430efForth for LaunchPad

Chen-Hanson Ting

Offete Enterprises, Inc.

2012

Chapter 1. eForth for LaunchPad

1.1 LaunchPad asa Firmware Development Platform

All these years, | have been looking for microcolér platforms on which | can
teach people how to program in the FORTH languagdelesigned a training course |
called Firmware Engineering Workshop. | couldriran open minded engineer to
program in FORTH in about a week, with a reasonelpable platform, i.e., a
microcontroller evaluation board with a FORTH opierg system loaded. Good
platforms are expansive, and low cost platformsraadequate. What | did was to
grab any microcontroller board at hand and usedlitdid not work well because
what | taught could not be easily replicated bygle@t home. People got frustrated
when they could not reproduce results | demonstrat@hen, Tl gave us the
LaunchPad Kit.

The microcontroller evaluation board | need musteha microcontroller with
reasonable capabilities. An 8-bit microcontrolieth a fast clock is adequate.
16-bit of 32-bit microcontrollers are of course rhuetter. The board must have at
least 8 KB of ROM memory and 1 KB of RAM memory.t must also have a
USART port to communicate with a terminal emuladora host PC. Any other I/O
devices will be icings on the cake. The more tbibel.

LaunchPad has all the components | listed aboveis also inexpensive, costing only
$4.30, including shipping. Itis a joke. | guddss desperate to compete against
Auduino and Basic Stamps. It uses MSP430G2558rinteresting 16-bit
microcontroller which has 16 KB of flash memorypagh to host a FORTH
operating system, 512 Bytes of RAM and many I/Oicks/to build substantial
applications. LaunchPad Kit also has a USB poitiwhonnects a PC and an
USART device in MSP430G2553. This serial interfaceecessary for a FORTH
system so that you can run and program MSP430G25&&ctively from a terminal
emulator on the PC.

LaunchPad is a lovely kit. You connect it throwgbdSB cable to your PC, and you
can program it to do many interesting things. nitsrocontroller MSP430G2553,
running at 1.1 MHz, is very capable of doing mamgiesting applications.

It is a very nice platform to program MSP430G2558ie FORTH language.
FORTH exposes MSP430G2553 to you. You can integdgtexamine its RAM
memory, its flash memory, and all the I/O deviaes®unding the CPU. You can
incrementally add small pieces of code, and teshtexhaustively. An interactive
programming and debugging environment greatly acatds program development,
and ensures the quality of the program.

The ealier version of LaunchPad used MSP430G22@1 which has only 2 KB of
flash memory. It is too small to host a compleBRHFH system. | built a
430uForth system for it, with only an interpretada small set of commands. It
demonstrated that we could use the LaunchPad something interesting. Now
that T1 delivers it with MSP320G2553, we can hawmaplete FORTH system with

interepreter and compiler. It is a good platfoonfirmware engineering projects.

Since 1990, | have been promoting a simple FORTguage model called eForth.
This model consists of a kernel of 30 some prireitRORTH commands which have
to be implemented in machine instructions of a Inastocontroller, and 190
compound FORTH commands constructed from the guendommands and other
compound commands. By isolating machine depermantnands from machine
independent commands, the eForth model can beg @asted to many different
microcontrollers. This model is ported to MSP43662, and the result is the
430eForth system, which runs very nicely on LaurchRit.

430eForth is written in MSP430 assembly. The dgsgovided so that you can
modify it to suite your application. The entiressgm takes up about 6000 bytes of
the flash memory, leaving lots of room for your kqgtion.

Needless to say, the heart of an LaunchPad is ®ie430G2553 microcontroller. If
you like to fully understand LaunchPad and makebist use of it, eventually you
have to deal with MSP430G2553 directly. You waMe to come back and read the
"MSP430x2xx Family User's Guide" (slaul44) fromCdrp, which is a huge 658
page document. Itis a dry technical documentferatasual reading. Actually, it
is not that bad. Only when you have to drive ohthe devices, like the I/O devices,
the control and status registers, etc., in MSP438G2you open the respective
chapter and learn all about this device, line bg,lword by word. If you have
430eForth running, you can examine the associagidters, and all the bits in these
registers will gradually make sense. Change the#senteractively, and observe the
effects. There is no better way to learn thesécdsyand to make them work the
way you want them to work. And, 430eForth is ybast friend to do that.

1.2 What isFORTH?

FORTH was invented by Chuck Moore in the 1960s piogramming language.
Chuck was not impressed by programming languagesating systems, and
computer hardware of that time. He sought the Est@nd most efficient way to
control his computers. He used FORTH to prograeryeeomputer in his sight.
And then, he found that he could design better aderp, because FORTH is much
more than just a programming language; it is arelewt computer architecture.

So what is FORTH really?

Many books and many papers had been written ablORITH. However, FORTH is
still elusive because it has many features andacheristics which are difficult to
describe. Now that it has moved from softwaredalivare, with technologies like
FPGA and custom IC, it is even more difficult tca@ately put it into words. Here |
will try to look at it from a completely differemingle.

FORTH is a list processor. It is very similar ttSP in spirit, but totally different in
form. Both languages assume that all computalgbl@ms can be expressed and
solved in nested lists.

FORTH has a set of commands, and an interprefaotess lists of commands.

FORTH commands are records stored in a memorycaitksl a dictionary.

Arecord of a FORTH command has three fields: kfield linking commands to

form a searchable list, a name field containingrthme of this command as an ASCII
string which can be searched, and a code fieldaauing executable code and data to
perform a specific function for this command. kyrhave an optional parameter
field, which contains additional data needed bg timmand. The link field and
name field allow the interpreter to look up a comohan the dictionary, and the code
field provides executable code to perform the fiomcassigned to this command.

A FORTH command has two representations: an eXtegpeesentation in the form of
a text string with ASCII characters; and an intérearesentation in the form of a
token, which invokes executable code stored indedeld. In many FORTH
systems, the tokens are addresses. However, tokartake other forms depending
on implementation. For example, Java, which iagant of FORTH, uses byte
tokens.

There are two types of FORTH commands: primitiveRFEl commands having
machine code in their code fields, and compound B®@Bommands having token
lists in their code fields.

The FORTH interpreter processes lists of commamdsxt strings. A list of

FORTH commands contains a sequence of stringssemiag FORTH commands,
separated by white spaces and terminated by agarreturn. The interpreter parses
out commands in the text strings into tokens aretetes code represented by these
tokens. When the FORTH interpreter encountersnaifore command, it executes
the machine code in its code field. When it entersna compound command, it
processes the token list in its code field. Hoprdcesses the token list depends
upon how tokens are defined and implemented.

The text interpreter operates in two modes: ingtipg mode and compiling mode.
In the interpreting mode, a list of command narnsasterpreted; i.e., commands are
parsed and executed. In the compiling mode, afisommand names is compiled;
i.e., commands are parsed and corresponding t@ersompiled into a token list.
This token list is given a name to form a new coombcommand, adding a new
command record in the dictionary.

New compound commands are compiled to representaieam lists. This is the
most powerful feature of FORTH, in that you can pdennew compound commands,
which replace lists of existing commands, both ftiva and compound. The syntax
to compile a new compound command is:

: <name> <list of existing commands> ;

Nested token lists are added as new compound codsmantil the final compound
command becomes the solution of your problem. slasé compiled and tested from
the bottom up. The solution space can be explrddr and farther, and an
optimized solution can be found more quickly.

Linear, sequential token lists are enhanced byrabsitructures like branch structures

and loop structures. A structure is a token histde which the execution sequence
can be modified dynamically. The following figulskows a sequential structure, a
branch structure and a loop structure.

o M M e T

\ v Y

Sequential Stucture Branch Structure Loop Structure

A structure has only one entry point and one egiihf although it may have many
branches inside. Structures can be nested, buhotayverlap with one another. A
structure can therefore be considered an enhanked.t A compound command is
a structure given a name.

Using the concept of structures, a new compoundwama has the following syntax:
: <name> <list of structures> ;

The fundamental reason why FORTH lists (commartd &ad token lists) can be
simple, linear sequences of commands is that FO&SES two stacks: a return stack
to stored nested return addresses, and a parastestkrto pass parameters among
nested commands. Parameters are passed imptinitlye parameter stack, and do
not have to be explicitly invoked. Therefore, FGRGommands can be interpreted
in a linear sequence, and tokens can be storaohpies linear token lists. Language
syntax is greatly simplified, internal represermatof code is greatly simplified, and
execution speed is greatly increased.

A FORTH Virtual Machine thus needs two stacks,cedfit means to traverse nested
token lists, and a CPU within a reasonable instvacdet and memory device to
support a small number of primitive commands. #F@rsuch an implementation
which has been ported to many commercial microgsme and microcontrollers.

Auduino Kit with an MSP430G2553 microcontrollerais ideal platform for an
eForth implementation, 430eForth system.

1.3 FORTH for Firmware Development

To use FORTH to develop applications for MSP430@2kEh LaunchPad Kit, you
have to have the following components:

First, you need the $4.30 LaunchPad Kit with an 4&Ble connecting to PC.
Second, on the PC, you need Code Composer StitliarbIintegrated Development
Environment (IDE) from Tl Corp to assemble 430ekortYou can download it for
free from www.ti.com.

Code Composer Studio 5.2 contains an MSP430 assertband C++ compilers,
and a debugger. It also loads assembled or cothpiigect code to MSP430G2553
through the USB cable. | only use the MSP430 abkamo assemble the source
code of 430eForth. Once 430eForth is loaded to 48882553, all programming
and debugging operations are performed from a tedn@mulator on PC, through the
USB cable connected to LaunchPad Kit. USB drieeesinstalled automatically
when you install Code Composer Studio.

On the PC, | use HyperTerminal to communicate wahnchPad Kit.
HyperTerminal comes with Windows, and can be aezkdwough \Start\All
Programs\Accessories\Communication\HyperTermin&itarting at Windows 7,
Microsoft stopped bundling HyperTerminal with Wivde However, you can still
download HyperTerminal application from MSDN websit

There are other terminal emulators for PC to comoation with LaunchPad.
RealTerm can be downloaded from SourceForge (/l&atterm.sourceforge.net/).
It has many more options than HyperTerminal, baythwork similarly.

You have to set up communication protocols on Hypeninal or RealTerm so that
they will communication with LaunchPad. The sefpapameters are 2400 baud, 1
start bit, 8 data bits, no parity, 1 stop bit, aadflow control.

To develop programs for embedded systems, the atiomal methodology is to write
source code in C or in assembly. The source dempiled or assembled.
Object code is linked by a linker to produce exerutode, which is loaded to the
target system. Now, you cross your fingers and tur power. Most likely, the
system does not work, and you enter into the dehggthase of development.

To debug a program in an embedded system, youlotedf sophisticated tools, like
simulator, in-circuit emulator (ICE), an oscillogeg and a good logic analyzer. You
set up break points, and trace the microcontroligructions cycle by cycle. Itis
very difficult when the application program is largnd complicated, especially when
you can only observe the microcontroller from tisale.

The Code Composer Studio streamlines the progragprimcess. You write your
code in its edit perspective. You press the caogrimiitton to compile the assembley
code. Then, you cross your fingers and pressodn/iun button. If it works, great

for you. If it does not work, you can get lotsh&fp in the debugger perspective.
You can set up break points, You can single $tegugh the code. You can watch
memory, registers and 10 devices. Debugging isanatasy job, even with Code
Composer Studio.

FORTH provides you the proper tools. You embedditeugging tools inside the
microcontroller in the form of an interactive FORDiderating system. Source code
in the form of many small commands is compiledhmytarget microcontroller in the
embedded system. You can control the microcoetrédbm within, and observe its
behavior from inside out. Break points are notessary, because FORTH
commands naturally break at their ends, and yowgoary their results interactively.
New commands are compiled, tested, and debuggeshieatally. The solution
space can be explored quickly, and almost exhaalgtiv Reliable system can thus be
built quickly. FORTH commands are lists of nedist$, and are very compact.
Substantial applications can be stored in very kmemory area.

Chapter 2. 430eForth for MSP430

2.1 Introduction

For a very long time, firmware engineering mearpriogram a UV Erasable PROM
chip and to insert it on a board which containedierocontroller, some RAM
memory chips, and some 1/O chips, and a sockéhtolJV EPROM. Then flash
memory chips replace UV EPROM's. And then evenghs integrated into a single
microcontroller chip, and we now have ISP, In Sysierogramming, which allows
you to program the microcontroller in its own sdckeLaunchPad Kit integrates an
MSP430G2553 microcontroller with all necessary e components on a small
printed circuit board, and captures the fancy néa generation of will-be firmware
engineers and DIY hobbyists. After 20 years oflengenting eForth on many
different microcontrollers, | am certainly of thpinion that eForth is the FORTH best
suited for microcontroller.

The original eForth was implemented in Direct Tlr&odel by myself and Bill
Muench. Dr. Richard Haskell implemented the f8abroutine Thread Model in
86se4th.asm for 8086 and 68000. | took the origif@th86.asm file and modified
it so it could be assembled by the MSP430 assermbféode Composer Studio 5.2
development system from TI. | call it 430eFortledngse it is configured specifically
for MSP430G2553, used on LaunchPad Kit.

The most important features of 430eForth are theviing:

1. Subroutine Thread Model.

2. Using byte addresses to access flash and RAMamyem

3. All assembly code are in a single 430eForth.fiem

4. New FORTH code are written directly to flash nogeyn

5. No interrupts and no multitasking.

6. Information flash memory Segment D is used iisilize variables.
7. Ease in building turnkey applications

These features make 430eForth a very simple, easset, easy to understand and
easy to modify. That why FORTH is prefixed with"a.

2.2 Installing Tools
Here are the steps you can follow to get everythimging.
Get an LaunchPad Kit board from DigiKey for abodt3p.

Download the Code Composer Studio 5.2 from Tl wibh s
http://www.ti.com

Install Code Composer Studio 5.2. Do not conrfeetiSB cable until the software
installation is complete.

To check on these USB drivers, plug in the cabtkgmto
Start\Control-Panel\System\Hardware\Device-Managémder Ports (Com & LPT),

8

you will see MSP430 Application UART(COM X). Rembear the COM port
number X for use with HyperTerminal or RealTerm.

2.3 Assembling 430eForth

You have to be thoroughly familiar with Code ComgoStudio 5.2 in order to get it
assembling 430eForth and get the LaunchPad to wdtkllow the two CCS
documents Slaul57 (Code Composer Studio v5.1 USerige for MSP430) and
Spru509 (Code Composer Studio Development Tools @&tting Started Guide). |
will not repeat the steps that you must go throtaggpet CCS up. | will only
highlight the steps that are essential to get 8@=Eorth system assembled and
running.

Code Composer Studio presents its window in "Petsms". A perspective is a
collection of panels showing relevant informatidioat the project at certain stage of
program development. The first perspective is'Hut Perspective”, which
contains a Project Navigation Panel to the leftl taxt editing panel to the upper
right, and Console Panel at lower left, and a RmobiPanel at lower right. This is
where you enter source code, do your editing, asdrable your code.

In the CCS window, select Project>New CCS Projeth. the New CCS Project
window, enter a project name, like 430eforth, i@ Broject Name box. A default
path is shown in the Location panel. You can clkeahg path by clicking the box to
the right of Location panel, and then navigatéhfblder you want.

Select MSP430G2553 as the Device.

In the Advanced Setting Options, change Output Rofrom ELF to COEF. This is
very important. If the assembler sends out an feFthe linker will not recognize

it and produces a fatal error. No .out file will produced and you will be stuck in a
deep hole. At this point the New CCS Project windooks like the following:

- -
s New CCS Project —

CCS5 Project —4
Create a new CCS Project. -,_’ /

Project name: ;1.30leForth

Output type: | Executable -]

Use default location

1 | SN2 30uForth-source'\d30eForth Browse..,
Device
Eamily: [MSP430 -
Variant <s.e|ect or type filter text> ~ | MSP430G2553 v|
LConnection: [TI W5P430 USBL [Default] vl

v Advanced settings

Device endianness: little
Compiler version: I'F'I\-\QJ..U v‘ I More.., ‘
Qutput format: llegacy COFF v|

Linker command file: <automatic= -
Runtime support library: <automatic> -

@ _ Back | ﬂr:;t -] | [Finish _] l Cancel]

In the Project Template Options and Examples pae#&tct Empty Projects>Empty
Assembly-Only Project option and the New CCS Ptojendow looks like this:

10

. :
s New CCS Praject i | B |

CCS Project g

Create a new CCS Project. f __,{';

Project name: 430eForth

Output type: | Executable Y‘

[¥] Use default location

ony | Chd30\430uForth-source\d30eForth Browse.,,
Device
Eamily: | MSP430 -
Variant: <select or type filter text> ~ | MS5P430G2553 i |
Connection: | T1 MSP430 USEL [Default] ~|

» Advanced settings

~ Project templates and examples

type filter text Creates an empty assembly-only project
fully initialized for the selected device.

mpty Projects

L Emnpty Project ‘
[& Empty Assembly-only Project |
[Z Empty RTSC Project k|
[Empty Grace (MSP430) Project ‘ |
| Basic Examples i
[& Blink The LED Ic I

(?' < Bacl MNext = [Finish] l Cancel ‘

Click Finish button and the Studio 5.2 Window shows the new project. You are
ready to go to work.

In the workspace folder CCS built for you, you viilk the new project 430eForth as

a new folder. Copy 430eForth.asm into this folded open this file in the Edit
perspective. The CCS window appears like the atg:

11

r = "\
«+ CCS Edit - 430eForth/430eFarth.asm - Code Composer Studia o= | B [

File Edit View Mavigate Project Run Scripts Window Help

- B W G- : oo - B Hg C/Ce+ #pccs ™
T Project Explorer &3 = 0O || [8 430eForth.asm &2 | ==m]
i L e e D e e e e T
4 |l=> 430eForth [Active - Debug] 1ist
[nit! Includes - -title "msp43@ eForth 1.8"
» |8 430eForth.asm 5 .cdecls C,LIST,"msp438g2553.h" ; Include device header file

|g Ink_mspd30g2553.crmd
[# MSP430G2553.caml [Active
b 3= 430eForth 1
. iz 430eForth 2
4 7= 430EFORTH_3
: 9‘;;9‘ Binaries
[l Includes
p (= Debug
|5] 430eForth_3.asm
¢ g Ink_mspd30g2553.cmd

[MSP430G2553.caml [Active

o7 430uForth =
| Bl Console 32 * Bl ="0 |“_ Problems &2 =0
Mo consoles to display at this time. |0 items
Description
ET il ¥ < m b
o* Licensed £ 430eForth

Pull down the Project Menu and select the Builddjdtion. CCS starts assembling
430eforth.asm, and displays lots of messages i€timsole panel at the bottom of the
Edit panel. Its final message is: "Build Fiinshed'Scroll up the Console panel, and
you will see the most important message:

'Finished building target: 430eForth.out'

Assembling is successful. However, above it arevdfings. In the Problems
panel to the right, it also shows the results:ri@e 13 warnings, 0 others”. The
linker does not find many of the interrupt vectarsl is not happy. Ignore the
warnings. If you are curious, you can Google the twarning# 10374-D", and find
out its meaning. It there are error messagesywibhave to correct the mistakes
until the linker produces and .out file.

Pull down Run menu and select Debug option. Yeunaw presented with a Debug
Perspective, where you can test, debug and run=¢80e In the following figure |
show you my favorite perspective panels. The Dedarngl is at upper left. The
Registers/Breakpoints panel is at upper right. HEti panel is at lower left. The
Memory/Disassembly is at lower right.

12

| [8 430eForth.asm 22 |

IF= ™
% CCS Debug - 430eForth/430eForth.asm - Code Composer Studio L= [/ [
File Edit View Project Tools Run Scripte Window Help

|‘=: - @ W & - %ﬁ - ol E’ @ Gl [i;k ces
e Debug &3 =0 e Registers &2 | ®a Breakpoints| AT
L IE R I N IR N
a '+ 430eForth [Code Composer Studio - Device Debugging] || Name Value Description -
4 g TIMSP430 U_SBl_J’MSPil_BU_ (S_L!_sp_e_ndr_:dj | ¥4 Core Registers '_ |
= §5../430eForth,asm:94:26705() at C:\430'430uForth- 1 pe 0xC000 Coe 3
i sp 0x03F6 Core
i SR 00000 Core
it B3 00000 Core
8 Re 00000 Core
it R5 00378 Core
3 R6 0xCFDA Core
i R7 OxFFFF Core
) - I UIT-1 MAECE, Pt b
4| nr | 3 4| s (3
=al|la Memery Browser 2 | 22 Disassernbly =0

-

9@ ;3 Main entry points and COLD start data
-text
ain
nit
nop main pro
MoV #RPP,S5P set up s
6 clr tos
97 mov #5PP,stack
98 MoV . W #WDTPWHWOTHOLD , 8WDTCTL
mov #FWKEY+FSSEL1+FNG ,&FCTLZ ;
bis.b #843h,8P1DIR ;
call #DIAGNOSE
call #5TOIO
setup2
call RKEY
] o [
0" g Licensed

0200

|0x2f0 <Memory Rendering 1> 25 |

Hex 16 Bit - TI Style Hex |

Bx82Fa
BxB388
axwesle
Bwa32e
axa33e
axa34e
axa358
BxB368

B7FB AFEF A31F EFES9 FEF1 FEDB CD73 7FB3 -
8811 5528 4582 4868 1A62 50838 4998 8128
2248 8481 CZAB 81659 3282 COLE 4645 @Bal
E@@l DCes @982 4166 BEE4 1666 3818 1166
8276 6448 3189 30812 3802 CB24 81838 FARE
99FD DFFB D96C 87DF F/DE DSFF DO9FE FFAE
EF@6 7F67 7FF3 F2B5 FE/7 9F77 5FBD FB55
FFEF FD2@ @@lF seel @ege BBLF B87F 83D8
B386 83D2 B350 BEeR@ DFEE FF9Y 72CF 2FAT

[y

Bxaz7ve

In the Debug panel, the tool bar contains 12 bsiteimce | cannot draw the graphs, |
just list the buttons and show you what they do:

1. Remove all terminated launches
2. Resume

3. Suspend

4. Terminate

5. Step Into

6. Step Over

7. Assembly Step Into
8. Assembly Step Over
9. Step Return
10.Reset

11.Restart

12.Refresh

| mostly use Resume to start running, Suspendiwmrsinning, and Terminate to stop
debugging and return to the Edit Perspective.

When debugging, | use Assembly Step Into and AskeS8tep Over.

In the

Registers panel, | always display registers R0OGpdR R4 is TOS(Top of parameter
stack) and R5 is the parameter stack pointer. hdriMemory panel, | generally
display RAM memory from 200H to 3FFH. The retutack is from 3F8H down,

and the parameter stack is from 378H down.

13

Watrthie parameter stack generally

allows me to find problems and ways to correct them

OK. In the Edit panel, the line of code after MAINhighlighted, showing the
instruction about to be executed. You can puslsthp Into or Step Over buttons to
step through the code. As 430eForth is fairly wlelbbugged, you can push the
Resume button to run it.

24 TheTerminal Interface

| forgot to mention that the LaunchPad Kit musphegged in to the PC through the
USB cable, and that you will have to have Hyperieainstarted. HyperTerminal is
bundled in Windows until Windows 7. If you arengiWindows 8, Google it and
find how to install it.

On the HyperTerminal console pull down the Call mand select Disconnect option.
Then, pull down the File menu and select Propedp®n. In the Connect Using
dialog box, select the COM port you saw earliethie USB device assignment.

On my PC, the HyperTerminal in in Chinese, andvehaot learnt how to turn it back
into English. You have to bear with me showing ylo&i HyperTerminal windows in
Chinese. However, | hope you are familiar with Eggerminal and know what | am
talking about.

tt Properties | ? &r

JERE | EhsE

[EEE (MR | United States (1)

RS BT B A RIEEAIENEE -
&% (E: 111

EEEETRIEE

ERERW: [CoMd =

BRED..

{8 RS e bE) B R A ()
AR IR

[ok || cancel |

Click the Configuration button and a COMx Propertrgndow pops up. Select
2400 baud, 8 data bits, no parity, 1 stop bit, mmflow control. Then click OK
button to dismiss the COMx Properties window.

14

COM4 Properties -2 s |

Fort Settings |

Bits per second: | 2400 - |

Data bits: IE v]
Parity: |None v|
Stop bits: |‘I v]

| Bestore Defaults |

[ok || Conced || epy |

In the main Properties window, click on the Sesitap and the click the ASCII Setup
button, and an ASCII Setup window pops up. En@€ i@ the Line Delay dialog

box to insert 900 msec delay after sending eaehdfriext. Later you will

download source code files and you will need thig ef line delay.

[ascnz =)
ASCII fms
[7] EfEsE A AFITE

TREEEL: 00 e
SREEBC: 0 =i -

ASCI $

[T] T3 A A0S TI T E M OB T TRFAR (A

[T] #5382 AT ARSI 7 (00T ASCILEEE)
[V] R S R R A T (D

([®e || mE |

Click OK button to dismiss the ASCII Setup windowClick OK button in the main
Properties window and dismiss this window also.

When HyperTerminal is set up, and the Resume bugtpaoshed in CCS Debugger ,
both the red LED and green LED on the LaunchPaditdip. 430eForth enters into
a waiting loop for a “B” key. Not, hit the “B” kegn your keyboard. Receiving a
“B” key, 430eForth determines the baud rate, sehesoftware UART and enters
into the text interpreter of FORTH. You will séeetsign-on message generated by
430eForth:

430eForth v1.0

15

i - 7 CENE=SECE X
EEE EEE BRY B =SFO BRE
D@ @8 OB/

430eForth v1.0
ok
ok

72 0:01:26 i 2400 8-N-1 CAPS

Now you can type in FORTH commands and 430eForirewecute them.

430eForth, like the original eForth Model, is casasitive. Most of the FORTH
commands are in the upper case. So, you probadiy tw push Caps Lock key to
look the HyperTerminal in upper case mode.

Hitting Return key several times, and you shouklade messages are displayed on
the HyperTerminal console. You can now type in FEIRommands to interact
with 430eForth on LaunchPad Kit.

2.5 Testing 430eForth on LaunchPad Kit

To recapitulate, you have to install Code Comp&sedio 5.2. You have to connect
your LaunchPad Kit board to a USB port on your PBssemble 430eForth.asm, and
download its 430eForth.out file to LaunchPad KiOpen HyperTerminal on your
Windows and you get the sign-on message:

430eForth v1.10

Type these FORTH commands to test the system:
WORDS
HEX
200 DUMP
C000 DUMP
D700 DUMP

Note that 32eForth is in the hexadecimal base.

After bring up 430eForth, typ@ ORD&nd you will see a list of eForth commands on
the HyperTerminal console:

16

TR i) - - AR X [EEE=
ERE #\HE0 WRY EU0 @SE0 BB
O & 3 OB &

430eForth v1.0
ok
ok

WORDS
COLD 'BOOT hi WORDS .ID >NAME .S DUMP VARIABLE CONSTANT CREATE HEADER doCON IMM|
EDIATE :] ; OVERT $COMPILE $,n °UNIQUE ." $" ABORT" WHILE ELSE AFT THEN REPEAT

AHEAD IF AGAIN UNTIL NEXT BEGIN FOR $," LITERAL COMPILE [COMPILE] call, , WRITE
ERASE I'! TALLOT ALLOT ' QUIT EVAL ?STACK .OK [$INTERPRET abort" ERROR QUERY acc
ept kTAP TAP “H NAME? SAME? NAME>»> WORD TOKEN CHAR \ (.(PARSE parse ? . U. U.R
.R ."|] $§"| do§ CR TYPE SPACES SPACE NUMEER? DIGIT? DECIMAL HEX str #> SIGN #5 #
HOLD <# EXTRACT DIGIT FILL CMOVE REXECUTE TIB PAD HERE COUNT 2@ 2! +! PICK DEPTH
>CHAR BL ALIGNED CELLS CELL- CELL+ */ */MOD M* * UM* / MOD /MOD M/MOD UM/MOD WI
THIN MIN MAX < U< = ABS - DNEGATE NEGATE NOT D+ + 2DUP 2DROP ROT ?DUP LAST DP CP
CONTEXT 'EVBL%_ HLD >IN #TIB tmp BASE UM+ XOR OR AND 0< SWAP DUP DROP SPE >R R@
R> C@ C! @ ! branch ?branch next EXECUTE EXIT doLIT 'IC EMIT KEY ok

ok

ok

| I | [

771:49:36 1222 2400 8-N-1 CAPS

HyperTerminal breaks up a word at the right magjithe window console. You
will have to read across lines to see whole wordghere are about 200 FORTH
commands visible in 430eForth system.

These eForth commands are documented in the App@&rdyour reference.

Make sure that HyperTerminal inserts a 900 ms dafiey sending each line of text.
Then, you can download a text file by pulling dowansfer Menu and select Send
Text File option. From the file selection windaselect a file and push the Open
button. Or, double clicking the selected file. xff@om the selected file will be
sent to 430eForth, one line at a time, and yoused how 430eForth responds to
these lines.

2.6 Learning Moreabout eForth

If you are new to the FORTH programming languagdyas some prior knowledge
on a different FORTH system, you may want to lautk ia series of tutorials |
prepared for the earlier eForth systems. Therd&atessons in that many text files.
Your are encourage to take these lessons andriyjpe commands. You can also
download these files in HyperTerminal, and theretypthe final commands to test
loaded applications. These lessonXX.txt filesinobuded in the distribution
package with 430eForth.asm.

The contents of these lesson files are listederfaliowing table:

Lesson Contents

1 Hello, World!

2. Big characters

3. Forth Interest Group
4 Repeated patterns

17

5 The theory that Jack built
6 Help

7 Money exchange

8 Temperature conversion
9 Weather reporting

10 Multiplication table

11 Calendars

12 Sines and cosines

13 Square roots

14 Number conversion

15 ASCII character table
16 Random numbers

17 Guess a number

18

Chapter 3. Featuresin 430eForth Implementation

3.1 Memory Map

There are 16 Kbytes of flash main memory, and 528s0f RAM in MSP430G2553.
In addition it has 256 bytes of flash informatioemmory. These memories, CPU
registers, and 10 device registers are arrangsti@s in the following table:

Start Address| End Address Name and Function

0 OFFH | Special Function Registers
10H OFFH | 8-Bit peripheral registers
100H 1FFH | 16-Bit peripheral registers
200H 21FH | RAM, system variables
220H -- | RAM, free space
-- 378H | RAM, parameter stack
380H -- | RAM, Terminal Input Buffer
-- 3F8H | RAM, return stack
3F9H 3FFH | RAM, free space
1000H 103FH| Segment D, flash information memory
1040H 107FH| Segment C, flash information memory
1080H 10BFH | Segment B, flash information memory
10COH 10FFH| Segment A, flash information memory

0COO0OO0H OFFDFH| Flash main memory

OFFEOH OFFFFH| Reset and interrupt vectors

Two pointers are used by eForth to manage the RAd/flash memories. CP points
to the top of the dictionary In the flash main meyo When new commands are
compiled, DP is increased to make room for new @uakdata. DP points to the top
of the free space in RAM. When new variables analys are defined, DP is
increase to allocate space in RAM.

Currently, the eForth system occupies flash merfrorm 0COOH to OD788H.
About 10 Kbytes are available for you to add newrRF8 commands.

Initial values of system variables are stored igrBent D of the flash information
memory. This segment can be erased independeothythe flash main memory.
When you are satisfied with the application youéhdeveloped, erase Segment D and
copy the current values of variables into it. WIMBP430G2553 chip is reset, or
when the LaunchPad is powered up, your applicatiirun immediately. This is
how you build turnkey systems on the LaunchPad.

3.2 Flash Programming

MSP430G2553, with its flash memory, is very frignti FORTH. When 430eForth
is downloaded from CCS to LaunchPad, the flash nmg@loove the eForth
dictionary is all erased, and new commands andaatdoe written into the flash
memory with the eForth commaiid

From I!, a set for commands are defined to makessible to compile new FORTH

19

commands. These commands are shown in the foliptaivie:

Command | Stack Effects Function

I! na-- Write data n into flash memory at addrass

: n-- Compile data n to the top of dictionary. 8P
incremented by 2. It is the primitive FORTH compile

ERASE a-- Erase one page of flash memory. One [za512

bytes for flash main memory, and 64 bytes for flash
information memory.

WRITE src destn -- | Copy n bytes from src to defest must be an
address to the flash memory.

When you compile new words, they are added to flashthere is no easy way to
"forget” them. The flash must be erased in 512 Ipgtges, and it is difficult to
compile words in independently erasable pages. doieot have enough RAM
memory to store a page of code, erase this pafigesim make changes in RAM, and
write the new page back into flash memory.

This is the way to do code development:

1. Compile and test you code. Redefine the code tegkyauntil flash is full.

2. Reload 430eForth, and flash is erased. Compiléecicode first. Then go to
Step 1. Compile and test new code. And so forth.

3. When an application is done, load the applicatido & fresh 430eForth system.

4. Erase Information Flash Segment D biaEX 1000 ERASE

5. Copy system variables back to Segment D 200 1000 20 WRITE

Now you have a turnkey application, which will bogtwhen 430 is reset or power-up.
3.3 Software UART

MSP430G2553 on the LaunchPad does not have amaktbock. It runs on the
DCOCLK, internal digitally controlled oscillatort &.1 MHz. This clock is not
accurate enough to generate baud rate clocksW&RI. 430eForth therefore
includes a software UART which can lock to an exa¢tJART device by detecting a
“B” character from the external UART. When 430eRdyoots up, if falls into a
waiting loop for the “B” character. With the “B’haracter, it calculates the baud rate
of the external UART and uses this baud rate tostrat and receive characters.

Although MSP430G2553 does have a hardware UARTcdett uses two TX/RX
pins incompatible with the USB interface on the hehPad Kit. For compatibility
reasons, | keep the software UART. The limitai®that it runs well at 2400 baud.
It becomes unstable at higher baud rates.

3.4 Files

MSP430G2553 has only 512 bytes of RAM memory, aminot enough to handle
files and other mass storage requirements. Aeptesource files are sent to
430eForth for compiling through the serial termib&@B/COM port. To allow for
interpretation and compilation, a pause must bertad at the end of each line of text

20

sent to 430eForth. | set the end of line delayyperTerminal to 900 ms. It
probably could be half this value. Upon a comgilerror an error message will be
shown, but execution continues as the next lingexdfare still streaming out of the
serial port. ' You must manually watch for compaoaterrors. Generally, one error
will cause many other errors, and 430eForth wotddlt if it encounters serious
errors. When this happens, reload 430eForth fr@8.C

3.5 Case Senditivity

eForth is case sensitive, and must of its commarals the upper case. Itis
possible to make it case insensitive, like whatdlid 328eForth for Auduino. Let’s
see if there is a demand.

3.6 What 430eForth Does Not Have

430eForth has no compiler security to check orptdigng of conditionals when
compiling structures. Having an exalENin a colon definition will almost
certainly crash the system. In this case, execuwtiti show odd errors; and you
have to reload the 430eForth hex images. Do lefudawhen writing these
structures:

IF...THEN

IF...ELSE...THEN

BEGIN...AGAIN

BEGIN...UNTIL

BEGIN...WHILE...REPEAT

FOR...NEXT

FOR...AFT...THEN...NEXT

Remember: Structures can be nested but canndapver

430eForth does not support interrupts, multitaskirsgr variables, and local
variables.

All commands in the 430eForth dictionary are linkea single vocabulary. No
multiple vocabularies.

430eForth does not have an assembler. If you ttavede assembly routines, use
the MSP430 assembler in Code Composer Studio 5.2.

All these features can be added to 430eForth. iBigthetter to keep it simple so
people can understand if fully. If you have speaikeeds for specific tasks, | am
sure you can somehow implement them or have pé¢opielp you.

MSP430G2553 is a small microcontroller. 430eF@th seed we plantinit. You
can make it to grow into something useful for you.

21

Chapter 4. 430eForth Source Code

MSP430G2553 is a very interesting microcontroltenf TI Corp. It has a 16 bit
CPU with 16 registers, 16 KB of flash memory, 5328 of RAM memory, 256
bytes of flash information memory, and a host 6f dlevices. It is produced in a 16
pin DIP package, with 14 1/O pins. It is ideallyitable for many embedded
applications. Being a 16-bit CPU, it is a veryenfwost for a FORTH Virtual
Machine.

In 430eForth system, we adopt the Subroutine Timgadodel, in which command
tokens are represented by subroutine call instmstiand a compound command
consists of a list of subroutine call instruction$Nested token lists, as nested
subroutine lists, are executed naturally by MSP£8E83 CPU with very little
overhead in the nesting and un-nesting of subrewdalls and returns. It is also
possible to mix tokens with CPU machine instruciarnen optimizing FORTH
commands.

Using the Subroutine Threading Model, physically tompound commands has the
identical structure as the primitive commands, laoith types of commands are
generally terminated by a ret machine instruction.

The CPU stack pointer register sp is used as thenrstack pointer in the FORTH
Virtual Machine, and the register r5 is used asplrameter stack pointer. Both the
return stack and the parameter stack are locattéebihigh end of the RAM memory
area. The top element of the parameter stackclsechin register r4, called tos, and
it significantly increases the speed in accesdiegparameter stack.

Besides the stacks, the RAM memory area also goniél system variable, the
terminal input buffer, a word buffer to parse inptrings, and a text buffer to build
numeric strings for output.

In the original eForth Model, only 30 primitive comands were defined to enhance its
portability to a wide range of microcontrollers.n the 430eForth implementation, to
make it run faster, many compound commands areiteewin MSP430 assembly
code.

In the following sections, | will present the 430@efh system in its complete source
listing. The source code is commented liberalljowever, in-line comments are
only adequate to document the functions of thecoaode, but not sufficient for the
intentions behind the source code. To give myaatiugh room to discuss the
structures and the design requirements of all timencands, for one section of source
code, | add another section for comments. | hbgeformat will let me explain
more fully what the commands do and what was irgdrfdr them to do.

22

list
title "msp430 eForth 1.0"
.cdecls C,LIST,"msp430g2553.h" ; Include device h

: 7/7/2012 430eForth1.0, from eForth86.asm and 430u
: 7/14/2012 Move 430uForth2.1 from IAR to CCS 5.2

: 430eForth2.2

1 4/21/2011 430uForth

: Build for and verified on MSP430G2 LaunchPad from
: Assembled with IAR Embedded Workbench IDE

; Only the following FORTH commands are visible to

; +-1@ C! C@ DUP DROP SWAP OVER AND OR XOR

; . CRTYPE EXECUTE EXIT RED GREEN OFF

: Numbers are unsigned 16-bitintegers in hexadecim
; Asoftware UART isimplemented. TXDonP1.1. RX
; On power-up, press "B" or "b" to set baud rate.

; Setterminalbaudrateto2400baud. Notstabl
rates.

; Do notdisturb TXD and RXD, else the UART will
;Try:

; RED turnonred LED

; GREEN turn on green LED

; OFF turn off both LEDs

; 20C@ read P1 inputs. Press S2 switchto s
effects.

23

eader

Forth

Tl

theuser:

al only.
DonP1.2.

eathigher

not talk.

ee the

: Subroutine Thread Model of eForth

; Only the interpreterr is implemented due to memor y
limitation.

;ReturnstackpointerisSP,TOSisR4,anddatas tackpointer
is R5.

VariablesTEMP,CONTEXT #TIB,>INandDParein CPUreqisters
; R14 and R15 are used by the software UART, for ba ud rate
control.

; Itworks on MSP430G2231, but may work on other 43 O chips.

; The only peripheral used in P1 GPIO port.

;InspiredbythetinyForthbyLukeChanginTaiwan FIGChapter

4.1 FORTH Virtual Machine on M SP430G2553

msp430g2553.h contains all the register names ameks of bits in these registers.
It is included here first so that we can refertte tegisters and bits with mnemonic
names.

In the original eForth Model, a small group of FGHRGommands were identified as
kernel commands, low level commands, or primitigenmands. These commands
were coded in machine instructions of the host opicycessor. They allow the
underlying microcontroller to become a FORTH Viltachine. All other
commands were written as lists of commands, andalked high level commands or
compound commands. Compound commands are ligtsnoitive commands and
other compound commands. This division of commavais very useful in porting
eForth to many different microprocessors, becanbepmrimitive commands needed
to be rewritten when moving eForth to a new micogpssor.

In 430eForth, we retained this division. Howewe,use the Subroutine Threading
Model and optimize many compound commands so tigasystem executes at the
highest speed and occupies the least memory spatlecommands that can be
optimized are re-coded in assembly.

24

The CPU registers are assigned various functionsned in a FORTH Virtual
Machine (FVM) as follows:

Register FVM Name Function

RO(PC) Program counter
R1(SP) Return stack pointer
R2(SR) Status register

R3 Constant generator

R4 tos Top of parameter stack
R5 stack Parameter stack pointer
R6 tempO Scratch pad

R7 templ Scratch pad

R8 temp?2 Scratch pad

R9 temp3 Scratch pad

R10 Not used

R11 Not used

R12 Not used

R13 Not used

R14 rl4 UART delay counter
R15 rls UART delay

;; CPU registers

tosequ R4

stack .equ R5
tempO .equ RG6
templ .equ RY
temp2 .equ RS8
temp3 .equ R9

;;» R14-15 used by software UART

Assembly Macros

LOADTOS Pop the external parameter stack and do@ybpped item into tos
register. Itis used to implement DROP commanad,raany
other commands consuming the top two items on déin@npeter
stack. It uses stack register in post-incremedtes$ing mode

SAVETOS Push the top item on the parameter stablcghws cached in tos

register, on the external parameter stack. Iseduo implement
DUP command, and commands which pushes new ddteon
parameter stack. It uses stack register in thelpceement
addressing mode.

25

loadtos

mov.w @stack+,tos
.endm

savetos

.macro

.macro

decd.wstack

mov.w tos,0(stack)
.endm;; Constants

Constants Used by Assembler

Constant Value Function

COMPO $40 Lexicon compile-only bit
IMEDD $80 Lexicon immediate bit

CELLL 2 Size of a cell in bytes

BASEE 10 Default radix for number conversion
BKSPP 8 Back space ASCII character

LF 10 Line feed ASCII character

CRR 13 Carriage return ASCII character
CALLL $12B0 Machine code of call instruction
UPP $200 Start of user area

DPP $220 Start of free RAM space

SPP $378 Top of parameter stack (SP0)
TIBB $380 Terminal input buffer (TIB)

RPP $3F8 Top of return stack (RPO)
CODEE $C000 Start of FORTH dictionary
COoLDD $FFFE Reset vector

EM $FFFF Top of flash main memory

Flash memory allocation of 430eForth in bytes:

Address Contents

$1000 Information flash memory, Segment D
$C000 Start of FORTH dictionary

$FFFE End of FORTH dictionary

SFFFF End of flash memory

RAM memory allocation of 430eForth in bytes:

26

Address Contents

$0 Special function and 1/O registers
$200 System variables

$220 Free RAM space

$270 Initial PAD for number conversions
$378 Top of parameter stack

$380 Terminal input buffer

$3F8 Top of return stack

COMPO .equ 040H ;lexicon compile only bit

IMEDD .equ
MASKK .equ

CELLL .equ

BASEE .equ
VOCSS .equ
BKSPP .equ

LF .equ
CRR .equ
ERR .equ
TIC .equ
CALLL .equ

UPP .equ
DPP .equ
SPP .equ
TIBB .equ
RPP .equ

CODEE .equ
COLDD .equ

EM .equ

080H ;lexicon immediate bit
07F1FH;lexicon bit mask
2 ;Size of a cell
10 ;default radix
8 ;depth of vocabulary stack
8 ;backspace
10 ;line feed
13 ;carriage return
27 ;error escape
39 ;tick
012BOH;NOP CALL opcodes
200H
220H
378H ;data stack
380H ;terminal input buffer
3F8H ;return stacl
0COOOH ;code dictionary
OFFFEH ;cold start vector
OFFFFH ;top of memory

4.2 Sartup Code

Flash memory location OFFFEH is allocated for @tesctor.
contains an address pointing to the reset routii@.m When MSP430G2553 boots
up, it jumps to main and starts running.

the parameter stack pointer stack, and the topaokgos.

27

The reset vector

It firgtializes the return stack pointer sp,
It uses the default internal

clock DCOCLK at about 1.1 MHz. The Sub Main CI&MKCLK is derived from
DCOCLK, divided by 2, and will be used by the flamemory controller to read and
write the flash memory.

It then executes the command IO!, and falls inteag&ing loop, waiting the user to
type a “B” character on the keyboard. When it iee®a “B” character, it
determines the UART baud rate for the software UARIT the jumps to the eForth
cold boot routine COLD, which starts the eForth fekerpreter to execute commands
typed in by the user.

;; Main entry points and COLD start data
text
main:
init:
nop ; main program
mov #RPP,SP ; set up stack
clr tos
mov #SPP,stack
mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop watchdog ti mer
mov #FWKEY+FSSEL1+FNO,&FCTL2 ; SMCLK/2
bis.b #043h,&P1DIR ; P1.0 output
; call #DIAGNOSE
call #STOIO
;setup2
; call #KEY
; call #EMIT
; jmpsetup2
br #COLD

4.3 Device Dependent I/0

MSP430G2553 on the LaunchPad does not have amaktbock. It runs on the
DCOCLK. This clock is not accurate enough to gateebaud rate clocks for a
UART. 430eForth therefore includes a software UARich can lock to an
external UART device by detecting a “B” characten the external UART. When
430eForth boots up, if falls into a waiting loop tbe “B” character. With the “B”
character, it calculates the baud rate of the pat&ART and uses this baud rate to

28

transmit and receive characters.

The software UART uses P1.1 pin to transmit an@ Pih to receive.

KEY Wait until a character is received from the ke of UART. The ASCII
code of the received character is returned on stack

EMIT Transmit a character to TX line of UART.

1O Initialize software UART. Wait for “B” charaet received from RX lie.
Determine the baud rate of UART.

Delay Delay 1 bit time for UART transmitter and eee@r. A loop count is

stored in R15 register, as determined by !IO. Thisnt is copied from
R15 to R14, and R14 is decremented to 0. At 240Q0ipthe loop count
is 61 when the master clock DCOCLK is running atNIHz.

;; Device dependent I/O

, KEY(--¢)

; Return input character.
.word 0O
.byte 3,"KEY"

KEY

savetos

clrtos
keyl

‘receiver buffer

bit.b #4,&P1IN ;wait for start bit
jnZkey1

; bis.b #1,&P10UT ;turn on red LED
mowl5,ri4

rrarl4

call

#delayl ;delay half bit time

mow#8,temp0

key2 call

#delay ;

bit.b #4,&P1IN
rrc.b tos

key3 dectempO
jnZkey?2

call

#delay ;stop bit

: bic.b #1,&P10OUT :turn off red LED

ret

29

delay mowl5,r14
delayl
bit.b #4,&P1IN
decl4
jnzdelayl
ret

. EMIT (c-)
. Send character c to the output device.
.word KEY-4
.byte 4,"EMIT",0
EMIT
; bis.b #40h,&P10OUT ;turn on green LED
bic.b #2,&P10UT
mow#8,temp0 ;send 8 data bits
emitl call #delay ;start bit
rrc.b tos ;shift LSB to carry
jc emit2
bic.b #2,&P10UT
jmpemit3
emit2
bis.b #2,&P10UT
emit3 dedempO
jnzemitl
call #delay last bit
bis.b #2,&P10UT ;idle TXD
call #delay ;stop bit
; bic.b #40h,&P10OUT ;turn off green LED
loadtos
ret

;1 --)
. Initialize the serial 1/0 devices.
.word EMIT-6
.byte 3,"10"
STOIO
clrl5 ;wait for a "B" character from receive
bis.b #043h,&P10UT ;idle, TXD,turnonbot
iostol

30

hLED"s

bit.b #4,&P1IN :wait for start bit

jnziostol

bic.o #041h,&P10UT ;idleTXD,turnoffbot hLED"s
iosto2inal5

bit.o #4,&P1IN ;wait for a "B"

jz iosto2 ;R15 has count for 2 bi ttime

rrarl5 ;1 bittime

bic.o #041H,&P10UT ;turn off LED"s

ret
44 Kerne

doLIT | Start a literal structures in compound commandsalldws numbers to
be pushed on the parameter stack when the compmumechand is
executed.

next Terminate an indexed loop structures in comdatommand. A loop
starts when the loop index is pushed on the reftack. When next is
executed, it decrements this loop index on themettack. If resulting
index is not negative, jump back to repeat the lodpthe resulting
index is negative, pop the return stack to distlaedndex, and exit the
loop.

The literal structure and the indexed loop struetne show in the following figure:

31

LOOQF:

CALL JdoLIT

P

CALL next

LOOP

Loop Structure Literal Structure

> The kernel

; doLIT (--w)
; Push an inline literal.
.word STOIO-4
.byte COMPO+5,"doLIT"
DOLIT
savetos
poptemp0
mov@tempO+,tos
br tempO

 EXIT (=)
; Terminate a colon definition.
.word DOLIT-6
.byte 4,"EXIT"
EXIT
poptempO
ret

32

; EXECUTE (ca--)
; Execute the word at ca.
.word EXIT-6
.byte 7,"EXECUTE"
EXECU
mowutos,tempO
loadtos
br tempO

; next (--)
: Run time code for the single index loop.
;:next(--)\ hilevel model
. r>r>dupif1->r @ >r exit then drop cell+ >
.word EXECU-8
.byte COMPO+4,"next",0
DONXT
poptemp0
dec O(SP) ;decrement index
JOeNEXT1
poptempl ;discard index
incd tempO
br tempO
NEXT1:
br @tempO

Flow Control

?branch andbranch commands are used to build control structured@oypl
structures in compound commands. In the folloviiggre, an IF-ELSE-THEN
branch structure and a BEGIN-WHILE-REPEAT loop staue are illustrated:

33

BEGIN

addrl:

IF CALL ?branch
addrl

WHILE CALL ?branch
addr2

ELSE CALL branch
addr2

addrl:
THEN REPEAT | CALL branch
addr2: addrl
addr2:
IF-FLSE-THEN BEGIN-WHILE-REPEAT
Branch Structure Loop Structure

?branch Build a conditional branch in compound iw@nds.

branch Build an unconditional branch in compounchg@nds.

EXECUTE | Jump to an execution address on the top of themmteas stack. As
the execution address is a byte address, it musbineerted to a cell
address for jumping. The cell address is pusheathi@neturn stack
and a RET instruction is executed to cause the jump

EXIT Terminate a compound command. Since it isated as a call
EXIT command, the return address must be poppeitheffeturn
stack and then a ret instruction is executed. s defained for
compatibility. The call EXIT command can be simpdyplaced by a
ret machine instruction.

; ?branch (f--)

; Branch if flag is zero.
.word DONXT-6
.byte COMPO+7,"?branch”

QBRAN

poptempO
bit#OXFFFF,tos

34

loadtos

jz BRAN1
incd tempO
br tempO

; branch(--)
; Branch to an inline address.
.word QBRAN-8
.byte COMPO+6,"branch",0
BRAN
poptemp0
BRANL1.:
br @tempO

RAM Memory Access

MSP430G2553 has separated RAM memory and flash mem®he same set of
memory read commands can be used to read either &Alsh memory.
However, a different set of commands is necessawyrite to flash memory. The
flash memory writing commands will be discussedrat the compiler section.

@ Read a 16-bit data stored in the address onftihge @arameter stack.
The address is a byte address pointing to a lotatii® AM memory.

! Store the 16-bit data as the second item ompetier stack into the
address on top of the parameter stack.

C@ Read an 8-bit data stored in the address ooftthe parameter stack.

Cl! Store an 8-bit data as the second item on patearstack into the address
on top of the parameter stack.

These 4 memory commands access data stored in Ré&kbny. Since in
MSP430G2553, the I/O registers are mapped to thiel Remory space from 0 to
$1FF, we can control MSP430G2553 interactively gishese commands. This is
the greatest advantage 430eForth has over the Qidgramming environment
which is a Compile-Load-Test no-interactive system.

To write flash memory, we have theERASE , andWRITE commands. They
are discussed in a later section.

;! (wa--)

; Pop the data stack to memory.
.word BRAN-8
byte 1,"1"

STORE

35

mov.w @stack+,0(tos)
mov.w @stack+,tos
ret

, @ (a--w)
; Push memory location to the data stack.
.word STORE-2
.byte 1,"@"
AT
mov.w @tos,tos
ret

; Cl(cb--)
; Pop the data stack to byte memory.
.word AT-2
.byte 2,"C!",0
CSTOR
mov.b @stack+,0(tos)
inc stack
mov.w @stack+,tos
ret

, C@ (b--c)

; Push byte memory location to the data stack.
.word CSTOR-4
.byte 2,"C@",0
CAT
mov.b @tos,tos
ret

Return Sack

430eForth system uses the return stack for twoifspparposes: to save addresses
while recursing through a token list, and to stheeloop index for a FOR-NEXT
loop.

Return stack is used by the FORTH Virtual Machmedve return addresses to be
processed later. It is also a convenient plastdiee data temporarily. The return
stack can thus be considered as an extension patlameter stack. However, one
must be very careful in using the return stackdéonporary storage. The data
pushed on the return stack must be popped off beé&tris executed. Otherwise, ret

36

will get the wrong address to return to, and theteay generally will crash. Since
>R and R> are very dangerous to use, they arerbigs compile-only commands
and you can only use them in the compiling mode.

In setting up a looFzORcompiles>R, which pushes the loop index from the
parameter stack to the return stack. Inside thR-NEXT loop, the running index
can be recalled bBR@. NEXTcompiles call next with an address aff€dR When
next is executed, it decrements the loop indexhertdp of the return stack. If the
index becomes negative, the loop is terminateceratise, next jumps back to the
command afteFOR

>R Pop a number off the parameter stack and pusbeghe return stack.

R> Pop a number off the return stack and pushastihe parameter stack.

R@ Copy the top item on the return stack and pustoesthe parameter stack
without disturbing the return stack

SP@ | Push the current parameter stack pointer ooftogrameter stack. Itis
used to determine the depth of parameter stack.

, R>(—-w)
; Pop the return stack to the data stack.
.word CAT-4
.byte 2,"R",3EH,0
RFROM
savetos
poptemp0
poptos
br tempO

, R@ (--w)
; Copy top of return stack to the data stack.
.word RFROM-4
.byte 2,"R@",0
RAT
savetos
poptempO
poptos
push tos
br tempO

; >R (w--)
. Push the data stack to the return stack.
.word RAT-4

37

.byte COMPO+2,">R",0
TOR

poptemp0

push tos

loadtos

br tempO

, SP@(—-a)
; Push the current data stack pointer.
.word TOR-4
.byte 3,"SP@"
SPAT:
mov.w stack,tempO
savetos
mov.w tempO,tos
ret

Parameter Stack

The parameter stack is the central location wh#neumerical data are processed,
and where parameters are passed from one commandtteer. The stack items
have to be arranged properly so that they cantbeved in the Last-In-First-Out
(LIFO) manner. When stack items are out of orthezy can be rearranged by the
stack wordDUP, SWAP, OVER andDROP There are other stack words useful in
manipulating stack items, but these four are camneiito be the minimum set.

DROP Pop the parameter stack discards the topatein
DUP Duplicate the top item and pushes it on thaipater stack.
SWAP Exchange the two two item on the parameteksta
OVER Duplicates the second item and pushes it epénameter stack|.
; DROP (w--)
. Discard top stack item.

.word SPAT-4

.byte 4"DROP",0
DROP

loadtos

ret
; DURW--ww)

38

; Duplicate the top stack item.
.word DROP-6
.byte 3,"DUP"
DUPP
savetos
ret

; SWAP (wlw2--w2wl)
; Exchange top two stack items.
.word DUPP-4
.byte 4,"SWAP",0
SWAP
mov.w tos,tempO
mov.w @stack,tos
mov.w temp0,0(stack)
ret

; OVER (wlw2--wlw2wl)
; Copy second stack item to top.

.word SWAP-6

.byte 4,"OVER",0
OVER

mov.w @stack,temp0

savetos

mov.w tempO,tos

ret
Logic

The only primitive command which cares about lagiebranch . It tests the top
item on the stack. Ifitis zerBbranch will branch to the following address. If it
is not zero?branch will ignore the address and execute the commated tife
branch address. Thus we distinguish two logiceslzero for false and non-zero
for true. Numbers used this way are called lolgigd which can be either true or
false. Logic flags thus cause conditional branghimcontrol structures.

0< Examine the top item on the parameter stackdaoregativeness. Ifitis
negative, O< will return a -1 for true. If it isd® positive, O< will return a
0 for false.

AND Remove top two items on the parameter stackpasthes their bitwise
logic AND results on the parameter stack.

39

OR

Remove top two items on the parameter staclpashkes their bitwise
logic OR results on the parameter stack.

XOR

Remove top two items on the parameter stadkpaishes their bitwise
logic exclusive OR results on the parameter stack.

UM+

Add top two unsigned number on the data staxckraplaces them with the
unsigned sum of these two numbers and a carrymaoftthe sum.

FORTH does not have access to the carry flag in 48882553 CPU, and
UM preserves the carry flag to be used in doubtsgat arithmetic
operations. In 430eForth, most arithmetic commamdsoded in

1%

]

assembly antdM is not used often.

; 0<(n--1)

; Return true if n is negative.
.word SWAP-6
.byte 2,"0",3CH,0

ZLESS
tst

tos

moviOxFFFF,tos
jn ZLESS1

clr
ZLESS1:
ret

tos

; AND(ww --w)

; Bitwise AND.
.word ZLESS-4
.byte 3,"AND"

ANDD
and
ret

@stack+,tos

; OR (ww--w)

; Bitwise inclusive OR.
.word ANDD-4
.byte 2,"OR",0

ORR
bis

ret

@stack+,tos

; XORww--w)
. Bitwise exclusive OR.

40

.word ORR-4
.byte 3,"XOR"
XORR
xor @stack+,tos
ret

; UMH{ww--wcy)
; Add two numbers, return the sum and carry flag.

.word XORR-4

.byte 3,"UM+"
UPLUS

clr tempO

add @stack,tos

rlc tempO

mov tos,0(stack)
mov tempO,tos
ret

45 System Variables

In 430eForth, all variables used by the systenmaed together and are called
system variables. They are allocated in a RAM mgraaay starting from location
$200. They are all initialized by copying a tabfenitial values stored in flash
information memory, Segment D, starting from locat$1000.

When you finish a application, copy these variablask to Segment D, and the
application, hopefully, will boot up on reset.

Variable Address Function

'‘BOOT 200H Execution vector to start applicatioamenand.

BASE 202H Radix base for numeric conversion.

tmp 204H Scratch pad.

HLD 206H Pointer to a buffer holding next digir numeric
conversion.

>IN 208H Input buffer character pointer useddxt
interpreter.

#TIB 20AH Number of characters in input buffer.

'TIB 20CH Address of Terminal Input Buffer.

'EVAL 20EH Execution vector switching between SERPRET
and $COMPILE.

CONTEXT 210H Vocabulary array pointing to lastmeafields of
dictionary.

CP 212H Pointer to top of dictionary, the firgadable flash
memory location to compile new command

41

DP 214H Pointer to the first available RAM memory
location.

LAST 216H Pointer to name field of last command i
dictionary.

;; System and user variables

. BASE (--a)
; Storage of the radix base for numeric I/O.
.word UPLUS-4
.byte 4,"BASE",0
BASE
savetos
mow#202H,tos
ret

, tm(--a)
;A temporary storage location used in parse and fi nd.
.word BASE-6
.byte COMPO+3,"tmp"
TEMP
savetos
mow#204H,tos
ret

; #TIB (--a)
; Hold the character pointer while parsing input st ream.
.word TEMP-4
.byte 4"#TIB",0
NTIB
savetos
mow#206H,tos
ret

; >IN(--a)

; Hold the character pointer while parsing input st ream.
.word NTIB-6
.byte 3,">IN"

INN

42

savetos
mow#208H,tos
ret

, HLI(- a)
; Hold a pointer in building a numeric output strin
.word INN-4
.byte 3,"HLD"
HLD
savetos
mow#20AH,tos
ret

. 'EVAL (--a)
;A area to specify vocabulary search order.
.word HLD-4
.byte 7,"EVAL"
TEVAL
savetos
mow#20CH,tos
ret

. CONTEXT (--a)
;A area to specify vocabulary search order.
.word TEVAL-6
.byte 7,"CONTEXT"
CNTXT
savetos
mow#20EH,tos
ret

, CP (-a)
; Point to the top of the code dictionary.
.word CNTXT-8
.byte 2,"CP",0
CP
savetos
mow#210H,tos

43

ret

, DP (--a)

. Point to the bottom of the free ram area.
.word CP-4

.byte 2,

DP
savetos

"DP",0

mow#212H,tos

ret

; LAST (--a)
; Point to the last name in the name dictionary.
.word DP-4

.byte 4,

LAST
savetos

"LAST",0

mow#214H,tos

ret

4.6 Common Functions

Arithmetic

This group of FORTH commands are commonly usedriting FORTH applications.

?DUP

Duplicate the top item on the parameter sfatks non-zero.

ROT

Rotate the top three items on the parametek.starhe third item is
pulled out to the top. The second item is pusledndto the third
item, and the top item is pushed down to be therskdem. ROT is
unique in that it accesses the third item on thrarpater stack. All
other stack commands can only access one or twk iséans. In
FORTH programming, it is generally accepted that simould not try to
access stack items deeper than the third item. nWaoe have to
access deeper into the data stack, it is a goaltbme-evaluate your
algorithm. Most often, you can avoid this situathoy factoring your
code into smaller parts which do not reach so d&epthe parameter
stack.

2DROP

Discard the top two items on the paramesekst

2DUP

Duplicate the top two items on the parameterks

Add the top item on the parameter to the sectamd,iand then pops th

(1%}

top item off the parameter stack. It is recodedssembly for speed.

44

INVERT Invert each individual bit in the top itenm the parameter stack.
often called 1's complement operation.

Itis

NEGATE | Negate the top item on the parameter statiks often called 2's

complement operation.

DNEGATE | Negate the top two items on the parameter stack,3@sbit double

integer.

- Subtract the top item on the parameter stack ttarsecond item, and

then pops the top item off the parameter stack.

ABS Replace the top item on the parameter stadk itgitabsolute value.

> Common functions

; ?DUP (w--ww]|O0)
; Dup tos if its is not zero.
.word LAST-6
.byte 4,"?DUP",0
QDUP
tst tos
jnz DUPP
ret

; ROT(wl w2 w3 --w2w3wl)
; Rot 3rd item to top.

.word QDUP-6
.byte 3,"ROT"
ROT
call #TOR
call #SWAP
cal #RFROM
call #SWAP
ret

; 2DROP (ww --)
; Discard two items on stack.
.word ROT-4
.byte 5,"2DROP"
DDROP
call #DROP
CALL #DROP
ret

45

; 2DUP (w1l w2--wlw2wlw2)
; Duplicate top two items.

.word DDROP-6

.byte 4,"2DUP",0

DDUP
call #OVER
call #OVER
ret

;+ (ww--sum)

; Add top two items.
.word DDUP-6
.byte 1,"+"

PLUS
add (@stack+,tos
ret

; D+ (dd--d)
; Double addition, as an example using UM+.

.word PLUS-2
.byte 2,"D+",0
DPLUS
; call #TOR
call #SWAP
call #TOR
call #UPLUS

: call #RFROM
call #RFROM

call #PLUS
call #PLUS
ret

; NOT(w --w)

; One's complement of tos.
.word DPLUS-4
.byte 3,"NOT"

46

INVER

invtos
ret

;21 (w--w)

; Divide by 2.
.word INVER-4
.byte 2,"2/",0

TWOSL
rratos

ret

; NEGATE(n ---n)

; Two's complement of tos.

.word INVER-4

.byte 6,"NEGATE",0
NEGAT

invtos

inctos

ret

. DNEGATE (d---d)

; Two's complement of top double.

.word NEGAT-8
.byte 7,"DNEGATE"
DNEGA

call #INVER
call #TOR
call #INVER
call #DOLIT
word 1

call #UPLUS
call #RFROM
call #PLUS

ret

; - (nN1n2--nl1-n2)

47

. Subtraction.
.word DNEGA-8

.byte 1,"-"

SUBB
sub @stack+,tos
invtos
inc tos
ret

; ABSn--n)

; Return the absolute value of n.
.word SUBB-2
.byte 3,"ABS"

ABSS
call #DUPP
call #ZLESS
call #QBRAN
.word ABS1
call #NEGAT

ABS1: ret

Comparison

The primitive comparison commands in 430eForth?mranch and 0<.
However, ?branch is at such a low level that itdsused in compound
commands. ?branch is secretly compiled into comg@ommands by IF as an
address literal. For all intentions and purpos&scan consider IF the equivalent
of ?branch. When IF is encountered, the top itarthe parameter stack is
considered a logic flag. If it is true (non-zerb)e execution continues until ELSE,
then jump to THEN, or to THEN directly if therens ELSE clause.

The following logic words are constructed using tR...ELSE... THEN structure
with O< and XOR. XOR is used as a "not equal" apmr because if the top two
items on the parameter stack are not equal, the ¥@#drator will return a non-zero
number, which is considered to be true.

[1%)

= Compare top two items on the parameter stackthey are equal, replac
these two items with a true flag; otherwise, repldem with a false flag.

U< Compare two unsigned numbers on the top of dnarpeter stack. If the
top item is less than the second item in unsigradparison, replace these
two items with a true flag; otherwise, replace theith a false flag. This
command is very important, especially in compasddresses, as we
assume that the addresses are unsigned numbetiagoanunique

memory locations. The arithmetic comparison operatcannot be used

48

to determine whether one address is higher or |olaaT the other.

Using < for address comparison had been the soaglse of many failure
in the annals of FORTH. We don not have this probin
MSP430G2553 since it has only 32 KB of flash memonjowever,
watch out when you move 430eForth to a bigger chip.

Compare two signed numbers on the top of thenpetex stack. If the
top item is less than the second item in signedpawison, replace these
two items with a true flag; otherwise, replace theith a false flag.

MAX

Retain the larger of the top two items on tlegmeter stack. Both
numbers are assumed to be signed integers.

MIN

Retain the smaller of the top two items on fla@ameter stack. Both
numbers are assumed to be signed integers.

WITHIN

Check whether the third item on the parameter staekthin the range as
specified by the top two numbers on the paraméseks The range is
inclusive as to the lower limit and exclusive te tipper limit. If the
third item is within range, a true flag is returrmdthe parameter stack,
replacing all three items. Otherwise, a false ftageturned. All
numbers are assumed to be signed integers.

;= (ww--t)

; Return true if top two are equal.
.word ABSS-4
.byte 1,3DH

EQUAL
call
call

#XORR
#QBRAN

.word EQU1

call

#DOLIT

.word 0O

retfalse flag
EQU1: call #DOLIT

word -1

rettrue flag

;U< (uu--t)

; Unsigned compare of top two items.
.word EQUAL-2
.byte 2,"U",3CH,0

ULESS
mov

@stack+,temp0

cmptos,temp0
subc tos,tos

49

ret

; < (nln2--t)
; Signed compare of top two items.
.word ULESS-4

.byte 1,3CH
LESS

call #DDUP
call #XORR
call #ZLESS
call #QBRAN
.word LESS1
call #DROP
call #ZLESS

ret

LESS1:call #SUBB
call #ZLESS
ret

 MAX nn--n)
; Return the greater of two top stack items.
.word LESS-2

.byte 3,"MAX"
MAX

call #DDUP

call #LESS

call #QBRAN

.word MAX1

call #SWAP

MAX1: call #DROP
ret

; MINNn--n)

; Return the smaller of top two stack items.
.word MAX-4
.byte 3,"MIN"

MIN
call #DDUP

50

call
call
call
.word
call

#SWAP
#LESS
#QBRAN
MIN1
#SWAP

MIN1: call #DROP

ret

; WITHIN(u ul uh --t)
; Return true if u is within the range of ul and uh

.word
.byte
WITHI
call
call
call
call
call
call
ret

Divide

MIN-4
6,"WITHIN",0

#OVER

#SUBB

#TOR ;ul <= u <uh
#SUBB

#RFROM

#ULESS

UM/MODandUM are the most complicated and comprehensive diniand
multiplication commands. Once they are codedpthler division and multiplication
operators can be derived easily from them. Itdeen a tradition in FORTH
programming that one solves the most difficult peabfirst, and all other problems
are solved by themselves.

UM/MOD

Divide an unsigned double integer by an unsignedlsiinteger. It
returns the unsigned remainder and unsigned quatiethe parameter
stack. Itis coded in assembly and the doublagertdividend is stored
in 4 registers temp0 to temp3. Division is carmed similar to long
hand division.

M/MOD

Divide a signed double integer by a signed singfieger. It returns the
signed remainder and signed quotient on the pamrattck. The
signed division is floored towards negative infynit

/MOD

Divide a signed single integer by a signei@ger. It replaces these two
items with the signed remainder and quotient.

MOD

Divide a signed single integer by a signeegatr. It replaces these two
items with the signed remainder only.

Divide a signed single integer by a signed iateg It replaces these twp

51

| items with the signed quotient only.

:» Divide

; UM/MOD(udl udh u -- ur uq)
; Unsigned divide of a double by a single. Return m

guotient.
.word WITHI-8
.byte 6,"UM/MOD",0

UMMOD
call #DDUP
call #ULESS
call #QBRAN
.word UMM4
call #NEGAT
call #DOLIT
.word 15
call #TOR

UMML1:
call #TOR
call #DUPP
call #UPLUS
call #TOR
call #TOR
call #DUPP
call #UPLUS
call #RFROM
call #PLUS
call #DUPP
call #RFROM
call #RAT
call #SWAP
call #TOR
call #UPLUS
call #RFROM
call #ORR
call #QBRAN

.word UMM2

52

od and

call #TOR

call #DROP
add #1,tos
call #RFROM
call #BRAN
.word UMMS3
UMM2:
call #DROP
UMMS:
call #RFROM
call #DONXT
.word UMML1
call #DROP
call #SWAP
ret
UMM4:
call #DROP
call #DDROP
call #DOLIT
word -1
call #DUPP

retoverflow, return max

; M/IMOD (dn--rq)
; Signedflooreddivide ofdouble by single. Return
guotient.

.word UMMOD-8

.byte 5,"M/MOD"

MSMOD

call #DUPP
call #ZLESS
call #DUPP
call #TOR
call #QBRAN
.word MMOD1
call #NEGAT
call #TOR

call #DNEGA

53

modand

call #RFROM

MMOD1:
call #TOR
call #DUPP
call #ZLESS
call #QBRAN
.word MMOD?2
call #RAT
call #PLUS

MMOD2:
call #RFROM
call #UMMOD
call #RFROM
call #QBRAN
.word MMOD3
call #SWAP
call #NEGAT
call #SWAP

MMOD3:ret

; IMOD (nn--rq)

; Signed divide. Return mod and quotient.
.word MSMOD-6
.byte 4,"/MOD",0

SLMOD
call #OVER
call #ZLESS
call #SWAP

call #MSMOD
ret

; MOO nn--r)
; Signed divide. Return mod only.
.word SLMOD-6

.byte 3,"MOD"
MODD
call #SLMOD

call #DROP

54

ret

;[(nn--q)
; Signed divide. Return quotient only.
.word MODD-4
.byte 1,/
SLASH
call #SLMOD
call #SWAP
call #DROP
ret

Multiply

UM* Multiply two unsigned single integers and rats the unsigned double
integer product on the parameter stackkM* command takes advantage pf
the multiply machine instructions in MSP430G255%ch The multiply
instructions in MSP430G2553 operate on 8 bit valaed the 16 bit
products have to be added properly to form a 3ddaible integer product.

* Multiply two signed single integers and retuths signed single integer
product on the parameter stack.
M* Multiply two signed single integers and retuthe signed double integer

product on the parameter stack.

*IMOD | Multiply the signed integensl andn2, and then divides the double integer
product byn3. Itin fact is ratioinghl byn2/n3 . It returns both the
remainder and the quotient.

*/ Multiply the signed integensl andn2, and then divides the double integer
product byn3. It returns only the quotient.

FORTH is very close to assembly languages in thggnerally only handles integer
numbers. There are floating point extensions inymaore sophisticated FORTH
systems, but they are more exceptions than rul€ee reason why FORTH has
traditionally been an integer language is thatgets are handled faster and more
efficiently in the computers, and most technicalgpems can be solved satisfactorily
only using integers. A 16-bit integer has the ayitarange of 110 dB which is far
more than enough for most engineering problems.e prhacision of a 16-bit integer
representation is limited to one part in 65535,cllgould be inadequate for small
numbers. However, the precision can be greatlyongx by scaling; i.e., taking the
ratio of two integers. It was demonstrated thabpany other irrational numbers,
can be represented accurately to 1 part in 20000y a ratio of two 16-bit
integers.

The scaling command#VOD and*/ are useful in scaling numbet by the ratio
of n2/n3 . Whenn2 andn3 are properly chosen, the scaling commands can

55

preserve precision similar to the floating poinemgions at a much higher speed.
Notice also that in these scaling operations, nkerimediate product ofl andn2 is
a double precision integer so that the precisioscafing is maintained.

;; Multiply

; UM{uu--ud)
; Unsigned multiply. Return double product.
.word SLASH-2

.byte 3,"UM*
UMSTA
call #DOLIT
.word 0
call #SWAP
call #DOLIT
.word 15
call #TOR
UMST1:call #DUPP
call #UPLUS
call #TOR
call #TOR
call #DUPP
call #UPLUS
call #RFROM
call #PLUS
call #RFROM
call #QBRAN
.word UMST2
call #TOR
call #OVER
call #UPLUS
call #RFROM
call #PLUS
UMST2:call #DONXT
.word UMST1
call #ROT
jmp DROP

, * (nn--n)

56

; Signed multiply. Return single product.
.word UMSTA-4
.byte 1,"*"
STAR
call #UMSTA
jmp DROP

; M*(nn--d)
; Signed multiply. Return double product.
.word STAR-2

.byte 2,"M*"
MSTAR
call #DDUP
call #XORR
call #ZLESS
call #TOR
call #ABSS
call #SWAP
call #ABSS
call #UMSTA
call #RFROM
call #QBRAN
.word MSTA1
call #DNEGA
MSTAL:ret

; MOD (n1n2n3--rq)
; Multiply n1 and n2, then divide by n3. Return mod
guotient.

.word MSTAR-4

.byte 5,"*/MOD"

SSMOD
call #TOR
call #MSTAR
call #RFROM

call #MSMOD
ret

57

and

;¥ (n1ln2n3--q)

; Multiplynlbyn2,thendividebyn3.Returnquot ientonly.
.word SSMOD-6
.byte 2,"*/"
STASL
call #SSMOD
call #SWAP
call #DROP
ret

4.7 Miscelaneous

CELL+ Increment the top item on the parameter skack.

CELL- Decrement the top item on the parameterksbgc2.

ALIGNED | Modify the byte address on top of the parametaksta that it points to
the next word boundary.

BL Push a blank or space character (ASCII 32) on patermstack. BL is
often used in parsing out space delimited strings.

>CHAR Convert a non-printable character to a hassiunderscore
character(ASCIlI 95). As 430eForth is designedaimmunicate with a
host computer through a serial 1/0 device, it ipamiant that 430eForth
will not emit control characters to the host aneréiy causes
unexpected behavior on the host computeiCHARthus filters the
characters before they are sent oUEMIT.

DEPTH Push the number of items currently on thameater stack to the top of
the stack.

PICK Take a numben off the parameter stack and replaces it with ttie n

item on the parameter stack. The numbée 0-based; i.e., the top
item is number 0O, the next item is number 1, eftherefore0 PICK is
equivalent tdUR andl PICK is equivalent t®©VER

;; Miscellaneous

; CELL+ (a--a)

; Add cell size in byte to address.
.word STASL-4
.byte 5,"CELL+"

CELLP
add #2,tos
ret

; CELL- (a--a)

58

; Subtract cell size in byte from address.
.word CELLP-6

.byte 5,"CELL-"
CELLM

sub #2,tos

ret

; CELLS (n--n)
; Multiply tos by cell size in bytes.
.word CELLM-6
.byte 5"CELLS"
CELLS
rla tos
ret

. ALIGNED (b--a)
; Align address to the cell boundary.
.word CELLS-6
.byte 7,"ALIGNED"
ALGND
add#l,tos
bic#1,tos
ret

; BL (--32)
; Return 32, the blank character.
.word ALGND-8
.byte 2,"BL",0
BLANK
savetos
mow#20H,tos
ret

; >CHAR (c--¢)

; Filter non-printing characters.
.word BLANK-4
.byte 5,">CHAR"

TCHAR

59

call #DUPP :mask msb

call #BLANK
call #DOLIT
word 127
call #WITHI;check for printable
call #QBRAN
.word TCHA1
ret
TCHAL:
call #DROP
call #DOLIT

.word "_“replace non-printables
ret

; DEPTH (--n)

; Return the depth of the data stack.
.word TCHAR-6
.byte 5,"DEPTH"

DEPTH

call
call

#SPAT
#DOLIT

.word SPP

call
call

jmp

; PICK

#SWAP
#SUBB
TWOSL

(... +¥n--...w)

; Copy the nth stack item to tos.
.word DEPTH-6
.byte 4,"PICK",0

PICK

; add #1l,tos
call #CELLS
call #SPAT
call #PLUS
call #AT

ret

60

Memory Access

A memory array is generally specified by its stagtaddress and its length in bytes.

In a count string, the first byte is a count byeecifying the number of bytes in the
following string. String literals in compound coranmds and the name strings in the
headers of command records are all representedunt strings.

Following commands are useful in accessing memaysa and strings.

+!

Add the second item on the parameter statkeaell addressed by
the top item on the stack.

COUNT

Fetch one byte from RAM memory pointed tothg address on the
top of the parameter stack. This address is inenéed by 1, and th
byte just read is pushed on the stacKOUNTs designed to get the
count byte at the beginning of a counted string, r@turns the
address of the first byte in the string and thgterof this string.
However, it is often used in a loop to read conseelbytes in a byte
array.

D

HERE

Push the address of the first free locatiothe RAM memory.

FORTH text interpreter stores here a string pacsgf the Terminal
Input Buffer and then searches the dictionary foommand with this
name.

PAD

Push on the parameter stack the address téxhbuffer where
numbers to be output are constructed and texgstane stored
temporarily. Itis 64 bytes aboWERE

TIB

Push the address of the Terminal Input Buffer epghrameter stack
Terminal Input Buffer stores a line of text frometkerial /0O input
device. FORTH text interpreter then processesterprets this line
of text.

@EXECUTE

Fetch a code field address of a command whiclorgdtin the
address on the top of the parameter stack, andsjtionipto execute
this command. It is used extensively to execut#ored commands
stored in RAM memory. The behavior of a vectorechmand can
be changed dynamically at the run time.

CMOVE

Copy a byte array from one location to aeoin RAM memory.
The top three item on the parameter stack aredimes address, the
destination address and the number of bytes topied.

UPPER

Convert the ASCII character on the top efptarameter stack to an
upper case character. This command is used teecomput text
string to an upper case string so that the tegtpméter is now case
insensitive.

FILL

Fill a memory array with the same byte. Tbp three items on the
parameter stack are the address of the arrayetigghl of the array in
bytes, and the byte value to be filled into thisgar

;; Memory access

61

, +1(na-)
: Add n to the contents at address a.
.word PICK-6

.byte 2,"+1",0
PSTOR
call #SWAP
call #OVER
call #AT
call #PLUS
call #SWAP
call #STORE
ret
; 2l (da--)

; Store the double integer to address a.
.word PSTOR-4

.byte 2,"2!1",0
DSTOR
call #SWAP
call #OVER
call #STORE
call #CELLP
call #STORE
ret
, 2@ (a--d)

; Fetch double integer from address a.
.word DSTOR-4

.byte 2,"2@",0
DAT

call #DUPP

call #CELLP

call #AT

call #SWAP

call #AT
ret

62

; COUNT (b--b+n)
; Return count byte of a string and add 1 to byte a
.word DAT-4
.byte 5,"COUNT"
COUNT
mov.b @tos+,temp0
savetos
mov tempO,tos
ret

: HERE (--a)
; Return the top of the code dictionary.
.word COUNT-6

.byte 4,"HERE"
HERE

call #DP

call #AT

ret
, PAO(--a)

; Return the address of a temporary buffer.
.word HERE-6
.byte 3,"PAD"
PAD
call #HERE
add #50,tos
ret

, TIR—-a)

; Return the address of the terminal input buffer.

.word PAD-4

.byte 3,"TIB"
TIB

Savetos

Mow#TIBB,tos

Ret

;, @EXECUTE (a--)

63

ddress.

; Execute vector stored in address a.
.word TIB-4
.byte 8,"@EXECUTE",0
ATEXE
call #AT
call #QDUP :?address or zero
call #QBRAN
.word EXE1l
call #EXECU ;execute if non-zero
EXELl: ret ;do nothing if zero

; CMOVE (bl1b2u--)
; Copy u bytes from b1l to b2.

.word ATEXE-10

.byte 5,"CMOVE"
CMOVE

call #TOR

call #BRAN

.word CMQOV2
CMOV1:call #TOR

call #COUNT

call #RAT

call #CSTOR

call #RFROM,

add #1,tos
CMOV2:call #DONXT

.word CMOV1

call #DDROP

ret

 FILL (buc-)
; Fill u bytes of character c to area beginning at
.word CMOVE-6

.byte 4,"FILL",0
FILL

call #SWAP

call #TOR

call #SWAP

64

call #BRAN
.word FILL2
FILL1:call #DDUP
call #CSTOR
add #1,tos
FILL2:call #DONXT
.word FILL1
call #DDROP
ret

4.8 Input Output
Numeric Output

FORTH is interesting in its special capabilitiehemdling numbers across a
man-machine interface. It recognizes that machamelshumans prefer very
different representations of numbers. Machinefepianary representation, but
humans prefer decimal Arabic representation. He@wnelepending on
circumstances, a human may want numbers to besemesl in other radices, like
hexadecimal, octal, and sometimes binary.

FORTH solves this problem of internal (machine)susrexternal (human) number
representations by insisting that all numbers epeasented in binary form in CPU
and memory. Only when numbers are imported or eggdor human consumption
are they converted to external ASCII representatiorhe radix of the external
representation is stored in system vari®@%SE You can select any reasonable
radix inBASE, up to 72, limited by available printable charaste the ASCII
character set.

The output number string is built below tA&Dbuffer in RAM memory. The least
significant digit is extracted from the integertbie top of the parameter stack by
dividing it by the current radix iIBASE The digit thus extracted is added to the
output string backwards froPADto the low memory. The conversion is terminated
when the integer is divided to zero. The addresslength of the number string are
made available by> for outputting.

An output number conversion is initiated ¥ and terminated b#>. Between
them,# converts one digit at a tim#S converts all the digits, whildOLDandSIGN
inserts special characters into the string undesttaction. This set of commands is
very versatile and can handle all different oufiputnats.

DIGIT Convert an integer digit to the corresporgdikSCII character.

EXTRACT | Extract the least significant digit from a numbewsmthe top of the
parameter stack. nis divided by the radiB&RSEand the extracted
digit is converted to its ASCII character whiclpisshed on the

65

parameter stack.

<# Initiate the output number onversion process byirgjd® ADbuffer
address into system variatie.D, which points to the location next
numeric digit will be stored.

HOLD Append an ASCII character whose code is enttip of the parameter
stack, to the numeric out put string at HLD. HLlddiecremented to
receive the next digit.

Extract one digit from integer on the top of fa@ameter stack,
according to radix in BASE, and add it to outputnauic string.

#S Extract all digits to output string until threeger on the top of the
parameter stack is 0.

SIGN Insert a - sign into the numeric output gfhiinthe integer on the top of
the parameter stack is negative.

#> Terminate the numeric conversion and pusheadbeess and length of
output numeric string on the parameter stack.

str Convert a signed integer on the top of thapater stack to a numeric
output string.

HEX Set numeric conversion radix to 16 for hexaueat conversions.

DECIMAL | Set numeric conversion radix to 10 for decimal @Bions.

;; Numeric output, single precision

; DIGIT (u--c¢)

; Convert digit u to a character.
.word FILL-6
.byte 5,"DIGIT"

DIGIT
call #DOLIT
.word 9
call #OVER
call #LESS
call #DOLIT
word 7
call #ANDD
call #PLUS
add #"0",tos

; call #DOLIT

; .word "0"

; call #PLUS
ret

66

; EXTRACT (nbase--nc)

; Extract the least significant digit from n.
.word DIGIT-6
.byte 7,"EXTRACT"

EXTRC
call #DOLIT
.word O
call #SWAP
call #UMMOD
call #SWAP
call #DIGIT
ret

L <# ()

; Initiate the numeric output process.
.word EXTRC-8

.byte 2,"<#",0
BDIGS
call #PAD
call #HLD
call #STORE
ret
: HOLD (c--)

; Insert a character into the numeric output string
.word BDIGS-4
.byte 4,"HOLD",0

HOLD
call #HLD
call #AT,
sub #ltos
call #DUPP
call #HLD
call #STORE
call #CSTOR
ret

67

, # (u--u)
; Extract one digit from u and append the digit to

string.
.word HOLD-6
.byte 1,"#"

DIG
call #BASE
call #AT
call #EXTRC
call #HOLD
ret

; #S (u--0)

; Convertuuntilalldigitsareaddedtotheoutpu
.word DIG-2

.byte 2,"#S",0
DIGS
DIGS1:
call #DIG
call #DUPP
call #QBRAN
.word DIGS2
call #BRAN
.word DIGS1
DIGS2:ret
; SIGN (n--)

; Add a minus sign to the numeric output string.
.word DIGS-4
.byte 4,"SIGN",0

SIGN
call #ZLESS
call #QBRAN
.word SIGN1
call #DOLIT
.word "-"
call #HOLD

68

output

tstring.

SIGN1:ret

; #>(w--bu)

; Prepare the output string to be TYPE'd.
.word SIGN-6
.byte 2,"#",3EH,0

EDIGS
call #DROP
call #HLD
call #AT
call #PAD
call #OVER
call #SUBB
ret

;stin--bu)

; Convert a signed integer to a numeric string.
.word EDIGS-4

.byte 3,"str"
STR
call #DUPP
call #TOR
call #ABSS
call #BDIGS
call #DIGS
call #RFROM
call #SIGN
call #EDIGS
ret
, HEX(--)

; Use radix 16 as base for numeric conversions.
.word STR-4
.byte 3,"HEX"
HEX
call #DOLIT
.word 16
call #BASE

69

call #STORE
ret

. DECIMAL (--)
;. Use radix 10 as base for numeric conversions.

.word HEX-4

.byte 7,"DECIMAL"
DECIM

call #DOLIT

.word 10

call #BASE

call #STORE

ret

Numeric Input

The 430eForth text interpreter must handle numiogust to the system. It parses
commands out of the input stream and executes ilesguence. When the text
interpreter encounters a string which is not the@af a command in the dictionary,

it assumes that the string must be a number aaohpts to convert the ASCII digit
string to a number according to the current radiWhen the text interpreter succeeds
in converting the string to a number, the numbguished on the parameter stack for
future use, if the text interpreter is in the ipteting mode. If itis in the compiling
mode, the text interpreter will compile the numtmethe dictionary as an integer
literal so that when the command under construdidater executed, the integer
value will be pushed on the parameter stack.

If the text interpreter fails to convert the sgrito a number, this is an error condition
which will cause the text interpreter to abort, tpms error message to you, and then
wait for your next line of commands.

DIGIT? Convert an ASCII numeric digit ¢ on thetof the parameter stack to
its numeric value u according to current radix i.conversion is
successful, push a true flag above u. If not ssgfoé return c and a
false flag.

NUMBER? | Convert a count string of ASCII numeric digits atation a to an
integer. If first character is a $, convert in Ad&cimal; otherwise,
convert using radix in BASE. If first characterais, negate converted
integer. If an illegal character is encounterbd,dddress of string and
a false flag are pushed on the parameter stackcceSsful conversion
pushes integer value and a true flag on the pasrstck.
NUMBER? is very complicated because it has to covany formats i
the input numeric string. It also has to deteetdlror condition when
it encounters an illegal numeric digit.

70

;; Numeric input, single precision

; DIGIT?(c base--ut)
; Convertacharactertoitsnumericvalue.Aflag
success.
.word DECIM-8
.byte 6,"DIGIT?",0
DIGTQ
call #TOR,
sub #"0",tos
; call #DOLIT
; .word "0"
; call #SUBB
call #DOLIT
.word 9
call #OVER
call #LESS
call #QBRAN
word DGTQ1
sub #7,tos
call #DUPP,
call #DOLIT
.word 10
call #LESS
call #ORR
DGTQ1:call #DUPP
call #RFROM
call #ULESS
ret

; NUMBER? (a--nT|aF)

; Convert a number string to integer. Push a flag o
.word DIGTQ-8
.byte 7,"NUMBER?"

NUMBQ
call #BASE
call #AT
call #TOR,

71

indicates

n tos.

call

#DOLIT

.word O

call
call
call
call
call

#OVER
#COUNT
#OVER
#CAT,
#DOLIT

.word "$"
CalHEQUAL

call

#QBRAN

.word NUMQ1

call
call
add
call
sub

#HEX

#SWAP
#1,tos

#SWAP
#1,tos

NUMQ1:call #OVER

call
call

.word "-"

#CAT,
#DOLIT

CalFEQUAL

call
call
call
call
call
call
call
call
call

#TOR
#SWAP
#RAT
#SUBB
#SWAP
#RAT
#PLUS
#QDUP
#QBRAN

.word NUMQ6

sub
call

#1,tos
#TOR

NUMQ2:call #DUPP

call
call
call
call

#TOR
#CAT
#BASE
#AT

72

call #DIGTQ

call #QBRAN
word NUMQ4
call #SWAP
call #BASE
call #AT
call #STAR
call #PLUS
call #RFROM
add #1,tos
call #DONXT
.word NUMQ2
call #RAT
call #SWAP
call #DROP
call #QBRAN
.word NUMQ3
call #NEGAT
NUMQ3:call #SWAP
call #BRAN
.word NUMQ5

NUMQ4:call #RFROM
call #RFROM
call #DDROP
call #DDROP,
call #DOLIT
.word 0
NUMQ5:call #DUPP
NUMQG6:call #RFROM
call #DDROP
call #RFROM

call #BASE
call #STORE
ret

Basic /O

430eForth system assumes that it communicatestaiémvironment only through a

73

serial 1/0 interface. To support the serial I/@lyathree words are needed:

SPACE Output a blank (space) character, ASCII 32.

CHARS | Output n ASCII characters. The ASCII code is aatibp of the
parameter stack, and number n is the second itetilmeoparameter stack

SPACES | Output n blank (space) characters.

TYPE Output n characters from a string in RAM meyno The second item or
the parameter stack is the address of the striag,and the length in
bytes is on the top of the parameter stack.

I

CR Output a carriage-return and a line-feed, ASGIland 10.
;; Basic I/0
; SPACE (--)

; Send the blank character to the output device.
.word NUMBQ-8
.byte 5,"SPACE"

SPACE
call #BLANK
call #EMIT
ret

; SPACES(+n --)

; Send n spaces to the output device.
.word SPACE-6
.byte 6,"SPACES",0

SPACS
call #DOLIT
.word 0
call #MAX
call #TOR
call #BRAN
.word CHAR2

CHAR1:call #SPACE
CHARZ2:call #DONXT
.word CHAR1

ret

. TYPE (bu--)
; Output u characters from b.
.word SPACS-8

74

.byte 4"TYPE",0

TYPEE
call #TOR
call #BRAN
.word TYPE2

TYPE1l:.call #DUPP
call #CAT
call #TCHAR
call #EMIT
add #1,tos

TYPEZ2:
call #DONXT
.word TYPE1
call #DROP
ret

, CR ()

; Output a carriage return and a line feed.
.word TYPEE-6

.byte 2,"CR",0
CR

call #DOLIT
.word CRR

call #EMIT
call #DOLIT
word LF

call #EMIT
ret

String literals are data structures compiled in poond command, in-line with other
tokens, literal structures, and control structure&.string literal must start with a
string token which knows how to handle the follogvstring at run time. Here are
two examples of string literals:

: XXX ... $" A compiled string” ... ;
yyy" Anoutput string” ... ;
In compound command xx$," is an immediate command which compiles the

following string as a string literal preceded bgpeecial toker$”| . When$"| is
executed at run time, it returns the address efdtting on the parameter stack. In

75

yyy,

" compiles a string literal preceded by dmottoken"| , which prints the
compiled string to the output device at run time.

do$ Push the address of a string literal on tmamater stack. It is called by
string token like $"| or ."|, which precede theispective strings in flash
memory. Therefore, the second item on the retiarkgoints to the
string. This address is pushed on the parametek.st This second item
on the return stack must be modified so that it paint to the next token
after the string literal. This way. the token attee string literal will be
executed, skipping over the string literal. Both&id ."| use the word do$
which retrieve the address of a string stored asdtond item on the
return stack.
| Push the address of the following string anpghrameter stack, and then
executes the token immediately following the string
Y Print the following string, and then executies token immediately
following the string.
, dof - a)
; Return the address of a compiled string.
.word CR-4
.byte COMPO+3,"do$"
DOSTR
call #RFROM
call #RAT
call #RFROM
call #COUNT
call #PLUS
call #ALGND
call #TOR
call #SWAP
call #TOR
ret
; $(--a)
; Run time routine compiled by $". Return address o fa

compiled string.
.word DOSTR-4
.byte COMPO+3,"$™"|"

STRQP

call

#DOSTR

retforce a call to do$

76

)

: Run time routine of ." . Output a compiled string
.word STRQP-4
.byte COMPO+3,".""|"

DOTQP
call #DOSTR
call #COUNT
call #TYPEE
ret

With the number formatting command set as showneabane can format numbers
for output in any format desired. The free outjputat is a number string preceded
by a single space. The fix column format displaysimber right-justified in a
column of a pre-determined width. The commands'U.’, and? use the
free format. The word®kR andU.R use the fix format.

R Print a signed integer n , the second itemherparameter stack,
right-justified in a field of +n characters. +nas the top of the parameter
stack.

U.R Print an unsigned integer n right-justifiecaifield of +n characters.

U. Print an unsigned integer u in free formatidwked by a space.

Print a signed integer n in free format, follal\®y a space.

? Print signed integer stored in memory a onapeof the parameter stack,
in free format followed by a space.

. .R(n+n--)

; Displayanintegerinafieldofncolumns,right justified.
.word DOTQP-4
.byte 2,".R",0

DOTR
call #TOR
call #STR
call #RFROM
call #OVER
call #SUBB
call #SPACS
call #TYPEE
ret

77

; URu+n--)
; Displayanunsignedintegerinncolumn,rightju
.word DOTR-4

.byte 3,"U.R"

UDOTR
call #TOR
call #BDIGS
call #DIGS
call #EDIGS
call #RFROM
call #OVER
call #SUBB
call #SPACS
call #TYPEE
ret

, U (u--)

; Display an unsigned integer in free format.
.word UDOTR-4

.byte 2,"U.",0
UuDOT
call #BDIGS
call #DIGS
call #EDIGS
call #SPACE
call #TYPEE
ret
;o (w--)

. Display an integer in free format, preceded by a

.word UDOT-4

.byte 1,"."
DOT

call #BASE

call #AT

call #DOLIT

78

stified.

space.

.word 10
call #XORR :?decimal

call #QBRAN
.word DOT1
jmp UDOT

DOT1:
call #STR
call #SPACE
jmp TYPEE

;) ? (a-)

. Display the contents in a memory cell.
.word DOT-2
.byte 1,"?"

QUEST
call #AT
call #DOT
ret

4.9 Parsing

Parsing is always considered a very advanced tomiomputer science. However,
because FORTH uses very simple syntax rules, gaisiasy. FORTH input

stream consists of ASCII strings separated by spaced other white space characters
like tabs, carriage returns, and line feeds. Eweihterpreter scans the input stream,
parses out strings, and interprets them in sequen&ter a string is parsed out of the
input stream, the text interpreter will ‘interpiigti.e., execute it if it is a valid
command, compile it if the text interpreter is @ ttompiling mode, and convert it to
a number if the string is not a FORTH command.

The case where the delimiting character is a sp&8€II 32) is special, because this
is when the text interpreter is parsing for valoinenands. It thus must skip over
leading space characters. When parse is usedrtpileostring literals, it will use
the double quot character (ASCII 34) as the deiimgitharacter. It the delimiting
character is not space, parse starts scanning iratabgllooking for the designated
delimiting character.

parse The elementary command to do text parsingom Ehe input stream,
which starts at b1 and is of ul characters longgises out the first text
string delimited by character c. It returns thdrads b2 and length u2
of the string just parsed out and the differenbetween bl and b2.
Leading delimiters are skipped over.

PARSE | Scan the input stream in the Terminal Input Bufifem where>IN

79

points to, until the end of the buffer, for a strielimited by character.
It returns the address and length of the stringgzhout. PARSEcalls
parse to do the detailed works.PARSEis used to implement many
specialized parsing commands to perform differansipg functions.

Print the following string till the next) chater. It is used to output
text to the serial output device.

Discard the following string till the next) ala&ter. It is used to place
comments in source code.

Discard all characters till end of a line. dtused to insert comment
lines in source code.

CHAR

Parse the next string out but returns onlyfits¢ character in this string.
It gets an ASCII character from the input stream.

TOKEN

Parse out the next string delimited by the spaeeadter. It then copies
this string as a counted string to the first fre=aan RAM memory and
returns its address. The length of the stringngéd to 31 characters.

WORD

Parse out the next string delimited by th&€Afharacter c. It then
copies this string as a counted string to the fiest area in RAM
memory and returns its address. The length ofttimegds limited to 255
characters.

;; Parsing

; parse (buc--budelta; <string>)

: Scan string delimited by c. Return found string a nd its

offset.
.word QUEST-2
.byte 5,"parse”

PARS
call #TEMP
call #STORE
call #OVER
call #TOR
call #DUPP
call #QBRAN
.word PARSS8
sub #1,tos
call #TEMP
call #AT
call #BLANK
call #EQUAL
call #QBRAN
.word PARS3

80

call #TOR
PARS1:call #BLANK
call #OVER
call #CAT ;skip leading blanks ONLY
call #SUBB

call #ZLESS
call #INVER
call #QBRAN
.word PARS2
add #1,tos

call #DONXT
.word PARS1
call #RFROM
call #DROP,
call #DOLIT

.word 0

call #DUPP

ret
PARS2:call #RFROM
PARS3:call #OVER

call #SWAP

call #TOR
PARS4:call #TEMP

call #AT

call #OVER

call #CAT

call #SUBB ;scan for delimiter

call #TEMP

call #AT

call #BLANK

call #EQUAL

call #QBRAN

.word PARS5

call #ZLESS
PARSS:

call #QBRAN

.word PARSG6

add #1,tos

81

call #DONXT

.word PARS4
call #DUPP
call #TOR
call #BRAN
.word PARS7
PARSG6:call #RFROM
call #DROP
call #DUPP
add #1,tos
call #TOR
PARS7:call #OVER
call #SUBB

call #RFROM
call #RFROM
call #SUBB

ret

PARSS8:call #OVER

call #RFROM
call #SUBB

ret

; PARSE (c--bu; <string>)
; Scaninputstream and return counted string delim
C.

.word PARS-6

.byte 5,"PARSE"
PARSE

call #TOR

call #TIB

call #INN

call #AT

call #PLUS ;current input buffer pointer
call #NTIB

call #AT
call #INN
call #AT

call #SUBB ;remaining count

82

ited by

call #RFROM

call #PARS
call #INN

call #PSTOR
ret

()
; Output following string up to next) .
.word PARSE-6
.byte IMEDD+2,".(",0
DOTPR
call #DOLIT
.word ")"
Cal¥PARSE
call #TYPEE
ret

; (()

;Ignore following string up to next) . A comment.
.word DOTPR-4
.byte IMEDD+1,"("

PAREN
call #DOLIT
.word ")"
Cal#PARSE
call #DDROP
ret

N ()

;Ignore following text till the end of line.
.word PAREN-2
.byte IMEDD+1,"\"

BKSLA
call #NTIB
call #AT
call #INN
call #STORE
ret

83

; CHAR (--c¢)

; Parse next word and return its first character.
.word BKSLA-2
.byte 4,"CHAR",0

CHAR
call #BLANK
call #PARSE
call #DROP
call #CAT
ret

; TOKEN (--a; <string>)
; Parse a word from input stream and copy it to nam
dictionary.

.word CHAR-6

.byte 5,"TOKEN"
TOKEN

call #BLANK

call #PARSE

call #DOLIT

.word 31

call #MIN
TOKEN1

call #HERE

call #DDUP

call #CSTOR

add #1,tos

call #SWAP

call #CMOVE

jmp HERE

; WORD (c--a; <string>)
; Parse a word from input stream and copy it to cod
dictionary.
.word TOKEN-6
.byte 4,"WORD",0
WORDD

84

call #PARSE
jmp TOKENL1

4.10 Dictionary Search

In 430eForth, command records are linearly linked a dictionary. A command
record contains three fields: a link field holdiing name field address of the previous
command record, a name field holding the namecasiated string, and a code field
holding executable code and data. A dictionarycsetollows the linked list of
records to find a name which matches a text strigreturns the name field address
and the code field address, if a match is found.

The link field of the first command record contam®, indicating it is the end of the
linked list. A system variablEONTEXTholds an address pointing to the name field
of the last command record. The dictionary seatalts aCONTEXTand

terminates at the first matched name, or at tisé édmmmand record.

FromCONTEXTwe locate the name field of the last commandrceoothe

dictionary. It this name does not match the sttinge searched, we can find the
link field of this record, which is 2 bytes lesaiththe name field address. From the
link field, we locate the name field of the nextramand record. Compare the name
with the search string. And so forth.

NAME> | Convert a name field address in a command recattietoode field
address of this command record. Code field addseb® name field
address plus length of name plus one, and alignétetnext cell
boundary.

SAME? | Compare two strings at addresaeandb for u bytes. It returns a O if
two strings are equal. It returns a positive istafja string is greater
thanb string. It returns a negative integeaistring is less thah string.

NAME? | Search the dictionary starting@ONTEXTor a name string at addresss
Return the code field address and name field addir@smatched
command is found. Otherwise, return the originahg address and a
false flag. Assume that a count string is at menagigress, and the
name field address of the last command recordasidresva. If the
string matches the name of a command, both the fieldeaddress and th
name field address of the command record are mdurnif the string is
not a valid command, the original string address afalse flag are
returned. It runs the dictionary search very glyitlecause it first
compares the length byte and the first charactdramame field as a 16
bit integer. In most cases of mismatch, this campa would fail and
the next record can be reached through the lind.fielf the first two
characters match, th&AME?s invoked to compare the rest of the name
field, one cell at a time. Since both the target string and the name
field are null filled to the cell boundary, the cpamison can be performed
quickly across the entire name field without wongyiabout the end
conditions.

1)

85

;; Dictionary search

: NAME> (na--ca)
; Return a code address given a name address.
.word WORDD-6
.byte 5/"NAME>"
NAMET
call #COUNT
and #1FH,tos
call #PLUS
jmp ALGND

; SAME? (aau--aaf\-0+)
; Compare u cells in two strings. Return O if ident ical.
.word NAMET-6
.byte 5,"SAME?"
SAMEQ
call #OVER
call #CAT
SAMEL:
mov2(stack),temp0
addtos,temp0
mov.b O(temp0),tempO
movO(stack),templ
addtos,templ
mov.b O(templ),templ
subtempl,tempO
jnzZSAME2
dectos
jnzZSAME1
ret
SAME2:
mow#-1,tos
ret

; NAME? (a--canalaF)
; Search all context vocabularies for a string.

86

.word SAMEQ-6
.byte 5,"NAME?"

NAMEQ
call #CNTXT
call #AT
FIND1.:
tst tos
jz FIND3 ;end of dictionary
call #OVER
call #AT
call #OVER
call #AT
call #DOLIT
.word MASKK
call #ANDD
call #EQUAL
call #QBRAN
.word FIND4
call #SAMEQ
call #QBRAN
.word FIND2 ;match
FIND4
decd tos
mov 0O(tos),tos
jmp FIND1
FIND2
mov tos,0(stack)
call #NAMET
br #SWAP
FINDS:
ret

411 Terminal Input

The text interpreter interprets source text reakivem an input device and stored in
the Terminal Input Buffer. To process characterthe Terminal Input Buffer, we
need special commands to deal with the specialitons of backspace character and
carriage return: On top of stack, three speciedpeters are referenced in many
commandsbot is the Beginning Of the Text input buffegt is the End Of the Text

87

input buffer, anctur points to the current character in the input buffe

~H

Process back-space character (ASCII 8). Hemrdhe last character
entered, and decrement the character pomter If cur =bot , do
nothing because you cannot backup beyond begirafiimgput buffer.

TAP

Output a character to terminal, store in cur , and increment the
character pointezur , which points to the current character in the tnpu
buffer.bot andeot are also pointers pointing to the beginning argl@&n
the input buffer.

KTAP

Process character bot is pointing at the beginning of the input buffe
andeot is pointing at the end.cur points to the current character in th
input buffer. The characteris normally stored atur , which is then

incremented by 1. K is a carriage-return (ASCII 13), echo a space a
makeeot =cur ., thus terminating the input process c lis a back-spacg
(ASCII 8), erase the last character and decremant

A%

accept

Acceptu characters into an input buffer starting at adglbe®r until a
carriage return (ASCII 13) is encountered. Theigalfu returned is the
actual number of characters received.

QUERY

Accept up to 80 characters from the input devicégaéoTerminal Input
Buffer. It also prepares the Terminal Input Bufier parsing by setting
#TIB to the length of the input text stream, and chlegrlN which points

to the beginning of the Terminal Input Buffer.

;; Terminal response

; “"H (bot eot cur -- bot eot cur)
; Backup the cursor by one character.
.word NAMEQ-6

.byte 2,"H",0
BKSP

call #TOR
call #OVER
call #RFROM
call #SWAP
call #OVER
call #XORR
call #QBRAN
.word BACK1
call #DOLIT
.word BKSPP
call #EMIT
sub #1,tos

88

call #BLANK
call #EMIT
call #DOLIT
.word BKSPP
call #EMIT
BACK1.:ret

; TAR bot eot cur c -- bot eot cur)
; Accept and echo the key stroke and bump the curso
.word BKSP-4

.byte 3,"TAP"
TAP

call #DUPP

call #EMIT

call #OVER

call #CSTOR,

add #1,tos

ret

; KTAP ('bot eot cur c -- bot eot cur)

; Process a key stroke, CR or backspace.
.word TAP-4
.byte 4,"KTAP",0

KTAP
call #DUPP
sub #CRR,tos
call #QBRAN
.word KTAP2
sub #BKSPP,tos
call #QBRAN
.word KTAP1
call #BLANK
jmp TAP
KTAP1.:
jmp BKSP
KTAP2:
call #DROP

call #SWAP

89

call #DROP
jmp DUPP

; accept(bu--bu)
; Accept characters to input buffer. Return with ac
count.
.word KTAP-6
.byte 6,"accept”,0
ACCEP
call #OVER
call #PLUS
call #OVER
ACCP1:call #DDUP
call #XORR
call #QBRAN
.word ACCP4
call #KEY
call #DUPP
call #BLANK
call #SUBB
call #DOLIT
.word 95
call #ULESS
call #QBRAN
.word ACCP2
call #TAP
call #BRAN
.word ACCP1
ACCP2:call #KTAP
ACCP3:
jmp ACCP1
ACCP4:call #DROP
call #OVER
jmp SUBB

; QUERY (--)

; Accept input stream to terminal input buffer.
.word ACCEP-8

90

tual

.byte 5,"QUERY"

QUERY
call #TIB,
call #DOLIT
.word 80
call #ACCEP
call #NTIB
call #STORE
call #DROP
call #DOLIT
.word 0
call #INN
call #STORE
ret

4.12 Interpreter
Error Handling
When error occurred, it is usually because theitegtpreter encounters a string

which can not be interpreted or processed. Thisgsits usually stored in a buffer in
RAM memory.

ERROR | Print the string in RAM memory located at addrasfollowed by a?
mark and aborts. 'Abort' means flushing all flastmory buffers,
clearing the parameter stack, and returns to tterteerpreter loop
QUIT.

abort" It is compiled with an error message stimg compound command.
Whenabort" is executed, it examines the top item on the patam
stack. Itthe flag is true, print out the followierror message and
QUIT; otherwise, skip over the error message and cem@xecution the
next token.

;; Error handling

. ERROR (a--)
; Return address of a null string with zero count.

.word QUERY-6
.byte 5,"ERROR"
ERROR:

91

call #SPACE

call #COUNT
call #TYPEE
call #DOLIT
.word 3FH
call #EMIT
call #CR
; call #EMPTY_BUF
jmp QUIT
; abort"(f--)

; Run time routine of ABORT" . Abort with a message
.word ERROR-6
byte COMPO+61"ab0rt ||||||

ABORQ
call #QBRAN
.word ABORL1 ;text flag
call #DOSTR
call #COUNT
call #TYPEE

jmp QUIT ;pass error string
ABOR1:call #DOSTR

call #DROP

retdrop error

Interpreter

Text interpreter in FORTH is like a conventionakogiting system of a computer. It
is the primary interface a user uses to get thepcoen to do work. Since FORTH
uses very simple syntax rule--commands are sephbgtepaces, the text interpreter
is also very simple. It accepts a line of textirthe terminal, parses out a command
delimited by spaces, locates the command in theodary and then executes it. The
process is repeated until the input text is exlemlist Then the text interpreter waits
for another line of text and interprets it agaif.his cycle repeats until you are
exhausted and turns off the computer.

In 430eForth, the text interpreter is coded actremandQUIT. QUIT contains
an infinite loop which repeats ti@QUERYEVAL command pair. QUERYaccepts a
line of text from the input terminal. EVAL interprets the text one command at a time
till the end of the text line.

| SINTERPRET| Execute a command whose name string is storedda¢ssh on the |

92

parameter stack. If the string is not a valid cand) convert it to &
number. Failing the numeric conversion, exe&RERORand return
to QUIT.

==

Activate the text interpreter by storing the edaeld address of
SINTERPRETInto the variabléEVAL , which is executed iEVAL
while the text interpreter is in the interpretivede.

.OK

Print the familiarok> prompting message after executing to the €
of aline. The messagd> is printed only when the text
interpreter is in the interpretive mode. While goiing, the prompt|
is suppressed.

nd

?STACK

Check for stack underflow. Abort, resajtthe parameter stack
pointer, if the stack depth is negative.

EVAL

It is contained in the text interpreter logich parses commands
from the input stream and invokes whatever tokeBEWMAL to
process the commands, either execute it with SINFRRT or
compile it with SCOMPILE.

QUIT

It is the operating system, the text intetereor a shell, of the
430eForth system. Itis an infinite loop eFortti wever get out.

It uses QUERY to accept a line of commands fromirtpat terminal
and then lets EVAL to parse out the commands aedudg them.
After a line is processed, it displays an ok> mgesand wait for the
next line of commands. When an error occurredngdueixecution,
it prints the string which caused the error asraorenessage.

After the error is reported, it re-initializes thgstem by clearing the
return stack and comes back to receive the nexlirtommands.
Because the behavior of EVAL can be changed byngt@ither
SINTERPRET or $COMPILE into 'EVAL, QUIT exhibitsehdual

nature of a text interpreter and a compiler.

;» The text interpreter

; SINTERPRET (a--)
. Interpret a word. If failed, try to convert it to an

integer.

.word ABORQ-8
.byte 10,"$INTERPRET",0

INTER
call #NAMEQ
call #QDUP ;?defined
call #QBRAN
.word INTE1
call
call #DOLIT

93

.word COMPO
call #ANDD ;?compile only lexicon bits
call #ABORQ
.byte 13," compile only"
call #EXECU
retexecute defined word
INTELl:call #NUMBQ
call #QBRAN
.word INTE2
ret
INTE2:jmpERROR ;error

L(-)

; Start the text interpreter.
.word INTER-12
.byte IMEDD+1,"["

LBRAC
call #DOLIT
.word INTER
call #TEVAL
call #STORE
ret

, OK(--)

; Display 'ok' only while interpreting.
.word LBRAC-2
.byte 3,".0K"

DOTOK
call #DOLIT
.word INTER
call #TEVAL
call #AT
call #EQUAL
call #QBRAN
.word DOTO1
call #DOTQP
.byte 3," ok"

DOTO1l:call #CR

94

Ret

; ?STACK(--)
; Abort if the data stack underflows.
.word DOTOK-4
.byte 6,"?STACK",0
QSTAC
call #DEPTH
call #ZLESS;check only for underflow
call #ABORQ
.byte 10," underflow",0
Ret

;. EVAL (--)

; Interpret the input stream.
.word QSTAC-8
.byte 4,"EVAL",0

EVAL
EVALl:call #TOKEN
call #DUPP
call #CAT ;?input stream empty
call #QBRAN
.word EVAL2
call #TEVAL
call #ATEXE

call #QSTAC;evaluate input, check stack
call #BRAN
.word EVAL1
EVAL2:call #DROP
call #DOTOK
retprompt

;; Shell
, QUIT (--)
; Reset return stack pointer and start text interpr

.word EVAL-6
.byte 4,"QUIT",0

95

eter.

QUIT

mov#SPP,stack

mow#RPP,SP
QUIT1:call #LBRAC ;start interpretation
QUIT2:call #QUERY ;get input

call #EVAL

jmp QUIT2 ;continue till error

4.13 Compiler

In MSP430G2553, the flash main memory is organindsil2 byte pages, and the
flash information memory is organized in 64 bytggm The flash memory can be
read like RAM memory, but to write and to erasslilanemory, you have to go
through the flash memory controller. The flash megntontroller makes everything
very easy. You first unlock the memory controlbard then issue a write or erase
command. Then you write to one location in theHlanemory page, and finally
lock the flash memory controller. Following are tommands to write one 16-bit
integer to a flash memory location, to erase omge md flash memory, and to copy an
array from a memory area to a flash memory area.

Search the dictionary for the following stringlf the string is a valid
command, return its code field address. If thegtis not a valid
command, print a ? mark.

ALLOT | Allocaten bytes of RAM memory on bottom of the free RAM spac
System variable DP points to the bottom of free Rédace.

IALLOT | Allocaten bytes of flash memory on the top of the dictionar$ystem
variable CP points to the top of the dictionary.

I! Store the 16-bit data w in flash memory addeess

ERASE | Erase one 512 byte page of flash main memory dry6s of flash
information memory. The page address a is ondp®t the parameter
stack.

WRITE | Copyn bytes of one memory array, starting at addsess, to an array in
flash memory, starting at flash addresst . All addresses are byte
addresses.

The command I! is actually the primitive compilara@Forth. It allows us to write
into the flash memory to build new FORTH commands.is used to define the *;
(comma) command, which add one more 16-bit integéne top of the FORTH
dictionary, and thus extends the FORTH system leyioleger. Repeatedly adding
data and instructions to the dictionary to form f&@RTH commands is what a
compiler does.

96

;; The compiler

;' (—-ca)
: Search context vocabularies for the next word in
stream.

word QUIT-6
.byte 1,™
TICK
call #TOKEN
call #NAMEQ;?defined
call #QBRAN
word TICK1

ret ;yes, push code address
TICK1:)mpERROR ;no, error

. ALLOT (n--)
; Allocate n bytes to the RAM dictionary.
.word TICK-2
.byte 5,"ALLOT"
ALLOT
call #DP
jmp PSTOR

: IALLOT(n)

; Allocate n bytes to the code dictionary.
.word ALLOT-6
.byte 6,"IALLOT",0

IALLOT
call #CP
jmp PSTOR
;M(na--)

; Store n to address a in code dictionary.
.word IALLOT-8
.byte 2,"1'",0
ISTORE
mov #FWKEY,&FCTL3 ; Clear LOCK
mov #FWKEY+WRT,&FCTLL1 ; Enable write

97

input

call #STORE

mov #FWKEY,&FCTL1 ; Done. Clear WRT
mov #FWKEY+LOCK,&FCTL3 ; Set LOCK
ret

. ERASE (a--)
; Erase a segment at address a.
.word ISTORE-4
.byte 5,"ERASE"
IERASE
mov #FWKEY,&FCTL3 ; Clear LOCK
mov #FWKEY+ERASE,&FCTL1 ; Enable erase
clr O(tos)
mov #FWKEY+LOCK,&FCTL3 ; Set LOCK
loadtos
ret

; WRITE (srcdestn--)
; Copy n byte from src to dest. Dest is in flash m emory.

.word |IERASE-6

.byte 5,"WRITE"
WRITE

rra tos

call #TOR
WRITEL

call #OVER

call #AT

call #OVER

call #ISTORE

incd tos

incd O(stack)

call #DONXT

.word WRITEL1
jmp DDROP
jmp COMMA

Compiler Commands

98

It is the most fundamental compiler command.colnhpiles an integer

w to dictionary in the flash memory, and add the item to the
growing command list of the current command una&struction.
This is the primitive compiler upon which the FORTbimpiler rests.

CALL,

Compile or assemble a subroutine call insian with the code field
address on the parameter stack as destination. p@ord commands
are compiled as lists of subroutine calls.

[COMPILE]

Compile the code field address of the next commartlde input
stream. Itis used to compile commands, which datiherwise be
executed while compiling.

COMPILE

Compile the code field address of the next commaurtlde input
stream. It forces compilation of a command attmome.

LITERAL

Compile an integer literal. It first cories a call doLIT machine
instruction, followed by an integer value from fherameter stack.
When doLlIT is executed, it extracts the integethe next program
word and pushes it on the parameter stack.

Compile a string literal. String text is takieam the input stream an
terminated by a double quote. A token (such &sr. $"|) must be

o

compiled before the string to form a sting literal.

;o (w--)

; Compile an integer into the code dictionary.
.word WRITE-6
.byte 1,""

COMMA

call #CP

CALL #AT

call #DUPP

call #CELLP;cell boundary
call #CP

call #STORE

jmp ISTORE

;call, (w--)

; Compile a call instruction into the code dictiona ry.
.word COMMA-2
.byte 5,"call,"

CALLC

call #DOLIT
.word CALLL
call #COMMA

99

; [COMPILE] (-- ; <string>)

; Compile the next immediate word into code diction
.word CALLC-6
.byte IMEDD+9,"[COMPILE]"

BCOMP
call #TICK
jmp CALLC

: COMPILE (--)

; Compilethenextaddressincolonlisttocodedi
.word BCOMP-10
.byte COMPO+7,"COMPILE"

COMPI
call #RFROM
call #DUPP
call #AT

call #COMMA ;compile call instruction
call #CELLP

call #DUPP

call #AT

call #COMMA ;compile address
call #CELLP

call #TOR

ret ;adjust return address

: LITERAL (w--)
; Compile tos to code dictionary as an integer lite
.word COMPI-8
.byte IMEDD+7,"LITERAL"
LITER
call #DOLIT
.word DOLIT
call #CALLC
jmp COMMA

; $,(--)

; Compile a literal string up to next " .
.word LITER-8

100

ary.

ctionary.

ral.

STRCQ
call #DOLIT
word "
call #WORDD;move string to code dictionary
STRCQ1
call #DUPP
call #CAT
call #TWOSL;calculate aligned end of string
call #TOR
STRCQ2
call #DUPP
call #AT
call #COMMA
call #CELLP
call #DONXT
.word STRCQ2
jmp DROP
Structure Commands

Immediate commands are not compiled as tokenseéogdmpiler. Instead, they are
executed by the compiler immediately. They areluséouild control structures in
compound commands. Immediate commands has its IMKEE lexicon bit set,

in the length byte of the name field. The consitolictures used in 430eForth are the
following:

Conditional branch IF ... THEN
IF ... ELSE ... THEN
Finite loop FOR ... NEXT
FOR ... AFT ... THEN... NEXT
Infinite loop BEGIN ... AGAIN
Indefinite loop BEGIN ... UNTIL
BEGIN ... WHILE ... REPEAT

A control structure contains one or more addressalis with ?branch, branch and
next commands, which causes execution to branchfdbe normal sequence. The
control structure commands are immediate commaimiishveompile the address
literals and resolve the branch address.

One should note th&EGIN andTHENdo not compile any token. They set up or
resolve control structures in compound commandB., ELSE, WHILE, UNTIL, and
AGAIN do compile address literals with branching tokens.

101

| use two charactews andA to denote some addresses on the data stacgoints to
a location to where a branch commands would jump £opoints to a location where
a new address will be stored when the addressadve.

BEGIN

Start a loop structure. It pushes an addaess the parameter stacka
points to the top of the dictionary where new takeull be compiled. |If
begins an infinite loop or an indefinite loop.

FOR

Compile a>R token and pushes the address of the next tokertlaeo
parameter stack. It starts a FOR-NEXT loop.

NEXT

Compile a next token with a target address ¢he top of the parameter
stack. It resolves a FOR NEXT loop.

UNTIL

Compile a?branch token with a target address a on the top of the
parameter stack. It resolves a BEGIN-UNTIL loop.

AGAIN

Compile abranch token with a target address a on the top of the
parameter stack. It resolves a BEGIN-AGAIN loop.

Compile a?branch address literal and pushes its addrasss left on
the parameter stack. It starts a IF-ELSE-THEN B+-&aHEN branch
structure.

AHEAD

Compile abranch address literal and pushes its addrasss left on the
parameter stack. It starts a AHEAD-THEN branchdtire.

REPEAT

Compile abranch token with a target addreason the top of the
parameter stack. It resolves a BEGIN-WHILE-REPH#Gp.

THEN

Resolve the address in a branch token whose addr@sen the top of
the parameter stack. It resolves a IF-ELSE-TEHN-6FHEN branch
structure.

AFT

Compile abranch literal and leaves its addressAqdt also replaces the
addresa left by FORwith the addresal of the next token. A will be
used byTHENto resolve the AFT-THEN branch structure, aiddwill be
used byNEXTto resolve the loop structure.

ELSE

Compile abranch token, and use the address of the next token to
resolve the address field @branch token ina, as left bylF . It also
replacesa with A, the address of its address field T¢#ENto resolve.
ELSE starts the false clause in the IF-ELSE-THEN brastahcture.

WHILE

Compile a?branch token and leave its address,on the stack.
Addressa left by BEGIN is swapped to the top of the parameter stack|
WHILE s used to start the true clause in the BEGIN-WHREPEAT
loop.

. Structures

;, FOR--a)

. Start a FOR-NEXT loop structure in a colon defini

tion.

102

.word STRCQ-4
.byte IMEDD+3,"FOR"

FOR
call #DOLIT
.word TOR
call #CALLC
jmp BEGIN
; BEGIN (--a)

; Start an infinite or indefinite loop structure.
.word FOR-4
.byte IMEDD+5,"BEGIN"

BEGIN
call #CP
jmp AT

; NEXT (a--)

; Terminate a FOR-NEXT loop structure.
.word BEGIN-6
.byte IMEDD+4,"NEXT",0

NEXT
call #DOLIT
.word DONXT
call #CALLC
jmp COMMA
; UNTIL (a--)

; Terminate a BEGIN-UNTIL indefinite loop structure
.word NEXT-6
.byte IMEDD+5,"UNTIL"

UNTIL
call #DOLIT
.word QBRAN
call #CALLC
jmp COMMA
; AGAIN (a--)

; Terminate a BEGIN-AGAIN infinite loop structure.

103

.word UNTIL-6

.byte IMEDD+5,"AGAIN"
AGAIN

call #DOLIT

.word BRAN

call #CALLC

jmp COMMA

, IF(-A)
; Begin a conditional branch structure.
.word AGAIN-6
.byte IMEDD+2,"IF",0
IFF
call #DOLIT
.word QBRAN
call #CALLC
call #BEGIN
call #DOLIT
word 2
jmp IALLOT

; AHEAD (--A)
; Compile a forward branch instruction.
.word IFF-4
.byte IMEDD+5,"AHEAD"
AHEAD
call #DOLIT
.word BRAN
call #CALLC
call #BEGIN
call #DOLIT
word 2
jmp IALLOT

; REPEAT(Aa--)

; Terminate a BEGIN-WHILE-REPEAT indefinite loop.
.word AHEAD-6
.byte IMEDD+6,"REPEAT",0

104

REPEA
call #AGAIN
call #BEGIN
call #SWAP
jmp ISTORE

; THEN (A--)

; Terminate a conditional branch structure.
.word REPEA-8
.byte IMEDD+4,"THEN",0

THENN
call #BEGIN
call #SWAP
jmp ISTORE
; AFT(a--aA)
; Jump to THEN in a FOR-AFT-THEN-NEXT loop the firs
through.

.word THENN-6
.byte IMEDD+3,"AFT"

AFT
call #DROP
call #AHEAD
call #BEGIN
jmp SWAP

. ELSE (A--A)
; Start the false clause in an IF-ELSE-THEN structu
.word AFT-4
.byte IMEDD+4,"ELSE",0
ELSEE
call #AHEAD
call #SWAP
jmp THENN

. WHILE (a-Aa)

: Conditional branch out of a BEGIN-WHILE-REPEAT lo
.word ELSEE-6

105

ttime

re.

op.

.byte IMEDD+5,"WHILE"

WHILE
call

jmp

#IFF
SWAP

ABORT"

Compile an error message as a string literal. &hisr message is
display at run time if the top item on the paramstack isrue , and the
rest of the tokens in this compound command argpski and eForth
enters the interpreter loop @UIT. This is the programmed response
an error condition.

Compile a string literal which will be printedhen it is executed in run
time. This is the best way to present messaggsuaon an application.

Compile a string literal. When it is executedly the address of the
string is pushed on the parameter stack. Latentamads can use this
address to access the string and individual cherset the string as a
string array.

; ABORT"(--; <string>)

; Conditional abort with an error message.
.word WHILE-6
.byte IMEDD+6,"ABORT""™,0

ABRTQ
call

#DOLIT

.word ABORQ

call
jmp

#CALLC
STRCQ

; $" (- <string>)

; Compile an inline string literal.
.word ABRTQ-8
.byte IMEDD+2,"$"",0

STRQ
call #DOLIT
.word STRQP
call #CALLC
call #STRCQ
ret

;" (- <string>)
; Compile an inline string literal to be typed out atrun

106

to

time.

.word STRQ-4

.byte IMEDD+2,"."™,0
DOTQ

call #DOLIT

.word DOTQP

call #CALLC

call #STRCQ

ret

Name Compiler

We had seen how tokens and structures are compitethe code field of a
compound command in the dictionary. To build a mewmand, we have to build
its header first. A header consists of a linkdiahd a name field. Here are the
commands to build the header.

2UNIQUE

Display a warning message to show that the nanaenefv command
already exists in the dictionary. FORTH does mewpnt your reusing
the same name for different commands. Howevemgithe same
name to many different commands often causes prbile software
projects. Itis to be avoided if possible &@WNIQUEreminds you of
it.

$,n

Build a new header with a name string at RAM adglnes It first

build a link field with an address pointing to th@me field of the prior
command, and then copies the stringato build a name field. The
top of dictionary is the code field of the new coamd, and tokens can
be compiled.

;; Name compiler

; 7UNIQUE

(a--a)

; Display a warning message if the word already exi sts.
.word DOTQ-4
.byte 7,"?UNIQUE"

UNIQU

call #DUPP

call #NAMEQ;?name exists

call #QBRAN

.word UNIQ1 ;redefinitions are OK
call #DOTQP

.byte 7,"reDef" ;but warn the user

107

call #OVER
call #COUNT
call #TYPEE;just in case its not planned

UNIQ1l:jmp DROP
; $,n(na--)
; Build a new dictionary name using the string at n a.
.word UNIQU-8
.byte 3,"$,n"
SNAME
call #DUPP
call #CAT ;?null input
call #QBRAN
.word SNAM1
call #UNIQU ;?redefinition
call #LAST
call #AT
call #COMMA ;save na for vocabulary link
call #CP
call #AT
call #LAST
call #STORE
jmp STRCQ1 ;fill name field
SNAM1
call #STRQP
.byte 5," name" ;null input
jmp ERROR

FORTH Compiler

$COMPILE

Build the token list of a new compound commandsrcode field,
which is on the top of the dictionary. It takestang addresa on
the top of the parameter stack, search dictiomarga imatching
command, and adds a token to the token list. elfsthing is not a
valid command, it is converted to a number, anuteger literal
added to the token list. If the string is not anter, abort the
compilation process and return to the text integsr®op inQUIT.

If the string is the name of an immediate commamd,command is
not compiled, but executed immediately. Immedcagmands are
tools used by the compiler to build structuresampound
commands.

108

OVERT

Link a new command to the dictionary andstimakes it available fo
dictionary searches. When a new header is bislshame field
address is stored in system varidbfST, and it is not yet linked to
the dictionary which starts &@ONTEXT OVERT copies the name
field address il AST to CONTEXTand links the new command tg
the dictionary. It is used to protect the dictignso that new
commands not compiled successfully will not be cibaspincorrectly
into later compound commands.

Terminate a new compound command. It compilesetin machine
instruction to terminate the new token list, likés new command tq
the dictionary, and then returns to the text intetgr by storing the
code field address INTERPRET into system variabl&VAL .

Turn the text interpreter to a compiler by stgrihe code field
address 0$COMPILEinto system variabl&VAL .

Create a new header and start a new compounthaath It takes
the following string in the input stream to be tiene of the new
command. The dictionary is ready to accept a tdisen] turns
the text interpreter into compiler, which will congpthe following
text strings to build a new compound command. dwe
compound command is terminated;hy

IMMEDIATE

Set the immediate lexicon bit in the name field e hew command.
When the compiler encounters a command with thisedj it will not
compile this word into the token list under constian, but execute i
immediately. This bit allows structure commandbudd special
structures in compound commands, and to deal \pitkial
conditions when the compiler is running.

;; FORTH compiler

; $COMPILE (a--)

; Compilenextwordtocodedictionaryasatokeno rliteral.
.word SNAME-4
.byte 8,"$COMPILE",0

SCOMP
call #NAMEQ
call #QDUP ;?defined
call #QBRAN
.word SCOM2
call #AT
call #DOLIT
.word IMEDD
call #ANDD ;?immediate
call #QBRAN
.word SCOM1

109

=

D

t

jmp EXECU ;its immediate, execute
SCOM1:

jmp CALLC ;its not immediate, compile
SCOM2:

call #NUMBQ;try to convert to number

call #QBRAN

.word SCOM3

jmp LITER ;compile number as integer
SCOM3:

jmp ERROR error

: OVERT (--)

; Link a new word into the current vocabulary.
.word SCOMP-10
.byte 5,"OVERT"

OVERT
call #LAST
call #AT
call #CNTXT
jmp STORE
oy ()

: Terminate a colon definition.
.word OVERT-6
.byte IMEDD+COMPO+1,";"

SEMIS
call #DOLIT
ret
call #COMMA
call #LBRAC
jmp OVERT

;1 (=)

; Start compiling the words in the input stream.
.word SEMIS-2
.byte 1,"]"

RBRAC
call #DOLIT

110

.word SCOMP
call #TEVAL
jmp STORE

;o (--; <string>)
; Startanew colondefinitionusingnextword asi
.word RBRAC-2
.byte 1,":"
COLON
call #TOKEN
call #SNAME
jmp RBRAC

; IMMEDIATE (--)

; Make the last compiled word an immediate word.
.word COLON-2
.byte 9,"IMMEDIATE"

IMMED
call #DOLIT
.word IMEDD
call #LAST
call #AT
call #AT
call #ORR
call #LAST
call #AT
jmp ISTORE

Defining Commands

tsname.

Defining commands are molds which can be usedeaterclasses of commands
which share the same run time execution behavilor430eForth, we have these
defining commands: , CREATECONSTANBGBNdVARIABLE.

doCON Fetch a value stored after tball doCON

instruction and pushes it

on the parameter stack. It returns to its caltenediately. The
call doCON instruction and the value after it forms the cbdkl in
all constant commands. For variables and data srthg value
pointing to a location in RAM memory. All commanai® defined in
flash memory which can hold only constants. Howgehee constant

111

can be pointers to variables and arrays in RAM nigmo

CREATE

Create a new data array in RAM memory withedlocating memory.
When commands created B\REATHS executed, they will push the
respective RAM addresses on the parameter staclemdvl space of
an actual array is allocated usiABLOT command.

-

VARIABLE

Create a new command witldaCONtoken followed by a pointer to
RAM memory and allocate 2 bytes of space in RAM mgm When
a variable commands is executed, it pushes this R4dtess on the
parameter stack.

CONSTANT

Create a new command witlidaCONtoken followed by the constant
value. When a constant command is executed, itgzuthe constant
value on the parameter stack.

;; Defining words

; doCON (--a)

; Run time routine forCONSTANT, VARIABLE and CREATE
.word IMMED-10
.byte COMPO+5,"doCON"

DOCON:
savetos
pop tos

MOV @tos,tos

ret

; HEADER(-- ; <string>)

; Compile anew array entry without allocating code space.
.word DOCON-6
.byte 6,"HEADER",0

HEADER
call #TOKEN
call #SNAME
call #OVERT
call #DOLIT
.word DOCON
jmp CALLC

; CREATE(--; <string>)

; Compile anew array entry without allocating code space.
.word HEADER-8
.byte 6,"CREATE",0

112

CREAT
call #HEADER

call #DP
call #AT
jmp COMMA

; CONSTANT (n--; <string>)
; Compile a new constant.
.word CREAT-8
.byte 8,"CONSTANT",0

CONST
call #HEADER
jmp COMMA

; VARIABLE (--; <string>)
; Compile a new variable initialized to O.
.word CONST-10
.byte 8,"VARIABLE",0
VARIA
call #CREAT
call #DOLIT
word 2
jmp ALLOT

414 Tools

430eForth is a very small system and only a verglisset of tool commands are
provided. Nevertheless, this set of tool commasg®werful enough to help you
debug new commands he adds to the system. Theysargery interesting
programming examples on how to use the commaneBoarth to build applications.

Generally, the tool commands present informattoresl in different parts of the
CPU in appropriate formats to let you inspect #sults as he executes commands in
the eForth system and commands he defined himsé&he tool commands include
memory dump, stack dump, dictionary dump, etc.

One important discipline in learning FORTH is tari@ how to use the parameter
stack effectively. All commands must consume thgut parameters on the stack
and leave only their intended results on the sta@loppy usage of the parameter
stack is often the cause of bugs which are veficdif to detect later, as unexpected
items left on the stack could result in unpredilgdiehavior. .S should be used
liberally during programming and debugging to eeghiat the correct parameters are

113

left on the parameter stack.

The parameter stack is the center for arithmetitlagic operations. It is where
commands receive their parameters and also wheyddft their results. In
debugging a new command which may use stack itewhéeave items on the stack,
the best was to debug it is to inspect the paramse&dek, before and after its
execution. To inspect the parameter stack nomustely, use the comman8§ .

DUMP | Print 128 bytes of data starting at RAM additeds the terminal. It
dumps 16 bytes to a line. A line begins with tbdrass of the first byte,
followed by 16 bytes shown in hex, 3 columns paeby At the end of a
line are the 16 bytes shown in ASCII characterson-drintable
characters are replaced by underscores (ASCIlI IBUMRcommand in
most FORTH system takes an address and a lengtraseters to dump
a memory array.

>NAME | Return a code field address, xt, of a command ftemame field address,
na. If xtis not a valid code field address, retQr It follows the linked
list of the dictionary, and from every name fieltteess we can get a

corresponding code field address. If this addiesst the same as xt, we
go to the name field of the next command. If xd Malid code field
address, we surely will find it. If the entire tlomary is searched and xt
Is not found, it is not a valid code field address.

.ID Display the name of a command, given the n&elé address of this
command. It replaces non-printable charactersnanae by
under-scores.

WORDS| Display all the names in the dictionary. The orofiewords is reversed
from the compiled order. The last defined commiarghown first.

> Tools

; DUMP (au--)

; Dump u bytes from a, in a formatted manner.
.word VARIA-10
.byte 4,"DUMP",0

DUMP

call #DOLIT

word 7

call #TOR ;start count down loop
DUMP1:call #CR,

call #DUPP

call #DOLIT

word 5

114

call #UDOTR

call #DOLIT
.word 15
call #TOR
DUMP2
call #COUNT
call #DOLIT
.word 3
call #UDOTR
call #DONXT
.word DUMP2 ;loop till done
call #SPACE
call #DUPP
sub #16,tos
call #DOLIT
.word 16

call #TYPEE;display printable characters
call #DONXT

.word DUMP1 ;loop till done

jmp DROP

.S (- il)
. Display the contents of the data stack.
.word DUMP-6

.byte 2,".S",0
DOTS
call #CR
call #DEPTH;stack depth
call #TOR ;start count down loop
jmp DOTS2 ;skip first pass
DOTSI:
call #RAT
call #PICK

call #DOT ;index stack, display contents
DOTS2:

call #DONXT
.word DOTS1 ;loop till done
call #DOTQP

115

.byte 4," <sp",0
Ret

; >NAME (ca--na|F)
; Convert code address to a name address.
.word DOTS-4
byte 5,">NAME"
TNAME
call #TOR
call #CNTXT ;vocabulary link
call #AT

TNAMLI:
call #DUPP ;check all vocabularies
call #QBRAN
.word TNAM2
call #DUPP
call #NAMET
call #RAT
call #XORR ;compare
call #QBRAN
.word TNAM2

call #CELLM :continue with next word
call #AT

call #BRAN
.word TNAM1
TNAM2:
call #RFROM
jmp DROP
; A0 na--)

; Display the name at address.
.word TNAME-6
.byte 3,".ID"
DOTID
call #COUNT
call #DOLIT
.word O1FH
call #ANDD ;mask lexicon bits

116

jmp TYPEE

; WORDS (--)
; Display the names in the context vocabulary.
.word DOTID-4
.byte 5,"WORDS"
WORDS
call #CR
call #CNTXT
call #AT,only in context
WORSL1:
call #QDUP ;?at end of list
call #QBRAN
.word WORS2
call #DUPP
call #SPACE
call #DOTID;display a name
call #CELLM
call #AT
call #BRAN
.word WORS1
WORS2:ret

5.14 FORTH Sartup

The startup routinenain is located at the beginning of the flash main meyret
location COOOH. It initializes the return stackiger in theSP register, and the
parameter stack pointer stack register. It thus completes hardware initialiaati
and then jumps to COLD command which initializes 430eForth FORTH Virtual
Machine, by copying the system variables from flebrmation memory Segment D
(at 1000H) to RAM memory starting at 200H, andtstannning an application. The
default application in 430eForthhis , which simply sends out a sign-on message and
falls into the text interpreter QUIT. The addre$éi is stored in memory location
named 'BOOT at 200H. This address can be chaogeaint to an application
command. To build a turnkey system, the systarraliles must be saved in
Segment D so that when the application boots ugstall the properly initialized
system variables.

Because all the system variable in 430eForth atialined from a data array in the

information flash memory, 430eForth is eminentlyN®&ble and suitable for
embedded applications in MSP430G2553. BeforenfalintoQUIT to enter into the

117

text interpreter loopCOLD command executes a boot routine whose code address
stored in system variablBOOT. This code address can be vectored to an
application command which defines the proper bedrasfi the system on power-up
and on reset. InitialiBOOT contains the code field addresshof.

hi

The default start-up routine in 430eForth. initializes the serial /0O device
and then displays a sign-on message. This is wimerean customize his
application. From here one can initialize the eysto start his own
application.

1%

'BOOT

A system variable loaded at RAM memory address $100is originally
vectored tdhi .

COLD

A high level compound command executed upon powegalled from the
low level START routine. Its initializes the system variables,@xes the
boot-up routine vectored througBOOT, and then falls into the text

interpreter looQUIT.

:» Hardware reset

, hi(--)

; Display the sign-on message of eForth.
.word WORDS-6

.byte
HI
;call
call
call
.byte
jmp

: 'BOOT

2,"hi",0

#STOIO

#CRinitialize 1/10

#DOTQP

14,"430eForth v1.0",0 ;model
CR

(-a)

; The application startup vector.
.word HI-4

.byte
TBOOT

5,"BOOT"

savetos
movwUPP,tos

ret

: COLD
: Theh

(-)

ilevel cold start sequence.

.word TBOOT-6

118

.byte 4,"COLD"

COLD

COLD1:
call #DOLIT
.word UZERO
call #DOLIT
.word UPP
call #DOLIT

.word ULAST-UZERO
call #CMOVE:initialize user area

call #TBOOT
call #ATEXE;application boot

call #QUIT ;start interpretation
jmp COLD1 ;justin case

CTOP .word OFFFFH ;next available memory in code
dictionary

System Variables

The first 32 bytes starting at location $200 aredusy system variables, as shown in
the following list:

Variable Address Function

'‘BOOT 200H Execution vector to start applicatiomenand.

BASE 202H Radix base for numeric conversion.

tmp 204H Scratch pad.

HLD 206H Pointer to a buffer holding next digir fnumeric
conversion.

>IN 208H Input buffer character pointer useddxt interpreter.

#TIB 20AH Number of characters in input buffer.

'EVAL 20CH Execution vector switching between SBRPRET and
$COMPILE.

CONTEXT | 210H Vocabulary array pointing to last name fiebls
dictionary.

CP 212H Pointer to top of dictionary, the firgadable flash
memory location to compile new command

DP 214H Pointer to the first available RAM memtgation.

LAST 216H Pointer to name field of last commandlictionary.

The initial values of these variable are storethaminformation flash memory
Segment D at location 1000H. The assembly commaeds".infoD" direct

119

the linker to store these initial values thereltsd theCOLDroutine can initializes
them properly after boot-up.

The assembly commandsect ".reset" direct the linker to store the address of
main in the reset vector at OFFFEH, so that MSP430G2&®mps tamain on
boot-up.

; COLD start moves the following to USER variables.
; MUST BE IN SAME ORDER AS USER VARIABLES.

.sect ".infoD"

UZERO:
.word HI ;200H, boot routine
.word BASEE ;202H, BASE
.word 0 ;204H, tmp
.word 0 ;206H, >IN
.word 0 ;208H, #TIB
.word INTER ;20AH, 'EVAL
.word 0 ;20CH, HLD

.word COLD-6;20EH, CONTEXT pointer
.word CTOP ;210H, CP

.word DPP ;220H, DP

.word COLD-6;214H, LAST

ULAST:
.sect ".reset" : MSP430 RESET Vec tor
.short main : .end

120

Conclusions

What | give you in 430eForth is that in about 6@§€es, you have a programming
language, an interactive operating system, anth@lllebugging tools to develop
applications on LaunchPad Kit, for LaunchPad Kithe complete source code of
430eForth.asm is only 44 Kbytes long. It is amaoig system, which can grow to
accommodate any application that MSP430G2553 nueriooller can host. It
allows you to read all its CPU and I/O registerg] all its data and program
memories. It also allows you to change the I/Ostegs and memories, and to add
new commands to the flash memory. By adding nawngands, you can extend the
430eForth system and build a new system whichdeilvhat you want it to do.

In 430eForth, | try to reduce the FORTH languagistbare minimum, so that you
can learn this programming language quickly, ands®it to do useful work.
MSP430G2553, like all the newer microcontrolleraifable now, contains many
powerful and complicated I/O devices, and it tatkesMSP430 User’s Guide 658
pages to explain them. With 430eForth, you caméxa all the I/O registers and
modify them to make the I/O devices work the way yeant them to work. There is
no better way to study the MSP430 User’s Guide tbaead the book along with
430eForth, modifying the I/O registers and obsevliat the 1/0O devices do.
430eForth is a worthy companion to the MSP430 WgBtiide.

LaunchPad Kit is an excellent platform for FORTH-ORTH allows you to develop
substantial applications quickly and produce highliqy code. You write

commands in small modules which can be tested exivaly. Fully tested
commands can be used to build more powerful commantigher conceptual levels,
until the last command, which becomes the appbaoati This last command can be
used to configure a turnkey system, so that it éllexecuted when the system boots
up. You can do all these things with 430eForth.annchPad Kit.

FORTH is a programming paradigm very different froomventional programming
languages and operating systems. It can be emtbéatdea small microcontroller,
and empowers you to make the best use of the inntsources available in a
microcontroller. | hope you will learn this pargdi and enjoy these benefits:

Integrated operating system and programming laggoa a small chip
Interactive command interpreter

Incremental compilation of new commands

Bottom up coding and debugging

Naturally structured programming

Ready access to memory and I/O registers

Ease in building turnkey applications

In explaining how this system is constructed, estep in the way, | hope to lay to
rest these myths, that computers are complicabgra@mming languages are
complicated, and operating systems are complicatédl.these things can be very
simple, and can be understood by ordinary peopecadinary engineers. If you
understand this 430eForth system completely, tidenstanding can be carried over

121

to any computer and microcontrollers.

People using computers are trained to be slavesu ake taught to push certain
buttons, and your are taught to push certain keyfien, you get employed to push
buttons and keys to work as slaves. Computergy@noming languages, and
operating systems are made complicated to enskEvg

Computers are not complicated beyond comprehensiBrogramming languages

and operating systems do not have to be complicatédou get a sharp knife, you
can be the master of your destination. 430eFesrthgharp knife. Go use it.

122

Conclusions

What | give you in 430eForth is that in about 6@§€es, you have a programming
language, an interactive operating system, anth@lllebugging tools to develop
applications on LaunchPad Kit, for LaunchPad Kithe complete source code of
430eForth.asm is only 44 Kbytes long. It is amaoig system, which can grow to
accommodate any application that MSP430G2553 nueriooller can host. It
allows you to read all its CPU and I/O registerg] all its data and program
memories. It also allows you to change the I/Ostegs and memories, and to add
new commands to the flash memory. By adding nawngands, you can extend the
430eForth system and build a new system whichdeilvhat you want it to do.

In 430eForth, I try to reduce the FORTH languaggstbare minimum, so that you
can learn this programming language quickly, ands®it to do useful work.
MSP430G2553, like all the newer microcontrolleraifable now, contains many
powerful and complicated I/O devices, and it tatkesMSP430 User’s Guide 658
pages to explain them. With 430eForth, you caméxa all the I/O registers and
modify them to make the I/O devices work the way yeant them to work. There is
no better way to study the MSP430 User’s Guide tbhaead the book along with
430eForth, modifying the I/O registers and obsevliat the 1/0O devices do.
430eForth is a worthy companion to the MSP430 WgBtiide.

LaunchPad Kit is an excellent platform for FORTH-ORTH allows you to develop
substantial applications quickly and produce highliqy code. You write

commands in small modules which can be tested exivaly. Fully tested
commands can be used to build more powerful commantigher conceptual levels,
until the last command, which becomes the appbaoati This last command can be
used to configure a turnkey system, so that it béllexecuted when the system boots
up. You can do all these things with 430eForth.annchPad Kit.

FORTH is a programming paradigm very different froomventional programming
languages and operating systems. It can be emtdéaldea small microcontroller,
and empowers you to make the best use of the tinngsources available in a
microcontroller. | hope you will learn this pargdi and enjoy these benéefits:

Integrated operating system and programming laggoa a small chip
Interactive command interpreter

Incremental compilation of new commands

Bottom up coding and debugging

Naturally structured programming

Ready access to memory and I/O registers

Ease in building turnkey applications

In explaining how this system is constructed, estep in the way, | hope to lay to
rest these myths, that computers are complicabgra@mming languages are
complicated, and operating systems are complicatédl.these things can be very
simple, and can be understood by ordinary peopdecadinary engineers. If you
understand this 430eForth system completely, tidenrstanding can be carried over
to any computer and microcontrollers.

123

People using computers are trained to be slavesu ake taught to push certain
buttons, and your are taught to push certain keyfien, you get employed to push
buttons and keys to work as slaves. Computergy@noming languages, and
operating systems are made complicated to enskEvg

Computers are not complicated beyond comprehensiBrogramming languages

and operating systems do not have to be complicatédou get a sharp knife, you
can be the master of your destination. 430eFsrthsharp knife. Go use it.

124

Appendix 430eForth Commands

Stack Comments:

Stack inputs and outputs are shown in the fornpuiib input2 ... -- outputl output2 ...)
Stack Abbreviations of Number Types

flag Boolean flag, either O or -1
char ASCII character or a byte
n 16 bit number

addr 16 bit address

d 32 bit number

Sack Manipulation Commands

?DUP (n--nn|0) Duplicate top of stack ifstriot 0.
DUP (n1 -- n2) Duplicate top of stack.
DROP (n--) Discard top of stack.
SWAP (n1 n2 --n2 nl) Exchange top two stack items.
OVER (n1 n2 --nln2nl) Make copy of second itemstack.
ROT (n1 n2n3--n2n3 Rotate third item to top.
nl)
PICK (n--nl) Zero based, duplicate nth item to.{@.g. 0 PICK is DUP).
>R (n--) Move top item to return stack for temgugrstorage.
R> (--n) Retrieve top item from return stack.
R@ (--n) Copy top of return stack onto stack.
2DUP (d--dd) Duplicate double number on tojstatck.
2DROP (d1d2--) Discard two double numbers onabgtack
DEPTH (--n) Count number of items on stack.

Arithmetic Commands

+ (n1 n2 -- n3) Add nl1 and n2.

- (n1 n2 -- n3) Subtract n2 from nl (n1-n2=n3).

* (n1 n2 -- n3) Multiply. n3=n1*n2

/ (n1 n2 -- n3) Division, signed (n3= n1/n2).

1+ (n -- n+1) Increment n.

1- (n--n-1) Decrement n.

2+ (n -- n+2) Add two to n.

2- (n --n-2) Subtract two from n.

2* (n -- n*2) Logic left shift.

2/ (n --n/2) Logic right shift.

UM+ (n1 n2 -- nd) Unsigned addition, double premisresult.
UmM* (n1 n2 -- nd) Unsigned multiply, double precisiresult.
M* (nn--d) Signed multiply. Return double prad.

UM/MOD | (nd nl -- mod quot)

Unsigned division witbuble precision dividend.

M/MOD (dn--mod quot)

Signed floored divideaduble by single. Return mod and
guotient.

MOD (n1 n2 -- mod) Modulus, signed (remainder ofn2).
/MOD (n1 n2 -- mod quot) Division with both remaardand quotient.
*MOD (n1 n2 n3 -- n4 n5) Multiply and then divida1*n2/n3)

*/ (n1 n2 n3 -- n4) Like */MOD, but with quotienindy.

ABS (n1 -- n2) If n1 is negative, n2 is its twotsngplement.
NEGATE (n1 -- n2) Two's complement.

MAX (n1 n2 -- n3) n3 is the larger of n1 and n2.

MIN (n1 n2 -- n3) n3 is the smaller of n1 and n2.

WITHIN (n1 n2 n3 -- flag)

Return true if nl is withrange of n2 and n3. (n2 <= nl < n3

DNEGATE | (d1 -- d2)

Negate double number. Two's complement.

D+ (d1 d2 -- d3) Add double numbers.
D- (d1 d2 -- d3) Subtract double numbers.
D- (d1 d2 --d3) Subtract double numbers.

125

L ogic and Comparison Commands

AND (n1 n2 -- n3) Logical bit-wise AND.

OR (n1 n2 -- n3) Logical bit-wise OR.

XOR (n1 n2 -- n3) Logical bit-wise exclusive OR.

INVERT (n1 -- n2) Bit-wise one's complement.

0< (n -- flag) True if n is negative.

U< (n1 n2 -- flag) True if nl less than n2. Unsidm®mpare.

< (n1 n2 -- flag) True if nl less than n2.

= (n1 n2 -- flag) True if n1 equals n2.

> (n1 n2 -- flag) True if n1 greater than n2.

D> (d1 d2 -- flag) True if d1 greater than d2.

RAM Memory Commands

@ (addr -- n) Replace addr by number at addr.

C@ (addr -- char) Fetch least-significant byte only

! (n addr --) Store n at addr.

C! (char addr --) Store least-significant byteyonl

+! (n addr --) Add n to number at addr.

COUNT (addrl -- addr+1 Move string count from memory onto stack.
char)

ALLOT (n--) Add n bytes to the RAM pointer DP.

HERE (-- addr) Address of next available RAM meynlorcation.

PAD (-- addr) Address of a scratch area of attléddytes.

TIB (-- addr) Address of terminal input buffer.

CMOVE (addrl addr2 n --) Move n bytes startingnamory addrl to addr2.

FILL (addr n char --) Fill n bytes of memory atdadvith char.

Flash M emory Commands

@ (addr -- n) Replace addr by number at flash nrgraddr.

IC@ (addr -- char) Fetch a byte from flash mematgra

! (n addr --) Store n at flash memory addr.

ICOUNT (addrl -- addr+1 Move string count from flash memory onto stack.

char)

IALLOT (n--) Add n bytes to the flash memory pteEnCP.

ITYPE (addrn --) Display a string of n characterflash starting at address addr.

READ (addrl addr2 --) Read 128 bytes from flasimmey addrl to RAM memory
addr2.

WRITE (addrl addr2 --) Write 128 bytes from RAMmary addrl to flash memory
addr2.

ERASE (addr --) Erase an 128 byte page in flasimong at addr.

FLUSH (--) Write modified flash buffers back tagh memory.

System Variables

'BOOT (-- addr) Contain address of application owand to boot.

BASE (-- addr) Contain radix for number conversion

TMP (-- addr) Temporary scratch pad

SPAN (-- addr) Contain actual number of charaateceived by EXPECT
>IN (-- addr) Contain character offset into thpuhstream buffer.

#TIB (-- addr) Contain current length of termiigbut buffer (TIB).

'TIB (-- addr) Contain current address of terminglut buffer (TIB)
'EVAL (-- addr) Contain interpreter or compilerdgaluate a command.
HLD (-- addr) Contain pointer to numeric stringden construction.
CONTEXT | (-- addr) Contain name field address of last comuhia dictionary
CP (-- addr) Contain first free address in flastnmory

DP (-- addr) Contain first free address in RAM nagyn

LAST (-- addr) Contain name field address of comchander compilation

Terminal Input-Output Commands

126

EMIT (char --) Display char.

KEY (-- char) Get an ASCII character from the kegid.

?KEY (--char-1|0) Return an ASCII charactenfrthe keyboard and a true flag.
Return false flag if no character available.

. (n--) Display number n with a trailing blank.

U. (n--) Display an unsigned integer with a irajlblank.

R (n1n2--) Display signed number n1 right jfisti in n2 character field.

U.R (n1n2--) Display unsigned number n1 riglstified in n2 character
field.

? (addr --) Display contents at memory addr.

<# (--) Start numeric output string conversion.

(n1 -- n2) Convert next digit of number and aoldtitput string

#S (n--) Convert all significant digits in n tatput string.

HOLD (char --) Add char to output string.

SIGN (n--) If n is negative, add a minus sigrHe output string.

#> (xd -- addr n) Terminate numeric string, leavatglr and count for TYPE.

CR (-) Display a new line.

SPACE (-) Display a space.

SPACES (n--) Display n spaces.

EXPECT (addrn --) Accept n characters into buéfeaddr.

CHAR (-- char) Parse next command and returnirgs ¢haracter.

TYPE (addr n --) Display a string of n characteterting at address addr.

BL (--32) Return ASCII Blank character.

DECIMAL | (--) Set number base to decimal.

HEX (--) Set number base to hexadecimal.

Compiler and Interpreter Commands

:<name> () Begin a colon definition of <name>.

; (--) Terminate execution of a colon definition.

CREATE (--) Dictionary entry with no parameter field spaeserved.

<name>

VARIABL (--) Defines a variable. At run-time, <name> legaits address.

E <name>

CONSTAN | (n--) Defines a constant. At run-time, n is left the stack.

T <name>

, (n--) Compile n to the dictionary in flash memo

IMMEDIA | (--) Cause last-defined command to execute evinaa colon

TE definition.

COMPILE | (--) <name> is compiled to dictionary.

<name>

[COMPILE | (--) Immediate command <name> is compiled toiginztry.

] <name>

LITERAL (n--) Compile literal number n. At runrtie, n is pushed on the stack.

[(-) Switch from compilation to interpretation.

] (-) Switch from interpretation to compilation.

WORD«<tex | (char -- addr) Get the char delimited string <tefkom the input stream and

t> leave as a counted string at addr.

(comment) | (--) Ignore comment text.

\comment | (--) Ignore comment till end of line.

S <text>" (--) Compile <text> message. At rumé display text message.

.(<text>) (-) Display <text> from the input sam.

$" <text>" | (-- addr) Compile <text> message. Atdtime return its address.

ABORT" (flag --) Compile <test> message. At run-time tigpmessage and

<text>" abort if flag is true. Otherwise, ignore message @mtinue.

COLD () Start eForth system.

QUIT (--) Return to interpret mode, clear datd agturn stacks.

QUERY (-) Accept input stream to terminal infbuiffer.

NAME> (addrl -- addr2) Traverse name field at adaldl return code field address

127

addr2.

NUMBER?

(addr--n-1|addr
0)

Convert a number string to integer. Push a flagpsn

EXECUTE | (addr --) Execute command definition at addr.

@EXECU | (addr --) Execute command definition whose executiddress is in
TE addr.

EXIT (--) Terminate execution of a colon defipiti.

Compiler Sructure Commands

IF (flag --) If flag is zero, branches forwardE& SE or THEN.

ELSE (--) Branch forward to THEN.

THEN (--) Terminate a IF-ELSE-THEN structure.

FOR (n--) Setup loop with n as index. Repeat Inof times.

NEXT (--) Decrement loop index by 1 and branchkom FOR. Terminate
FOR-NEXT loop when index is negative.

AFT (--) Branch forward to THEN in a loop to skipe first round

BEGIN (--) Start an indefinite loop.

AGAIN (--) Branch backward to BEGIN.

UNTIL (flag --) Branch backward to BEGIN if flag ifalse. If flag is true,
terminate BEGIN-UNTIL loop.

WHILE (flag --) If flag is false, branch forward terminate
BEGIN-WHILE-REPEAT loop. If flag is true, continue
execution till REPEAT.

REPEAT (--) Resolve WHILE clause. Branch backwar8EGIN.

Utility Commands

' <name> (-- addr) Look up <name> in the dictign&eturn execution address.
WORDS (--) Display all eForth commands

DUMP (addr --) Dump 128 bytes of RAM memory stagtirom addr.

IDUMP (addr --) Dump 128 bytes of flash memoryrtitgy from addr.

.S (-) Dump the parameter stack.

128

