DDROP

 call #DDROP,

 call #DOLIT

 .word 0

NUMQ5: call #DUPP

NUMQ6: call #RFROM

 call #DDROP

 call #RFROM

 call #BASE

 call #STORE

 ret

Basic I/O

430eForth system assumes that it communicates with its environment only through a

 74

serial I/O interface. To support the serial I/O, only three words are needed:

SPACE Output a blank (space) character, ASCII 32.
CHARS Output n ASCII characters. The ASCII code is on the top of the

parameter stack, and number n is the second item on the parameter stack
SPACES Output n blank (space) characters.
TYPE Output n characters from a string in RAM memory. The second item on

the parameter stack is the address of the string array, and the length in
bytes is on the top of the parameter stack.

CR Output a carriage-return and a line-feed, ASCII 13 and 10.

;; Basic I/O

; SPACE (--)

; Send the blank character to the output device.

 .word NUMBQ-8

 .byte 5,"SPACE"

SPACE

 call #BLANK

 call #EMIT

 ret

; SPACES (+n --)

; Send n spaces to the output device.

 .word SPACE-6

 .byte 6,"SPACES",0

SPACS

 call #DOLIT

 .word 0

 call #MAX

 call #TOR

 call #BRAN

 .word CHAR2

CHAR1: call #SPACE

CHAR2: call #DONXT

 .word CHAR1

 ret

; TYPE (b u --)

; Output u characters from b.

 .word SPACS-8

 75

 .byte 4,"TYPE",0

TYPEE

 call #TOR

 call #BRAN

 .word TYPE2

TYPE1: call #DUPP

 call #CAT

 call #TCHAR

 call #EMIT

 add #1,tos

TYPE2:

 call #DONXT

 .word TYPE1

 call #DROP

 ret

; CR (--)

; Output a carriage return and a line feed.

 .word TYPEE-6

 .byte 2,"CR",0

CR

 call #DOLIT

 .word CRR

 call #EMIT

 call #DOLIT

 .word LF

 call #EMIT

 ret

String literals are data structures compiled in compound command, in-line with other
tokens, literal structures, and control structures. A string literal must start with a
string token which knows how to handle the following string at run time. Here are
two examples of string literals:

: xxx ... $" A compiled string" ... ;

: yyy " An output string" ... ;

In compound command xxx, $" is an immediate command which compiles the
following string as a string literal preceded by a special token $"| . When $"| is
executed at run time, it returns the address of this string on the parameter stack. In

 76

yyy, ." compiles a string literal preceded by another token ."| , which prints the
compiled string to the output device at run time.

do$ Push the address of a string literal on the parameter stack. It is called by a
string token like $"| or ."|, which precede their respective strings in flash
memory. Therefore, the second item on the return stack points to the
string. This address is pushed on the parameter stack. This second item
on the return stack must be modified so that it will point to the next token
after the string literal. This way. the token after the string literal will be
executed, skipping over the string literal. Both $"| and ."| use the word do$,
which retrieve the address of a string stored as the second item on the
return stack.

$"| Push the address of the following string on the parameter stack, and then
executes the token immediately following the string.

."| Print the following string, and then executes the token immediately
following the string.

; do$ (-- a)

; Return the address of a compiled string.

 .word CR-4

 .byte COMPO+3,"do$"

DOSTR

 call #RFROM

 call #RAT

 call #RFROM

 call #COUNT

 call #PLUS

 call #ALGND

 call #TOR

 call #SWAP

 call #TOR

 ret

; $"| (-- a)

; Run time routine compiled by $". Return address o f a

compiled string.

 .word DOSTR-4

 .byte COMPO+3,"$""|"

STRQP

 call #DOSTR

 ret ;force a call to do$

 77

; ."| (--)

; Run time routine of ." . Output a compiled string .

 .word STRQP-4

 .byte COMPO+3,".""|"

DOTQP

 call #DOSTR

 call #COUNT

 call #TYPEE

 ret

With the number formatting command set as shown above, one can format numbers
for output in any format desired. The free output format is a number string preceded
by a single space. The fix column format displays a number right-justified in a
column of a pre-determined width. The commands ' .' , 'U.', and ? use the
free format. The words .R and U.R use the fix format.

.R Print a signed integer n , the second item on the parameter stack,

right-justified in a field of +n characters. +n is on the top of the parameter

stack.

U.R Print an unsigned integer n right-justified in a field of +n characters.

U. Print an unsigned integer u in free format, followed by a space.

. Print a signed integer n in free format, followed by a space.

? Print signed integer stored in memory a on the top of the parameter stack,

in free format followed by a space.

; .R (n +n --)

; Display an integer in a field of n columns, right justified.

 .word DOTQP-4

 .byte 2,".R",0

DOTR

 call #TOR

 call #STR

 call #RFROM

 call #OVER

 call #SUBB

 call #SPACS

 call #TYPEE

 ret

 78

; U.R (u +n --)

; Display an unsigned integer in n column, right ju stified.

 .word DOTR-4

 .byte 3,"U.R"

UDOTR

 call #TOR

 call #BDIGS

 call #DIGS

 call #EDIGS

 call #RFROM

 call #OVER

 call #SUBB

 call #SPACS

 call #TYPEE

 ret

; U. (u --)

; Display an unsigned integer in free format.

 .word UDOTR-4

 .byte 2,"U.",0

UDOT

 call #BDIGS

 call #DIGS

 call #EDIGS

 call #SPACE

 call #TYPEE

 ret

; . (w --)

; Display an integer in free format, preceded by a space.

 .word UDOT-4

 .byte 1,"."

DOT

 call #BASE

 call #AT

 call #DOLIT

 79

 .word 10

 call #XORR ;?decimal

 call #QBRAN

 .word DOT1

 jmp UDOT

DOT1:

 call #STR

 call #SPACE

 jmp TYPEE

; ? (a --)

; Display the contents in a memory cell.

 .word DOT-2

 .byte 1,"?"

QUEST

 call #AT

 call #DOT

 ret

4.9 Parsing

Parsing is always considered a very advanced topic in computer science. However,
because FORTH uses very simple syntax rules, parsing is easy. FORTH input
stream consists of ASCII strings separated by spaces and other white space characters
like tabs, carriage returns, and line feeds. The text interpreter scans the input stream,
parses out strings, and interprets them in sequence. After a string is parsed out of the
input stream, the text interpreter will 'interpret' it; i.e., execute it if it is a valid
command, compile it if the text interpreter is in the compiling mode, and convert it to
a number if the string is not a FORTH command.

The case where the delimiting character is a space (ASCII 32) is special, because this
is when the text interpreter is parsing for valid commands. It thus must skip over
leading space characters. When parse is used to compile string literals, it will use
the double quot character (ASCII 34) as the delimiting character. It the delimiting
character is not space, parse starts scanning immediately, looking for the designated
delimiting character.

parse The elementary command to do text parsing. From the input stream,
which starts at b1 and is of u1 characters long, it parses out the first text
string delimited by character c. It returns the address b2 and length u2
of the string just parsed out and the difference n between b1 and b2.
Leading delimiters are skipped over.

PARSE Scan the input stream in the Terminal Input Buffer from where >IN

 80

points to, until the end of the buffer, for a string delimited by character c .
It returns the address and length of the string parsed out. PARSE calls
parse to do the detailed works. PARSE is used to implement many
specialized parsing commands to perform different parsing functions.

.(Print the following string till the next) character. It is used to output
text to the serial output device.

(Discard the following string till the next) character. It is used to place
comments in source code.

\ Discard all characters till end of a line. It is used to insert comment
lines in source code.

CHAR Parse the next string out but returns only the first character in this string.
It gets an ASCII character from the input stream.

TOKEN Parse out the next string delimited by the space character. It then copies
this string as a counted string to the first free area in RAM memory and
returns its address. The length of the string is limited to 31 characters.

WORD Parse out the next string delimited by the ASCII character c. It then
copies this string as a counted string to the first free area in RAM
memory and returns its address. The length of the string is limited to 255
characters.

;; Parsing

; parse (b u c -- b u delta ; <string>)

; Scan string delimited by c. Return found string a nd its

offset.

 .word QUEST-2

 .byte 5,"parse"

PARS

 call #TEMP

 call #STORE

 call #OVER

 call #TOR

 call #DUPP

 call #QBRAN

 .word PARS8

 sub #1,tos

 call #TEMP

 call #AT

 call #BLANK

 call #EQUAL

 call #QBRAN

 .word PARS3

 81

 call #TOR

PARS1: call #BLANK

 call #OVER

 call #CAT ;skip leading blanks ONLY

 call #SUBB

 call #ZLESS

 call #INVER

 call #QBRAN

 .word PARS2

 add #1,tos

 call #DONXT

 .word PARS1

 call #RFROM

 call #DROP,

 call #DOLIT

 .word 0

 call #DUPP

 ret

PARS2: call #RFROM

PARS3: call #OVER

 call #SWAP

 call #TOR

PARS4: call #TEMP

 call #AT

 call #OVER

 call #CAT

 call #SUBB ;scan for delimiter

 call #TEMP

 call #AT

 call #BLANK

 call #EQUAL

 call #QBRAN

 .word PARS5

 call #ZLESS

PARS5:

 call #QBRAN

 .word PARS6

 add #1,tos

 82

 call #DONXT

 .word PARS4

 call #DUPP

 call #TOR

 call #BRAN

 .word PARS7

PARS6: call #RFROM

 call #DROP

 call #DUPP

 add #1,tos

 call #TOR

PARS7: call #OVER

 call #SUBB

 call #RFROM

 call #RFROM

 call #SUBB

 ret

PARS8: call #OVER

 call #RFROM

 call #SUBB

 ret

; PARSE (c -- b u ; <string>)

; Scan input stream and return counted string delim ited by

c.

 .word PARS-6

 .byte 5,"PARSE"

PARSE

 call #TOR

 call #TIB

 call #INN

 call #AT

 call #PLUS ;current input buffer pointer

 call #NTIB

 call #AT

 call #INN

 call #AT

 call #SUBB ;remaining count

 83

 call #RFROM

 call #PARS

 call #INN

 call #PSTOR

 ret

; .((--)

; Output following string up to next) .

 .word PARSE-6

 .byte IMEDD+2,".(",0

DOTPR

 call #DOLIT

 .word ")"

 Call #PARSE

 call #TYPEE

 ret

; ((--)

; Ignore following string up to next) . A comment.

 .word DOTPR-4

 .byte IMEDD+1,"("

PAREN

 call #DOLIT

 .word ")"

 Call #PARSE

 call #DDROP

 ret

; \ (--)

; Ignore following text till the end of line.

 .word PAREN-2

 .byte IMEDD+1,"\"

BKSLA

 call #NTIB

 call #AT

 call #INN

 call #STORE

 ret

 84

; CHAR (-- c)

; Parse next word and return its first character.

 .word BKSLA-2

 .byte 4,"CHAR",0

CHAR

 call #BLANK

 call #PARSE

 call #DROP

 call #CAT

 ret

; TOKEN (-- a ; <string>)

; Parse a word from input stream and copy it to nam e

dictionary.

 .word CHAR-6

 .byte 5,"TOKEN"

TOKEN

 call #BLANK

 call #PARSE

 call #DOLIT

 .word 31

 call #MIN

TOKEN1

 call #HERE

 call #DDUP

 call #CSTOR

 add #1,tos

 call #SWAP

 call #CMOVE

 jmp HERE

; WORD (c -- a ; <string>)

; Parse a word from input stream and copy it to cod e

dictionary.

 .word TOKEN-6

 .byte 4,"WORD",0

WORDD

 85

 call #PARSE

 jmp TOKEN1

4.10 Dictionary Search

In 430eForth, command records are linearly linked into a dictionary. A command
record contains three fields: a link field holding the name field address of the previous
command record, a name field holding the name as a counted string, and a code field
holding executable code and data. A dictionary search follows the linked list of
records to find a name which matches a text string. It returns the name field address
and the code field address, if a match is found.

The link field of the first command record contains a 0, indicating it is the end of the
linked list. A system variable CONTEXT holds an address pointing to the name field
of the last command record. The dictionary search starts at CONTEXT and
terminates at the first matched name, or at the first command record.

From CONTEXT, we locate the name field of the last command record in the
dictionary. It this name does not match the string to be searched, we can find the
link field of this record, which is 2 bytes less than the name field address. From the
link field, we locate the name field of the next command record. Compare the name
with the search string. And so forth.

NAME> Convert a name field address in a command record to the code field
address of this command record. Code field address is the name field
address plus length of name plus one, and aligned to the next cell
boundary.

SAME? Compare two strings at addresses a and b for u bytes. It returns a 0 if
two strings are equal. It returns a positive integer if a string is greater
than b string. It returns a negative integer if a string is less than b string.

NAME? Search the dictionary starting at CONTEXT for a name string at address a.
Return the code field address and name field address if a matched
command is found. Otherwise, return the original string address a and a
false flag. Assume that a count string is at memory address a, and the
name field address of the last command record is in address va . If the
string matches the name of a command, both the code field address and the
name field address of the command record are returned. If the string is
not a valid command, the original string address and a false flag are
returned. It runs the dictionary search very quickly because it first
compares the length byte and the first character in the name field as a 16
bit integer. In most cases of mismatch, this comparison would fail and
the next record can be reached through the link field. If the first two
characters match, then SAME? is invoked to compare the rest of the name
field, one cell at a time. Since both the target text string and the name
field are null filled to the cell boundary, the comparison can be performed
quickly across the entire name field without worrying about the end
conditions.

 86

;; Dictionary search

; NAME> (na -- ca)

; Return a code address given a name address.

 .word WORDD-6

 .byte 5,"NAME>"

NAMET

 call #COUNT

 and #1FH,tos

 call #PLUS

 jmp ALGND

; SAME? (a a u -- a a f \ -0+)

; Compare u cells in two strings. Return 0 if ident ical.

 .word NAMET-6

 .byte 5,"SAME?"

SAMEQ

 call #OVER

 call #CAT

SAME1:

 mov 2(stack),temp0

 add tos,temp0

 mov.b 0(temp0),temp0

 mov 0(stack),temp1

 add tos,temp1

 mov.b 0(temp1),temp1

 sub temp1,temp0

 jnz SAME2

 dec tos

 jnz SAME1

 ret

SAME2:

 mov #-1,tos

 ret

; NAME? (a -- ca na | a F)

; Search all context vocabularies for a string.

 87

 .word SAMEQ-6

 .byte 5,"NAME?"

NAMEQ

 call #CNTXT

 call #AT

FIND1:

 tst tos

 jz FIND3 ;end of dictionary

 call #OVER

 call #AT

 call #OVER

 call #AT

 call #DOLIT

 .word MASKK

 call #ANDD

 call #EQUAL

 call #QBRAN

 .word FIND4

 call #SAMEQ

 call #QBRAN

 .word FIND2 ;match

FIND4

 decd tos

 mov 0(tos),tos

 jmp FIND1

FIND2

 mov tos,0(stack)

 call #NAMET

 br #SWAP

FIND3:

 ret

4.11 Terminal Input

The text interpreter interprets source text received from an input device and stored in
the Terminal Input Buffer. To process characters in the Terminal Input Buffer, we
need special commands to deal with the special conditions of backspace character and
carriage return: On top of stack, three special parameters are referenced in many
commands: bot is the Beginning Of the Text input buffer, eot is the End Of the Text

 88

input buffer, and cur points to the current character in the input buffer.

^H Process back-space character (ASCII 8). It erases the last character
entered, and decrement the character pointer cur . If cur =bot , do
nothing because you cannot backup beyond beginning of input buffer.

TAP Output a character c to terminal, store c in cur , and increment the
character pointer cur , which points to the current character in the input
buffer. bot and eot are also pointers pointing to the beginning and end of
the input buffer.

kTAP Process character c . bot is pointing at the beginning of the input buffer,
and eot is pointing at the end. cur points to the current character in the
input buffer. The character c is normally stored at cur , which is then
incremented by 1. If c is a carriage-return (ASCII 13), echo a space and
make eot =cur ., thus terminating the input process If c is a back-space
(ASCII 8), erase the last character and decrement cur .

accept Accept u characters into an input buffer starting at address b, or until a
carriage return (ASCII 13) is encountered. The value of u returned is the
actual number of characters received.

QUERY Accept up to 80 characters from the input device to the Terminal Input
Buffer. It also prepares the Terminal Input Buffer for parsing by setting
#TIB to the length of the input text stream, and clearing >IN which points
to the beginning of the Terminal Input Buffer.

;; Terminal response

; ̂ H (bot eot cur -- bot eot cur)

; Backup the cursor by one character.

 .word NAMEQ-6

 .byte 2,"^H",0

BKSP

 call #TOR

 call #OVER

 call #RFROM

 call #SWAP

 call #OVER

 call #XORR

 call #QBRAN

 .word BACK1

 call #DOLIT

 .word BKSPP

 call #EMIT

 sub #1,tos

 89

 call #BLANK

 call #EMIT

 call #DOLIT

 .word BKSPP

 call #EMIT

BACK1: ret

; TAP (bot eot cur c -- bot eot cur)

; Accept and echo the key stroke and bump the curso r.

 .word BKSP-4

 .byte 3,"TAP"

TAP

 call #DUPP

 call #EMIT

 call #OVER

 call #CSTOR,

 add #1,tos

 ret

; kTAP (bot eot cur c -- bot eot cur)

; Process a key stroke, CR or backspace.

 .word TAP-4

 .byte 4,"kTAP",0

KTAP

 call #DUPP

 sub #CRR,tos

 call #QBRAN

 .word KTAP2

 sub #BKSPP,tos

 call #QBRAN

 .word KTAP1

 call #BLANK

 jmp TAP

KTAP1:

 jmp BKSP

KTAP2:

 call #DROP

 call #SWAP

 90

 call #DROP

 jmp DUPP

; accept (b u -- b u)

; Accept characters to input buffer. Return with ac tual

count.

 .word KTAP-6

 .byte 6,"accept",0

ACCEP

 call #OVER

 call #PLUS

 call #OVER

ACCP1: call #DDUP

 call #XORR

 call #QBRAN

 .word ACCP4

 call #KEY

 call #DUPP

 call #BLANK

 call #SUBB

 call #DOLIT

 .word 95

 call #ULESS

 call #QBRAN

 .word ACCP2

 call #TAP

 call #BRAN

 .word ACCP1

ACCP2: call #KTAP

ACCP3:

 jmp ACCP1

ACCP4: call #DROP

 call #OVER

 jmp SUBB

; QUERY (--)

; Accept input stream to terminal input buffer.

 .word ACCEP-8

 91

 .byte 5,"QUERY"

QUERY

 call #TIB,

 call #DOLIT

 .word 80

 call #ACCEP

 call #NTIB

 call #STORE

 call #DROP

 call #DOLIT

 .word 0

 call #INN

 call #STORE

 ret

4.12 Interpreter

Error Handling

When error occurred, it is usually because the text interpreter encounters a string
which can not be interpreted or processed. This string is usually stored in a buffer in
RAM memory.

ERROR Print the string in RAM memory located at address a, followed by a ?
mark and aborts. 'Abort' means flushing all flash memory buffers,
clearing the parameter stack, and returns to the text interpreter loop
QUIT.

abort" It is compiled with an error message string in a compound command.
When abort" is executed, it examines the top item on the parameter
stack. It the flag is true, print out the following error message and
QUIT; otherwise, skip over the error message and continue execution the
next token.

;; Error handling

; ERROR (a --)

; Return address of a null string with zero count.

 .word QUERY-6

 .byte 5,"ERROR"

ERROR:

 92

 call #SPACE

 call #COUNT

 call #TYPEE

 call #DOLIT

 .word 3FH

 call #EMIT

 call #CR

; call #EMPTY_BUF

 jmp QUIT

; abort" (f --)

; Run time routine of ABORT" . Abort with a message .

 .word ERROR-6

 .byte COMPO+6,"abort"""

ABORQ

 call #QBRAN

 .word ABOR1 ;text flag

 call #DOSTR

 call #COUNT

 call #TYPEE

 jmp QUIT ;pass error string

ABOR1: call #DOSTR

 call #DROP

 ret ;drop error

Interpreter

Text interpreter in FORTH is like a conventional operating system of a computer. It
is the primary interface a user uses to get the computer to do work. Since FORTH
uses very simple syntax rule--commands are separated by spaces, the text interpreter
is also very simple. It accepts a line of text from the terminal, parses out a command
delimited by spaces, locates the command in the dictionary and then executes it. The
process is repeated until the input text is exhausted. Then the text interpreter waits
for another line of text and interprets it again. This cycle repeats until you are
exhausted and turns off the computer.

 In 430eForth, the text interpreter is coded as the command QUIT. QUIT contains
an infinite loop which repeats the QUERY-EVAL command pair. QUERY accepts a
line of text from the input terminal. EVAL interprets the text one command at a time
till the end of the text line.

$INTERPRET Execute a command whose name string is stored at address a on the

 93

parameter stack. If the string is not a valid command, convert it to a
number. Failing the numeric conversion, execute ERROR and return
to QUIT.

[Activate the text interpreter by storing the code field address of
$INTERPRET into the variable 'EVAL , which is executed in EVAL
while the text interpreter is in the interpretive mode.

.OK Print the familiar ok> prompting message after executing to the end
of a line. The message ok> is printed only when the text
interpreter is in the interpretive mode. While compiling, the prompt
is suppressed.

?STACK Check for stack underflow. Abort, resetting the parameter stack

pointer, if the stack depth is negative.
EVAL It is contained in the text interpreter loop which parses commands

from the input stream and invokes whatever token in 'EVAL to
process the commands, either execute it with $INTERPRET or
compile it with $COMPILE.

QUIT It is the operating system, the text interpreter, or a shell, of the
430eForth system. It is an infinite loop eForth will never get out.
It uses QUERY to accept a line of commands from the input terminal
and then lets EVAL to parse out the commands and execute them.
After a line is processed, it displays an ok> message and wait for the
next line of commands. When an error occurred during execution,
it prints the string which caused the error as an error message.
After the error is reported, it re-initializes the system by clearing the
return stack and comes back to receive the next line of commands.
Because the behavior of EVAL can be changed by storing either
$INTERPRET or $COMPILE into 'EVAL, QUIT exhibits the dual
nature of a text interpreter and a compiler.

;; The text interpreter

; $INTERPRET (a --)

; Interpret a word. If failed, try to convert it to an

integer.

 .word ABORQ-8

 .byte 10,"$INTERPRET",0

INTER

 call #NAMEQ

 call #QDUP ;?defined

 call #QBRAN

 .word INTE1

 call #AT

 call #DOLIT

 94

 .word COMPO

 call #ANDD ;?compile only lexicon bits

 call #ABORQ

 .byte 13," compile only"

 call #EXECU

 ret ;execute defined word

INTE1: call #NUMBQ

 call #QBRAN

 .word INTE2

 ret

INTE2: jmp ERROR ;error

; [(--)

; Start the text interpreter.

 .word INTER-12

 .byte IMEDD+1,"["

LBRAC

 call #DOLIT

 .word INTER

 call #TEVAL

 call #STORE

 ret

; .OK (--)

; Display 'ok' only while interpreting.

 .word LBRAC-2

 .byte 3,".OK"

DOTOK

 call #DOLIT

 .word INTER

 call #TEVAL

 call #AT

 call #EQUAL

 call #QBRAN

 .word DOTO1

 call #DOTQP

 .byte 3," ok"

DOTO1: call #CR

 95

 Ret

; ?STACK (--)

; Abort if the data stack underflows.

 .word DOTOK-4

 .byte 6,"?STACK",0

QSTAC

 call #DEPTH

 call #ZLESS ;check only for underflow

 call #ABORQ

 .byte 10," underflow",0

 Ret

; EVAL (--)

; Interpret the input stream.

 .word QSTAC-8

 .byte 4,"EVAL",0

EVAL

EVAL1: call #TOKEN

 call #DUPP

 call #CAT ;?input stream empty

 call #QBRAN

 .word EVAL2

 call #TEVAL

 call #ATEXE

 call #QSTAC ;evaluate input, check stack

 call #BRAN

 .word EVAL1

EVAL2: call #DROP

 call #DOTOK

 ret ;prompt

;; Shell

; QUIT (--)

; Reset return stack pointer and start text interpr eter.

 .word EVAL-6

 .byte 4,"QUIT",0

 96

QUIT

 mov #SPP,stack

 mov #RPP,SP

QUIT1: call #LBRAC ;start interpretation

QUIT2: call #QUERY ;get input

 call #EVAL

 jmp QUIT2 ;continue till error

4.13 Compiler

In MSP430G2553, the flash main memory is organized in 512 byte pages, and the
flash information memory is organized in 64 byte pages. The flash memory can be
read like RAM memory, but to write and to erase flash memory, you have to go
through the flash memory controller. The flash memory controller makes everything
very easy. You first unlock the memory controller, and then issue a write or erase
command. Then you write to one location in the flash memory page, and finally
lock the flash memory controller. Following are the commands to write one 16-bit
integer to a flash memory location, to erase one page of flash memory, and to copy an
array from a memory area to a flash memory area.

' Search the dictionary for the following string. If the string is a valid

command, return its code field address. If the string is not a valid

command, print a ? mark.

ALLOT Allocate n bytes of RAM memory on bottom of the free RAM space.

System variable DP points to the bottom of free RAM space.

IALLOT Allocate n bytes of flash memory on the top of the dictionary. System

variable CP points to the top of the dictionary.

I! Store the 16-bit data w in flash memory address a.

ERASE Erase one 512 byte page of flash main memory or 64 bytes of flash

information memory. The page address a is on the top of the parameter

stack.

WRITE Copy n bytes of one memory array, starting at address src , to an array in

flash memory, starting at flash address dest . All addresses are byte

addresses.

The command I! is actually the primitive compiler in eForth. It allows us to write
into the flash memory to build new FORTH commands. It is used to define the ‘,’
(comma) command, which add one more 16-bit integer to the top of the FORTH
dictionary, and thus extends the FORTH system by one integer. Repeatedly adding
data and instructions to the dictionary to form new FORTH commands is what a
compiler does.

 97

;; The compiler

; ' (-- ca)

; Search context vocabularies for the next word in input

stream.

 .word QUIT-6

 .byte 1,"'"

TICK

 call #TOKEN

 call #NAMEQ ;?defined

 call #QBRAN

 .word TICK1

 ret ;yes, push code address

TICK1: jmp ERROR ;no, error

; ALLOT (n --)

; Allocate n bytes to the RAM dictionary.

 .word TICK-2

 .byte 5,"ALLOT"

ALLOT

 call #DP

 jmp PSTOR

; IALLOT (n --)

; Allocate n bytes to the code dictionary.

 .word ALLOT-6

 .byte 6,"IALLOT",0

IALLOT

 call #CP

 jmp PSTOR

; I! (n a --)

; Store n to address a in code dictionary.

 .word IALLOT-8

 .byte 2,"I!",0

ISTORE

 mov #FWKEY,&FCTL3 ; Clear LOCK

 mov #FWKEY+WRT,&FCTL1 ; Enable write

 98

 call #STORE

 mov #FWKEY,&FCTL1 ; Done. Clear WRT

 mov #FWKEY+LOCK,&FCTL3 ; Set LOCK

 ret

; ERASE (a --)

; Erase a segment at address a.

 .word ISTORE-4

 .byte 5,"ERASE"

IERASE

 mov #FWKEY,&FCTL3 ; Clear LOCK

 mov #FWKEY+ERASE,&FCTL1 ; Enable erase

 clr 0(tos)

 mov #FWKEY+LOCK,&FCTL3 ; Set LOCK

 loadtos

 ret

; WRITE (src dest n --)

; Copy n byte from src to dest. Dest is in flash m emory.

 .word IERASE-6

 .byte 5,"WRITE"

WRITE

 rra tos

 call #TOR

WRITE1

 call #OVER

 call #AT

 call #OVER

 call #ISTORE

 incd tos

 incd 0(stack)

 call #DONXT

 .word WRITE1

 jmp DDROP

 jmp COMMA

Compiler Commands

 99

, It is the most fundamental compiler command. It compiles an integer
w to dictionary in the flash memory, and add the new item to the
growing command list of the current command under construction.
This is the primitive compiler upon which the FORTH compiler rests.

CALL, Compile or assemble a subroutine call instruction with the code field
address on the parameter stack as destination. Compound commands
are compiled as lists of subroutine calls.

[COMPILE] Compile the code field address of the next command in the input
stream. It is used to compile commands, which would otherwise be
executed while compiling.

COMPILE Compile the code field address of the next command in the input
stream. It forces compilation of a command at run time.

LITERAL Compile an integer literal. It first compiles a call doLIT machine
instruction, followed by an integer value from the parameter stack.
When doLIT is executed, it extracts the integer in the next program
word and pushes it on the parameter stack.

$," Compile a string literal. String text is taken from the input stream and
terminated by a double quote. A token (such as . "| or $"|) must be
compiled before the string to form a sting literal.

; , (w --)

; Compile an integer into the code dictionary.

 .word WRITE-6

 .byte 1,","

COMMA

 call #CP

 CALL #AT

 call #DUPP

 call #CELLP ;cell boundary

 call #CP

 call #STORE

 jmp ISTORE

; call, (w --)

; Compile a call instruction into the code dictiona ry.

 .word COMMA-2

 .byte 5,"call,"

CALLC

 call #DOLIT

 .word CALLL

 call #COMMA

 100

; [COMPILE] (-- ; <string>)

; Compile the next immediate word into code diction ary.

 .word CALLC-6

 .byte IMEDD+9,"[COMPILE]"

BCOMP

 call #TICK

 jmp CALLC

; COMPILE (--)

; Compile the next address in colon list to code di ctionary.

 .word BCOMP-10

 .byte COMPO+7,"COMPILE"

COMPI

 call #RFROM

 call #DUPP

 call #AT

 call #COMMA ;compile call instruction

 call #CELLP

 call #DUPP

 call #AT

 call #COMMA ;compile address

 call #CELLP

 call #TOR

 ret ;adjust return address

; LITERAL (w --)

; Compile tos to code dictionary as an integer lite ral.

 .word COMPI-8

 .byte IMEDD+7,"LITERAL"

LITER

 call #DOLIT

 .word DOLIT

 call #CALLC

 jmp COMMA

; $," (--)

; Compile a literal string up to next " .

 .word LITER-8

 101

 .byte 3,"$,"""

STRCQ

 call #DOLIT

 .word """"

 call #WORDD ;move string to code dictionary

STRCQ1

 call #DUPP

 call #CAT

 call #TWOSL ;calculate aligned end of string

 call #TOR

STRCQ2

 call #DUPP

 call #AT

 call #COMMA

 call #CELLP

 call #DONXT

 .word STRCQ2

 jmp DROP

Structure Commands

Immediate commands are not compiled as tokens by the compiler. Instead, they are
executed by the compiler immediately. They are used to build control structures in
compound commands. Immediate commands has its IMMEDIATE lexicon bit set,
in the length byte of the name field. The control structures used in 430eForth are the
following:

Conditional branch IF ... THEN
 IF ... ELSE ... THEN
Finite loop FOR ... NEXT
 FOR ... AFT ... THEN... NEXT
Infinite loop BEGIN ... AGAIN
Indefinite loop BEGIN ... UNTIL
 BEGIN ... WHILE ... REPEAT

A control structure contains one or more address literals with ?branch, branch and
next commands, which causes execution to branch out of the normal sequence. The
control structure commands are immediate commands which compile the address
literals and resolve the branch address.

One should note that BEGIN and THEN do not compile any token. They set up or
resolve control structures in compound commands. IF , ELSE, WHILE, UNTIL , and
AGAIN do compile address literals with branching tokens.

 102

I use two characters a and A to denote some addresses on the data stack. a points to
a location to where a branch commands would jump to. A points to a location where
a new address will be stored when the address is resolved.

BEGIN Start a loop structure. It pushes an address a on the parameter stack. a

points to the top of the dictionary where new tokens will be compiled. If

begins an infinite loop or an indefinite loop.

FOR Compile a >R token and pushes the address of the next token a on the

parameter stack. It starts a FOR-NEXT loop.

NEXT Compile a next token with a target address a on the top of the parameter

stack. It resolves a FOR NEXT loop.

UNTIL Compile a ?branch token with a target address a on the top of the

parameter stack. It resolves a BEGIN-UNTIL loop.

AGAIN Compile a branch token with a target address a on the top of the

parameter stack. It resolves a BEGIN-AGAIN loop.
IF Compile a ?branch address literal and pushes its address, a, is left on

the parameter stack. It starts a IF-ELSE-THEN or a IF-THEN branch
structure.

AHEAD Compile a branch address literal and pushes its address, a, is left on the
parameter stack. It starts a AHEAD-THEN branch structure.

REPEAT Compile a branch token with a target address a on the top of the
parameter stack. It resolves a BEGIN-WHILE-REPEAT loop.

THEN Resolve the address in a branch token whose address is a on the top of
the parameter stack. It resolves a IF-ELSE-TEHN or IF-THEN branch
structure.

AFT Compile a branch literal and leaves its address as A, It also replaces the
address a left by FOR with the address a1 of the next token. A will be
used by THEN to resolve the AFT-THEN branch structure, and a1 will be
used by NEXT to resolve the loop structure.

ELSE Compile a branch token, and use the address of the next token to
resolve the address field of ?branch token in a, as left by IF . It also
replaces a with A, the address of its address field for THEN to resolve.
ELSE starts the false clause in the IF-ELSE-THEN branch structure.

WHILE Compile a ?branch token and leave its address, A, on the stack.
Address a left by BEGIN is swapped to the top of the parameter stack.
WHILE is used to start the true clause in the BEGIN-WHILE-REPEAT
loop.

;; Structures

; FOR (-- a)

; Start a FOR-NEXT loop structure in a colon defini tion.

 103

 .word STRCQ-4

 .byte IMEDD+3,"FOR"

FOR

 call #DOLIT

 .word TOR

 call #CALLC

 jmp BEGIN

; BEGIN (-- a)

; Start an infinite or indefinite loop structure.

 .word FOR-4

 .byte IMEDD+5,"BEGIN"

BEGIN

 call #CP

 jmp AT

; NEXT (a --)

; Terminate a FOR-NEXT loop structure.

 .word BEGIN-6

 .byte IMEDD+4,"NEXT",0

NEXT

 call #DOLIT

 .word DONXT

 call #CALLC

 jmp COMMA

; UNTIL (a --)

; Terminate a BEGIN-UNTIL indefinite loop structure .

 .word NEXT-6

 .byte IMEDD+5,"UNTIL"

UNTIL

 call #DOLIT

 .word QBRAN

 call #CALLC

 jmp COMMA

; AGAIN (a --)

; Terminate a BEGIN-AGAIN infinite loop structure.

 104

 .word UNTIL-6

 .byte IMEDD+5,"AGAIN"

AGAIN

 call #DOLIT

 .word BRAN

 call #CALLC

 jmp COMMA

; IF (-- A)

; Begin a conditional branch structure.

 .word AGAIN-6

 .byte IMEDD+2,"IF",0

IFF

 call #DOLIT

 .word QBRAN

 call #CALLC

 call #BEGIN

 call #DOLIT

 .word 2

 jmp IALLOT

; AHEAD (-- A)

; Compile a forward branch instruction.

 .word IFF-4

 .byte IMEDD+5,"AHEAD"

AHEAD

 call #DOLIT

 .word BRAN

 call #CALLC

 call #BEGIN

 call #DOLIT

 .word 2

 jmp IALLOT

; REPEAT (A a --)

; Terminate a BEGIN-WHILE-REPEAT indefinite loop.

 .word AHEAD-6

 .byte IMEDD+6,"REPEAT",0

 105

REPEA

 call #AGAIN

 call #BEGIN

 call #SWAP

 jmp ISTORE

; THEN (A --)

; Terminate a conditional branch structure.

 .word REPEA-8

 .byte IMEDD+4,"THEN",0

THENN

 call #BEGIN

 call #SWAP

 jmp ISTORE

; AFT (a -- a A)

; Jump to THEN in a FOR-AFT-THEN-NEXT loop the firs t time

through.

 .word THENN-6

 .byte IMEDD+3,"AFT"

AFT

 call #DROP

 call #AHEAD

 call #BEGIN

 jmp SWAP

; ELSE (A -- A)

; Start the false clause in an IF-ELSE-THEN structu re.

 .word AFT-4

 .byte IMEDD+4,"ELSE",0

ELSEE

 call #AHEAD

 call #SWAP

 jmp THENN

; WHILE (a -- A a)

; Conditional branch out of a BEGIN-WHILE-REPEAT lo op.

 .word ELSEE-6

 106

 .byte IMEDD+5,"WHILE"

WHILE

 call #IFF

 jmp SWAP

ABORT" Compile an error message as a string literal. This error message is
display at run time if the top item on the parameter stack is true , and the
rest of the tokens in this compound command are skipped and eForth
enters the interpreter loop in QUIT. This is the programmed response to
an error condition.

." Compile a string literal which will be printed when it is executed in run
time. This is the best way to present messages to you in an application.

$" Compile a string literal. When it is executed, only the address of the
string is pushed on the parameter stack. Later commands can use this
address to access the string and individual characters in the string as a
string array.

; ABORT" (-- ; <string>)

; Conditional abort with an error message.

 .word WHILE-6

 .byte IMEDD+6,"ABORT""",0

ABRTQ

 call #DOLIT

 .word ABORQ

 call #CALLC

 jmp STRCQ

; $" (-- ; <string>)

; Compile an inline string literal.

 .word ABRTQ-8

 .byte IMEDD+2,"$""",0

STRQ

 call #DOLIT

 .word STRQP

 call #CALLC

 call #STRCQ

 ret

; ." (-- ; <string>)

; Compile an inline string literal to be typed out at run

 107

time.

 .word STRQ-4

 .byte IMEDD+2,".""",0

DOTQ

 call #DOLIT

 .word DOTQP

 call #CALLC

 call #STRCQ

 ret

Name Compiler

 We had seen how tokens and structures are compiled into the code field of a
compound command in the dictionary. To build a new command, we have to build
its header first. A header consists of a link field and a name field. Here are the
commands to build the header.

 ?UNIQUE Display a warning message to show that the name of a new command
already exists in the dictionary. FORTH does not prevent your reusing
the same name for different commands. However, giving the same
name to many different commands often causes problems in software
projects. It is to be avoided if possible and ?UNIQUE reminds you of
it.

$,n Build a new header with a name string at RAM address na . It first
build a link field with an address pointing to the name field of the prior
command, and then copies the string at na to build a name field. The
top of dictionary is the code field of the new command, and tokens can
be compiled.

;; Name compiler

; ?UNIQUE (a -- a)

; Display a warning message if the word already exi sts.

 .word DOTQ-4

 .byte 7,"?UNIQUE"

UNIQU

 call #DUPP

 call #NAMEQ ;?name exists

 call #QBRAN

 .word UNIQ1 ;redefinitions are OK

 call #DOTQP

 .byte 7," reDef " ;but warn the user

 108

 call #OVER

 call #COUNT

 call #TYPEE ;just in case its not planned

UNIQ1: jmp DROP

; $,n (na --)

; Build a new dictionary name using the string at n a.

 .word UNIQU-8

 .byte 3,"$,n"

SNAME

 call #DUPP

 call #CAT ;?null input

 call #QBRAN

 .word SNAM1

 call #UNIQU ;?redefinition

 call #LAST

 call #AT

 call #COMMA ;save na for vocabulary link

 call #CP

 call #AT

 call #LAST

 call #STORE

 jmp STRCQ1 ;fill name field

SNAM1

 call #STRQP

 .byte 5," name" ;null input

 jmp ERROR

FORTH Compiler

$COMPILE Build the token list of a new compound command in its code field,
which is on the top of the dictionary. It takes a string address a on
the top of the parameter stack, search dictionary for a matching
command, and adds a token to the token list. If the string is not a
valid command, it is converted to a number, and a integer literal
added to the token list. If the string is not a number, abort the
compilation process and return to the text interpreter loop in QUIT.
If the string is the name of an immediate command, this command is
not compiled, but executed immediately. Immediate commands are
tools used by the compiler to build structures in compound
commands.

 109

OVERT Link a new command to the dictionary and thus makes it available for
dictionary searches. When a new header is build, its name field
address is stored in system variable LAST, and it is not yet linked to
the dictionary which starts at CONTEXT. OVERT copies the name
field address in LAST to CONTEXT and links the new command to
the dictionary. It is used to protect the dictionary so that new
commands not compiled successfully will not be compiled incorrectly
into later compound commands.

; Terminate a new compound command. It compiles an ret machine
instruction to terminate the new token list, links this new command to
the dictionary, and then returns to the text interpreter by storing the
code field address of $INTERPRET into system variable 'EVAL .

] Turn the text interpreter to a compiler by storing the code field
address of $COMPILE into system variable 'EVAL .

: Create a new header and start a new compound command. It takes
the following string in the input stream to be the name of the new
command. The dictionary is ready to accept a token list.] turns
the text interpreter into compiler, which will compile the following
text strings to build a new compound command. The new
compound command is terminated by ; .

IMMEDIATE Set the immediate lexicon bit in the name field of the new command.
When the compiler encounters a command with this bit set, it will not
compile this word into the token list under construction, but execute it
immediately. This bit allows structure commands to build special
structures in compound commands, and to deal with special
conditions when the compiler is running.

;; FORTH compiler

; $COMPILE (a --)

; Compile next word to code dictionary as a token o r literal.

 .word SNAME-4

 .byte 8,"$COMPILE",0

SCOMP

 call #NAMEQ

 call #QDUP ;?defined

 call #QBRAN

 .word SCOM2

 call #AT

 call #DOLIT

 .word IMEDD

 call #ANDD ;?immediate

 call #QBRAN

 .word SCOM1

 110

 jmp EXECU ;its immediate, execute

SCOM1:

 jmp CALLC ;its not immediate, compile

SCOM2:

 call #NUMBQ ;try to convert to number

 call #QBRAN

 .word SCOM3

 jmp LITER ;compile number as integer

SCOM3:

 jmp ERROR ;error

; OVERT (--)

; Link a new word into the current vocabulary.

 .word SCOMP-10

 .byte 5,"OVERT"

OVERT

 call #LAST

 call #AT

 call #CNTXT

 jmp STORE

; ; (--)

; Terminate a colon definition.

 .word OVERT-6

 .byte IMEDD+COMPO+1,";"

SEMIS

 call #DOLIT

 ret

 call #COMMA

 call #LBRAC

 jmp OVERT

;] (--)

; Start compiling the words in the input stream.

 .word SEMIS-2

 .byte 1,"]"

RBRAC

 call #DOLIT

 111

 .word SCOMP

 call #TEVAL

 jmp STORE

; : (-- ; <string>)

; Start a new colon definition using next word as i ts name.

 .word RBRAC-2

 .byte 1,":"

COLON

 call #TOKEN

 call #SNAME

 jmp RBRAC

; IMMEDIATE (--)

; Make the last compiled word an immediate word.

 .word COLON-2

 .byte 9,"IMMEDIATE"

IMMED

 call #DOLIT

 .word IMEDD

 call #LAST

 call #AT

 call #AT

 call #ORR

 call #LAST

 call #AT

 jmp ISTORE

Defining Commands

Defining commands are molds which can be used to create classes of commands
which share the same run time execution behavior. In 430eForth, we have these
defining commands: : , CREATE, CONSTANT and VARIABLE.

doCON Fetch a value stored after the call doCON instruction and pushes it
on the parameter stack. It returns to its caller immediately. The
call doCON instruction and the value after it forms the code field in
all constant commands. For variables and data arrays, the value
pointing to a location in RAM memory. All commands are defined in
flash memory which can hold only constants. However, the constants

 112

can be pointers to variables and arrays in RAM memory.
CREATE Create a new data array in RAM memory without allocating memory.

When commands created by CREATE is executed, they will push their
respective RAM addresses on the parameter stack. Memory space of
an actual array is allocated using ALLOT command.

VARIABLE Create a new command with a doCON token followed by a pointer to
RAM memory and allocate 2 bytes of space in RAM memory. When
a variable commands is executed, it pushes this RAM address on the
parameter stack.

CONSTANT Create a new command with a doCON token followed by the constant
value. When a constant command is executed, it pushes the constant
value on the parameter stack.

;; Defining words

; doCON (-- a)

; Run time routine forCONSTANT, VARIABLE and CREATE .

 .word IMMED-10

 .byte COMPO+5,"doCON"

DOCON:

 savetos

 pop tos

 MOV @tos,tos

 ret

; HEADER (-- ; <string>)

; Compile a new array entry without allocating code space.

 .word DOCON-6

 .byte 6,"HEADER",0

HEADER

 call #TOKEN

 call #SNAME

 call #OVERT

 call #DOLIT

 .word DOCON

 jmp CALLC

; CREATE (-- ; <string>)

; Compile a new array entry without allocating code space.

 .word HEADER-8

 .byte 6,"CREATE",0

 113

CREAT

 call #HEADER

 call #DP

 call #AT

 jmp COMMA

; CONSTANT (n -- ; <string>)

; Compile a new constant.

 .word CREAT-8

 .byte 8,"CONSTANT",0

CONST

 call #HEADER

 jmp COMMA

; VARIABLE (-- ; <string>)

; Compile a new variable initialized to 0.

 .word CONST-10

 .byte 8,"VARIABLE",0

VARIA

 call #CREAT

 call #DOLIT

 .word 2

 jmp ALLOT

4.14 Tools

430eForth is a very small system and only a very small set of tool commands are
provided. Nevertheless, this set of tool commands is powerful enough to help you
debug new commands he adds to the system. They are also very interesting
programming examples on how to use the commands in eForth to build applications.

 Generally, the tool commands present information stored in different parts of the
CPU in appropriate formats to let you inspect the results as he executes commands in
the eForth system and commands he defined himself. The tool commands include
memory dump, stack dump, dictionary dump, etc.

One important discipline in learning FORTH is to learn how to use the parameter
stack effectively. All commands must consume their input parameters on the stack
and leave only their intended results on the stack. Sloppy usage of the parameter
stack is often the cause of bugs which are very difficult to detect later, as unexpected
items left on the stack could result in unpredictable behavior. .S should be used
liberally during programming and debugging to ensure that the correct parameters are

 114

left on the parameter stack.

The parameter stack is the center for arithmetic and logic operations. It is where
commands receive their parameters and also where they left their results. In
debugging a new command which may use stack items and leave items on the stack,
the best was to debug it is to inspect the parameter stack, before and after its
execution. To inspect the parameter stack non-destructively, use the command .S .

DUMP Print 128 bytes of data starting at RAM address b to the terminal. It
dumps 16 bytes to a line. A line begins with the address of the first byte,
followed by 16 bytes shown in hex, 3 columns per bytes. At the end of a
line are the 16 bytes shown in ASCII characters. Non-printable
characters are replaced by underscores (ASCII 95). DUMP command in
most FORTH system takes an address and a length as parameters to dump
a memory array.

>NAME Return a code field address, xt, of a command from its name field address,

na. If xt is not a valid code field address, return 0. It follows the linked

list of the dictionary, and from every name field address we can get a

corresponding code field address. If this address is not the same as xt, we

go to the name field of the next command. If xt is a valid code field

address, we surely will find it. If the entire dictionary is searched and xt

is not found, it is not a valid code field address.
.ID Display the name of a command, given the name field address of this

command. It replaces non-printable characters in a name by
under-scores.

WORDS Display all the names in the dictionary. The order of words is reversed
from the compiled order. The last defined command is shown first.

;; Tools

; DUMP (a u --)

; Dump u bytes from a, in a formatted manner.

 .word VARIA-10

 .byte 4,"DUMP",0

DUMP

 call #DOLIT

 .word 7

 call #TOR ;start count down loop

DUMP1: call #CR,

 call #DUPP

 call #DOLIT

 .word 5

 115

 call #UDOTR

 call #DOLIT

 .word 15

 call #TOR

DUMP2

 call #COUNT

 call #DOLIT

 .word 3

 call #UDOTR

 call #DONXT

 .word DUMP2 ;loop till done

 call #SPACE

 call #DUPP

 sub #16,tos

 call #DOLIT

 .word 16

 call #TYPEE ;display printable characters

 call #DONXT

 .word DUMP1 ;loop till done

 jmp DROP

; .S (... -- ...)

; Display the contents of the data stack.

 .word DUMP-6

 .byte 2,".S",0

DOTS

 call #CR

 call #DEPTH ;stack depth

 call #TOR ;start count down loop

 jmp DOTS2 ;skip first pass

DOTS1:

 call #RAT

 call #PICK

 call #DOT ;index stack, display contents

DOTS2:

 call #DONXT

 .word DOTS1 ;loop till done

 call #DOTQP

 116

 .byte 4," <sp",0

 Ret

; >NAME (ca -- na | F)

; Convert code address to a name address.

 .word DOTS-4

 .byte 5,">NAME"

TNAME

 call #TOR

 call #CNTXT ;vocabulary link

 call #AT

TNAM1:

 call #DUPP ;check all vocabularies

 call #QBRAN

 .word TNAM2

 call #DUPP

 call #NAMET

 call #RAT

 call #XORR ;compare

 call #QBRAN

 .word TNAM2

 call #CELLM ;continue with next word

 call #AT

 call #BRAN

 .word TNAM1

TNAM2:

 call #RFROM

 jmp DROP

; .ID (na --)

; Display the name at address.

 .word TNAME-6

 .byte 3,".ID"

DOTID

 call #COUNT

 call #DOLIT

 .word 01FH

 call #ANDD ;mask lexicon bits

 117

 jmp TYPEE

; WORDS (--)

; Display the names in the context vocabulary.

 .word DOTID-4

 .byte 5,"WORDS"

WORDS

 call #CR

 call #CNTXT

 call #AT ;only in context

WORS1:

 call #QDUP ;?at end of list

 call #QBRAN

 .word WORS2

 call #DUPP

 call #SPACE

 call #DOTID ;display a name

 call #CELLM

 call #AT

 call #BRAN

 .word WORS1

WORS2: ret

5.14 FORTH Startup

The startup routine main is located at the beginning of the flash main memory, at
location C000H. It initializes the return stack pointer in the SP register, and the
parameter stack pointer in stack register. It thus completes hardware initialization,
and then jumps to COLD command which initializes the 430eForth FORTH Virtual
Machine, by copying the system variables from flash information memory Segment D
(at 1000H) to RAM memory starting at 200H, and starts running an application. The
default application in 430eForth is hi , which simply sends out a sign-on message and
falls into the text interpreter QUIT. The address of hi is stored in memory location
named 'BOOT at 200H. This address can be changed to point to an application
command. To build a turnkey system, the system variables must be saved in
Segment D so that when the application boots up, it has all the properly initialized
system variables.

Because all the system variable in 430eForth are initialized from a data array in the
information flash memory, 430eForth is eminently ROMable and suitable for
embedded applications in MSP430G2553. Before falling into QUIT to enter into the

 118

text interpreter loop, COLD command executes a boot routine whose code address is
stored in system variable 'BOOT. This code address can be vectored to an
application command which defines the proper behavior of the system on power-up
and on reset. Initially 'BOOT contains the code field address of hi .

hi The default start-up routine in 430eForth. It initializes the serial I/O device

and then displays a sign-on message. This is where you can customize his
application. From here one can initialize the system to start his own
application.

'BOOT A system variable loaded at RAM memory address $100. It is originally
vectored to hi .

COLD A high level compound command executed upon power-up, called from the
low level START routine. Its initializes the system variables, executes the
boot-up routine vectored through 'BOOT, and then falls into the text
interpreter loop QUIT.

;; Hardware reset

; hi (--)

; Display the sign-on message of eForth.

 .word WORDS-6

 .byte 2,"hi",0

HI

; call #STOIO

 call #CR ;initialize I/O

 call #DOTQP

 .byte 14,"430eForth v1.0",0 ;model

 jmp CR

; 'BOOT (-- a)

; The application startup vector.

 .word HI-4

 .byte 5,"'BOOT"

TBOOT

 savetos

 mov #UPP,tos

 ret

; COLD (--)

; The hilevel cold start sequence.

 .word TBOOT-6

 119

 .byte 4,"COLD"

COLD

COLD1:

 call #DOLIT

 .word UZERO

 call #DOLIT

 .word UPP

 call #DOLIT

 .word ULAST-UZERO

 call #CMOVE ;initialize user area

 call #TBOOT

 call #ATEXE ;application boot

 call #QUIT ;start interpretation

 jmp COLD1 ;just in case

CTOP .word 0FFFFH ;next available memory in code

dictionary

System Variables

The first 32 bytes starting at location $200 are used by system variables, as shown in

the following list:

Variable Address Function
'BOOT 200H Execution vector to start application command.
BASE 202H Radix base for numeric conversion.
tmp 204H Scratch pad.
HLD 206H Pointer to a buffer holding next digit for numeric

conversion.
>IN 208H Input buffer character pointer used by text interpreter.
#TIB 20AH Number of characters in input buffer.
'EVAL 20CH Execution vector switching between $INTERPRET and

$COMPILE.
CONTEXT 210H Vocabulary array pointing to last name fields of

dictionary.
CP 212H Pointer to top of dictionary, the first available flash

memory location to compile new command
DP 214H Pointer to the first available RAM memory location.
LAST 216H Pointer to name field of last command in dictionary.

The initial values of these variable are stored in the information flash memory
Segment D at location 1000H. The assembly commands .sect ".infoD" direct

 120

the linker to store these initial values there so that the COLD routine can initializes
them properly after boot-up.

The assembly commands .sect ".reset" direct the linker to store the address of
main in the reset vector at 0FFFEH, so that MSP430G2553 jumps to main on
boot-up.

;;; ;;;;;;

;;;;;;;;;;;;;;;;;

; COLD start moves the following to USER variables.

; MUST BE IN SAME ORDER AS USER VARIABLES.

 .sect ".infoD"

UZERO:

 .word HI ;200H, boot routine

 .word BASEE ;202H, BASE

 .word 0 ;204H, tmp

 .word 0 ;206H, >IN

 .word 0 ;208H, #TIB

 .word INTER ;20AH, 'EVAL

 .word 0 ;20CH, HLD

 .word COLD-6 ;20EH, CONTEXT pointer

 .word CTOP ;210H, CP

 .word DPP ;220H, DP

 .word COLD-6 ;214H, LAST

ULAST:

;== ======

=======

 .sect ".reset" ; MSP430 RESET Vec tor

 .short main ; .end

;== ======

=======

 121

Conclusions

What I give you in 430eForth is that in about 6000 bytes, you have a programming
language, an interactive operating system, and all the debugging tools to develop
applications on LaunchPad Kit, for LaunchPad Kit. The complete source code of
430eForth.asm is only 44 Kbytes long. It is an organic system, which can grow to
accommodate any application that MSP430G2553 microcontroller can host. It
allows you to read all its CPU and I/O registers, and all its data and program
memories. It also allows you to change the I/O registers and memories, and to add
new commands to the flash memory. By adding new commands, you can extend the
430eForth system and build a new system which will do what you want it to do.

In 430eForth, I try to reduce the FORTH language to its bare minimum, so that you
can learn this programming language quickly, and to use it to do useful work.
MSP430G2553, like all the newer microcontrollers available now, contains many
powerful and complicated I/O devices, and it takes the MSP430 User’s Guide 658
pages to explain them. With 430eForth, you can examine all the I/O registers and
modify them to make the I/O devices work the way you want them to work. There is
no better way to study the MSP430 User’s Guide than to read the book along with
430eForth, modifying the I/O registers and observe what the I/O devices do.
430eForth is a worthy companion to the MSP430 User’s Guide.

LaunchPad Kit is an excellent platform for FORTH. FORTH allows you to develop
substantial applications quickly and produce high quality code. You write
commands in small modules which can be tested exhaustively. Fully tested
commands can be used to build more powerful commands at higher conceptual levels,
until the last command, which becomes the application. This last command can be
used to configure a turnkey system, so that it will be executed when the system boots
up. You can do all these things with 430eForth on LaunchPad Kit.

FORTH is a programming paradigm very different from conventional programming
languages and operating systems. It can be embedded into a small microcontroller,
and empowers you to make the best use of the limited resources available in a
microcontroller. I hope you will learn this paradigm and enjoy these benefits:

 Integrated operating system and programming language on a small chip
 Interactive command interpreter
 Incremental compilation of new commands
 Bottom up coding and debugging
 Naturally structured programming
 Ready access to memory and I/O registers
 Ease in building turnkey applications

In explaining how this system is constructed, every step in the way, I hope to lay to
rest these myths, that computers are complicate, programming languages are
complicated, and operating systems are complicated. All these things can be very
simple, and can be understood by ordinary people and ordinary engineers. If you
understand this 430eForth system completely, the understanding can be carried over

 122

to any computer and microcontrollers.

People using computers are trained to be slaves. You are taught to push certain
buttons, and your are taught to push certain keys. Then, you get employed to push
buttons and keys to work as slaves. Computers, programming languages, and
operating systems are made complicated to enslave people.

Computers are not complicated beyond comprehension. Programming languages
and operating systems do not have to be complicated. If you get a sharp knife, you
can be the master of your destination. 430eForth is a sharp knife. Go use it.

 123

Conclusions

What I give you in 430eForth is that in about 6000 bytes, you have a programming
language, an interactive operating system, and all the debugging tools to develop
applications on LaunchPad Kit, for LaunchPad Kit. The complete source code of
430eForth.asm is only 44 Kbytes long. It is an organic system, which can grow to
accommodate any application that MSP430G2553 microcontroller can host. It
allows you to read all its CPU and I/O registers, and all its data and program
memories. It also allows you to change the I/O registers and memories, and to add
new commands to the flash memory. By adding new commands, you can extend the
430eForth system and build a new system which will do what you want it to do.

In 430eForth, I try to reduce the FORTH language to its bare minimum, so that you
can learn this programming language quickly, and to use it to do useful work.
MSP430G2553, like all the newer microcontrollers available now, contains many
powerful and complicated I/O devices, and it takes the MSP430 User’s Guide 658
pages to explain them. With 430eForth, you can examine all the I/O registers and
modify them to make the I/O devices work the way you want them to work. There is
no better way to study the MSP430 User’s Guide than to read the book along with
430eForth, modifying the I/O registers and observe what the I/O devices do.
430eForth is a worthy companion to the MSP430 User’s Guide.

LaunchPad Kit is an excellent platform for FORTH. FORTH allows you to develop
substantial applications quickly and produce high quality code. You write
commands in small modules which can be tested exhaustively. Fully tested
commands can be used to build more powerful commands at higher conceptual levels,
until the last command, which becomes the application. This last command can be
used to configure a turnkey system, so that it will be executed when the system boots
up. You can do all these things with 430eForth on LaunchPad Kit.

FORTH is a programming paradigm very different from conventional programming
languages and operating systems. It can be embedded into a small microcontroller,
and empowers you to make the best use of the limited resources available in a
microcontroller. I hope you will learn this paradigm and enjoy these benefits:

 Integrated operating system and programming language on a small chip
 Interactive command interpreter
 Incremental compilation of new commands
 Bottom up coding and debugging
 Naturally structured programming
 Ready access to memory and I/O registers
 Ease in building turnkey applications

In explaining how this system is constructed, every step in the way, I hope to lay to
rest these myths, that computers are complicate, programming languages are
complicated, and operating systems are complicated. All these things can be very
simple, and can be understood by ordinary people and ordinary engineers. If you
understand this 430eForth system completely, the understanding can be carried over
to any computer and microcontrollers.

 124

People using computers are trained to be slaves. You are taught to push certain
buttons, and your are taught to push certain keys. Then, you get employed to push
buttons and keys to work as slaves. Computers, programming languages, and
operating systems are made complicated to enslave people.

Computers are not complicated beyond comprehension. Programming languages
and operating systems do not have to be complicated. If you get a sharp knife, you
can be the master of your destination. 430eForth is a sharp knife. Go use it.

 125

Appendix 430eForth Commands

Stack Comments:
Stack inputs and outputs are shown in the form: (input1 input2 ... -- output1 output2 ...)
Stack Abbreviations of Number Types
flag Boolean flag, either 0 or -1
char ASCII character or a byte
n 16 bit number
addr 16 bit address
d 32 bit number

Stack Manipulation Commands
?DUP (n -- n n | 0) Duplicate top of stack if it is not 0.
DUP (n1 -- n2) Duplicate top of stack.
DROP (n --) Discard top of stack.
SWAP (n1 n2 -- n2 n1) Exchange top two stack items.
OVER (n1 n2 -- n1 n2 n1) Make copy of second item on stack.
ROT (n1 n2 n3 -- n2 n3

n1)
Rotate third item to top.

PICK (n -- n1) Zero based, duplicate nth item to top. (e.g. 0 PICK is DUP).
>R (n --) Move top item to return stack for temporary storage.
R> (-- n) Retrieve top item from return stack.
R@ (-- n) Copy top of return stack onto stack.
2DUP (d -- d d) Duplicate double number on top of stack.
2DROP (d1 d2 --) Discard two double numbers on top of stack
DEPTH (-- n) Count number of items on stack.

Arithmetic Commands
+ (n1 n2 -- n3) Add n1 and n2.
- (n1 n2 -- n3) Subtract n2 from n1 (n1-n2=n3).
* (n1 n2 -- n3) Multiply. n3=n1*n2
/ (n1 n2 -- n3) Division, signed (n3= n1/n2).
1+ (n -- n+1) Increment n.
1- (n -- n-1) Decrement n.
2+ (n -- n+2) Add two to n.
2- (n -- n-2) Subtract two from n.
2* (n -- n*2) Logic left shift.
2/ (n -- n/2) Logic right shift.
UM+ (n1 n2 -- nd) Unsigned addition, double precision result.
UM* (n1 n2 -- nd) Unsigned multiply, double precision result.
M* (n n -- d) Signed multiply. Return double product.
UM/MOD (nd n1 -- mod quot) Unsigned division with double precision dividend.
M/MOD (d n -- mod quot) Signed floored divide of double by single. Return mod and

quotient.
MOD (n1 n2 -- mod) Modulus, signed (remainder of n1/n2).
/MOD (n1 n2 -- mod quot) Division with both remainder and quotient.
*/MOD (n1 n2 n3 -- n4 n5) Multiply and then divide (n1*n2/n3)
*/ (n1 n2 n3 -- n4) Like */MOD, but with quotient only.
ABS (n1 -- n2) If n1 is negative, n2 is its two's complement.
NEGATE (n1 -- n2) Two's complement.
MAX (n1 n2 -- n3) n3 is the larger of n1 and n2.
MIN (n1 n2 -- n3) n3 is the smaller of n1 and n2.
WITHIN (n1 n2 n3 -- flag) Return true if n1 is within range of n2 and n3. (n2 <= n1 < n3)
DNEGATE (d1 -- d2) Negate double number. Two's complement.
D+ (d1 d2 -- d3) Add double numbers.
D- (d1 d2 -- d3) Subtract double numbers.
D- (d1 d2 -- d3) Subtract double numbers.

 126

Logic and Comparison Commands
AND (n1 n2 -- n3) Logical bit-wise AND.
OR (n1 n2 -- n3) Logical bit-wise OR.
XOR (n1 n2 -- n3) Logical bit-wise exclusive OR.
INVERT (n1 -- n2) Bit-wise one's complement.
0< (n -- flag) True if n is negative.
U< (n1 n2 -- flag) True if n1 less than n2. Unsigned compare.
< (n1 n2 -- flag) True if n1 less than n2.
= (n1 n2 -- flag) True if n1 equals n2.
> (n1 n2 -- flag) True if n1 greater than n2.
D> (d1 d2 -- flag) True if d1 greater than d2.

RAM Memory Commands
@ (addr -- n) Replace addr by number at addr.
C@ (addr -- char) Fetch least-significant byte only.
! (n addr --) Store n at addr.
C! (char addr --) Store least-significant byte only.
+! (n addr --) Add n to number at addr.
COUNT (addr1 -- addr+1

char)
Move string count from memory onto stack.

ALLOT (n --) Add n bytes to the RAM pointer DP.
HERE (-- addr) Address of next available RAM memory location.
PAD (-- addr) Address of a scratch area of at least 64 bytes.
TIB (-- addr) Address of terminal input buffer.
CMOVE (addr1 addr2 n --) Move n bytes starting at memory addr1 to addr2.
FILL (addr n char --) Fill n bytes of memory at addr with char.

Flash Memory Commands
I@ (addr -- n) Replace addr by number at flash memory addr.
IC@ (addr -- char) Fetch a byte from flash memory addr.
I! (n addr --) Store n at flash memory addr.
ICOUNT (addr1 -- addr+1

char)
Move string count from flash memory onto stack.

IALLOT (n --) Add n bytes to the flash memory pointer CP.
ITYPE (addr n --) Display a string of n characters in flash starting at address addr.
READ (addr1 addr2 --) Read 128 bytes from flash memory addr1 to RAM memory

addr2.
WRITE (addr1 addr2 --) Write 128 bytes from RAM memory addr1 to flash memory

addr2.
ERASE (addr --) Erase an 128 byte page in flash memory at addr.
FLUSH (--) Write modified flash buffers back to flash memory.

System Variables
'BOOT (-- addr) Contain address of application command to boot.
BASE (-- addr) Contain radix for number conversion
TMP (-- addr) Temporary scratch pad
SPAN (-- addr) Contain actual number of characters received by EXPECT
>IN (-- addr) Contain character offset into the input stream buffer.
#TIB (-- addr) Contain current length of terminal input buffer (TIB).
'TIB (-- addr) Contain current address of terminal input buffer (TIB)
'EVAL (-- addr) Contain interpreter or compiler to evaluate a command.
HLD (-- addr) Contain pointer to numeric string under construction.
CONTEXT (-- addr) Contain name field address of last command in dictionary
CP (-- addr) Contain first free address in flash memory
DP (-- addr) Contain first free address in RAM memory
LAST (-- addr) Contain name field address of command under compilation

Terminal Input-Output Commands

 127

EMIT (char --) Display char.
KEY (-- char) Get an ASCII character from the keyboard.
?KEY (-- char -1 | 0) Return an ASCII character from the keyboard and a true flag.

Return false flag if no character available.
. (n --) Display number n with a trailing blank.
U. (n --) Display an unsigned integer with a trailing blank.
.R (n1 n2 --) Display signed number n1 right justified in n2 character field.
U.R (n1 n2 --) Display unsigned number n1 right justified in n2 character

field.
? (addr --) Display contents at memory addr.
<# (--) Start numeric output string conversion.
(n1 -- n2) Convert next digit of number and add to output string
#S (n --) Convert all significant digits in n to output string.
HOLD (char --) Add char to output string.
SIGN (n --) If n is negative, add a minus sign to the output string.
#> (xd -- addr n) Terminate numeric string, leaving addr and count for TYPE.
CR (--) Display a new line.
SPACE (--) Display a space.
SPACES (n --) Display n spaces.
EXPECT (addr n --) Accept n characters into buffer at addr.
CHAR (-- char) Parse next command and return its first character.
TYPE (addr n --) Display a string of n characters starting at address addr.
BL (-- 32) Return ASCII Blank character.
DECIMAL (--) Set number base to decimal.
HEX (--) Set number base to hexadecimal.

Compiler and Interpreter Commands
:<name> (--) Begin a colon definition of <name>.
; (--) Terminate execution of a colon definition.
CREATE
<name>

(--) Dictionary entry with no parameter field space reserved.

VARIABL
E <name>

(--) Defines a variable. At run-time, <name> leaves its address.

CONSTAN
T <name>

(n --) Defines a constant. At run-time, n is left on the stack.

, (n --) Compile n to the dictionary in flash memory
IMMEDIA
TE

(--) Cause last-defined command to execute even within a colon
definition.

COMPILE
<name>

(--) <name> is compiled to dictionary.

[COMPILE
] <name>

(--) Immediate command <name> is compiled to dictionary.

LITERAL (n --) Compile literal number n. At run-time, n is pushed on the stack.
[(--) Switch from compilation to interpretation.
] (--) Switch from interpretation to compilation.
WORD<tex
t>

(char -- addr) Get the char delimited string <text> from the input stream and
leave as a counted string at addr.

(comment) (--) Ignore comment text.
\ comment (--) Ignore comment till end of line.
." <text>" (--) Compile <text> message. At run-time display text message.
.(<text>) (--) Display <text> from the input stream.
$" <text>" (-- addr) Compile <text> message. At run-time return its address.
ABORT"
<text>"

(flag --) Compile <test> message. At run-time display message and
abort if flag is true. Otherwise, ignore message and continue.

COLD (--) Start eForth system.
QUIT (--) Return to interpret mode, clear data and return stacks.
QUERY (--) Accept input stream to terminal input buffer.
NAME> (addr1 -- addr2) Traverse name field at addr1 and return code field address

 128

addr2.
NUMBER? (addr -- n -1 | addr

0)
Convert a number string to integer. Push a flag on tos.

EXECUTE (addr --) Execute command definition at addr.
@EXECU
TE

(addr --) Execute command definition whose execution address is in
addr.

EXIT (--) Terminate execution of a colon definition.

Compiler Structure Commands
IF (flag --) If flag is zero, branches forward to ELSE or THEN.
ELSE (--) Branch forward to THEN.
THEN (--) Terminate a IF-ELSE-THEN structure.
FOR (n --) Setup loop with n as index. Repeat loop n+1 times.
NEXT (--) Decrement loop index by 1 and branch back to FOR. Terminate

FOR-NEXT loop when index is negative.
AFT (--) Branch forward to THEN in a loop to skip the first round
BEGIN (--) Start an indefinite loop.
AGAIN (--) Branch backward to BEGIN.
UNTIL (flag --) Branch backward to BEGIN if flag is false. If flag is true,

terminate BEGIN-UNTIL loop.
WHILE (flag --) If flag is false, branch forward to terminate

BEGIN-WHILE-REPEAT loop. If flag is true, continue
execution till REPEAT.

REPEAT (--) Resolve WHILE clause. Branch backward to BEGIN.

Utility Commands
' <name> (-- addr) Look up <name> in the dictionary. Return execution address.
WORDS (--) Display all eForth commands
DUMP (addr --) Dump 128 bytes of RAM memory starting from addr.
IDUMP (addr --) Dump 128 bytes of flash memory starting from addr.
.S (--) Dump the parameter stack.

