Systems Guide to figForth

C. H. Ting, Ph. D
Third Edition

Offete Enterprises, Inc
2013



CoNoOR~WNE

Systems Guide to figForth

Contents

Preface To The Second Edition
Preface To The First Edition

Language Definition of Forth
figForth Model

Text Interpreter

Address Interpreter
Compiler

Error Handling

Terminal Input and Output
Numeric Conversions
Dictionary

Virtual Memory

Defining Words

Control Structures

Editor

Assembler

INDEX

11
19
25
28
32
35
42
48
54
61
66
73
81

97



BOooNooG~WONE

RpRpoOooNoOhWNE

= o

Figures

Memory Map of a Typical Forth System
The Forth Loop

Text Interpreter Loop

Structure of a Definition

Error Handling

EXPECT

WORD

Numeric Conversion

Disk Buffers

BLOCK

Tables

Language Definition of Forth
Standard Instructions

User Instructions

Creating New Defining Instructions
Stack Instructions

Input Output Instructions

Memory and Dictionary Instructions
Defining Instructions and Control Structures
Miscellaneous Instructions

System Constants

User Variables

12
20
22
30
33
35
38

42
55
57



Preface to the Third Edition

“Turn in Your Account!”

Last year, | told my friends in the Silicon Vall€grth Interest Group that | had to stop doing
Forth programming, so that | could take care of ynather things | neglected for years. The
biggest project | took was to translate all Baatdstatas from German to Chinese. | had wanted
to listen to the cantatas, but could not understaadserman text. | had thought of doing the
translation for 50 years, but never got the coutag#art. Recently, | noticed that the website
www.bach-cantatas.cooollected all information on Bach’s cantatas, unlthg sheet music and
translations to many languages. Everything | néedelo the translation. Another thing was
that Google Translate had improved greatly, amcitslates anything you throw at it instantly,
from any language to any other language. | hadatvematerials and tools to start the
translation.

| used Google Translate to translate many articten English to Chinese. The quality of its
translation had much to be desired, but it savedotseof time and efforts, at least it looked up
in the dictionary and gave me some words that Iccase. It took me four months to translate
all Bach’s cantatas, 249 of them in total! AyretoQ the webmaster @fww.bach-cantatas.cagm
kindly took these translations and included thenthenTexts & Translations pages.

The next projects were to select my favorite castaind make movies to the music, with
German and Chinese subtitles. This is how I likenjoy the cantatas. So far, | made 21
complete cantata movies, with the B Minor Mass 8hdMatthew Passion. They are listed on:
http://www.bach-cantatas.com/Texts/IndexTexts-Qkdte.htm

from which you can access and actually watch thei@eso

| was struck by this Cantatas 168 titled “Turn iauY Account”. It was loosely based on a story
Jesus told in Luke 16. A rich master is abouir®d dishonest manager, and told him to turn in
his account. Bach told the story differently, at one day we would all turn in our accounts to
God and settle all our debts. It reminded meltsabuld also look into my account, and tie up
all the loose ends while | still can.

Two particular loose ends were glaring at me: la$t83 and Systems Guide to figForth. They
were out of print a long time ago, and people asked for them. The texts of these books
survived but were in bad shapes. The figures aadidg existed only on a few remained copies
| kept. | made some feeble efforts in putting theawk in electronic forms, but they were
nothing that | would be proud of. These were nidess in my early journey through the Forth
landscape, and | will be ashamed to turn them in.

Chapter 7 was lost in the original files | saveddisks, and it is now restored. All the figures
were re-drawn. | used the 12 point Times New Rofoanfor all narration, and the 8 point
Courier New font for all source code and documéamrtat Code and documentation are presented
in two columns. Left column is for code and rigbtumn for documentation. As the left

column is generally 1.5 inches wide, | allow onlgHaracter space indentation for each level of

iv



nesting. Itis hard to see the nested levels| thuhk is adequate if you do want to inspect the
code in detail.

It brought me joy to revisit figForth. After motiean 30 years, | can still remember the
excitements we shared in the SVFIG meetings, ame@tfightenment we felt when we took the

figForth listings and got the first OK from our micomputers. We got the magic wand which
turned pumpkins into chariots.

C. H. Ting

July 2013



Preface to the Second Edition

figForth Refuses to Die

The first edition of Systems Guide to figForth vpablished almost ten years ago. Forth has
made significant changes, and perhaps some impewsmsince. The figForth Model was
supposedly replaced by Forth-78, Forth-79, andhF88t Standards, at least that is the
impressions Forth experts wanted us to believe=dtitp should have been laid to rest long, long
ago. In it place, there are many better, larged,ranre comprehensive Forth implementations
available from many vendors and also in the puldimain. Why would anybody want to use
this old fashioned figForth?

The fact remains that figForth is still very populamong all the publications sold by the Forth
Interest Group over the years, Bill Ragsdale'sdrtj-Installation Manual has always been the
most demanded document. | have also decided maeg tio quit reprinting this book, but Roy
Martens of the Mountain View Press just keeps a®ing them. There must be some magic
behind figForth, keeping it alive despite its atipe, lack of support, and its deficiency in tools fo
serious program development.

However, there are many advantages in figForth kvhieke it useful to many programmers and
new students of Forth. Here is a list:

1. Consistency. It is a single model implementedoumly on many microprocessors. Many
implementations are readily available in assembtynigs.

2. Well factored kernel. Less than 50 words arelnmecdependent. All other words are defined
in high level. It is easily portable to other miprocessors and operating systems.

3. The source code are in regular assembly, wtaahbe understood by most programmers.
Most other Forth systems are generated through coatpilation, and the source code are only
available in Forth. The Forth source listing ididiflt for Forth programmer to understand, let
alone non-Forth programmers.

4. Simplicity. It provides only the functionalitg be self-supporting. Lacking of extensive and
complicated utility makes it easier to study anthpeehend.

Generally, it is impossible to study and understamdmmercial Forth system. The source code
is not available in most cases. Where the sourde oprovided, it is too complicated to be
dissected and to be put back together again. Fapl@evho are curious about how Forth really
ticks, figForth is the only Forth system that aem@ge person can understand in a couple of
weeks. It is also easy to port figForth to a virgomputer un-adulterated by a prior Forth
implementation. This | found ten years ago, artdrikt it is still true today. We have no valid
alternative in teaching and learning Forth besttesold figForth.

Vi



The original manuscript of this book was writtermngsthe ED line editor under the RT-11
operating system on a DEC LSI-11 microcomputert Wes the desk top publishing system of
the day. The text was first entered in upper caby because the old ADM terminal | used did
not have lower case characters. It was painfuliweaed to lower case and eventually printed
out using a letter quality printer. However, linvesre too long to fit on a page. The printing was
done using 1/10" characters with 1/16" spacingd,tha characters tended to rub elbows with
one another. Lines were doubly spaced so thav# ga reader the illusion of a thick manual
with substance. The result was an eye-sore, wheddmitted it or not.

In spite of the poor condition of this book, | aftean into people who complimented me for it.
Many of them mentioned that it lead them to theansthnd of the figForth Model and the
appreciation of Forth as a programming languagev,dmce | have much better tools for desk
top publishing, it is time to give this book a fhiteso that it does some justice to the figForth
Model and its faithful users.

Only cosmetic touches are made in this revisionl vesvisited the chapters, | found most of the
discussions are still useful for people wantedutty understand Forth. After ten years, we have
many more books on Forth. However, none of theed ttd present Forth in the bottom-up and
inside-out fashion this book did. Besides, theulstmons on syntax of Forth, the detailed
implementation of Forth editor and assemblers ateovered in available Forth literature.

I like to thank Bill Ragsdale, Kim Harris, Bob Shitlohn James, John Cassidy, and the
members of the Forth Implementation Team to prothéefigForth Model and implementations
and their efforts in my enlightenment. | am alstebted to Kevin Appert in helping me move
the manuscript from the RT-11 system into MS-DO$hs | had free access to the texts again.
C. H. Ting, San Mateo, California

April 1989

vii



Preface to the First Edition

Forth was developed by Charles Moore in the 198dsok the final form as we now know it in
1969, when Mr. Moore was at the National Radio ésbmy Observatory, Charlottesville, Va. It
was created out of his dissatisfaction with avddaiyogramming tools, especially for
instrumentation control and automation. Distribotaf his work to other observatories has made
Forth the standard language for observatory auioma®r. Moore and several associates
formed FORTH, Inc. in 1973 for the purpose of lisiig and support of the Forth operating
system and programming language, and to supplycapipin software to meet customers' unique
requirements.

Forth Interest Group was formed in 1978 by a grouorth programmer in Northern California.
It is a non-profit organization. Its purpose itwourage the use of Forth language by the
interchange of ideas through seminars and pubdiestilt organized a Forth Implementation
Team in 1978 to develop Forth operating systempdpular microprocessors from a common
language model, now known as figForth. In early9,9fe Forth Implementation Team
published six assembly listings of figForth for 808800, 6502, PDP-11, 9900, and PACE at
$10.00 each. The quality and availability of thiésgngs, which are placed in the public domain,
made figForth the most popular dialect in Forth.

Most of the published materials on Forth are maswadilich teach how to use a particular Forth
implementation on a particular computer. Very fexaldvith the inner mechanisms on how the
Forth system operates which is essential to thenstahding and effective utilization of the
Forth language. My intention here is to describe kite Forth system does all these wonderful
things no other language can. With a deeper uratetstg of the inner mechanism, a user can
have a better appreciation of many unique featwtesh make Forth such a powerful
programming tool.

Among other things, documentation on Forth is \@ffycult to read and to comprehend because
Forth definitions are short and their numbers aaaynThe definitions are very hard to arrange
in a logical order to promote better or easier usid@ding. For example, the glossary is
arranged alphabetically, which is great for refeeepurposes. If you know which definition you
are looking for, you can find it very convenienithythe glossary, but how a definition is related
to others and how it is to be used are not eaipdo The source codes, coded in Forth , are also
difficult to comprehend because the definitions@dered from bottom up, i.e., low level
definitions must precede the higher level defimsasing the low level definitions. | will not
mention the problems in reading codes written wiiktfix notations. These are problems for
which Forth is often criticized. A book on the ®rsis aspect in the figForth Model can help
programmers to climb the learning curve and easeatat the growing pain in learning this
very strange language.

In this book | will attempt to explain the operatiof figForth system in a systematic fashion.
The top level Forth definitions related to the systoperations are treated in logical sequences.
Most of these definitions are defined in terms thieo predefined Forth definitions; therefore, it
is required that the reader has some basic knoelefithe elements contained in the Forth
language, such as the dictionary, the data stackilee return stack. However, Forth language is

viii



structured and modular, so that the logical costeht definition are not difficult to grasp if the
functions of all the low level definitions involvede clearly stated.

Because of the modular structures inherent in tdrehHanguage, the definition of a Forth word
itself is a fine vehicle to convey its function.fact, the definition can be used in lieu of a flow
chart. In our discussions, Forth definition arel laut in a vertical format. The component
definitions are written in a column on the left Haside of a page, and the comments and
explanations are in columns toward the right hade. 8Vhen a group of words of very close
relationship (a phrase) appears, it is often digaldan one line to save space.

Many Forth words are defined in machine codes. Hreycalled code definitions or primitive
definitions and they form the body of what is cdltee "virtual Forth machine ". These
definitions are used to convert a particular CPid amForth computer. The detailed contents of
these words cannot be discussed without resontitiget assembly language of the host CPU, and
we shall avoid their discussion as much as posdibliae cases where it is absolutely necessary
to use them in order to clarify how the system fiams, the figForth PDP-11 codes will be used
because the PDP-11 instruction set is very closentt is required optimally to implement a
virtual Forth computer. The detailed definitionsFairth words will strictly adhere to those
defined in the figForth model as presented in igEdrth Installation Manual. This model is the
most complete and consistent documentation defiaiRgrth language system which has been
implemented on a host of microcomputers. The Foptrating system written in Forth provides
the best examples for the serious students to tearRorth language. Most of the programming
tools provided by the Forth system were developembte the Forth system itself. By going
through the Forth system carefully, a Forth userlearn most programming techniques
supported by the Forth language for his own use.

In Chapter 1, | try to lay down the formal defioiti of Forth as a programming language. It was
completed only very recently, after all other cleaptwere done. Some terms used in Chapter 1
are not quite consistent with those used in ther lehiapters. The terms ‘word’, 'definition’, and
'instruction’ are used interchangeably in lateptéis are differentiated in Chapter 1. Chapter 2
is an overview of the figForth operating system.

In the rest of the book, each chapter will dwelleoparticular topic in the figForth system. The
more important definitions at the highest leveljahtithe user will use most often are discussed
first to give an overall view of the tasks involv@the low level definitions or utility definitions
used by the high level definitions are then disedss detail to complete the entire picture.
Descriptive comments are given for the low levdirdgons when they appear in a high level
definition before they are completely defined. Efere, it will be helpful to re-read a chapter so
that the knowledge gained by studying the utiligfinitions can further illuminate the high level
definition outlining the task involved.

Special thanks are due to William F. Ragsdale, adtbored the figForth Installation Manual
and guides the Forth Interest Group from its incepto John S. James, who developed the
PDP-11 figForth and the PDP-11 Assembler, and o ftassady, who developed the 8080
figForth and the 8080 Assembler. Thanks are alsotdiRobert Downs, Anson Averrell, Alice



Ferrish and Albert Ting, who kindly gave me longtdiof corrections and made many helpful
suggestions on the manuscript.

C. H. Ting, San Mateo, CA

May, 1981.



Chapter 1. Language Definition of FORTH

Forth was developed as a programming tool to saaktime control problems. It has never
been formally defined as a programming languag@nk Forth is mature enough now that it
can be defined very rigorously. The wide-spreadaigkis powerful language requires that a
common base should be established to facilitatexibhange of programs and ideas in a
standardized language form. The recent publicaifdforth-79 Standard clearly reflects this
necessity. To define Forth as a programming langadgp helps us to focus our attention on the
basic characteristics of Forth and to understantbite fully.

In this Chapter, | will present the definition abifth in the Backus Normal Form (BNF) notation.
The basic syntax is presented in Table 1, in wthehfocal point is the definition of ‘word'.
Some detailed clarifications on colon definitiomsl @efining words are worked out in Tables 2
to 4. Explanatory notes are arranged by sectiohggtdight some problems not readily
expressed in the formal definitions.

Table 1. Language Definition of Forth

<character> ::= <ASCII code>

<delimiting character> ::= NUL | CR | SP | <designa ted character>
<delimiter> ::= <delimiting character> |

<delimiting character><delimiter>

<word> ::= <instruction> | <number> | <string>

<string> ::= <character> | <character><string>

<number> ::= <integer> | -<integer>

<integer> ::= <digit> | <digit><integer>

<digit>::=0|1|2]... |[9|A[|B]... |< base-1>
<instruction> ::= <standard instruction> | <user in struction>
<standard instruction> ::= <nucleus instruction> |

<interpreter instruction> |

<compiler instruction> | <device instruction>

<user instruction> ::= <colon instruction> | <code instruction> |
<constant> | <variable> | <vocabulary>

Programming L anguage

A programming language is a set of symbols witksybsyntax) of combining them to specify
execution procedures to a computer. A programmnanguage is used primarily to instruct a
computer to perform specific functions. Howevegah also be used by programmers to
document and to communicate problem solving proeesddhe most essential ingredients of a
programming language are therefore the symbolspi@ys for expressions and the syntax rules
of combining the symbols for man-to-machine and{teaman communications.

Forth uses the full set of ASCII characters as symiMost programming languages use subsets
of ASCII characters, including only numerals, uppase alphabets, and some punctuation
characters. Use of punctuation characters difigrafecantly from language to language. Non-
printable characters are generally reserved exalysfor the system and are not available for
language usage. In employing the full ASCII setludracters, Forth thus allows the programmer
a much wider range of usable symbols to name ahj€xt the other hand, the prolific use of
punctuation characters in Forth makes comprehenggndifficult by uninitiated programmers.



Only five of the ASCII characters are used by Féothspecial system functions and are not for
programming usage: NUL (ASCII 0), BS (ASCII 7), RUBSCII 127), CR (ASCII 13), and SP
(ASCII 32). BS and RUB are used to nullify the poesly entered character. They are used at
the keyboard interactively to correct typing errdcdtJL, CR, and SP are delimiting characters to
separate groups of characters to form words. Akiotharacters can be freely used to form
words and are used the same way. Non-printablectes are treated the same as printable
characters. Because non-printable characters ffiitfito document and to display, their usage
is discouraged in normal Forth programming practit@vever, the non-printable characters are
very useful in maintaining a secured system.

Forth Words

Words are the basic syntactical units in Forth. @&xdus a group of characters separated from
other words by delimiting characters. With the gatmn of NUL, CR, SP, BS and RUB, any
ASCII character may be part of a word. Certain vgdiad string processing may specify a
regular character as the delimiting characterHerstring immediately following it, in order to
override the delimiting effect of SP. However, ttedimiting effect of CR and NUL cannot be
overriden.

The usage of ‘word' in Forth literature is veryfusing because many quite different concepts
are associated with it. Without sorting out thesieient aspects of ‘word' into independently
identifiable entities, it is impossible to arriveaasatisfactory description of Foth language. Here
'word' is defined as a syntactical unit in the laage, simply a group of characters separated
from other words by delimiting characters. Sematiggqwhich concerns the meaning of words),
a word in Forth can be only one of three thingstrieag, an instruction, or a number.

A Forth program is thus simply a list of words. Wiltais list of words is given to a computer
with a Forth operating system loaded in, the compwill be able to execute or interpret this list
of words and perform functions as specified by lists The functions may include compilation
of new words into the system to perform complicdtedttions not implemented in the original
Forth operating system.

A string is merely a group of characters to be gssed by the Forth computer. To be processed
correctly, a string must be preceded by an ingtinavhich specifies exactly how this string is to
be processed. The string instruction may even §pacegular character as the delimiting
character for the following string to override gféect of SP. It is often appropriate to consider
the string to be an integral part of the precedmstyuction. However, this association would
disturb the uniform and simple syntax rule in Fatid it is better to consider strings as
independent objects in the language.

String processing is a major component in the Fopirating system because Forth is an
interpretive language. Strings are needed to supgtyes for new instructions, to insert
comments into source text for documentation, ar@téduce messages at run-time to facilitate
the human interface. The resident Forth instrustimn string processing are all available to
programmers for string manipulations.



A number is a string which causes the Forth comgotpush a piece of data onto the data stack.
Characters used in a number must belong to a sab8&CII characters--the numerals. The

total number of numerals in this subset is equal'ttase’ value specified by the programmer.
This subset starts from 0 and goes up to 9. Ifithse’ value is larger than 10, the upper-case
alphabets are used in their natural sequence. dasonable 'base’ value can be specified and
modified at run-time by the programmer. Howeverggy large base value causes excessive
overlapping between numbers and instructions, drehaonable base value' must avoid this
conflict in semantic interpretation.

A number may have a leading '-' sign to designate df negative value. Certain punctuation
characters such as '." are also allowed in nundsgrending upon the particular Forth operating
system.

The internal representation of numbers inside tdrthFcomputer depends upon implementation.
The most common format is a 16-bit integer numNembers are put on the data stack to be
processed. The interpretation of a number depemtitely on the instruction which uses the
number. A number may be used to represent a trii@is® flag, a 7-bit ASCII character, an 8-bit
byte, a 16-bit signed or unsigned integer, a 1&itress, etc. Two consecutive numbers may be
used as a 32-bit signed or unsigned double integex floating point number.

Forth is not a typed language in which numericgh dgpe must be declared and checked during
compilation. Numbers are loaded on the data stdkevall numbers are represented and treated
identically. Instructions using the numbers on Istaidl take whatever they need for processing
and push their results back on the stack. It isesponsibility of the programmer to put the
correct data on the stack and use the correctctgins to retrieve them. Non-discriminating use
of numbers on stack might seem to be a major sairegors in using Forth for programming.

In practice, the use of stack greatly ease thegtghg process in which individual instructions
can be thoroughly exercised to spot any discrepannistack manipulation. The most important
advantage gained in the uniform usage of datadtmedata stack is that the instructions built
this way are essentially context-free and can peatedly called in different environments to
perform the same task.

Numbers and strings are objects or nouns in a grogning language. Typed and named
numbers in a program provide vital clues to thecfioms and the structures in a program. The
explicitly defined objects or nouns make statementgsprogram easy to comprehend. The
implicit use of data objects stored on the datekstaakes Forth programs very tight and
efficient. At the same time, statements in a progdeprived of nouns are difficult to understand.
For this reason, the most important task in docuimgra Forth program is to specify the stack
effects of the instructions, indicating what typéslata are retrieved from the stack and what
types of data are left on the stack upon exit.

Standard I nstructions
In a Forth computer, an instruction is best defiaeda named, linked, memory resident, and

executable entity which can be called and exedatedactively". The entire linked list of
instructions in the computer memory is called dioli@ry. Instructions are known to the



programmer by their ASCII names. The names ofritbguctions in a Forth computer are words
that a programmer can use either to execute theiati®n interactively or to build (compile)
new instructions to solve his programming problem.

In Forth literature, instructions are called 'woyrdsefinitions', or ‘'word definitions'. The reason
that | choose to called them 'instructions' isrtgoRasize the fact that an instruction given to the
Forth computer causes immediate actions performetidocomputer. The instructions in the
dictionary are an instruction set of the Forthuattcomputer, in the same sense as the
instruction set of a real CPU. The difference &t the Forth instructions can be executed
directly and the Forth instructions are accessethély ASCII names. Therefore, Forth can be
considered as a high level assembly language witipan instruction set for interactive
programming and testing. The name 'instructionvega more precisely the characteristics of a
Forth instruction than 'word' or 'definition’ areles 'word’ to mean exclusively a syntactical

unit in the language definition.

An instruction set is the heart of a computer ab ageof a language. In all conventional
programming languages, the instruction set is inafpletand limited in number and in scope.
Programmers must circumvent the shortcomings ahguage by writing programs to perform
tasks that the native instruction set is not cagpahl The instruction set in a Forth computer
provides a basis or a skeleton from which a mophisticated instruction set can be built and

optimized to solve a particular problem.

Because the instruction set in Forth can be easiignded by the user, it is rather difficult to
define precisely the minimum instruction set a F@amputer ought to have. The general
requirement is that the minimum set should pro@denvironment in which typical
programming problems can be solved convenientlgthFt9 Standard suggested such a
minimum instruction set as summarized in Tablel# ihstructions provided by the operating
system are called standard instructions, and &rdedi into nucleus instructions, interpreter
instructions, compiler instructions, and devicdnnstions.

Table2. Standard Instructions

The list of standard instructions is basically that
Minor changes are made to conform to the instructio

<nucleus instruction> ::= 1| *| */ | */MOD | + |
1-|2+|2-|<|=|>|>R| @ |ABS|AND | C! |
EXECUTE | EXIT | FILL | MAX | MIN | MOD | MOVE | NO
| U< | XOR

<interpreter instruction> = # | #> | #S | '| (|
BLK | CONTEXT | COUNT | CURRENT | DECIMAL | EXPECT
QUERY | QUIT | SIGN | SPACE | SPACES | TYPE | U. |

<compiler instruction> ::= +LOOP |, | ." | : | ; |
DEFINITIONS | DO | DOES> | ELSE | ENDIF | FORGET |
LOOP | REPEAT | STATE | UNTIL | VARIABLE | VOCABULA

<device instruction> ::= BLOCK | BUFFER | CR | EMIT
SCR | UPDATE

in Forth-79 Standard.
n set used in the fig-Forth Model.

+1[-|-DUP |/|/MOD | 0<| 0= 0> | 1+ |
C@ | CMOVE | D+ | D< | DMINUS | DROP | DUP |
T|OR|OVER|R>| R | ROT | SWAP | U* | U/

-TRAILING | . |<#]IN|? | ABORT | BASE |
| FIND | FORTH | HERE | HOLD | NUMBER | PAD |
WORD

ALLOT | BEGIN| COMPILE | CONSTANT | CREATE |
[ IF | IMMEDIATE | J | LEAVE | LITERAL |
RY | WHILE | [ | [COMPILE] | ]

| EMPTY-BUFFERS | FLUSH | KEY | LIST | LOAD |



User Instructions

Instructions created by a user are called usenictsbns. There are several classes of user
instructions depending upon how they are creatéggh tével instructions are called colon
instructions because they are generated by théarestruction ":'. Low level instructions
containing machine codes of the host CPU are caliélé instructions because they are
generated by the instruction CODE. Other userutiins include constants, variables, and
vocabularies.

Instructions are verbs in Forth language. Theycaremands given to the computer for
execution. Instructions cause the computer to mpadémory cells, to move data from one
location to the other. Some instructions modify sl and the contents of the data stack.
Implicitly using objects on the data stack elimesmtany nouns in Forth programs. It is not
uncommon to have lines of Forth text without a Enwun. The verbs-only Forth text earns it
the reputation of a 'write-only' language.

Forth is an interpretive language. Instructionsegito the computer are generally executed
immediately by the interpreter, which can be thdwghthe operating system in the Forth
computer. This interpreter is called text interpredr outer interpreter. A word given to the Forth
computer is first parsed out of the input streandl #he text interpreter searches the dictionary
for an instruction with the same name as the waordrg If an instruction with a matching name
is found, it is executed by the text interpretdre Text interpreter also performs the tasks of
compiling new user instructions into the dictionaFpe process of compiling new instructions is
very much different from interpreting existing ingttions. The text interpreter switches its mode
of operation from interpretation to compilation &group of special instructions called defining
instructions, which perform the functions of langaa&ompilers in conventional computers.

Syntax of these defining instructions are more darafed than the normal Forth syntax because
of the special conditions required of the compalatof different types of user instructions. The
syntax of the defining instructions provided bytanslard Forth operating system is summarized
in Table 3. The most important defining instructistthe "' or colon instruction. To define colon
instructions satisfactorily, a new entity structarast be introduced. This concept and many
other aspects involving defining instructions aisezdssed in the following subsections.

Structures and Colon | nstructions

Words are the basic syntactical units in Forth leagg. During run-time execution, each word
has only one entry point and one exit point. A&tevord is processed by the interpreter, control
returns to the text interpreter to process the nextl consecutively. Compilation allows certain
words to be executed repeatedly or to be skippedtseely at run-time. A set of instructions,
equivalent to compiler directives in conventionadgramming languages, are used to build
small modules to take care of these exceptiona@scdhese modules are called structures.



Table 3. User Instructions

The statement in parenthesis is according to the Fo rth syntax.

Col on Instruction
<colon instruction> ::= <structure list>
(: <colon instruction> <structure list> ;)

<structure list> ::= <structure><delimiter> | <stru cture><delimiter><structure list>
<structure> ::= <word> | <if-else-then> | <begin-un til> | <begin-while-repeat> | <do-loop>
<if-else-then> ::= IF<delimiter><structure list>THE N |

IF<delimiter><structure list>ELSE<delimiter><struc ture list>THEN

<begin-until> ::= BEGIN<delimiter><structure list>U NTIL

<begin-while-repeat> ::=

BEGIN<delimiter><structure list>WHILE<delimiter><s tructure list>REPEAT

<do-loop structure> ::= <structure> | | | J | LEAVE

<do-loop structure list> ::= <do-loop structure><de limiter> |

<do-loop structure><delimiter><do-loop structure li st>

<do-loop> ::= DO<delimiter><do-loop structure list> LOOP |

DO<delimiter><do-loop structure list>+LOOP

Code I nstruction

<code instruction> ::= <assembly code list>

( CODE <code instruction> <assembly code list>)

<assembly code list> ::= <assembly code><delimiter> |

<assembly code><delimiter><assembly code list>

<assembly code> ::= <number><delimiter>, | <number> <delimiter>C,

Constant Instruction
<constant> ::= <number>
( <number> CONSTANT <constant>)

Variabl e Instruction
<variable> ::= <address>

( VARIABLE <variable>))
<address> ::= <integer>

Vocabul ary | nstruction
<context vocabulary> ::= <vocabulary>
(VOCABULARY <vocabulary>)

A structure is a list of words bounded by a paispécial compiler instructions, such as IF-
THEN, BEGIN-UNTIL, or DO-LOOP. A structure, similéo an instruction, has only one entry
point and one exit point. Within a structure, hoeewnstruction or word sequence can be
conditionally skipped or selectively repeated ai-time. Structures do not have names and they
cannot be executed outside of the colon instrudtiomhich it is defined. However, a structure
can be given a name and be defined as a new rrdtion. Structures can be nested, but two
structures cannot overlap each other. This wowdthte the one-entry-one-exit rule for a
structure.

Structure is the extension of a word. A structireutd be considered as an integral entity like a
word inside a colon instruction. Words and struesuaire the building blocks to create new user
instructions at a higher level of program constrecbgramming in Forth is progressively
creating new instructions from low level to highéé All the instructions created at low levels
are available to build new and more powerful inginns. The resulting instruction set then
becomes the solution to the programming problens ptogramming process contains naturally
all the ingredients of the much touted structuremypamming in software engineering.

Using the definition of structures, the precisemgbn of a colon instruction is then a named,
executable entity equivalent to a list of strucsuM/hen a colon instruction is invoked by the

6



interpreter, the list of structures is executethmorder the structures were laid out in the colon
instruction.

When a colon instruction is being compiled, wordpearing on the list of structures are
compiled into the body of the colon instructioneaxecution addresses. Thus a colon instruction
is similar to a list of subroutine calls in convienal programming languages. However, only the
addresses of the called subroutines are compitedhe colon instruction because the CALL
statement is implicit. Parameters are passed odatzestack and the argument list is eliminated
also. Therefore, the memory overhead for a subwewtall is reduced to a bare minimum of two
bytes in Forth. This justifies the claim that equent programs written in Forth are shorter than
those written in assembly language.

Compiler instructions setting up the structuresraredirectly compiled into the body of colon
instructions. Instead, they set up various mechasmsuch as conditional tests and branch
addresses in the compiled codes so that execwgguresce can be directed correctly at run-time.
The detailed codes that are compiled are implentientdependent.

Code I nstructions

Colon instruction allows a user to extend the Feytstem at a high level. Programs developed
using only colon instructions are very tight andmoey efficient. These programs are also
transportable between different host computersusecaf the buffering of the Forth virtual
computer. Nevertheless, there is an overhead icuéia speed in using colon instructions.
Colon instructions are often nested for many leaels the interpreter must go through these
nested levels to find executable codes which afieetbas code instructions. Typically the
nesting and unnesting of colon instructions (cgllmd returning) cost about 20% to 30% of
execution time. If this execution overhead is taechto be tolerated in a time-critical situation,
instructions can be coded in machine codes whidrhvein be executed at the full machine
speed. Instructions of this type are created bYO®®E instruction, which is equivalent to a
machine code assembler in conventional computéesgs

Machine code representation depends on the hogiudem Each CPU has its own machine
instruction set with its particular code format.eldnly universal machine code presentation is
by numbers. To define code instructions in a gdizehform suitable for any host computer,
only two special compiler instructions, ',' (comiend 'C," are needed. C, takes a byte integer
and compiles it to the body of the code instructioder construction, and ',' takes a 16-bit
integer from the data stack and compiles it tobibay of the code instruction. An assembly step
is thus a number followed by 'C," or ',". The badly code instruction is a list of numbers
representing a sequence of machine codes. As teeigstruction is invoked by the interpreter,
this sequence of machine codes will be executatidohost CPU.

Advanced Forth assemblers have been developethiostall computers commercially

available based on this simple syntax. Most Fosemblers use names of assembly mnemonics
to define a set of assembler instructions whicHifates coding and documenting of the code
instructions. The detailed discussion of these ade@ instructions is outside the scope of this
Chapter. Two typical Forth assembler are discuss€thapter 14.



Constants, Variables, and Vocabulary

The defining instructions CONSTANT and VARIABLE ansed to introduce named numbers
and named memory addresses to the Forth systepectagly. After a constant is defined,

when the text interpreter encounters its nameasisggned value of this constant is pushed on the
data stack. When the interpreter finds the nangetdefined variable, the address of this
variable is pushed on the data stack. Actuallycthestants defined by CONSTANT and the
variables defined by VARIABLE are still verbs infmlanguage. They instruct the Forth
computer to introduce new data items to the dateksHowever, their usage is equivalent to that
of numbers, and they are best described as 'pssudts'.

Semantically, a constant is equivalent to its migged number, and a variable is equivalent to
an address in the RAM memory, as shown in Table 3.

VOCABULARY creates subgroups of instructions in thetionary as vocabularies. When the
name of a vocabulary is invoked, the vocabulamasle the context vocabulary which is
searched first by the interpreter. Normally theiditary in a Forth computer is a linearly linked
list of instructions. VOCABULARY creates brancheghis trunk dictionary so that the user can
specify partial searches in the dictionary. Ea@nbh is characterized by the end of the linked
list as a link address. To execute an instructefiindd by VOCABULARY is to store this link
address into memory location named CONTEXT. Heeeafihe text interpreter will first search
the dictionary starting at this link address in CKBEXT when it receives an instruction from the
input stream.

Instructions defined by VOCABULARY are used to sshittontext in Forth. If all instructions
were given unigue names, the text interpreter sbeldble to locate them uniquely without any
ambiguity. The problem arises because the usertmight to use the same names for different
instructions. This problem is especially acutedioigle character instructions, which are favored
for instructions used very often to reduce thertgpmhore and to reduce the size of source text.
The number of usable ASCII characters limits thei@és. The second useful attribute of
vocabularies is that instructions of related fumélity can be grouped into vocabulary modules
using vocabulary instructions. Context can theswiched conveniently from one vocabulary
to another. Instructions with identical names camused unambiguously if they are placed in
different vocabularies.

Create Defining I nstructions

Forth is an interpretive language with a multitwdénterpreters. This is the reason why Forth
can afford to have very simple syntax structureimstruction is known to a user only by its
name. The user needs no information on which inééep will actually execute the instruction.
The interpreter which interprets the instructiospecified by the instruction itself, in its code
field which points to an executable routine. This@itable routine is executed at run-time and it
interprets the information contained in the bodyhaf instruction. Instructions created by one
defining instruction share the same interpretee iftterpreter which executes code instructions
is generally called the inner interpreter. Thernpiteter which interprets high level colon



instructions is called the address interpreterabse a colon instruction is equivalent to a list of
addresses. Constants and variables also haveehpective interpreters.

A defining instruction must perform two differeiisks when it is used to define a new user
instruction. To create a new instruction, the definnstruction must compile the new
instruction into the dictionary, constructing treenme field, link field, code field which point to
the appropriate interpreter, and the parametet fidlich contains pertinent data making up the
body of this new instruction. The defining instioat must also contain an interpreter which will
execute the new instruction at runtime. The addoé#sis interpreter is inserted into the code
field of all user instructions created by this defg instruction. The defining instruction is a
combination of a compiler and an interpreter inv@ortional programming terminology. A
defining instruction constructs new user instrutsioluring compilation and executes the
instructions it created at run-time. Because a unsruction uses the code field to point to its
interpreter, no explicit syntax rule is necessarydifferent types of instructions. Each
instruction can be called directly by its name. Tler does not have to supply any more
information except the names, separated by delimite

The most exciting feature of Forth as a programnfanguage is that it not only provides many
resident defining instructions as compiler- intetprs, but also supplies the mechanism for the
user to define new defining instructions to gereraw classes of instructions or new data
structures tailored to specific applications. Tunggque feature in Forth amounts to the capability
of extending the language by constructing new ctergpand new interpreters. Normal
programming activity in Forth is to build new ingttions, which is similar to writing program
and program modules in conventional languages.ca@pability to define new defining
instructions is extensibility at a high level iretRorth language. This unique feature cannot be
found in any other programming languages.

There are two methods to define a new defininguietibn as shown in Table 4. The :--;
construct creates a defining instruction with aeripreter defined by high level instructions very
similar to a structure list in a regular colon défon. The interpreter structure list is put betwe
DOES> and ;. The compilation procedure is com@dibetween . Since the interpreter will be
used to execute all the instructions created ksydhfining instruction, the interpreter is
preferably coded in machine codes to increase éwecspeed. This is accomplished by the :-
<="" p:"">

Table4. Creating New Defining Instructions

<high-level defining instruction> ::=
CREATE<delimiter><compiler structure list><DOES>>< delimiter> <interpreter structure list>
(: <high-level defining instruction> CREATE <stru cture list> DOES> <structure list> ;)

<low-level defining instruction> ::=
CREATE<delimiter><compiler structure list>CODE<del imiter> <interpreter assembly code list>
(: <low-level defining instruction> CREATE <struc ture list> ;CODE

<interpreter assembly code list>)

<compiler structure list> ::= <structure list>
<interpreter structure list> ::= <structure list>
<interpreter assembly code list> ::= <assembly code list>



Conclusion

Computer programming is a form of art, far fromrgea discipline of science or engineering.
For a specified programming problem, there arergisgdly an infinite number of solutions,
entirely depending upon the programmer as an artldawever, we can rate a solution by its
correctness, its memory requirement, and its ei@tgpeed. A solution by default must be
correct. The best solution has to be the shortestlze fastest. The only way to achieve this goal
is to use a computer with an instruction set opedifor the problem. Optimization of the
computer hardware is clearly impractical becaush®fExcessive hardware and software costs.
Thus one would have to compromise by using a figedgral purpose instruction set offered by
a real computer and its language compiler. To salpgeoblem with a fixed instruction set, one
has to write programs to circumvent the shortcosiofgthe instruction set.

The solution in Forth is not arrived at by writipgpgrams, but by creating a new instruction set
in the Forth virtual computer. The new instructsat in essence becomes the solution to the
programming problem. This new instruction set camptimized at various levels for memory
space and for execution speed, including hardwatienzation. Forth allows us to surpass the
fundamental limitation of an computer, which is timited and fixed instruction set. This
limitation is also shared by conventional programgrianguages, though at a higher and more
abstract level.

Forth as a programming language allows programtodse more creative and productive,
because it enables them to mold a virtual compwiier an instruction set best suited for the
problems at hand. In this sense, Forth is a reiolaty development in the computer science
and technology.

10



Chapter 2. ThefigForth Model

Forth asan Operating System

A real computer is rather unfriendly. It can onbcept instructions in the form of ones and zeros.
The instructions must be arranged correctly in prgg@gquence in the core memory. Registers in
the CPU must be properly initialized. The prograyarter must then be set to point to the
beginning of a program in memory. After the stéghal is given to the computer, it runs

through the program at a lightening speed, and eftds in a unredeemable crash. An operating
system is a program which changes the persondlaycomputer and makes it more friendly to
the user. After the operating system is loadedtimocore memory and is initialized, the
computer is transformed into a virtual computerichlresponds to high level commands similar
to natural English language and performs speadaiiicfions according to the commands. After it
completes a set of commands, it will come backoidely ask the user for a new set of
commands. If the user is slow in responding, it wait patiently.

An operating system also manages all the resoim@somputer system for the user. Hardware
resources in a computer are the CPU time, theroeraory, the 1/0 devices, and disk memory.
The software resources include editor, assemhlgh, lavel language compilers, program library,
application programs and also data files. It isghecipal interface between a computer and its
user, and it enables the user to solve his probiesgiiigently and efficiently.

Conventional operating systems in most commeraalputers share two common
characteristics: monstrosity and complexity. A tgbioperating system on a minicomputer
occupies a volume in the order of megabytes aretjitires a sizable disk drive for normal
functioning. A small root program is memory resitddrhis root program allows a user to call in

a specified program to perform a specific task.ngaogram called uses a peculiar language and
syntax structure. To solve a typical programmingofegm, a user must learn about six to ten
different languages under a single operating syssech as a Command Line Interpreter, an
Editor, an Assembler or a Macro-assembler, onearerhigh level languages compilers, a
Linker, a Loader, a Debugger, a Librarian, a Filendger, etc. The user is entirely at the mercy
of the computer vendor as far as the systems satiwaconcerned.

figForth is a complete operating system in a vengls package. A figForth system, including a
text interpreter, a compiler, an editor, and arswser, usually requires only about 8K bytes.
The whole system is memory resident and all fumstiare available for immediate execution. It
provides a friendly programming environment to sailwany programming problems. The same
language and syntax rules are used in all phasg®gfam development.

The bulk of this operating system is in the dicéion which contains all the executable
procedures, instructions, and some system parasnaeessary for the whole system to operate.
After the dictionary is loaded into the computemnoey, the computer is transformed into a
virtual Forth computer. In this virtual Forth contey the memory is divided into many areas to
hold different information. A memory map of a typidig-Forth operating system is shown in
Figure. 1, which requires about 16K bytes of memory

11



LIMIT | UsE
DISE EUFFERS
l4— PREV
FIRST
USER AREA,
up
R0 TURH STACK |4 BP
TEFMIMAL
TIE HPUT EUFFER: el
g0
DATA STACE
lg—— SF
TEMT EUFFER.
ot PAD
WOED EUFFER
ot P
DICTIONARY
KERMEL
S EOOTUR ARES,

Figure 1. Memory Map of a Typical Forth System

Memory Map

At the bottom of the memory are the dictionary aodt-up literals. They comprise the basic
Forth system to be loaded into memory when the=gyss initialized upon power-up. The
dictionary grows toward higher memory when newmgbéns are compiled. Immediately above
the dictionary is a word buffer. When a text strisded into the text interpreter, it is first pads
out and then moved to this area to be interpreted be compiled.

About 68 bytes above the dictionary are reservethi®word buffer. Above the word buffer is
the output text buffer which temporarily holds &kt be output to a terminal or other devices.
The starting address of the output text buffeoistained in a user variable PAD . This text
buffer is of indefinite size as it grows toward mignemory. It should be noted that the text buffer
moves upward as the dictionary grows because PAfifsst from the top of dictionary by 68
bytes. The information put into the text buffer s used before new definitions are compiled.

The next area is a free memory space which carsée iy the dictionary from below or by the
data stack from above. The data stack grows dowhfam high memory to low memory as
data are pushed on it. Data stack contracts bagigtomemory as data are popped off. If too
many definitions are compiled to the dictionary &mal many data items are pushed on the data

12



stack, the data stack might clash against theodiaty, because the free space between them is
physically limited. At this point, it is better tdean up the dictionary. If the dictionary cannet b
reduced, more memory space should be allocatecebatthe data stack and the dictionary,
involving the reconfiguration of the system.

Above the data stack is an area shared by thertatiniput buffer and the return stack. The
terminal input buffer is used to store a line ofttthe user typed on the console terminal. The
whole line is moved into the terminal input buffer the text interpreter to process. The terminal
input buffer grows toward high memory and the netstack grows from the other end toward
low memory. Usually 256 bytes are reserved forrreiiack and terminal input buffer. This
space is sufficient for normal operation. The netstack clashes into the input buffer only when
the return stack is handled improperly which waunldny case cause the system to crash.

Above the return stack is the user area where ragstgm variables called user variables are
kept. These user variables control the system gordtions which can be modified by the user
to dynamically reconfigure the system at run-tifiee functions of these user variables will be
discussed later in this Chapter.

The last memory area on the top of the memoryagitbk buffers. The disk buffers are used to
access the mass storage as the virtual memorg é¢fdtth system. Data stored on disk are read

in blocks into these buffers where the Forth systamuse them much the same as data stored in
regular memory. The data in disk buffers can beifigatl Modified data or even completely

new data written into the buffers can be put bacttisk for permanent storage. The sizes and the
number of disk buffers depend upon the particulatallation and the characteristics of the disk
drive.

Instruction Set

The virtual fig-Forth computer recognizes a rathege set of instructions, and it can execute
these instructions interactively. The instructiomsst often used in programming are
summarized in Tables 5 to 9. They are grouped uheetitles of stack instructions, input/output
instructions, memory and dictionary instructionsfining instructions and control structures,
and miscellaneous instructions.

This instruction set covers a very wide spectruraativities. At the very lowest level, primitive
instructions manipulate bits and bytes of datahendata stack and in the memory. These
primitive instructions are coded in the machineesodf the host computer, and they are the ones
that turn a real computer into a Forth virtual comep. At a higher level, instructions can

perform complicated tasks, such as text intergmtaaccessing virtual memory, creating new
instructions, etc. All high level instructions attately refer to the primitive instructions for
execution. This very rich instruction set allowsser to solve many programming problems
conveniently and to optimize the solutions for paerfance.

13



Tableb. Stack Instructions

Operand Keys:

n 16-bit integer

u 16-bit unsigned integer

d 32-bit signed double integer
addr 16-bit address

b 8-bit byte

¢ 7-bit ASCII character

f boolean flag.

DUP (n-nn) Duplicpte top of stack.

DROP (n-) Discard top of stack.

SWAP (n1ln2-n2nl) Reverse top two stack item S.

OVER (nln2-nln2nl) Copy second item to top .

ROT (nln2n3-n2n3nl) Rotate third item to top.

-DUP (n-n?) Duplicate only if non-zero.

>R (n-) Move top item to return stack.

R> (-n) Retr|eve item from return stack.

R (-n) Copy| top of return stack onto stack.

+ (nln2-sum) Add.

D+ (d1d2-sum) Add dquble-precision numbers.

- nl n2 - diff ) Subtract (n1-n2).

* nln2 - prod) Multiply.

/ nln2-quot) Divide (n[L/n2).

MOD (nln2-rem) Modulp (remainder from divisi on).

/MOD (nln2-rem quot) Divide, giving remainde r and quotient.

*MOD (nln2-rem quot) Multiply, then divide (n1*n2/n3), with double-precision
intermediate.

*/ ({n1 n2 - quot) Like *¥MQD, but give quotient only.

MAX (nln2-max) Maximum.

MIN (nln2-min) Minimum.

ABS ('n - absolute) Absolute value.

DABS (d - absolute) Absolute value of double-pr ecision number.

MINUS (n--n) Change sign.

DMINUS (d--d) Change sign of double-precision number.

AND (nln2-and) Logical bitwise AND.

OR (nln2-or) Logical| bitwise OR.

XOR (nln2-xor) Logical|bitwise exclusive OR.

< (nln2-f) True if r{1 less than n2.

> (n1n2-f) True if r{1 greater than n2.

= (n1n2-f) True if r{1 equal to n2.

0< (n-f) True if top number negative.

0= n-f) True if fop number zero.

14




Table 6. Input output I nstructions

. (h-) Print number.

.R nu-) Print number, right-justified in u ¢ olumn.

D. d-) Print dpuble-precision number.

D.R du-) Print double-precision number in u column.

CR (-) Do|a carriage-return.

SPACE (-) Type one space.

SPACES (u-) Type u spaces.

-) Print message (terminated by ").

DUMP (addru-) Dump u numbers starting at addr ess.

TYPE (addru-) Type U characters starting at a ddress.

COUNT (addr - addr+1 u) Change length byte stri ng to TYPE form.

?TERMINAL (-f) True if terminal break request present.

KEY (-¢) Read key, put ASCII value on stack.

EMIT (c-) Type JASCII character from stack.

EXPECT (addru-) Read p characters (or until ¢ arriage-return) from input
device to address.

WORD (c-) Redd one word from input stream, del imitedby c.

NUMBER (addr-d) Convert string at address to double number.

<# - Start output string.

# (d1-d2) Convert one digit of double number and add character to
output string.

#S (d-00) Convert all significant digits of double number to
output string.

SIGN (nd-d) Insert sign of n to output strin g.

#> d-addru) Termindte output string for TYP E.

HOLD (c-) Inseft ASCII character into output s tring.

DECIMAL (-) Set decimal base.

HEX (-) Set hexadecimal base.

OCTAL (-) Set|octal base.

Table7. Memory and Dictionary Instructions

@ (addr-n) Replage word address by contents.

! naddr-) Store second word at address on to p.

cC@ (addr-b) Fetch one byte only.

C! b addr -) Store ohe byte only.

? addr -) Print contents of address.

+! n addr-) Add seqond number to contents of address.

CMOVE (fromtou-) Move U bytes in memory.

FILL addrub -) Fill u bytes in memory with b beginning at address.

ERASE (addru-) Fill u Bytes in memory with ze ros.

BLANKS (addru-) Fill u Qytes in memory with b lanks.

HERE (-addr) Retuin address above dictionary.

PAD (- addr) Returh address of scratch area.

ALLOT (u-) Leavp a gap of n bytes in the dicti onary.

, n-) Compjle number n into the dictionary.

(|- addr) Find address of next string in dicti onary.

FORGET (-) Delete all definitions above and inc luding the
following definition.

DEFINITIONS -) Set ¢urrent vocabulary to contex t vocabulary.

VOCABULARY (-) Create new vocabulary.

FORTH (-) Set|context vocabulary to Forth vocab ulary.

EDITOR (-) Set pontext vocabulary to Editor voc abulary.

ASSEMBLER (-) Sef context vocabulary to Assembl er.

VLIST -) Printjnames in context vocabulary.

15




Table 8. Defining I nstructions and Control Structure Instructions

-) Begin a colon definition.
; -) End of a colon definition.
VARIABLE (n-) Creafe a variable with initial v alue n.
(- addr) Return address when executed.
CONSTANT (n-) Crepte a constant with value n.
(-n) Return the value n when executed.
CODE (-) Crelate assembly-language definition.
;CODE (-) Create a new defining word, with runt ime code routine
in high-level Forth.
DO (end+1 start -) Set up lpop, given index ran ge.
LOOP (-) Increment index, terminate loop if equ al to limit.
+LOOP (n-) Increment index by n. Terminate lo op if outside
[limit.
| - index ) Place loop index on stack.
LEAVE (-) Terminate loop at next LOOP or +LOOP.
IF f-) If top of stack is true, execute true clause.
ELSE (-) Beg|nning of the false clause.
ENDIF (-) End lof the IF-ELSE structure.
BEGIN (-) Start an indefinite loop.
UNTIL f-) Loop hack to BEGIN until f is true.
REPEAT (-) Loop back to BEGIN unconditionally.
WHILE (f-) Exit Igop immediately if f is false

Table9. Miscellaneous I nstructions

( -) Begil comment, terminated by ).

ABORT (-) Error termination of execution.

SP@ (-addr) Retufn address of top stack item.

LIST screen -) List a djsk screen.

LOAD ('screen -) Load a disk screen (compile or execute).
BLOCK (‘block - addr) Read disk block to memory address.
UPDATE (-) Mark last buffer accessed as updated

FLUSH (-) Write all updated buffers to disk.

EMPTY- (-) Ergse all buffers.

BUFFERS

System Constants and User Variable

Some system constants defined in figForth aredistélable 10. User variables are listed in
Table 11. Most of the user variables are pointerstimg to various areas in the memory map to
facilitate memory access.

Table 10. System Constants

FIRST BBEOH. Address of the first byte of the dis k buffers.

LIMIT 4000H. Address of the last byte of disk buf fers plus one pointing to the free
memory not used by the Forth system.,

B/SCR 8 Blocks per screen. In the fig-Forth model , a block is 128 bytes, the capacity
of a disk sector. A screen is 1024 bytes used in e ditor.

B/BUF 128. Bytes per buffer.

C/L 4. Characters per line of input text.

BL 32. ASCII blank.

16




Table11. User Variables

SO0 Initial value of the data stack pointer.

RO Initial value of the return stack pointer.

TIB Address of the terminal input buffer.

WARNING Error message control number. If 1, disk is present, and screen 4 of drive 0 is
the base location of error messages. If 0, no disk is present and error messages
will be presented by number. If -1, execute (ABORT ) on error.

FENCE Address below which FORGETting is trapped. To forget below this point the user
must alter the contents of FENCE .

DP The dictionary pointer which contains the next free memory above the dictionary.
The value may be read by HERE and altered by ALLOT .

VOC-LINK Address of a field in the definition of t he most recently created vocabulary.
All vocabulary names are linked by these fields to allow control for FORGETing
through multiple vocabularies.

BLK Current block number under interpretation. If 0, input is being taken from the

terminal input buffer.

IN Byte offset within the current input text buffe
the next text will be accepted. WORD uses and move

r (terminal or disk) from which
s the value of IN .

ouT Offset in the text output buffer. Its value i s incremented by EMIT. The user
may alter and examine OUT to control output display formatting.

SCR Screen number most recently referenced by LIST .

OFFSET Block offset to disk drives. Contents of O FFSET is added to the stack number by
BLOCK .

CONTEXT Pointer to the vocabulary within which dic tionary search will first begin.

CURRENT Pointer to the vocabulary in which new def initions are to be added.

STATE If 0, the system is in interpretive or execu ting state. If non-zero, the system
is in compiling state. The value itself is impleme ntation dependent.

BASE Current number base used for input and output numeric conversions.

DPL Number of digits to the right of the decimal p oint on double integer input. It
may also be used to hold output column location of a decimal point in user
generated formatting. The default value on single n umber input is -1.

FLD Field width for formatted nhumber output.

CSP Temporarily stored data stack pointer for comp ilation error checking.

R# Location of editor cursor in a text screen.

HLD Address of the latest character of text during

numeric output conversion.

Simple Colon Definitions

In the figForth model, many arithmetic and logitetructions are Forth high level definitions or
colon definitions. They serve very well as somegeexamples in programming and extending

the basic Forth word set. Some of them are lisezd tith their definitions:

1 - MINUS +;

1=-0=;

1<-0<;

1> SWAP <

1 ROT >R SWAP R> SWAP ;
:-DUP DUP IF DUP ENDIF;

Many memory operations which affect large aream@fory are also defined at a high level as
colon definitions. FILL is a basic word used toidefmany others. The definition of FILL is
presented here in the vertical format, which wdlused extensively in our future discussions.

17



FILL fills n bytes of memory beginning at addr withe same value of byte b.

s FILL (addrnb--)

SWAP >R store n on the return stack
OVER C! store b in addr

DUP 1+ addr+1, to be filled with b
R> 1- n-

1, number of bytes to be filled by CMOVE
A primitive. Copy (addr) to (addr+1), (addr+1) to (addr+2),
etc, until all n locations are filled with b.

CMOVE

FILL is used to define ERASE which fills a memorga with zero's, and BLANKS which fills
with blanks (ASCII 32).

:ERASE O FILL ;
: BLANKS BL FILL ; BL=32, a defined constant

18



Chapter 3. Text Interpreter

The text interpreter, or the outer interpretethes operating system in a Forth computer. It is
absolutely essential that the reader understaswhipletely before proceeding to other sections.
Many of the properties of Forth language, suchosspactness, execution efficiency and ease in
programming and utilization, are embedded in tieitgerpreter. When the Forth computer is
booted up, it immediately enters into the textripteter. In the default interpretive state, the

Forth computer waits for the operator to type a h commands on his console terminal. The
command text string he types on the terminal, atearriage return being entered, is then parsed
by the text interpreter and appropriate actionshalperformed accordingly.

To make the discussion of text interpreter completeshall start with the definition, COLD ,
meaning starting the computer from cold. COLD cAIBBORT . ABORT calls QUIT where the
text interpreter, properly named INTERPRET , is edded. These definitions are discussed in
this sequence. It is rather strange to start tkigrigerpreter with words like ABORT and QUIT .
The reason will become apparent when we discussrtbe handling procedures. After an error
is detected, the error handling procedure willésan appropriate error message and call
ABORT or QUIT depending upon the seriousness otther.

This major Forth monitoring loop is schematicalpwn in Fig. 2. Although nothing new is
shown in the flow chart, it is hoped that a grapghagram will make a lasting impression on the
reader to help him understand more clearly the gptscdiscussed here.

COLD is the cold start procedure. Adjust the digéiny pointer to the minimum standard and
restart via ABORT . May be called from terminakémove application program and restart.

: COLD --

EMPTY-BUFFERS Clear all disk buffers by writing z ero's from FIRST to LIMIT.

0 DENSITY'! Specify single density diskette drive S.

FIRST USE ! Store the first buffer address in USE and PREV , preparing for
disk accessing.

FIRST PREV !

DRO Select drive 0 by setting OFFSET to 0.

0 EPRINT! Turn off the printer.

ORIG Starting address of Forth codes, where initi al user variables are
kept.

12H +

UP @ 6+ User area

10H CMOVE Move 16 bytes of initial values over to the user area. Initialize
the terminal.

ORIGOCH+ @ Fetch the name field address of the last word defined in the
trunk Forth vocabulary, and

FORTH 6 +! Store it in the FORTH vocabulary link . Dictionary searches will
start at the top of FORTH vocabulary. New words wi Il be added to
FORTH vocabulary unless another vocabulary is named

ABORT Call ABORT , the warm start procedure.

19



Clear disk buffers
A ctivate terminal

ABORT

Clear data stack
Zelect FORTH

vocabalany

Select ternunal
inpaat
Set State=0

—"‘

Cleat returt stack
Inpuat text line

Parse text

Exemte or
compile

Figure 2. The Forth L oop

20




ABORT clears the stacks and enter the interpretisiee
and print a sign-on message on the terminal.

: ABORT --

SP! A primitive. Set the stack pointer SP to its

DECIMAL Store 10 in BASE , establishing decimal n

CR Output carriage return and line feed to termin

" fig-Forth" Print sign-on message on terminal.

FORTH Select FORTH trunk vocabulary.

DEFINITIONS Set CURRENT to CONTEXT so that new de
the FORTH vocabulary.

QUIT Jump to the Forth loop where the text interp

QUIT clears the return stack, stop compilation, setdr

. Return control to operator's terminal

origin SO .
umber conversions.
al.

finitions will be linked to

reter resides.

n control to terminal. This is the point of

return whenever an error occurs in either intenpeetr compilation states.

:QUIT --
0BLK'! BLK contains the current disk block numbe r under interpretation.
0 in BLK indicates the text should come from the te rminal.
[COMPILE] Compile the next IMMEDIATE word which n ormally is executed even in
compilation state.
[ Set STATE to 0, thus enter the interpretive sta te.
BEGIN Starting point of the 'Forth loop'.
RP! A primitive. Set return stack pointer to it s origin RO .
CR CRI/LF
QUERY Input 80 characters of text from the termi nal. The textis
positioned at the address contained in TIB with IN setto 0.
INTERPRET Call the text interpreter to process t he input text.
STATE @ 0= Examine STATE .
IF STATE is 0, in the interpretive state
S ok" Type ok on terminal to indicate the line of text was successfully
interpreted.
ENDIF
AGAIN Loop back. Close the Forth loop .

If the interpretation was not successful becaus®ofe

errors, the error handling procedure

would print out an error message and then jumpUérQ Figure.3 shows the text interpreter

loop in which linesof text are parsed and integaet

21



{0

Parse word,
search contest

vocabulary

Search current

Y

vocabulary
Yes
1 " Found?
HMo
Push pfa on Conwett to
stack murnher
Mo
Yes
Yes Mo Yes Mo
; Push on Compile
EXECUTE Corapile cfa ik fitaral

Figure 3. The Text Interpreter Loop.

22



INTERPRET is the text interpreter which sequentiakecutes or compiles text from the input
stream (terminal or disk) depending on STATE. & Word cannot be found after searching
CONTEXT and CURRENT, it is converted to a numberoading to the current base. That also
failing, an error message echoing the name witf®?"awill be printed.

T INTERPRET --
BEGIN Start the interpretation loop

-FIND Move the next word from input stream to HE RE and search the
CONTEXT and then the CURRENT vocabularies for amatc hing entry.
If found, the dictionary entry's parameter field ad dress, its
length byte, and a boolean true flag are left on st ack.
Otherwise, only a false flag is left.

IF A matching entry is found. Do the following:

STATE @ < If the length byte < state , the word is to be compiled.

IF CFA, Compile the code field address of this word to the dictionary

ELSE Length byte > state, this is an immediate word,

CFA then put the code field address on the dat a stack and

EXECUTE call the address interpreter to execut e this word.

ENDIF

?STACK Check the data stack. If overflow or und erflow, print error
message and jump to QUIT .

ELSE No matching entry. Try to convert the text to a number.

HERE Start of the text string on top of the dic tionary.

NUMBER Convert the string at HERE to a signed d ouble number, using
current base. If a decimal point is encountered in the text, its
position is stored in DPL. If numeric conversion i s not
possible, an error message will be given and QUIT

DPL @ 1+ Is there a decimal point? If there is, DPL + 1 should be greater
than zero, i. e., true.

IF Decimal point was detected

[COMPILE] Compile the next immediate word.

DLITERAL If compiling, compile the double numb er on stack into a literal,
which will be pushed on stack during execution. If executing, the
number remains on stack.

ELSE No decimal point, the number should be a s ingle 16 bit number.

DROP Discard the high order part of the double number.

[COMPILE]

LITERAL If compiling, compile the number on st ack as a literal. The
number is left on stack if executing.

ENDIF

?STACK Check the data stack overflow or underfl ow.

ENDIF End of the IF clause after -FIND .
AGAIN Repeat interpretation of the next text stri ng in the input

stream.

The text interpreter seems to be in an infinitgpl@athout an exit, except the error handling
procedures in ?STACK and NUMBER. The normal exitrirthis loop, after successfully
interpreting a line of text, is buried in a mysters, nameless word called NULL or X' in the
Forth source code. The true name of this proceiduar ASCIlI NUL character, which cannot be
accessed from the terminal. The text input procedppends an ASCIl NUL character to the
end of a text input stream in place of a carriajarn which terminates the text stream. After the
text stream is successfully processed, the testpreeter will pick up this null character and
execute the NULL procedure.

23



X is a place holder word. Its name will be replabgdan ASCII NUL character. Terminate

interpretation of a line of text from terminal @oi disk buffer. Fall into the Forth loop and
print " ok" on the terminal and wait for terminapiut.

X --
BLK @ Examine BLK to see where the input stream i s from.
IF BLK not zero, input from disk buffer.
1BLK +! Select the next disk buffer
OIN! Clear IN, preparing parsing of input text .
BLK @ There are 8 disk buffers. See if the curr ent buffer is the last7
AND 0=
IF The last buffer, the end of the text block.
?EXEC Issue error message if not executing.
R> DROP Discard the top address on the return s tack, which is the address
of ?STACK after EXECUTE in the interpretation loop.
ENDIF
ELSE BLK=0. The text is from the terminal.
R> DROP Pop off the top of return stack.

ENDIF

The top item on the return stack was thrown awayhA end of 'X', the interpreter will not
continue to execute the ?STACK instruction, but veturn to the next higher level of nesting
and execute the next word after INTERPRET in theHHoop. This is when the familiar "

ok"message is displayed on the terminal, prompgtiegoperator for the next line of commands.

24



Chapter 4. Address|nterpreter

The function of the text or outer interpreter i#tose the text from the input stream, to search
the dictionary for the word parsed out, and to leandmeric conversions if dictionary searches
failed. When a matching entry is found, the texeipreter compiles its code field address into
the dictionary, if it is in a state of compilatiddowever, if it is in state of execution and the
entry is of the immediate type, the text interpr@ist leaves the code field address on the data
stack and calls on the address interpreter to eoghl work. The address interpreter works on
the machine level in the host computer, hencedften referred to as the inner interpreter.

If a word to be executed is a high level Forthmi&bn or a colon definition, which has a list of
code field addresses in its parameter field, tliress interpreter will properly interpret these
addresses and execute them in sequence. Hencanteeaadress interpreter. The address
interpreter uses the return stack to dig throughyn@vels of nested colon definitions until it

finds a code definition in the Forth nucleus. Ttwsle definition consisting of machine codes is
then executed by the CPU. At the end of the cofiaitien, a jump to NEXT instruction is
executed, where NEXT is a run-time procedure r@tgroontrol to the address interpreter,

which will execute the next definition in the It execution addresses. This process goes on and
on until every word involved in every nesting leiseexecuted. Finally the control is returned

back to the text interpreter.

The return stack allows colon definitions to beteésndefinitely, and to correctly unnest them
after the primitive code definitions are execufBide address interpreter with an independent
return stack thus very significantly contributesghe hierarchical structure in the Forth language
which spans from the lowest machine codes to thledsit possible construct with a uniform and
consistent syntax.

To discuss the mechanisms involved in the addresgprreter, it is necessary to touch upon the
host CPU and its instruction set on which the Feittual computer is constructed. Here | have
chosen to use the PDP-11 instruction set as theleefihe PDP-11 is a stack oriented CPU,
sharing many characteristics with the Forth virtmalchine. All the registers have pre-
decrementing and post-incrementing facilities v@gvenient to implement the stacks in Forth.
The assembly codes using the PDP-11 instructiarsahow the very concise and precise
definition of functions performed by the addreggiipreter.

The Forth virtual machine uses four PDP-11 register stacks and address interpretation. These
registers are named as follows:

SP Data stack pointer

RP Return stack pointer
IP Interpretive pointer
w Current word pointer

The data stack pointer and the return stack popugnt to the top of their respective stacks. The
familiar stack operators like DUP, OVER, DROP, &tcl arithmetic operators modify the
contents as well as the number of items on thestatk. However, the user normally does not

25



have access to the interpretive pointer IP nowttwe pointer W . IP and W are tools used by the
address interpreter.

NEXT is a run-time routine of the address interprelP usually points to the next word to be
executed in a colon definition. After the currerdrd/is executed, the contents of IP is moved
into W and now IP is incremented, pointing to tletword to be executed. Now, W contains
the address of the current word to be executedaanddirect jump to the address in W starts the
execution process of this word. In the mean timas\lso incremented to point to the parameter
field address of the word being executed. All cdd&nitions ends with the routine NEXT,

which allows the next word after this code defmitito be pulled in and executed.

In PDP-11 figForth, NEXT is defined as a macro eatthan an independent routine. This macro
is expanded at the end of all code definitions.

NEXT:
MOV (IP)+,W Move the content of IP, which points to the next wordto be
executed, into W . Increment IP , pointing to the second word in
execution sequence.
JMP @(W)+ Jump indirect to code field address of t he next word. Increment W
S0 it points to the parameter field of this word. After the
jump, the run-time routine pointed to by thecode fi eld of this

word will be executed.

If the first word in the called word is also a aoldefinition, one more level of nesting
will be entered. If the next word is a code defamt its code field contains the

address of its parameter field, i.e., the codel feeldress plus 2. Here, IMP @(W)+

will execute the codes in the parameter field ashime instructions. Thus the code
field in a word determines how this word is to b&erpreted by the address interpreter.

To initiate the address interpreter, a word EXECUdkes the address on the data
stack, which contains the code field address ofvbiel to be executed, and jump
indirectly to the routine pointed to by the codadi

EXECUTE executes the definition whose code fieldrads cfa is on the data stack.

CODE EXECUTE cfa --
MOV (S)+,W Pop the code field address into W , th e word pointer
JMP @(W)+ Jump indirectly to the code routine. In crement W to point to the

parameter field.

In most colon definitions, the code field contaiine address of a run-time routine
called DOCOL, meaning ‘DO the COLon routine', whiglthe 'address interpreter’ for
colon definitions.

DOCOL: Run-time routine for all colon definitions.

MOV IP,-(RP) Push the address of the next word to the return stack and enter a
lower nesting level.

MOV W,IP Move the parameter field address into IP , pointing to the first
word in this definition.

MOV (IP)+,W

JMP @(W)+ These two instructions are the macro NEX T . The old IP was saved

on return stack and the new IP is pointing to the w ord to be

26



executed. NEXT will bring about the proper actions

Using the interpretive pointer IP alone would oallpw the processing of a address list at a
single level. The return stack is used as an exder$ IP. When a colon definition calls other
colon definitions, the contents of IP are savednhenreturn stack so that the IP can be used to
call other definitions in the called colon definit. DOCOL thus provides the mechanism to nest
indefinitely within colon definitions.

At the end of a colon definition, execution mustéirned to the calling definition. The analogy
of NEXT in colon definitions is a word named ;S,iefhdoes the unnesting.

:S returns execution to the calling definition. l@shone level.

CODE ;S --

MOV (RP)+,IP Pop the return stack into IP , point ing now to the next word to
be executed in the calling definition.

NEXT Go ahead executed the word pointed to by IP . We shall not repeat
the definition of NEXT whichis MOV (IP)+,W JMP @ (W) +.

The interplay among the four registers, IP , W ,,RRd S allows the colon definitions to nest
and to unnest correctly to an indefinite depthjtiah only by the size of the return stack
allocated in the system. This process of nestimguammesting is a major contributor to the
compactness of the Forth language. The overheaduwobroutine call in Forth is only two bytes,
identifying the address of the called subroutine.

A few variations of NEXT are often defined in figflo for many microprocessors as endings of
code definitions. PDP-11 figForth did not use thHeause of the versatility of the PDP-11
instruction set. Nevertheless, these endings @asepted here in PDP codes for completeness
and consistency.

PUSH pushes the contents of the accumulator tddteestack and return to NEXT .

PUSH:
MOV 0,-(S) Push 0 register to data stack
NEXT

POP discards the top of data stack and return %6TNE

POP:
TST (S)+ Discard the top item of data stack
NEXT Return

PUT replaces the top of data stack with the costehthe accumulator, here register 0, and
NEXT return.

PUT: Copy accumulator to top of stack
MOV 0,(S)
NEXT

LIT: Push literal on stack

MOV (IP)+,-(S)
NEXT

27



Chapter 5. Compiler

Following words [, ] , CREATE, CODE, : and ; arewerful FORTH words which causes new
words to be compiles on the top of FORTH dictiondiyey are compilers in FORTH.

The Forth computer spends most of its time waitorghe user to type in some commands at the
terminal. When it is actually doing something usetus doing one of two things: executing or
interpreting words with the address interpreteipansing and compiling the input texts from the
terminal or disk. These are the two 'states’ ofRbith computer when it is executing. Internally,
the Forth system uses an user variable STATE tanceitself what kind of job it is supposed to
be doing. If the contents of STATE is zero, thetaysis in the executing state, and if the
contents of STATE is not zero, it is in the compilistate. Two instructions are provided for the
user to switch explicitly between the executingestand the compiling state. They are T, left-
bracket, and '], right-bracket.

[ uspends compilation and execute the words folhgwWiup to ]. This allows calculation or
compilation exceptions before resuming compilateth ]. Used in a colon definition in the
form:

nnnn - [ -] --;
| -
0 STATE! Write 0 into the user variable STATE an d switch to executing

state.
; IMMEDIATE [ must be executed, not compiled.

] resumes compilation till the end of a colon diiom.

1] -
COH STATE ! the definition is an immediate word, i ts length byte is greater

than COH because of the precedence and the s ign bits are both set.
Setting STATE to COH will force non-immediate words to be compiled
and immediate words to be executed, thus entering i nto the

‘compiling state'.

In either state, the text interpreter parses adtitg out of the input stream and searches the
dictionary for a matching name. If an entry, a wofdhe same name, is found, its code field
address will be pushed to the data stack. Now] ATE is zero, the address interpreter is called
in to execute this word. If STATE is not zero, tegt interpreter itself will push this code field
address to the top of dictionary, and compile wuasd into the body of a new definition the text
interpreter is working on. Therefore, the text ipteter is also the compiler in the figForth
system, and it is very much optimized to do contigitajust as efficiently as interpretation.

There are numerous instances when the compileotaonts job to build complicated program
structures. The compiler itself can only compiteshr list of addresses, one word after another.
If program structures require branching and loopasgin the BEGIN--UNTIL, IF--ELSE--
ENDIF, and DO--LOOP constructs, the compiler ndetisof help from the address interpreter.
The help is provided through words of the IMMEDIATRture, which are immediately
executed even when the system is in the compitaig sThese immediate words are therefore

28



compiler directives which direct the compiling pess so that at run-time the execution
sequences may be altered.

In this Chapter, we shall first discuss the wordigcl create a header for a new definition in the
dictionary. These are words which start the comgifirocess. In Chapter 12 we shall discuss the
immediate words which construct conditional or umtidonal branch to take care of special
compilation conditions.

A dictionary entry or a word must have a headercwigionsists of a name field, a link field, and
a code field. The body of the word is containethm parameter field right after the code field.
The header is created by the word CREATE and ttisvatéeves, which are called defining words
because they are used to create or define diffetasses of words. All words in the same class
have the same code field address in the code fi€luscode field address points to a code
routine which will interpret this word when this vdas to be executed. The structure of a
definition as compiled in the dictionary is showarFig. 4.

CREATE creates a dictionary header for a new d&imiwith name cccc . The new word is
linked to the CURRENT vocabulary. The code fieldnp®to the parameter field, ready to
compile a code definition. Used in the form:

CREATE cccc

: CREATE

BL WORD Bring the next string delimited by blanks to the top of
dictionary.

HERE Save dictionary pointer as name field addres s to be linked.

DUP C@ Get the length byte of the string

WIDTH @ WIDTH has the maximum number of character s allowed in the name field.

MIN Use the smaller of the two, and

1+ ALLOT allocate space for name field, and advan ce DP to link field.

DUP 0AOH TOGGLE byte of the name field. Make a ' smudged' head so that dictionary
search will not find this name .

HERE 1- 80H TOGGLE Toggle the eighth bit in the la st character of the name as a
delimiter to the name field.

LATEST, Compile the name field address of the la st word in the link field,
extending the linking chain.

CURRENT @ ! Update contents of LATEST in the curr ent vocabulary.

HERE 2+, Compile the parameter field address into code field, for the
convenience of a new code definition. For other ty pes of
definitions, proper code routine address will be co mpiled here.

CODE creates a dictionary header for a code defmifThe code field contains its parameter
field address. Assembly codes are to be compileseabled) into the parameter field.

: CODE --

CREATE Create the header, nothing more to be done on the header.

[COMPILE]

ASSEMBLER Select ASSEMBLER vocabulary as the CONT EXT vocabulary, which has
all the assembly mnemonics and words pertaining to assembly
processes.

29



NF4 [1|P|8| Length

0 ARCIT ]

0 ABCIT 2

Hatne Field

1] ARCIT n-1

—_

ARCIIn

LF& Lints Field

CFA Code Field

PF&

Parameter Field

Figure4. Structure of a Definition

It is important to remember that the text intergretself is doing the job for the assembler. Thus
all the words defined in the FORTH vocabulary arailable to assist the assembling of machine
code words. In fact assembling code definitionmigh more complicated than compiling colon
definitions. Many specialized utility routines hawebe defined in the assembler vocabulary
before the simplest of code definitions can berabsed. This part of the assembler vocabulary
is generally called the pre-assembler, which ismtie figForth model because it is machine
dependent. In Chapter 14 we shall discuss thelgl@ablved in the assemblers, based on the
PDP-11 and 8080 instruction sets.

30



: starts a colon definition, used in the form:
. ccce ---;

It creates a dictionary header with name cccc as/algnt to the following sequence of words --
- until the next ';" or ;CODE . The compiling presds done by the text interpreter as long as
STATE is non-zero. The CONTEXT vocabulary is seCtdRRENT vocabulary , and words
with the precedence (P) bit set are executed rétlaarcompiled.

?EXEC Issue an error message if not executing.

ICSP Save the stack pointer in CSP to be checked by ;" or ;CODE .

CURRENT @ CONTEXT ! Make CONTEXT vocabulary the sa me as the CURRENT vocabulary.

CREATE Now create the header and establish linkag e with the current
vocabulary.

] Change STATE to non-zero. Enter compiling stat e and compile the
words following till ;' or ;CODE .

;CODE End of the compiling process for :'. The f ollowing codes are to
be executed when the word cccc is called. The addr ess here is to
be compiled into the code field of cccc .

DOCOL: Here comes the inner interpreter for colon definitions.

MOV IP,-(RP) Push IP on the return stack

MOV W,IP Move the parameter field address into IP , the next word to be
executed.

NEXT Go execute the next word.

Execution of DOCOL adds one more level of nestisignesting is done by ;' (semi-colon),
which must be the last word in a colon definition.

; terminates a colon definition and stops furth@mpilation. Return execution to the calling
definition at run-time.

?CSP Check the stack pointer with that saved in C SP . If they differ,
issue an error message.
COMPILE ;S Compile the code field address of the word ;S into the dictionary,
at run-time. ;S will return execution to the calli ng definition.
SMUDGE Toggle the smudge bit back to zero. Resto re the length byte in
the name field, thus completing the compilation of a new word.
[ Set STATE to zero and return to the executing st ate.
; IMMEDIATE

The ending of a colon definition ;CODE as seerhadefinition of "', involves an advanced
concept of defining a defining word. The discussiohthis concept will be the theme in Chapter
11 on the defining words. The detailed words wh@mipulates information in the dictionary
will be discussed in Chapter 9. The immediate waiskd in constructing branching structures

are treated in Chapter 12 concerning control strest

31



Chapter 6. Error Handling

The figForth model provides very extensive erragaking procedures to ensure compiler
security, so that compilation results in correa arecutable definitions. To facilitate error
checking and reporting, fig-Forth model maintainauger variable WARNING and one or more
disk blocks containing error messages.

The user variable WARNING controls the actions te&éer an error is detected. If WARNING
contains 1, a disk is present and screen numbeb4ive 0O is supposed to be the base location
of all error messages. If WARNING contains 0, ngkds available and error messages will be
reported simply by an error number. If WARNING cans -1, the word (ABORT) will be
executed. The user can modify the word (ABORT)dbree his own error checking policy. In
the fig-Forth model, (ABORT) calls ABORT which redfs the system (warm start). The error
handling process is best shown in a flow chartign 5.

?ERROR issues error message n if the boolean fatyue.

: ?ERROR fn--

SWAP Test the flag f.

IF ERROR True. Call ERROR to issue error message
ELSE DROP No error. Drop n and return to caller.

ENDIF

ERROR issues an error message and restarts tleensysgForth saves the contents in IN and
BLK on stack to assist determining the locatiormbr.

: ERROR n --in blk

WARNING @ 0< See if WARNING is -1,

IF (ABORT) if so, abort and restart.

ENDIF

HERE COUNT TYPE Print name of the offending word on top of the dictionary.

R Add a question mark to the terminal.

MESSAGE Type the error message stored on disk.

SP! Clean the data stack.

IN @

BLK @ Fetch IN and BLK on stack for the operator to look at if he
wishes.

QUIT Restart the Forth loop.

(ABORT) executes ABORT after an error when WARNIMNGI1. It may be changed to a user
defined procedure.

: (ABORT)
ABORT ;

32



ERER.OE.

25 ARCRT

o

Print last word
interpreted

Mo

WARMDIG=1?

s

Print message Print message
from disk mriher

v |

Cleat data stacl
Push IN & BLE

’

Figureb5. Error Handling
MESSAGE prints on the terminal n'th line of teXtave to screen 4 on Drive 0.

: MESSAGE n-

WARNING @ Examine WARNING .
IF (WARNING)=1, error messages are on disk.
-DUP
IF n is not zero
4 OFFSET @ Calculate the screen number where the message resid es.
B/SCR/ -
.LINE Print out that line of error message.
ENDIF
ELSE No disk.
M MSG#H" . Print out the error number instead.

ENDIF

Now we have the utilities to handle error messagesshall present some error checking
procedures defined in fig-Forth.

33



?COMP issues error message 11 if not compiling.

: ?COMP --
STATE @ Examine STATE .
0= Isit0?

Issue error message if STATE is 0, the executing state.

11 ?ERROR

?EXEC issues error message 12 if not executing.

. ?EXEC -
STATE @ If STATE is not zero,
issue error message.

12 ?ERROR

?PAIRS issues error message 13 if nl is not equa t This error indicates that the compiled
conditionals do not match.

1 ?PAIRS nln2--
- Compare nl and n2. If not equal,
13 ?ERROR issue error message.

?CSP issues error message 14 if data stack pworatealtered from that saved in CSP .

1 ?CSP --
SP@ Current stack pointer
CSP @ Saved stack pointer

- If not equal,

14 ?ERROR issue error message 14.

?LOADING issues error message 16 if not loadingescs.

: ?LOADING -
BLK @ If BLK=0, input is from the terminal.
0=

Issue error message.

16 ?ERROR

?STACK issues error message 7 if the data stamltisf bounds.

1 ?2STACK -

SP@ SO > SP is out of upper bound, stack underflo w

1 ?ERROR Error 1.

SP@ HERE 128 + < SP is out of lower bound, stack overflow
Error 7.

7 ?ERROR

34



Chapter 7. Terminal Input and Output

The basic primitives handling terminal input andpat in Forth are KEY and EMIT . The
definitions of them depend on the host computeri@nldlardware configurations. It is sufficient
to mention here that KEY accepts a keystroke froenterminal keyboard and leaves the ASCII
code of the character of this key on the data stabKMT pops an ASCII character from the
data stack and transmits it to the terminal fopldig. EMIT also increments the user variable
OUT for each character it puts out.

The word that causes a line of text to be readamfthe terminal is EXPECT. EXPECT is
rather complicated because it allows the user ta dertain amount of editing on the text entered
through the keyboard. A flow chart in Figure 6 sisogvaphically how EXPECT processes
characters typed in through the terminal.

EXPECT transfers n characters from the terminahémory starting at addr. The text may be
optionally terminated by a carriage return. An ABGUL is appended to the end of text.

: EXPECT addrn --

OVER + addr+n, the end of text.

OVER Start of text.

DO Repeat the following for n times

KEY Get one character from terminal

DUP Make a copy of the character.
OEH+ORIGIN Get the ASCII code of input backspace
IF If the input is a backspace

DROP Discard the backspace still on stack.

8 Replace it with the backspace for the output d evice

OVER Copy addr

1= See if the current character is the first ch aracter of text

DUP Copy it, to be used as a flag.

R>2-+ Get the loop index. Decrement it by 1 i f it is the starting character, or
decrement it by 2 if it is in the middle of the tex t.

R Put the corrected loop index back on return s tack. If the backspace is
the first character, ring the bell. Otherwise, outp ut backspace and
decrement character count.

ELSE Not a backspace

DUPODH= Is it a carriage-return? Yes, it is carriage-return
IF

LEAVE Prepare to exit the loop. CR is end of text line.

DROP BL Drop CR from the stack and replace with a blank.

0 Put a null on stack.

ELSE DUP Input is a regular ASCII character. Mak e a copy. ENDIF

I C! Store the ASCII character into the input b uffer area.
011+! Guard the text with an ASCII NUL.

ENDIF

ENDIF
EMIT

LOOP DROP

QUERY inputs 80 characters (or until a carriagexme) from the terminal and place the text
in the terminal input buffer.

: QUERY -

TIB @ TIB contains the starting address of the inp ut terminal buffer.

50H EXPECT Get 80 characters.

OIN! Set the input character counter IN to 0. Te xt parsing shall begin at

TIB.

35



Het Pointer to
Addr
Het character
count told

4

Inpur one
character

Pomter=
Addr?
Tes Tes Mo
Store character Sppend 0 to b DE"—'YEHTM
Incrament count Set conmt to limit £ Mcﬁ : Echa hell
Echo character Echo blank cho character
Mo Bl of line

Figure6. EXPECT

The work horse in the text interpreter is the Waf@RD, which parses a string delimited by a
specified ASCII character from the input buffer grldces the string into the word buffer
on top of the dictionary. The string in the wordfeuis in the correct form for a name field in
a new definition. It may be processed otherwiseegsired by the text interpreter. A flow
diagram of WORD is show in Fig. 7, following is aore detailed description.

36



WORD Read text from the input stream until a delenc is encountered. Store the text string
at the top of dictionary starting at HERE. Thetflvgte is the character count, then the text
string, and two or more blanks. If BLK is zero inps from the terminal; otherwise, input
from the disc block referred to by BLK . It echdbe input character to terminal Loop back if
not the end of text. Discard the addr remainingtack.

: WORD c--
BLK @ BLK=0?
IF BLK is not zero, go look at the disc.
BLK @ The BLOCK number
BLOCK Grab a block of data from disc and put it i n a disc buffer. Leave the
buffer address on the stack. BLOCK is the word to a ccess disc virtual
memory.
ELSE BLK=0, input is from terminal
TB@ Text should be put in the terminal input bu ffer.
ENDIF
N@ IN contains the character offset into the cur rent input text buffer.
+ Add offset to the starting address of buffer, po inting to the next
character to be read in.
SWAP Get delimiter ¢ over the string address.
ENCLOSE A primitive word to scan the text. From th e byte address and the

delimiter ¢ , it determines the byte offset to the
character, the offset to the first delimiter after

first non-delimiter
the text string,

and the offset to the next character after the deli miter. If the
string is delimited by a NUL , the last offset is e qual to the previous
offset.
(addrc---addrn1n2n3)

HERE 22H BLANKS Write 34 blanks to the top of dict ionary.

INH Increment IN by the character count, pointin g to the next text string to
be parsed.

OVER->R Save n2-nl on return stack.

RHEREC! Store character count as the length byte at HERE .

+ Buffer address + nl, starting point of the text string in the text
buffer.

HERE 1+ Address after the length byte on dictionar y.

R> Get the character count back from the return st ack.

CMOVE Move the string from input buffer to top of dictionary.

The text string moved over to the top of the diotoy is in the correct form for a new
header, should a new definition be created. Itss & the right form to be compared with
other entries in the dictionary for a matching naifeer the text string is placed at HERE ,
the text interpreter will be able to process it.

Following are words for typing string data to theput terminal.

TYPE transmits n characters from a text string stored at addr to the terminal.

: TYPE addrn -

-DUP Copy n ifitis not zero.

IF n is non-zero, do the following.
OVER + addr+ n, the end of text
SWAP addr, start of text

DO Loop to type n characters
IC@ Fetch one character from text
EMIT Type it out

LOOP

ELSE n=0, no output necessary.
DROP Discard addr

ENDIF

37



Helect TIB for
input

=Select BLE for
mput

Figure 7. WORD

Since text strings processed by the text interpied®e a character count as the first byte of
the string, as in the name field of a word, a splagord COUNT is defined to prepare this
type of strings to be typed out by TYPE . COUNEItss also useful in scanning a text string.

COUNT pushes the address and byte count n of steng at addrl to the data stack. The first
byte of the text string is always a byte count. @®OUs usually followed by TYPE.

L]

Add M to Buffer
Addr

v

EHCLOSE:
Breack out a
string

¥

Copy string to
word buffer

: COUNT addrl -- addr2 n

DUP 1+ addr2=addrl+|

SWAP Swap addrl over addr2 and

c@ fetch the byte count to the stack.

38




If the text string contains lots of blanks at timel gthere is no use to type them out. A utility dor
-TRAILING can be used to strip off these trailiniguks so that some I/O time can be saved.
The command to type out a text string is

addr COUNT -TRAILING TYPE

-TRAILING adjusts the character count nl of a text string at addr to suppress trailing blanks.

. -TRAILING addr n 1-- addr n2

DUP 0

DO Scan nl characters

OVEROVER Copy addrandn 1

+1 addr+nl-l, the address of the last character i n the string.

Ca BL - See if itis a blank

IF LEAVE Not a blank. Exit the loop.

ELSE 1 Blank. n2=n1-1 is now on the stack.

ENDIF
LOOP

Loop back, decrementing n 1 until a non-blank

character is found,
terminating the loop.

In a colon definition, sometimes it is necessarintbude message to be typed out at run-time

to alert the user, or to indicate to him the pregref the program. These messages can be

coded inside a definition using the command:
" text string -- "

The word.." (dot-quote) will cause the text striqgto " to be compiled at the compile time and

typed out at the run-time. The definition of ." sserun-time procedure (.") which will be
discussed first.

(.") is the run-time procedure compiled by." to ¢ygn in-line text string to the terminal.
()
R

Copy EP from the return stack, which points to t

he beginning of the in-
line text string.

COUNT Get the length byte of the string, preparing for TYPE.

DUP 1+ Length+1

R>+>R Increment EP on the return stack by length +l, thus skip the text string
and point to the next word after ", which is the ne xt word to be
executed.

TYPE Now type out the text string.

39



.” compiles an in-line text delimited by the traij ". Use the run-time procedure (.") to type this
text to the terminal.

.2.2H ASCII value of the delimiter ".

STATE @ Compiling or executing?

IF Compiling state

COMPILE (. ") Compile the code field address of ( ") so it will type out text at run-
tune.

WORD Fetch the text string delimited by ", and s tore it on top of dictionary,
in-line with the compiled addresses.

HEREC@ Fetch the length of string

1+ALLOT Move the dictionary pointer parsing the text string. Ready to compile the
next word in the same definition.

ELSE Executing state

WORD Get the text to HERE , on top of dictionary.

HERE Start of text string, ready to be typed out

ENDIF

; IMMEDIATE

This word.." must be executed immediately in thenpding state to process the text string
after it. IMMEDIATE toggles the precedence bit retname field of ." to make it an immediate

word'.

ID. prints an entry's name from its name field &s$dron stack.

:ID. nfa -

PAD Output text buffer address
20H ASCII blank

5FH FILL Fill PAD with 85 blanks
DUP PFA LFA Find the link field address
OVER - lfa=nfa, character count

PAD SWAP CMOVE Move the entire name with the lengt h byte to PAD
PAD COUNT Prepare string for output
81 O1FHAND No more than 31 characters
TYPE Type out the name

SPACE Append a space.

It is necessary to move the name to PAD for outpetause the length byte in the name field
contains extra bits contain important informatioiehh must not be disturbed by the output

procedures.

The basic word to print out text stored on a dskINE , which prints out a line (64
characters) of text store in a screen. LINE is alsed to output error messages stored on
disk, and to display screens of texts in the editor

40



LINE prints on the terminal a line of text from Kiby its line number and screen number scr

given on stack. Trailing blanks are also suppressed

. LINE
(LINE)

-TRAILING TYPE
: (LINE)

>R

C/L BBUF ¥MOD
R>B/SCR * +
BLOCK

+

cL

line scr --

Run-time procedure to convert the line numb
disk buffer address containing the text.

Type out the text.

er and the screen nhumber to

line scr -- addr count
Save scr on return stack.
Calculate the character offset and
line number, characters/line, and bytes/buffer.
Calculate the block number from scr,
left by *MOD.
Call BLOCK to get data from disk to the disk
buffer address on stack.
Add character offset to buffer address to get th
the text.
64 characters/line

the screen offset numbers from the
blocks/scr, and the buffer number
buffer, and leave the

e starting address of

LIST displays the ASCII text of screen n on the terminal.

tLIST
DECIMAL CR
DUP SCR'!
" SCR#".
IOHODO

CR I 3.R SPACE

| SCR @.LIIVE
LOOP
CR ;

n -
Switch to decimal base and output a car riage-return.
Store n into SCR to be used by the edito r.
Print the screen number n first.
Print the text in 16 lines of 64 characte rs each.
Print line number.
Call .LINE to print one line of tex t.

Output a carriage return after the 16th line.

41



Chapter 8. Numeric Conversions

A very important task of the text interpreter isctmvert numbers from a human readable form
into a machine readable form and vice versa. Fadlthvs its user the luxury of using any
number base, be it decimal, octal, hexadecimadrigjmadix 36, radix 50, etc. He can also
switch from one base to another without much effbine secret lies in a user variable named
BASE which holds the base value used to converaehime binary number for output, and to
convert a user input number to binary. The defeallie stored in BASE is decimal 10. It can be
changed by

s HEX to hexadecimal,
10H BASE ! ;

: OCTAL to octal, and

8H BASE ! ;

: DECIMAL back to decimal.
OAH BASE ! ;

The simple command n BASE ! can store any reasemabhber into BASE to effect numeric
conversions.

The word NUMBER is the workhorse converting AS@presented numbers to binary and
pushing the result on the data stack. The wordesezpi<# #S #> converts a number on top of
the stack to its ASCII equivalent for output tonbamal. These words and their close relatives are
discussed in this Chapter. The overall view onpifeeess of converting a string to its binary
numeric representation is shown in Fig. 8.

(NUMBER) is the run-time routine of number convers It converts an ASCII text beginning
at addrl+1 according to BASE. The result is accaed with d1 to become d2. addr2 is the
address of the first unconvertable digit.

: (NUMBER) d1 addrl --- d2 addr2
BEGIN
1+ DUP >R Save addrl+1, address of the first dig it, on return stack.
co Get a digit
BASE @ Get the current base
DIGIT A primitive. (¢ nl-- n2 tf or ff) Conv ert the character ¢
according to base n1 to a binary number n2 with a t rue flag on top
of stack. If the digit is an invalid character, on ly a false flag
is left on stack.
WHILE Successful conversion, accumulate into d1.
SWAP Get the high order part of d1 to the top.
BASE @ U* Multiply by base value
DROP Drop the high order part of the product
ROT Move the low order part of d1 to top of stac k
BASE @ U* Multiply by base value
D+ Accumulate result into d1
DPL @ 1+ See if DPL is other than -1
IF DPL is not -1, a decimal point was encountere d
1 DPL +! Increment DPL, one more digit to right of decimal point
ENDIF
R> Pop addr1+1 back to convert the next digit.
REPEAT If an invalid digit was found, exit the lo op here. Otherwise
repeat the conversion until the string is exhausted .
R> Pop return stack which contains the address of the first non-

convertable digit, addr2.

42



NUMBER converts character string at addr with acpding byte count to signed double integer
number, using the current base. If a decimal psiehcountered in the text, its position will be
given in DPL. If numeric conversion is not possjb$sue an error message.

:NUMBER addr —d

00ROT Push two zero's on stack as the initial v alue of d .

DUP 1+ C@ Get the first digit

2DH = Isita - sign?

DUP >R Save the flag on return stack.

+ If the first digit is -, the flag is 1, and add r+1 points to the
second digit. If the first digit is not -, the fla g is 0. addr+0
remains the same, pointing to the first digit.

-1 The initial value of DPL

BEGIN Start the conversion process

DPL! Store the decimal point counter

(NUMBER) Convert one digit after another until a n invalid char occurs.
Result is accumulated into d .

DUP C@ Fetch the invalid digit

BL - Is it a blank?

WHILE Not a blank, see if it is a decimal point

DUP C@ Get the digit again

2EH - Is it a decimal point?

0 ?ERROR Not a decimal point. Itis an illegal character for a number.
Issue an error message and quit.

0 A decimal point was found. Set DPL to O the n ext time.

REPEAT Exit here if a blank was detected. Otherw ise repeat the
conversion process.

DROP Discard addr on stack

R> Pop the flag of - sign back

IF DMINUS Negate d if the first digit is a - sign

ENDIF

All done. A double integer is on stack.

<# initializes conversion process by setting HLOP#®D. The conversion is done on a double
integer, and produces a text string at PAD.

L<# --

PAD PAD is the scratch pad address for text outpu t, 68 bytes above the
dictionary head HERE .

HLD ! HLD is a user variable holding the address of the last character

in the output text string.

HOLD is used between <# and #> to insert an ASGdracter c into a formatted numeric output
string.

:HOLD C--
-1 HLD +! Decrement HLD .
HLD @ C! Store character c into PAD .

43



Het Pointer to
Addr
Het character
count told

4

Inpur one
character

Pomter=
Addr?
Yes Yes Mo
D t
Store character Append 0 to nofer eanTn
Increment count Set conmit to litmit E A T Echohell
Echo character Echo bl

Y

¥

¥ L J

Figure8. Numeric Conversion

44




# divides d1 by current base. The remainder is edad to an ASCII character and appended to
the output text string. The quotient d2 is leftstack.

L# dl--d2

BASE @ Get the current base.

M/MOD Divide d1 by base. Double integer quotient is on top of data
stack and the remainder below it.

ROT Get the remainder over to top.

9 OVER < If remainder is greater than 9,

IF 7 + ENDIF make it an alphabet.

30H + Add 30H to form the ASCII representation of adigit. 0to 9 and A
to F (or above).

HOLD Put the digit in PAD in a reversed order. H LD is decremented

before the digit is moved.

#S uses # to generate the complete ASCII stringeseipting the number d1 until d2 is zero.
Used between <# and #> .

#S dil--d2

BEGIN

# Convert one digit.
OVER OVER Copy d2
OR 0= d2=0?

UNTIL Exit if d2=0, conversion done. Otherwise r epeat.

SIGN stores an ASCII - sign before the converteahlmer string in the text output buffer if n is
negative. Discard n but leave d on stack.

: SIGN nd-d
ROT 0< Is n negative?
IF
2DH HOLD Add - sign to text string.

ENDIF

#> terminates numeric conversion by dropping ofedying the text buffer address and
character count on stack to be typed.

> d -- addr count
DROP DROP Discard d.
HLD @ Fetch the address of the last character in the text string.

PAD OVER - Calculate the character count of the t ext string.

CR transmits a carriage-return and a line-feeeénminal.

:CR --
ODH EMIT Carriage-Return

OAH EMIT Line-Feed

SPACE transmits an ASCII blank to the terminal.

: SPACE
BL EMIT ;

45



SPACES transmits n blanks to the terminal.

: SPACES n--

0 MAX If n<0, make it 0.

-DUP DUP n only if n>0.

IF

0DO Do n times
SPACE Type a space on terminal
LOOP

ENDIF

Now we have all the necessary utility words to ¢arct an ASCII text string representing a
double integer in whatever the current base, weshaw some words which type out numbers in
different output formats.

D.R prints a signed double number d right justifieé field of n characters.

:D.R dn--

>R Store n on return stack.

SWAP OVER Save the high order part of d under d, to be used by SIGN to add a -
sign to a negative nhumber.

DABS Convert d to its absolute value.

<# #S SIGN #> Convert the absolute value to ASCII text with proper sign.

R> Retrieve n from the return stack.

OVER - SPACES Fill the output field with precedin g blanks.

TYPE Type out the number.

Other numeric output words are derived from D.Rd aot much comments are necessary.

D. prints a signed double integer according toenirbase, followed by only one blank. This is
called the free format output.

. D. d--
0 0 field width.
D.R

.R prints a signed integer n1 right justified ifiedd of n2 characters.

TR nln2--

>R Save n2 on return stack.

S->D A primitive word. Extend the single integer to a double integer
with the same sign.

R>D.R Formatted output.

. prints signed integer n in free format followeddne blank.

. n--
S->D Sign-extend the single integer.
D. Free format output.

46



? prints the value contained in addr in free forawording to the current base.

1 ? addr --
@ . Fetch the number and type it out.

A very useful word in programming and debuggingoélirprogram is the word DUMP , which
dumps out an area of memory as numbers for thetoigespect. It is also useful in cases to

show large blocks of data stored in contiguous mgrazations. These data can be dumped out
on the terminal.

DUMP prints the contents of n memory cells begigrah addr. Both addresses and contents are
shown in the current base.

: DUMP addr n --

0DO DO n times

CR Start a new line.

DUP 8 .R Print the address of the first cell in this line.
80 DO Print the contents of 8 cells in one line

DUP Copy addr on stack.

@ Get the data,

8.R Formatted print in fields of 8 characters.

2+ Address of next data to be printed.

LOOP
8 +LOOP Increment the outer loop count by 8 and r epeat.

DROP Discard the last address on the stack.

47



Chapter 9. Dictionary

In a Forth computer, the dictionary is a linked isnamed entries or words which are executed
when called by name. The dictionary consists otgdores defined either in assembly codes
(code definitions) or in high level codes (colofiinigons). It also contains system information
as constants and variables used by the systerdeltig2 computer, the dictionary is maintained
as a stack, growing from low memory towards highmoey as new definitions are compiled or
assembled into the dictionary. When the text imtgy parses out a text string form the input
stream, the text is moved to the top of diction#rihe text is the name of a new definition, it
will be left there for the compiling process to tiage. If it is not a new definition, the text
interpreter will try to find a word in the dictionawith a name matching the string. The word
found in the dictionary will be executed or comgdilgepending on the state of the text interpreter.
The dictionary is thus the bulk of a Forth systeomtaining all the necessary information
necessary to make the whole system work.

The dictionary as a stack is maintained by a uagalble named DP, the dictionary pointer,
which points to the first empty memory location e#ohe dictionary. A few utility words move
DP around to effect various functions involving thetionary.

: HERE -- addr

DP @ Fetch the address of the next available memo ry location above the
dictionary.

:ALLOT n--

DP +! Increment dictionary pointer DP by n, reser ving n bytes of

dictionary memory for whatever purposes intended.

, (comma) stores n into the next available cellvatdictionary and advance DP by 2, i. e.,
compile n into the dictionary.

0, n--
HERE ! Store n into dictionary
2 ALLOT Point DP above n, the number just compile d.

In fact, ;' (comma) is the most primitive kindatompiler. With it alone, theoretically we can
build the complete dictionary, or compile anythargd everything into the dictionary. All the
compiler words and assembler words are simple imptioated derivatives of ',". This feature is
clearly reflected in the nomenclature of assemhtgmonics in the Forth assembler in which all
mnemonics end with a comma.

For byte oriented processors, C, is defined to ¢lenapbyte value into the dictionary:

C, (c-comma) enters a byte b on dictionary andeiment DP by 1.

1 C, b --
HERE C!
1 ALLOT

48



-FIND accepts the next word delimited by blankshi@ input stream to HERE, and search the
CONTEXT and then the CURRENT vocabularies for adgmaig name. If found, the entry's
parameter field address, a length byte, and &ffageare left on stack. Otherwise only a boolean
false flag is left.

:-FIND --pfabtf, or ff
BL WORD Move text string delimited by blanks from input string to the top of
dictionary HERE .
HERE The address of text to be matched.
CONTEXT @ @ Fetch the name field address of the | ast word defined in the CONTEXT
vocabulary and begin the dictionary search.
(FIND) A primitive. Search the dictionary starti ng at the address on stack for
a name matching the text at the address second on stack. Return the
parameter field address of the matching name, its length byte, and a
boolean true flag on stack for a match. If no mat ch is possible, only a
boolean false flag is left on stack.
DUP 0= Look at the flag on stack
IF No match in CONTEXT vocabulary
DROP Discard the false flag
HERE Get the address of text again
LATEST The name field address of the last word d efined in the CURRENT vocabulary
(FIND) Search again through the CURRENT vocabular y.

ENDIF

Please note the order of the two dictionary searaheFIND .The first search is through the
CONTEXT vocabulary. Only after no matching wordaand there, is the CURRENT
vocabulary then searched. This searching polionaliwords of the same name to be defined in
different vocabularies. Which word gets executedampiled by the text interpreter will depend
upon the 'context’ in which the word was definedgodhisticated Forth system usually has three
vocabularies: the trunk FORTH vocabulary which egrg all the system words, an EDITOR
vocabulary which allows a programmer to edit higree codes in screens, an an ASSEMBLER
vocabulary which has all the appropriate assemlislgmonics and control structure words. The
user can create his own vocabulary and put athmymications words in it to avoid conflicts with
words defined in the system.

A good example is the definition of the trunk vogky of all the Forth system words:

VOCABULARY FORTH IMMEDIATE

All vocabularies have to be declared IMMEDIATE,teat context can be switched during
compilation. After FORTH is defined as above, whemd=ORTH is encountered by the text
interpreter, the interpreter will set the user able CONTEXT to point to the second cell of the
parameter field in the FORTH definition, which maiins the name field address of the last
word defined in the FORTH vocabulary as the stgrtuord to be searched. Using the phrase

FORTH DEFINITIONS

will set both the CONTEXT and the CURRENT to pdimt~ORTH vocabulary so that new
definitions will be added to the FORTH vocabularjie words VOCABULARY and
DEFINITIONS are defined as:

49



A defining word used in the form

VOCABULARY cccc

to create a new vocabulary with name cccc . Invgkicce will make it the context vocabulary
which will be searched by the text interpreter.

: VOCABULARY --

0A081H , A dummy header at vocabulary intersectio n.

CURRENT @ Fetch the parameter field address point ing to the last word defined
in the current vocabulary.

CFA, Store its code field address in the second cell in parameter field.

HERE Address of vocabulary link.

VOC-LINK @ , Fetch the user variable VOC-LINK and insert it in the dictionary.

VOC-LINK! Update VOC-LINK with the link in this vocabulary.

DOES> This is the end in defining cccc vocabulary . The next words are to
be executed when the name cccc is invoked.

2 + CONTEXT ! When cccc is invoked, the second ce Ilin its parameter field will be
stored into the variable CONTEXT . The next dictio nary search will

begin with the cccc vocabulary.

Used in the form:

cccc DEFINITIONS

DEFINITIONS makes cccc vocabulary the current vataty. Hence new definitions will be
added to the cccc vocabulary.

: DEFINITIONS
CONTEXT @
CURRENT!!

The header of a dictionary entry is composed draenfield, a link field, and a code field. The
parameter field coming after the header is the lmidize entry. The name field is of variable
length from 2 to 32 bytes, depending on the lengtthe name from 1 to 31 characters in the
figForth model. The first byte in the name fieldhe length byte. The first and the last bytes in
the name field have their most significant bitsasetlelimiting indicators. Therefore, knowing
the address of any of the fields in the header,camecalculate the addresses of all other fields.
Different field addresses are used for differemppses. The name field address is used to print
out the name, the link field address is used itiahary searches, the code field address is used
by the address interpreter, and the parameterdidiless is used to access data stored in the
parameter field. To facilitate the conversions leswthe addresses, a few words are defined as
follows:

50



TRAVERSE moves across the name field of a varilsigth name field. addrl is the address of
either the length byte or the last character. If,rthe motion is towards high memory; if n=-1,
the motion is towards low memory. addr2 is the aedslof the other end of the name field.

: TRAVERSE addrl n -- addr2
SWAP Get addrl to top of stack.
BEGIN
OVER + Copy n and add to addr, pointing to the n ext character.
7FH Test number for the eighth bit of a characte r
OVER C@ Fetch the character
< If it is greater than 127, the end is reached.
UNTIL Loop back if not the end.

SWAP DROP Discard n.

LFA converts the parameter field address to lieldfiaddress.

i LFA pfa -- Ifa
4-;

CFA converts the parameter field address to caée &éddress.

:CFA pfa -- cfa
2-;

NFA converts the parameter field address to naate &ddress.

. NFA pfa -- nfa
5- The end of name field
-1 TRAVERSE Move to the beginning of the name fie Id.

PFA converts the name field address to parametier dddress.

. PFA nfa -- pfa
1 TRAVERSE Move to the end of name field.

5+ Parameter field.

LATEST leaves the name field address of the lastiwiefined in the current vocabulary.

. LATEST -- addr
CURRENT @ @

To locate a word in the dictionary, a special watetk) is defined to be used in the form:

' ccee

to search for the name cccc in the dictionary.

51



' (tick) leaves the parameter field address ofctiahary entry with a name cccc . Used in a colon
definition as a compiler directive, it compiles t@rameter field address of the word into
dictionary as a literal. Issue an error message ifnatching name is found.

! -- pfa

-FIND Get cccc and search the dictionary, first t he context and then
current vocabularies.

0= 0 ?ERROR Not found. Issue error message.

DROP Matched. Drop the length byte.

[COMPILE] Compile the next immediate word LITERAL to compile the parameter
field address at run-time.

LITERAL

IMMEDIATE ' must be immediate to be useful in a co lon definition.

All the previous discussions are on words which addompile data to the dictionary. In
program development, one will come to a point tteahas to clear the dictionary of some words
no longer needed. The word FORGET allows him toati$ some part of the dictionary to
reclaim the dictionary space for other uses.

Used in the form:
FORGET cccc

FORGET deletes definitions defined after and intigdhe word cccc . The current and context
vocabulary must be the same.

: FORGET --

CURRENT @ Compare current with context,

CONTEXT @ -

18 ?ERROR if not the same, issue an error

[COMPILE]" Locate cccc in the dictionary.

DUP Copy the parameter field address

FENCE @ Compare with the contents in the user var iable FENCE ,

<15 ?ERROR If cccc is less than FENCE , do not f orget. FENCE guards the trunk
FORTH vocabulary from being accidentally forgotten.

DUP NFA Fetch the name field address of cccc, and

DP! store in the dictionary pointer DP . Now th e top of dictionary is
redefined to be the first byte of cccc , in effect deleting all
definitions above cccc .

LFA @ Get the link field address of cccc pointing to the word just below
it.

CURRENT @ ! Store it in the current vocabulary, a djusting the current vocabulary
to the fact that all definitions above (including) cccc no longer
exist.

A powerful word VLIST prints of the names of alltaas defined in the context vocabulary to
allow the programmer to peek at the definitionthim dictionary.

52



VLIST lists the names of all entries in the conteatabulary. The 'break’ key on terminal will
terminate the listing.

CVLIST
80H OUT !
CONTEXT @ @

BEGIN

ouT @

C/L >

IF

CROOUT!
ENDIF

DUP ID.
SPACE SPACE
PFALFA @
DUP 0=
?TERMINAL OR
UNTIL

DROP

Initialize the output character counter
Fetch the name field address of the |
vocabulary.

Get the output character count
If it is larger than characters/line of th

output a CR/LF and reset OUT .

Type out the name and
add two spaces.

Get the link pointing to previous word

See ifit is zero, the end of the link,

or if the break key on terminal was

Exit at the end of link or after break key
continue the listing of names.
Discard the parameter field address on stack

53

OUT to print 128 characters.
ast word in the context

e output device,

pressed.
was pressed; otherwise

and return.



Chapter 10. Virtual Memory

In a computer system, the core memory or the semdistior memory is a limited and the most
expensive resource which users wished to be iefifince it is physically impossible to have
infinite amount of memory inside a computer, thgtreest thing is the magnetic disk memory
using hard disks or floppy diskettes. Because biagacteristics of the disk memory is very much
different from those of the core memory, the usdisik memory often requires some device
handlers to transfer data or programs betweendimpater and the disk. In most mainframe
computers, disks and other peripherals are treetdites managed by the operating system,
which insulates the users from the devices. Thgaiséthe disk memory in high level language
thus needs a fair amount of software overheadms®f memory space and execution speed.

Forth treats the disk as a direct extension ottre memory in blocks of B/BUF bytes. A user
can read from these blocks and write to them mhelsame as he is reading or writing the core
memory. Thus the disk memory becomes a virtual mgmibthe computer. The user can use it
freely without the burdens of addressing the distk managing the I/O. Implementing this
virtual memory concept in the Forth system makeslable the entire disk to the user, giving
him essentially unlimited memory space to solvepnablem.

Disk memory in Forth is organized into blocks oBBIF bytes. The blocks are numbered
sequentially from 0 to the disk capacity. Forthteggs maintains an area in high memory as disk
buffers. Data from the disk are read into the hsffand the data in buffers can be written back
to disk. As implemented in the figForth model, edddk buffer is 132 bytes long, corresponding
to 128 byte/sector in disk with 4 bytes of buffieformation. The length of buffer can be changed
by modifying the constant B/BUF which is the numbégbytes the disk spits out each time it is
accessed, usually one sector. B/BUF must be a poW&(64, 128, 256, 512, or 1024). The
constant B/SCR contains the value of the numbétauks per screen which is used in editing
texts from disk. B/SCR is equal to 1024 dividedBiBUF. Disk buffers in memory are
schematically shown in Fig. 9, assuming that eadfebis 132 bytes long.

Several other user variables are used to mairtiaidisk buffers. FIRST and LIMIT define the
lower and upper bounds of the buffer area. LIMAIRST must be multiples of B/BUF + 4

bytes. The variable PREV points to the addreskebuffer which was most recently referenced,
and the variable USE points to the least referebedi@r, which will be used to receive a new
sector of data from disk if requested.

The most important and the most used word to teargsta into and out of the disk is BLOCK.
BLOCK calls another word BUFFER to look for an dable buffer. BUFFER in turn calls a
primitive word R/W to do the actual work of readioigwriting the disk. These and other related
words are to be discussed here. A flow chart of BKGs shown in Fig. 10 for better
comprehension.

54



LIMIT 0 Tail
Last Disls Buffer
125 Bytes
u Blaocls# Head
Dhisk Buffers
a Tail
125 Bytes First Disk Buffer
FIRST|U Blocks# Head

Figure 9. Disk Buffers

BLOCK leaves the memory address of the disk buftertaining data from the n'th block in disk.
If the block is not already in memory, it is readrh disk to the least recently written disk buffer.
If the contents of this disk buffer was marked pdated, it is written back to disk before the n'th
block is read and written over data in the buffer.

55



: BLOCK n -- addr
OFFSET @ + Add disk offset to block number n, all owing access to second or
higher disk drives.
>R Save the block number on return stack.
PREV @ Get the block number contained in PREV, po inting to the most
recently accessed buffer.
DUP @ Get the block number pointed to by PREV ,
R- Compare to the block number saved on return s tack,
DUP + Discard the left most bit, which is the upd ate indicator.
IF Block number n was not previously referenced. Prepare disk access.
BEGIN Scan the buffers and look for a buffer whi ch might contain block n
already.
+BUF 0= Advance a buffer
IF This buffer is pointed to by PREV , all buff ers scanned.
DROP Discard the buffer address
R BUFFER Find the disk sector, update the sect or if necessary.
DUP R 1 R/W Read one sector from the disk.
2- Backup to the buffer address of block n.
ENDIF
DUP @ Beginning address of the buffer, with a b lock number in it.
R- Compare to the block number n.
DUP + 0= Discard the update bit,
UNTIL Loop until buffer block number matches n.
DUP PREV ! Store the buffer address in PREV .
ENDIF
R> DROP Clear return stack.
Get the address where data begin.

2+

To access a disk block, one uses the command:

n BLOCK

The word BLOCK leaves the address of the first cefitaining data read from the disk, and the
user can now examine the information in this eriloek. If he alters any data in this block, he
should make sure that the update bit in the celtguling the data is set by using the command
UPDATE . This way new data will be written backdisk before the buffer is used to access

some other block of data.

+BUF advances the disk buffer address addrl taddeess of the next buffer addr2 . Boolean f
is false when addr2 is the buffer presently poiritedy the variable PREV .

. +BUF addrl -- addr2 f

B/BUF 4 + Size of a buffer

+ addr2

DUP LIMIT = addr2=LIMIT?

IF Yes, buffer out of bound.

DROP FIRST Make addr2=FIRST

ENDIF

Leave boolean flag on stack.

DUP PREV -

56



Tes

080

Mo

Fead block#
fromm nest disk
buffer

Mo
Yes

Fhishupdated batfer
Feadblock H from
disk

0

b

Copy string to
word buffer

=

Figure 10. BLOCK

BUFFER obtains the next block buffer and assida hilock n . If the contents of the buffer were
marked as updated, it is written to the disk. Tleelon is not read from the disk. The address
left on stack is the first cell in the buffer foatd storage.

57



: BUFFER n -- addr

USE @ Fetch the user variable USE .

DUP >R Save a copy on return stack.

BEGIN

+BUF Find the next buffer, avoiding the buffer p ointed to by PREV

UNTIL

USE! Store the address to be used the next time.

R @ 0< Test the first cell in the buffer. See if the update bit is set.

IF The buffer was updated. Write its contents ba ck to disk.

R 2+ The first cell of data memory.

R @ 7FFFH AND Discard the update bit. What's le ft is the block number of the updated
buffer.

0 R/W Write the buffer to disk to update the dis k storage. R/W is the
primitive word to read or write a sector of disk.

ENDIF

R! Write n to address pointed to by USE .

R PREV! Assign this buffer as PREV .

R> 2+ addr pointing to the first data cell in the buffer.

R/W is the fig-Forth standard disk read/write ligkaaddr specifies the source or destination
block buffer, n is the sequential block number @kdand f is a flag. f=0 for disk write and f=1
for read. R/W calculates the physical locationhaf block on disk, performs the read or write
operations, and does an error checking to verdgttansaction. R/W is a primitive word whose
definition depends on the CPU and the disk inténtabardware.

As mentioned before, each buffer has B/BUF + 4dgfememory. The first cell in the buffer
contains a disk block number in the lower 15 Bitsus the Forth system can address up to
32767 blocks of virtual memory. The msb or 16thitithis cell is call the 'update bit'. When this
bit is set by the word UPDATE, the Forth systenl i notified that the contents in this buffer
were altered. When the memory space of this bigfeeeded to receive another block of data,
the update bit when set causes the buffer to bitewrback to the disk before the other block is
read in. It is this update bit which controls thekdsystem so that the disk always has the data
kept up to date. If the update bit is not set,dtvetents in the buffer should be identical to those
on the disk and there is no need to rewrite théebilack to disk. Hence the new block is
directly read in and overwriting the old block bertf

The data of B/BUF bytes start at the second cehénbuffer. The last cell should always be zero,
which is the stop signal to the compiler. The weuld be very careful not to change this cell.

If this cell is not zero, the compiler might congpdcross the buffer boundaries and most likely
would cause the system to crash. A null byte intétxé string will force the text interpreter to
execute the NULL or 'X' word, which terminates tdmenpiling process and returns control to the
text interpreter.

UPDATE marks the most recently referenced diskdsufiointed to by PREV as altered. This
buffer will subsequently be written back to dislkostd it be required to store a different block of
data.

: UPDATE -
PREV @ @ Fetch the first cell in the buffer point ed to by PREV .

8000H OR Set the update bit.
PREV @ ! Store back.

58



EMPTY-BUFFERS erases all disk buffers. Updateddrsfiare not written back to disk. This
word is used in case the user knows that the mu¥ere disturbed and he wishes to preserve the
unmodified data on disk.

: EMPTY-BUFFERS -
FIRST Start of buffer

LIMIT End of buffer
OVER - Length of buffer in bytes
ERASE Clear the buffers by writing zeros into the m.

In cases where more than one disk drive is usadsistem, a user variable OFFSET is
maintained so that the user can easily acces®tumg or higher drives as conveniently as the
first drive. OFFSET contains the first block numbéa particular drive. The words DRO and
DR1 are defined to switch between disk drives:

: DRO --
0 OFFSET!

‘DR1 -
2000 OFFSET !

In this case the first drive has 2000 sectorsafste volume.

FLUSH writes all updated buffers back to disk.

. FLUSH --

NBUF+1 Total number of buffers + 1

0DO Go through all buffers

0 BUFFER Force updated buffers to be written bac k to disk.
DROP Discard the buffer data address.

LOOP

Disk storage is mainly used for two purposes: ¢oesprogramt ext, and to store data. The
storing and retrieving of data are topics of agilmn outside the scope of this book. Basically,
the data flow to and from disk can be controlledhmyword BLOCK and its relatives as
discussed previously in this Chapter. On the dtiaed, Forth has provided special mechanisms
to process program text stored on disk. The tdgtpneter can process input text either from the
terminal of from disk blocks and it interprets @ngpiles them in a similar fashion.

A user variable BLK contains the block number #& tkext to be interpreted comes from the disk
block of that number. If BLK contains a zero, th&erpreter will assume that the input text is
from the terminal. The command to interpret texbliock n is:

n LOAD

59



LOAD begins interpreting screen n . Loading willteeminated at the end of the screen or at ;S .

: LOAD n--

BLK @ >R Save BLK on return stack. BLK contains the current block number
under interpretation. Saving it allows one disk bl ock to load
other disk blocks, the nested loading.

IN @ >R The character pointer pointing to the nex t word to be interpreted
has to be saved also.

OIN! Initialize IN to point to the beginning of text block.

B/SCR * Find the block number from the screen num bern.

BLK! Store the block number in BLK .

INTERPRET Call text interpreter to process the te xt block.

R>IN! After interpreting the whole block, resto re IN and BLK .

R>BLK'!

As discussed in WORD, WORD takes its input fromtédreninal if BLK is zero; otherwise, it
calls BLOCK to bring in a block of text disk andds interpretation at the beginning of the
block. In each disk buffer the first cell (the hadntains a block number with its msb as the
update bit, and the last cell (the tail) contaims bytes of zero. After the text interpreter scans
over the entire block, it will eventually pick uipet tail of zeros. The interpretation will be
terminated at this point because the zero (ASCILNfidrces the interpreter to execute the
NULL or X' word which prints "ok" message on tenal and returns control to the terminal. To
terminate the interpretation before the end ofoglglthe word ;S should be used in a text block.

Saving BLK and IN on the return stack allows thstmg of LOAD commands. In a block of
text, 'n LOAD' can be used to suspend tempordnyivading of the current block and start
loading text from the n'th block. The general picgctn most Forth systems is to reserve a block
containing nothing but load commands. This is cadldoad block. When the load block is
interpreted, it will load in all the blocks needed an application, like a bootstrap routine in a
conventional computer.

In a large project the program text spreads overymatocks. If the text is sequential over a
range of blocks, a word --> can be used to contintezpretation across the block boundary to
start interpretation of the next block.

--> (next screen) continues interpreting the nésk dlock.

D> -
?LOADING Issue an error message if not loading.

OIN! Initialize IN , the character pointer.

B/SCR Blocks/screen

BLK @

OVER MOD - Increment value to the next block.

BLK +! New block number stored in BLK .

IMMEDIATE The crossover of block boundary must be executed immediately.

If the text is not written in sequential blockdpad block should be used instead of the -->
command. The load block with appropriate commeeitges also as a directory of the blocks
involved in an application. Since --> acts like @BD statement without returning to the place it
started, its use is discouraged. The loading bi®okuch preferred.

60



Chapter 11. Defining Words

The Forth language is a major synthesis of mangeus and techniques used for sometime in
the computer industry, such as stacks, dictionaryal memory, and the interpreter. The single
most important invention by Charles Moore in depélg this language which wrapped all these
elements tegether and rolled them into a smalpgeterful operating system is the code field in
the header of a definition. The code field contdiresaddress of a routine to be executed when
the definition is called. This routine determinles tharacteristics of the definition, and
interprets the data stored in the parameter fietd@ingly. In the basic Forth system, only a
very small set of code field routines are defined are used to create many types of definitions
often used in programming. The types of definitioammmonly used are colon definitions, code
definitions, constants, and variables.

The most interesting feature in the Forth languagdkeat the machinery used to define these
definitions is accessible to the user for him teate new types of definitions. The mechanism is
simply to define new code field routines which vaitirrectly interpret a new class of words. The
freedom to create new types of definitions, or miad bogging phrase--to define defining
words-- was coined as the extensibility of Fortinglaage. The process of adding a new
definition to the dictionary--create a header, ceflee address of a code routine and put in the
code field, and compile data or addresses intpdénameter field--is termed 'to define a word'.
The words like "', CODE , CONSTANT , VARIABLE ,@f which cause a new word to be
defined or compiled into the dictionary, are thaled defining words. The process of
generating a word of this kind, the defining waedto define a defining word'. Our subject in
this Chapter is how to define a word which defiaedass of words.

To create a definition , two things must be dora@prly: one is to specify how this definition is

to be compiled and how this definition is to be stoncted in the dictionary; and the second is to
specify how this definition is to be executed wiitdm called by the text interpreter.
Consequently, a defining word consists of two pam® to be used by the compiler to generate a
definition in dictionary, and the other part todecuted when the definition is called. All words
generated by this defining word will have their edetlds containing the same address pointing
to the same run-time routine.

There are two ways to define new defining wordshdf run-time routine pointed to by the code
field is to be defined in machine assembly codesformat is:

: cccc ---;CODE assembly mnemonics

If the run-time routine is coded in high level wsrak in a colon definition, the format is:

. cccc <BUILDS --- DOES> --- ;

In the above formats, cccc is the name of the nefimidg word, --- denotes a series of
predefined words, and 'assembly mnemonics' arendbgeodes if an assembler has been
defined in the dictionary. If there is no assembiethe Forth system, machine codes in numeric
form can be compiled into the dictionary to constiithe run-time code routine.

61



Executing the new defining word cccc in the form:

cccc nnnn

will create a new definition nnnn in the dictionanyd the words denoted by --- up to ;CODE or
DOES> are executed to complete the process ofibgittie definition in the dictionary. The
code field of this new definition will contain tlaeldress of the routine immediately

following ;CODE or DOES> . Consequently, when tlesvty defined word is called by the
interpreter, the run-time routine will be executed.

The above discussion might be somewhat confusinguse of the context of defining a defining
word. It is. The best way of explaining how the cept works is probably with a lot of examples.
Here we shall start with the figForth definitions;6ODE , <BUILDS , and DOES> , followed

by the two simple defining words CONSTANT and VARBRE . The most useful defining

word "' was discussed previously in Chapter Shencompiler. It should be reviewed carefully.

;CODE stops compilation and terminate a new defimword cccc by compiling the run-time
routine (;CODE) . Assemble the assembly mnemomltswing. Used in the form: : cccc --
;CODE assembly mnemonics

:;CODE -

?CSP Check the stack pointer. Issue an error mes sage if not equal to what was
saved in CSP by "'

COMPILE When ;CODE is executed at run-time, the a ddress of the next word will be
compiled into dictionary.

(;CODE) Run-time procedure which completes the de finition of a new defining word.

[COMPILE] Compile the next immediate word instead of executing it.

Return to executing state to assemble the follo wing assembly mnemonics.

SMUDGE Toggle the smudge bit in the length byte, and complete the new
definition.

; IMMEDIATE

A class of definitions can then be created by ustug in the form:

cccc nnnn

The code fields in nnnn point to the code routis@ssembled by the mnemonics

following ;CODE in the definition of cccc . The wbnnnn when called to be executed will first
jump to this code routine and execute this rouginein-time. What will happen afterwards is
totally dependent on this code routine. The pres@fthe code field and hence the execution of
the code routine after the word is called makesdrth an indirectly threaded coded system. The
code field allows users to extend Forth languaggetme new data structures and new control
structures which are practically impossible in attyer high level language. This property is
called the extensibility of Forth language.

62



(;CODE) is the run-time procedure compiled by ;COHewrite the code field of the most
recently defined word to point to the following nhawe code sequence.

: (;CODE) --

R> Pop the address of the next instruction off th e return stack, which is
the starting address of the run-time code routine.

LATEST Get the name field address of the word und er construction.

PFACFA! Find the code field address and store i n it the address of the code

routine to be executed at run-time.

The pair of words <BUILDS -- DOES> is used to defimew defining words in the form:

. cccc <BUILDS --- DOES> --- ;

The difference from the ;CODE construct is that 4BRS-DOES> gives users the convenience
of defining the code field routine in terms of atlhégh level definitions, saving them the trouble
of coding these routines in assembly mnemonicsidJsigh level words to define a defining
word makes them portable to other types of compudkso speaking Forth. The price to be paid
is the slower speed in executing words definechlegé defining words. This is the tradeoff a
user must weigh to his own satisfaction.

When cccc is executed, <BUILDS will create a newadwsr for a definition with the name taken
from the next text in the input stream.

: <BUILDS -

0 CONSTANT Create a new entry in the dictionary w ith a zero in its parameter field.
It will be replaced by the address of the code fie Id routine after DOES>
when DOES> is executed.

DORS> defines run-time routine action within a highel defining word. DOES> alters the
code field and the first cell in the parameterdiid the defining word, so that when a new word
created by this defining word is called, the segeesf words compiled after DOES> will be
executed.

: DOES> -

R> Get the address of the first word after DOES> .

LATEST Get the name field address of the new defi nition under construction.

PFA'! Store the address of the run-time routine a s the first parameter.

;CODE When DOES> is executed, it will first do th e following code routine
because ;CODE puts the next address into the code field of CODE> .

DODOE: -- pfa

MOV IP,-(RP) Push the address of the next instruc tion on the return stack.

MOV (W)+,IP Put the address of the run-time routi neinlP .

MOV W,-(S) W was incremented in the last instruct ion, pointing to the parameter
field. Push the first parameter on stack.

NEXT

In the figForth model, there are three often usefththg words beside ":' and CODE:
CONSTANT, VARIABLE, and USER. They are themselvedimed as ;CODE words.

63



CONSTANT creates a new word with the next texhsgt@s its name and with n inserted into its
parameter field.

: CONSTANT n--

CREATE Create a new dictionary header with the ne Xt text string.

SMUDGE Toggle the smudge bit in the length byte i n the name field.

, Compile n into the parameter field.

;CODE The code field of all constants defined by C ONSTANT will have the address
of the following code routine:

DOCON: The constant interpreter.

MOV (W),-(S) Push the contents of parameter field to the stack.

NEXT Return to execute the next word.

It is used in the following form:

n CONSTANT cccc

to define cccc as a new constant. When cccc isdatied, the value n will be pushed on the data
stack. This is the best way to store a constatitdrdictionary for later uses, if this constant is
used often. When a number is compiled as an inliiexl in a colon definition, 4 bytes are used
because the word LIT must be compile before tieeditso that the address interpreter would not
mistakenly interpret it as a word address. Thelwad of defining a constant is 6 bytes and the
bytes needed for name field, averaging to abolttyl€s per definition. If the constant will be
used more than thrice, savings in memory spac#yjulsé defining of a constant.

VARIABLE defines a new word with the following teas its name and its parameter field
initialized to n. When the new word is execute@, plarameter field address instead of its content
is pushed on the stack.

: VARIABLE n

CONSTANT Create a dictionary header with n in the parameter field. Compiling
action in defining a variable is identical to that of defining a
constant, but run-time behavior is different.

;CODE Code field in a variable points to following code routine.

DOVAR: Variable interpreter.

MOV W,-(S) Push the parameter field address on da ta stack.

NEXT

Variables are defined by the following commands:

n VARIABLE cccc

When cccc is later executed, the address of thHabtaris pushed on the data stack. To get the
current value of this variable, one should use@heommand :

ccecc @

and to change the value to a new one nl,

nl cccc!

64



USER creates a user variable with n in the paranfietd. n is a fixed offset relative to the user

area pointer UP for this user variable.

1 USER n--

CONSTANT n is compiled as a constant.

;CODE The run-time code routine is labelled as DOU

DOUSE: User variable interpreter.

MOV (W),-(S) Push n on data stack.

ADD UP,(S) Add the base address of the user area.

NEXT Return. Now the top of data stack has the ad
variable.

After a user variable is defined as:

n USER cccc

SE:

dress pointing to the user

the word cccc can be called. When cccc is executBan will be pushed on the data stack and
its contents can be examined by @ or modified biy figForth, the user variables are used
similar to other variables. Their significance & apparent because figForth generally does not
support multitasking. When Forth is used in a nasking environment, each task owns a copy
of all the user variables, which define the conteha task and allow tasks to be switched
conveniently. This is a topic much too advancebdgaliscussed here.

65



Chapter 12. Control Structures

Most definitions in the Forth dictionary are defingy the colon ":' word. They are called colon
definitions, Forth definitions, or high level defions. When the text interpreter sees the word "'
it creates a header using the text string followdatpn as the name and then enters the
compiling state. In the compiling state, the tetérpreter reads in a text line from the input
stream, parses out strings delimited by blanks taeslto match them with dictionary entries. If
a string matches with a dictionary entry, the celd address of the matching word is added to
the parameter field of the new definition understauction. This is what we call the compiling
process. The compiling process ends when the tatmgqword ; or ;CODE is encountered.

When a colon definition is later executed, the waddresses in its parameter field are executed
by the address interpreter in the order as compiléis necessary to alter the sequential
execution process at run-time, special word hd&®tosed in the compiling process to set up the
mechanism of branching and looping, to build theta structures and the program constructs
in the colon definition. These special words angiwgent to compiler directives or assembly
directives in conventional computer languages. &hesrds do not become part of the compiled
definition, but cause specific actions during cdatpmn to build the control structure into the
definition and to ensure its correct executioruattime. These special words in Forth are
characterized by the fact that they all have agutence bit in the length byte of the name field
set to one. Words with precedence bit set areccatienediate words because the text interpreter
turns these words over to the address interpretendecution even during compilation.

In this Chapter, we shall concern ourselves withrtteans by which the following control
structures are built in a colon definition:

IF -- ELSE -- ENDIF

BEGIN -- UNTIL

BEGIN -- WHILE -- REPEAT
and DO -- | -- LEAVE -- LOOP

However, before discussing the detailed definitiohthese words, a few utility words should be
presented to make the discussions more intelligitihe word COMPILE and [COMPILE] are
used to handle special compiling situations. Thedw@®RANCH and OBRANCH are the actual
words which get compiled into the definition totthe branching and looping.

Words in a colon definition are normally compiledia dictionary and their code field address
are compiled into the parameter field of the calefinition under compilation. Sometimes the
compilation should be delayed to the run-time,,itlee word is to be compiled not when the
colon definition is being compiled, but when théocodefinition is later executed. To defer
compilation until run-time, the instruction COMPILrBust precede the word.

66



COMPILE defers compilation until run-time. When tlverd containing COMPILE is executed,
the code field address of the word following COMBIis compiled into the dictionary at run-
time.

: COMPILE -

?COMP Error if not compiling.

R> Top of return stack is pointing to the next wo rd following

COMPILE .

DUP 2+ >R Increment this pointer by 2 to point to the second word ollowing
COMPILE , which will be the next word to be execut ed. The word
immediately following COMPILE should be compiled, not executed.

@, Do the compilation at run-time.

Immediate words, because of their precedencedrgsgxecuted during compilation. However, if
one wanted to use the word sequence in an immeadda@ttas a regular colon definition, i. e. to
compile it in-line, the word [COMPILE] can be usidforce the following immediate word to

be compiled into a definition. The word [COMPILE]used in the form

1 XXxX --- [COMPILE] cccc -- ;
in which cccc is the name of an immediate word.

[COMPILE] forces the compilation of the followingimediate word.

: [COMPILE] -
-FIND Accept next text string and search dictiona ry for a match.
0= 0 ?ERROR No matching entry was found. Issue a n error message.
DROP Discard the length byte of the found name.
CFA, Convert the name field address to code fiel d address and compile it into
the dictionary.
; IMMEDIATE

The two words changing execution sequence in anadddinition are BRANCH and OBRANCH,
both are primitive code definitions. They are oflsimportance that | feel they should be treated
fully. The codes are from PDP-11 fig-Forth.

The run-time procedure to branch unconditionally.iA-line offset is added to the interpretive
pointer IP to branch forward or backward.

BRANCH is compiled by ELSE, AGAIN, and REPEAT. fdrces a branch to the offset address
following it.

CODE BRANCH

ADD (IP),IP Add the contents of the next cell poi nted to by IP to IP itself. The
result is put back to IP which points to the next word to be executed.
The next word can be out of the regular execution order.

NEXT Return to the word pointed to by IP , complet ing the unconditional
branching.

67



OBRANCH is the run-time procedure to branch coodilly. If f on stack is false (zero), the
following in-line offset is added to IP to branarward or backward. Compiled by IF, UNTIL,
and WHILE.

CODE OBRANCH f--

TST (S)+ Test the flag f on stack.

BNE ZBRA1 Not zero, continue executing next word b y skipping the offset.

ADD (IP),IP f is zero, do the branching.

NEXT

ZBRAL: A common routine shared with LOOP.

ADD #2,IP fis true, skip the in-line offset. Pi ck up the word following the

offset and continue execution.
NEXT

Conditional branching in a colon definition uses torms:

IF (true part) --- ENDIF
or IF (true part) --- ELSE (false part) --- ENDIF

At run-time, IF selects to execute the true pawofds immediately following it, if the top item
on data stack is true (non-zero). If the flag Isdgzero), the true part will be skipped to after
ELSE to execute the false part. After executingegipart, execution resumes after ENDIF .
ELSE and the false part are optional. If ELSE mamissing, execution skips to just after
ENDIF .

IF compiles OBRANCH and reserves one more celafooffset value at addr . addr will be used
later to resolve the offset value for branchings set to 2 for error checking when ELSE or
ENDIF is later compiled.

(IR f--, at run-time
-- addr n, at compile time

COMPILE OBRANCH Compile the code field address of the run-time routine 0OBRANCH into the
dictionary when IF is executed.

HERE Push dictionary address on stack to be used by ELSE or ENDIF to calculate
branching offset.

0, Compile a dummy zero here, later it is to be replaced by an offset value
used by OBRANCH to compute the next word address.

2 Error checking number.

; IMMEDIATE IF in a colon definition must be execu ted, not compiled.

ENDIF computes the forward branching offset frordrad HERE and store it at addr . Test n to
match the previous IF or ELSE in the definition.

. ENDIF addr n -- , at compile time
?COMP Issue an error message if not compiling.
2 ?PAIRS ENDIF must be paired with IF or ELSE . If nis not 2, the structure was
disturbed or improperly nested. Issue an error me ssage.
HERE Push the current dictionary address to stack
OVER - HERE-addr is the forward branching offset.
SWAP ! Store the offset in addr , thus completing the IF-ENDIF or IF-ELSE-ENDIF
construct.
; IMMEDIATE

68



ELSE compiles BRANCH and reserve a cell for forwlardnching offset. Resolve the pending
forward branching from IF by computing the offsetrh addrl to HERE and storing it at addrl .

:ELSE addrl nl -- addr2 n2 , at compile time

2 ?PAIRS Error checking for proper nesting.

COMPILE BRANCH Compile BRANCH at run-time when EL SE is executed.

HERE Push HERE on stack as addr2 .

0, Dummy zero reserving a cell for branching to ENDIF .

SWAP Move addrl to top of stack.

[COMPILE] ENDIF Call ENDIF to work on the offset for forward branching. ENDIF is an
immediate word. To compile it the word [COMPILE] must be used.

2 Leave n2 on stack for error checking.

; IMMEDIATE

Indefinite loops are to be constructed using thiewong forms:

BEGIN --- UNTIL
or BEGIN --- WHILE --- REPEAT

BEGIN simply leaves the current dictionary addrasstack for UNTIL or REPEAT to pickup
and to compute a backward branching offset at ideoé the loop. WHILE is similar to IF in
that it skips to just after REPEAT if the flag dack at that point isfalse, thus terminating the
indefinite loop from inside the loop. UNTIL termites the loop only at the end of the loop.

At compile time BEGIN leaves the dictionary addressstack with an error checking number n.
It does not compile anything to the dictionary.

: BEGIN -- addr n, at compile time
?COMP Issue an error message if not compiling.
HERE Push dictionary pointer on stack to be used to compute backward branching
offset.
1 Error checking number.
; IMMEDIATE

BACK is a run-time procedure computing the backwanahching offset from HERE to addr on
stack, and compile this offset value in the nextne cell in the dictionary.

: BACK addr —
HERE -, Compile addr-HERE, the backward branchin g offset.

UNTIL compiles OBRANCH and an in-line offset fromBRE to addr. Test the error checking
code n. If not equal to 1, there is an error inrthsting structure.

:UNTIL addr n -- , at compile time

1 ?PAIRS If nis not 1, issue an error message.

COMPILE OBRANCH Compile OBRANCH at run-time.

BACK Compute backward branching offset and compil e the offset.
; IMMEDIATE

When the colon definition containing the BEGIN-UN&tructure is executed, the word
OBRANCH compiled by UNTIL at the end of a loop w#st the flag on stack at that instant. If
the flag is false, OBRANCH will branch back to therd following BEGIN. The words between
BEGIN and UNTIL will be repeatedly executed untietflag is true at UNTIL; at this instant,
the interpreter will abort this loop and continxeeuting the words following UNTIL.

69



AGAIN is similar to UNTIL but compiles BRANCH inséel of OBRANCH in the dictionary to
construct an infinite loop. Execution cannot lethvs loop unless the words R> DROP are
executed in a word inside this loop.

: AGAIN addr n -- , atcompile time
1 ?PAIRS Error checking.
COMPILE BRANCH Compile BRANCH and an offset to BE GIN .
BACK

; IMMEDIATE

The construct BEGIN-WHILE-REPEAT uses WHILE to ab@ioop in the middle of the loop.
WHILE will test the flag left on stack at that puilf the flag is true, WHILE continues the
execution of following words until REPEAT, whicheth branches unconditionally back to
BEGIN. If the flag is false, WHILE causes executtorskip the words up to REPEAT, thus
exiting the loop structure.

WHILE compiles OBRANCH and a dummy offset for REPE#® resolve. addrl and nl as left
by BEGIN are also passed on to be processed by REPE

: WHILE addrl nl -- addrl nl1 addr2 n2 , at compile time
[COMPILE] IF Call IF to compile 0BRANCH and the o ffset.

2+ Leave 4 as n2 to be checked by REPEAT .

; IMMEDIATE

REPEAT compiles BRANCH to jump back to BEGIN. Resoélso the branching offset
required by WHILE.

. REPEAT addrl nl addr2 n2 -- , at compile time

>R >R Get addr2 and n2 out of the way.

[COMPILE] Let AGAIN do the dirty work of compiling an uncondi tional branch back to BEGIN .
AGAIN

R>R> Restore addr2 and n2 .

[COMPILE] Use ENDIF to resolve the forward branching needed b y WHILE .

ENDIF

; IMMEDIATE

The IF-ELSE-ENDIF and the BEGIN-UNTIL types of ctmgts simply redirect the execution
sequence inside of a colon definition. As discugsediously, the definitions of these compiler
directives are quite short and simple, involvindydsranching and conditional branching. The
DO-LOOP type of construct is more complicated bseaadditional mechanisms other than
branching are needed to keep track of the loogdiamd loop counts. The run-time functions of
DO are to take the lower and upper loop limitstb# data stack, push them on the return stack,
and setup the address for LOOP to jump back. LO@&natime will then increment the loop
count on top of the return stack and compare itisevio that of the loop limit just under it on the
return stack. If the loop count equals or excebdddop limit, the loop is completed and
execution goes to the next word after LOOP. Oth&gywiiOOP will branch back to DO and
continue the looping. +LOOP behaves similarly toQ®except that it increment the loop count
by a number supplied on the data stack.

The words DO, LOOP, and +LOOP call on their reggeaun-time routines to do the work.
The detailed codes in these run-time routineshaltliscussed also.

70



DO-LOOP's are set up in a colon definition in thloiwving forms:

or DO --- 1 --- +LOOP

At run-time, DO begins a sequence of repetitivecakienscontrolled by a loop count and a loop
limit. The starting value of the loop count and tbep limit are taken off the data stack at run
time. Upon reaching the word LOOP, the loop coanhcremented by one. Until the new loop
count equals or exceeds the loop limit, executbmps$ back to the word just after DO. Otherwise,
the two loop parameters are removed from the rettaick and the execution continues ahead at
the word after LOOP. Within a loop, the word | withpy the loop count to data stack to be used
in computations.

: DO nln2 --, at run-time
-- addr n, at compile time
COMPILE (DO) Compile the run-time routine address of (DO) into dictionary.
HERE Address addr for backward branching from LOO P or +LOOP.
3 Number for error checking.
; IMMEDIATE

(DO) is the run-time routine starting a DO-LOOP.arid n2 are pushed on the return stack as
loop limit and loop index, respectively.

CODE (DO) nln2--

MOV 2(S),-(RP) Push the loop limit n1 on return s tack.

MOV (S),-(RP) Push the initial loop count n2 on r eturn stack above nl .
ADD #4,S Adjust the stack pointer to drop n1 and n2 off the data stack.
NEXT Return.

| returns the current loop index inside a DO-LOOP.

CODE | n

MOV (RP),-(S) Copy the loop count on return stack and push it to data stack.
NEXT

LEAVE makes the loop limit equal to the loop coand forces the loop to terminate at LOOP or
+LOOP .

CODE LEAVE

MOV (RP),2(RP) Copy loop count to loop limit on t he return stack.
NEXT

LOOP terminates a DO-LOOP structure in a colonrlédin.

: LOOP addrn --
3 ?PAIRS Check the number left by DO . Ifitis not 3, issue an error message.
The loop is not properly nested.
COMPLIE (LOOP) Compile (LOOP) at run-time when LO OP is executed.
BACK Compute and compile the backward branch offs et.
; IMMEDIATE

71



(LOOP) is the run-time routine of LOOP .

CODE (LOOP)

INC (RP) Increment the loop count on return stack

CMP (RP),2(RP) Compare loop count with the loop | imit.

BGE LOOP1 Jump to LOOP1 if the loop count is equa | or greater than the loop limit.
ADD (IP),IP Add backward branch offset to IP and

NEXT branch back to repeat the DO-LOOP.

LOOP1:

ADD #4,RP Exit the loop. Discard the loop parame ters off the return stack.

ADD #2,IP Advance IP over the in-line offset numb er and

NEXT continue executing the next word after LOOP .

When the loop count must be incremented by an atraiher than one, +LOOP should be used
to close a DO-LOOP . It is used in the form:

+LOOP increments the loop index by n1 on the stamktest for loop completion. Branch back

to DO if not yet done.

: +LOOP nl --, at run-time
addr n1 -- , at compile time
3 ?PAIRS Check n. Ifitis not 3 as left by DO , issue an error message.

COMPILE (+LOOP)

BACK
; IMMEDIATE

Compile the address of (+LOOP) at
being built.
Compile back branch offset.

run-time when the colon definition is

(+LOOP) is the run-time routine at the end of a BQOOP loop.

CODE (+LOOP)
ADD (S),(RP)

n -
Add n to the loop count on return st

ack.

TST (S)+ Test and pop data stack

BLT LOOP3 If n is negative, jump to LOOP3 for spe cial processing.
CMP 2(RP),(RP) n is positive. Compare loop count with loop limit.

BLE LOOP2 If the loop is done, jump to LOOP2 to e xit.

ADD (IP),IP Not yet done, return to DO .

NEXT

LOOP2:

ADD #4,RP Clear return stack.

ADD #2,IP Advance IP to the next word after +LOOP

NEXT

LOOP3:

CMP (RP),2(RP) Negative increment n . Reverse co mparison.

BLE LOOP2

ADD (IP),IP Not yet done with the loop. Return t o the word after DO .
NEXT

72



Chapter 13. Editor

In a Forth computer, new definitions are storethadictionary in a compiled form. The source
text is not saved. Although there are many differegys to recover textual information from the
compiled definitions, to 'de-compile’ a definitimnot the best way to write and edit Forth
definitions. As we have discussed in Chapter 1€hervirtual memory, Forth uses the disk to
store source text which can be compiled very easilgg the word LOAD . To enter source text
into the disk memory and to modify them repeatetlising program development and testing, a
text editor is indispensable. As in any other laagpiprocessor, the editor is the principal
interface between a programmer and the computgnol editor makes the programming tasks
easier, and in some rare cases enjoyable.

As of now, figForth has yet to have a standardieatleditor. In the figForth model, however,
there was included a sample text editor by Bill &kede. | will discuss this particular editor in
this Chapter. A text editor provides important axtensive examples in using Forth language to
handle texts and strings. It is worthwhile for a@as student of the Forth language to go
through these examples carefully, to learn tectegqn string manipulations.

To facilitate text editing, texts on disk are orgaal in blocks of 1024 bytes (a unit of screen).
Each screen is divided into 16 lines of 64 charaaach. A screenful of text thus arranged fits
comfortably on the screen of an ordinary CRT teahihence the name 'screen’. The text on a
screen is most conveniently accessed by linestidgsivithin a line can be searched and its
location indicated by a screen cursor for editiogioms, like inserting or deleting characters. A
text editor generally performs two quite distinduable tasks--line editing and string editing. In
this figForth sample editor, words are defined safedy for these two tasks.

Line Editor

In the text editor, a screenful of text is main&inn the disk buffers, or the screen buffer. The
screen number which denotes the physical locatidni® screen of text on disk is stored in a
user variable SCR. The cursor location in thisestcreuffer is stored in another user variable R# .
Text to be put into the screen buffer or deletedifthe screen buffer is temporarily stored in the
text buffer area pointed to by the word PAD, whieturns the memory address 68 bytes above
the dictionary pointer DP. PAD is used as a 'sbrad’ during editing processes, holding text
for the screen buffer or strings to be matched thightext in the screen buffer.

Most of the editor definitions have single charac@mes to ease typing during editing. Some of
these simple names cause conflects with the nahwher definitions defined in the FORTH
vocabulary. It is thus advantageous to group allatiiting definitions into a separate vocabulary
called EDITOR. The EDITOR vocabulary is defined as:

VOCABULARY EDITOR IMMEDIATE

This phrase creates the EDITOR vocabulary whidimked to the trunk FORTH vocabulary.
EDITOR when called will make EDITOR the CONTEXT atmulary, so that definitions defined
in EDITOR will be readily accessible in editing sens of text. The phrase

73



EDITOR DEFINITIONS

makes EDITOR vocabulary also the CURRENT vocabuliaryhis way new definitions will be
added to the EDITOR vocabulary instead of beingté® as regular definitions adding to the
FORTH vocabulary.

Two basic utility words are used by the editor éofprm the line editing functions. TEXT moves
a line of text from the input stream to the textféuarea of PAD. The word LINE computes the
line address in the screen buffer. Text lines otlédracters can then be transferred from PAD to
screen buffer or vice versa. We shall first presiease two words before getting into the line
editing commands.

TEXT moves a text string delimited by characteronf the dictionary buffer (word buffer) into
PAD, blank- filling the remainder of PAD to 64 chaters.

T TEXT C--

HERE Top of dictionary, beginning of word buffer. The text interpreter puts
the text string here.

C/L 1+ BLANKS Fill word buffer with 65 blanks.

WORD Move the text, delimited by character c, fro m the input stream to the
word buffer.

PAD Address of the text buffer.

C/L 1+ CMOVE Move the text, 64 bytes of text and 1 length byte, to PAD.

LINE leaves address of the beginning of line rhia $creen buffer. The screen number is in SCR.
Read the disk block from disk if it is not alreddythe disk buffers.

. LINE n -- addr

DUP FFFOH AND Make sure n is between 0 and 15.

17 ?ERROR If not, issue an error message.

SCR @ Get the screen number from SCR .

(LINE) Read the screen into screen buffer which i s composed of the disk buffers.
Compute the address of the n'th line in the screen buffer and push it on
stack.

DROP Discard the character count left on stack by (LINE). Only the line

address is left on stack now.

-MOVE copies a line of text from addr to n'th limethe current screen buffer.

. -MOVE addr n --

LINE Get the line address in screen buffer.

C/L CMOVE Move 64 characters from addr to line n in screen buffer.
UPDATE Notify the disk handler this buffer has be en modified. It will be

written back to disk to update the disk storage.

H copies n'th line to PAD. Hold the text there nesaibe typed out.

'H n--

LINE Get the line address.

PAD 1+ Starting address of text in PAD .
C/L DUP PAD C! Put 64 in the length byte of PAD .

CMOVE Move one line.

74



S spreads n'th line with blanks. Down shift theioal n'th and subsequent lines by one line. The
last line in the screen is lost.

'S n--
DUP 1- Lower limit of lines to be moved.
OEH 14, the last line to be shifted down.
DO
I LINE Get I'th line address
11+ Next line
-MOVE Downshift one line.
1+LOOP Decrement loop count and repeat till done

E Erase the n'th line.

D deletes the n'th line. Move subsequent linesnglime. The delete line is held in PAD in case
it is still needed.

:D n--
DUP H Copy the n'th line to PAD.
OFH The last line.
DUP ROT Get n to top of stack.
DO
| 1+ LINE Next line to be moved.
| -MOVE Upshift by one line.
LOOP
E Erase the last line.

E erases the n'th line in the screen buffer bnglivith 64 blanks.

= n--
LINE Line address.
C/L BLANKS Fill with blanks.

UPDATE

R replaces the n'th line with text stored in PAD.

'R n--
PAD 1+ Starting address of the text in PAD.

SWAP -MOVE Move text from PAD to n'th line.

P puts following text on line n. Write over its ¢ents.

P n--
1 TEXT Accept the following text of C/L character s or till CR to PAD.

R Put the text into line n.
I inserts text from PAD to n'th line. Shift the ginal n'th and subsequent lines down by one line.

The last line in the screen is lost.

| n--
DUP S Spread line n and pad with blanks.
R Move PAD into line n.

75



CLEAR clears the n'th screen by padding with blanks

: CLEAR
SCR!
10H 0 DO
FORTH I

EDITOR E

LOOP

n -
Store screen number n into SCR .
Erase 16 lines
Get the loop count from return stack. |
insert line into a screen. To call the I which ge

FORTH must be called to make the trunk FORTH vocab

vocabulary, which is searched first to get the cor
demonstrates the use of vocabularies.

Set the CONTEXT vocabulary back to EDITO
texts. E will erase the I'th line.

was redefined by the editor to

ts the loop count,
ulary the CONTEXT
rect . This

R vocabulary to continue editing

COPY copies screen nl in drive 0 to screen n2iuedr. This is accomplished by reading
blocks in screen n1l to disk buffers and changimghbhumbers to those associated with screen
n2. The disk buffers are then flushed back to disk.

: COPY
B/SCR *
OFFSET @ +
SWAP B/SCR *
B/SCR OVER +
SWAP DO
DUP
FORTH I
BLOCK
2-!

1+T
UPDATE
LOOP
DROP
FLUSH

String Editor

nln2--
First block in screen n2.
Add block offset for drive 1.
First block in screen n1.
Last block number + 1.
Go through all blocks in screen n1.
Copy block number in screen n2.
Current block number in screen n1 as the
Read the block from screen n1 to disk buff
Store the block number in screen n2 into t
buffer, which contains the disk block number. This
think the block is in the screen n2.

Set update bit in disk buffer to be flush
Discard the block number on stack.

Write all disk buffers containing data from
because the block numbers were switched.

loop count.
er.
he first cell of the disk
tricks the system to

ed back to disk.

screen nl back to screen n2,

The above words belong to what might be calleda diditor, which handles the text by whole
lines. The line editor is convenient in inputtimges of texts. However, if some mistakes are
discovered or only a few characters in a line rtedek changed, the line editor is not suitable
because one would have to retype the whole linee,Hestring editor is more effective. The

string editor uses a variable R# as a cursor pwrtt a character in a string which can be
accessed by the string editor most easily. Thegseditor must be able to search a line or the
entire screen for a specified string and pointdiesor to this string. It must have means to delete
and modify characters neighboring the cursor. Acalefinition MATCH is used to search a
range of text for a specified string and move tiesar accordingly. MATCH and a few utility
words are used here to build up the word set iradin the string editor.

76



MATCH compares two text strings. The text to bedleed begins at addrl and is n1 bytes long.

The string to be matched begins at addr2 and ts/te%s long. The boolean flag is true if a match
is found. n3 is then the cursor advancement tetiteof the found string. If no match is found, f

will be false and n3 be 0.

: MATCH addrl n1 addr2 n2 -- f n3
>R >R 2DUP Duplicate addrl and nl.
Move the copied addrl and n1 to the t

R> R> 2SWAP
OVER + SWAP Now the stack looks like: (addrl n1
DO Scan the whole source text.

2DUP Duplicate addr2 and n2.

FORTH | The loop index points to source text.
-TEXT Is the source text here the same as the st
IF Yes, the string is found in the text.

>R 2DROP R> Discard nl1 and addr2 on the stack.

-1 SWAP - Offset to the end of the found strin

0 SWAP Put a boolean underneath.
Put two dummy zeros on the stack and

00 LEAVE

THEN
LOOP No match this time. Loop back.
2DROP Discard garbage on the stack.

SWAP 0= SWAP Correct the boolean flag upon exit.

op of the stack.
addr2 n2 addrl+nl addrl --)

ring at addr2 ?

g.

prepare to leave the loop.

-TEXT also compares two text strings. If the starag addrl and addr2 match to n characters,

return a true flag. Otherwise, return a false flag.

C-TEXT addrl n addr2 -- f
SWAP -DUP
IF If n1is zero, bypass the tests.
OVER + SWAP (addrl addr2+n1 addr2 -- )
DO Scan the string at addr2 .
DUP C@ Fetch a character from the first string.
FORTHIC@ - Equal to the corresponding charact
IF 0= LEAVE Not the same. Leave the loop.
ELSE 1+ THEN Continue on.
LOOP
ELSE DROP 0= nis zero. Leave afalse flag. Ne

THEN

er in the second string?

ither address may be zero.

Here are the 32-bit double number instructions us@ddATCH and —TEXT. They are defined

in the FORTH trunk vocabulary as following:

: 2DROP d--
DROP DROP ; Discard two numbers from the stack.
: 2DUP d--dd
OVER OVER ; Duplicate a double number.
: 2SWAP dld2--d2d1
. Bring the second double number to the top of the
ROT >R Save top half of the second number.
ROT R> Move bottom half and restore top half.

TOP moves the cursor to home, top left of the stree

. TOP -
O R#! Store 0 in R# , the cursor pointer.

77

stack.



From the cursor pointer R# , #LOCATE computes the humber n2 and the character offset n1
in line number n2.

. #LOCATE --nln2
R# @ Get the cursor location.
C/L IMOD Divide cursor location by C/L. Line num ber is the quotient and the

offset is the remainder.

From R# , #LEAD computes the line address addnenstreen buffer and the offset from addr
to the cursor location n.

:#LEAD --addrn
#LOCATE Get offset and line number.
LINE From line number compute the line address in screen buffer.

SWAP

From R# , #LAG computes the line address addrerstiieen buffer and the offset from cursor
location to the end of line.

T #LAG --addrn

#LEAD Get the line address and the offset to curs or.
DUP >R Save the offset.

+ The address of the cursor in screen buffer.

C/ILR> - The offset from cursor to end of line.

M moves cursor by n characters. Print the line @ioimg the cursor for editing.

M n--

R# +! Move cursor by updating R#.

CR SPACE Start a new printing line.

#LEAD TYPE Type the text preceding the cursor.

5FH EMIT Print a caret (*) sign at the cursor loc ation.
#LAG TYPE Print the text after the cursor.

#LOCATE . DROP Type the line number at the end o f text.

T types the n'th line in the current screen. Shedéxt also in PAD.

' T n--

DUP C/L * Character offset of n'th line in the sc reen.

R# ! Point the cursor to the beginning of n'th li ne.
H Move n'th line to PAD.

oM Print the n'th line on output device.

L re-lists the current screen under editing.

'L -
SCR @ LIST List the current screen.
oM Print the line containing the cursor.

78



1LINE scans a line of text beginning at the cutsoation for a string matching with one stored
in PAD. Return true flag if a matching string isifal with cursor moved to the end of the found

string. Return a false flag if no match.

:1LINE - f
#LAG PAD COUNT
MATCH

R# +!

Prepare addresses and character co
Go matching.

Move the cursor to the end of the matching

unts to that as required by MATCH .

string.

FIND searches the entire screen for a string stor&RAD. If not found, issue an error message.

If found, move cursor to the end of the found sfrin

: FIND
BEGIN
3FFH R# @ < Is the cursor location > 1023?
IF Yes, outside the screen.
TOP Home the cursor.
PAD HERE Move the string searched for to HERE to be typed ou
C/L 1+ CMOVE message.
0 ERROR Issue an error message.
ENDIF
1LINE Scan one line for a match.

UNTIL

t as part of an error

DELETE deletes n characters in front of the curbtwve the text from the end of line to fill up

the space. Blank fill at the end of line.

: DELETE n--

>R Save the character count.

#LAG + End of line.

FORTHR - Save blank fill location.

#LAG

R MINUS R# +! Back up cursor by n characters.
#LEAD + New cursor location.

SWAP MOVE Move the rest of line forward to fill
R> BLANKS Blank fill to the end.

UPDATE

N finds the next occurrence of the text already AD.

°N --

FIND Matching.

oM If found, type out the whole line in which th
found with the cursor properly displayed.

F finds the first occurrence of the following testting.

' F --
1 TEXT Put the following text string into PAD .
N

Find the string and type out the line.

79

the deleted string

e string was



B backs the cursor to the beginning of the strugg matched.

:B --
PAD C@ Get the length byte of the text string in PAD .

MINUS M Back up the cursor and type out the whole line.

Delete the following text from the current line.

X --

1 TEXT Put the text in PAD .

FIND Go find the string.

PAD C@ Get the length byte of the string.
DELETE Delete that many characters.
oM Type the modified line.

TILL deletes all characters from cursor locatiorthie end of the following text string.

P TILL --

#LEAD + The current cursor address.

1 TEXT Put the following text in PAD .

1LINE Scan the line for a match.

0= 0 ?ERROR No match. Issue an error message.

#LEAD + SWAP - The number of characters to be del eted.

DELETE Delete that many characters and move the r est of line to fill up the
space left.

oM Type out the new line.

C spreads the text at cursor to insert the follgvatring. Character pushed off the end of line are
lost.

:C -

1 TEXT PAD COUNT Accept text string and move to P AD .

#LAG ROT OVER MIN >R Save the smaller of the character count in PAD and the number of
characters after the cursor.

FORTH R Get the smaller count

R# +! Move the cursor by that many bytes

R->R Number of characters to be saved.

DUP HERE R CMOVE Move the old text from cursor on to HERE for temporary storage.

HERE #LEAD + R> Move the same text back. Put at new location to t he right, leaving

CMOVE space to insert a string from PAD .

R> CMOVE Move the new string in place.

UPDATE

oM Show the new line.

80



Chapter 14. PDP-11 and 8080 Assemblers

An assembler which translates assembly mnemonigsnachine codes is equivalent to a
compiler in complexity if not more complicated. Oméyht expect the assembler to be simpler
because it is at a lower level of construct. Howethee large number of mnemonic names with
many different modes of addressing make the assegrialsk much more difficult. In a Forth
language system the assembling processes canaotbmplished by the text interpreter alone.
All the resources in the Forth system are neededth#s reason the assembler in Forth is often
defined as an independent vocabulary, and the &éisgnprocess is controlled by the address
interpreter, in the sense that all assembly mneesarsed by the assembler are not just names
representing the machine codes but they are agtiiaith instructions executed by the address
interpreter. These instructions when executedaailise machine codes to be assembled to the
dictionary as literals. The data stack and thermestack are often used to assemble proper codes
and to resolve branching addresses.

Three Levels of Forth Assembler

Before discussing codes in the Forth assembleveuld like to present assemblers in three
levels of complexity:

Level O: The programmer looks up the machine caaesassembles them to the
dictionary;

Level 1. The computer translates the assembly ronas to codes with a lookup-
table, but the programmer must fill in addressed lderals when
needed; and

Level 2: The computer does all the work, with moaros and operands supplied

by the programmer.

The Level 0 Assembler in Forth uses only threenitedns already defined in the Forth Compiler:

CREATE Generate the header for a new code definiti on,
, Assemble a 16 bit literal into the dictionary, a nd
C, Assemble a byte literal into the dictionary, us ed in byte

oriented processors.

These definitions were described as the most prviendompiler in Chapter 9. They might just as
well be the most primitive assembler if the newiiébn were a code definition. The
programmer would write down the machine codes With the help of those small code cards
supplied freely by CPU vendors. The machine codeatered on the top of the data stack and
then assembled to the parameter field of the ndinitien on top of the dictionary.

The Level 1 Assembler would use the defining wo@NSTANT to define assembly
mnemonics relating them to their respective machoue. The text interpreter when confronted
with a mnemonic name would push the correspondiaghine code on the stack. The code will
then be assembled to the dictionary by , or C, eRample is:

0 CONSTANT HALT

81



which defines HALT as a constant of 0. During adsignthe phrase

. HALT, ..

would assemble a HALT instruction into the dictional o make it easier for himself, the
programmer might want a new definition:

T HALT, HALT,;
Executing HALT, would then assemble the HALT instran to the dictionary.

Historically all assembler definitions end theimmes with a comma for the reason just described,
indicating that the definition causes a machin&utsion to be assembled to the dictionary. This
convention serves very well to distinguish assemtiédinitions from regular Forth definitions.

This scheme in Level 1 Assembler is quite adeqgifiitere were a one to one mapping from
mnemonics to machine codes. However, in cases whang codes share the same mnemonic
and differ only in operands or addressing modeptstc code must be augmented to
accommodate operands or address fields. It isiffatudt to modify definitions as HALT, to

make the necessary changes in the code, whiclohpess$ the data stack anyway. To define each
assembly mnemonic individually is messy and inelég& much more appealing method is to
use the construct in the Forth language to defineleclasses of mnemonics with the same
characteristics, which brings us to the Level 2eksiler.

In the last example of the HALT instruction, instes using CONSTANT to relate the
mnemonic hame with the code, a defining word istee as:

: OP @,;

The instruction HALT, is then defined by the defigiword OP as:

0 OP HALT, 1 OP WAIT, 5OP RESET, . . .

Now, when HALT, is later processed by the textripteter, the code 0 is automatically
assembled into the dictionary by the runtime rcut@ , .

The construct can be applied to all other typesssEmbly mnemonics to assemble different
classes of instructions, providing some of thedtrexamples for the extensibility in the Forth
language. No other language can possibly offer suysbwerfull tool to its programmers.

A syntactic problem in using the Forth assembléhas before the mnemonics can be executed
to assemble a machine code, all the addressingnateon and operands must be provided on
the data stack. Therefore, operands must precedagtiuction mnemonics, resulting in the
postfix notation. The source listing of a Forth eatkfinition is therefore very different from the
conventional assembly source listing, where theas follow the assembly mnemonic. Using
the data stack and the postfix notation greatlilifate the assembling process in the Forth
assembler. This is a very small price to pay ferdapability to access the host CPU and to make
the fullest use of the resources in a computeesyst

82



Two assemblers will be discussed in this Chaptanieffort to cover the widest range of
microprocessors. One is for the homely Intel 808@Ach is a byte oriented machine with a
rather primitive instruction set. On the other énthe PDP-11 instruction set, which is
extensively micro-coded in a 16 bit wide code fiéltkel that these two examples should be
sufficient to illustrate how Forth assemblers arastructed for most other microprocessors.

PDP-11 Assembler

The PDP-11 instruction set is typical of that fanimomputers. With a 16 bit instruction field,
very flexible and versatile addressing schemegassible comparing with those used in the 8
bit instructions of most common microprocessorsaddition, PDP-11 is a stack oriented
machine in which all registers can be used as statkers in addition to normal accumulator
and addressing functions. There are 8 registatsif?DP-11 CPU: registers 0 to 5 are general
purpose registers, register 6 is a dedicated gtaiciter, and register 7 is the program counter.
Registers can be used in many different addressodes, making it very convenient to host a
Forth virtual machine in the PDP-11 computer. Tagsembler was programmed by John James
and was included in his PDP-11 figForth Model.

The following command sequence must be giventirgtitiate the ASSEMBLER vocabulary
and to prepare the Forth system to build the aseemb

OCTAL PDP-11 instructions are best presented in oc tal base because address
fields are 6 bits wide.
0 VARIABLE OLDBASE

To ease switching base to and from octal, the ntlyreised base will be stored away in
OLDBASE, to be restored when the assembly prosessmpleted.

VOCABULARY ASSEMBLER IMMEDIATE

Create the assembler vocabulary to house all gEnd@sdy mnemonics and other necessary
definitions.

ENTERCODE invoke ASSEMBLER vocabulary to start #ssembly process.

: ENTERCODE -
[COMPILE] ASSEMBLER Set CONTEXT to ASSEMBLER to s earch for the mnemonics.
BASE @ OLDBASE !
OCTAL Switch base to octal. Save old base to be r estored after assembly.
SP@ Push stack pointer on stack for error checkin g at end.

CODE is a more refined defining word to start aecddfinition.

: CODE -
CREATE Create a header with the name following CO DE .

ENTERCODE Invoke ASSEMBLER .

Set both CONTEXT and CURRENT vocabularies to ASSEHR . New definitions hereafter
will be placed in the assembler vocabulary.

83



ASSEMBLER DEFINITIONS

Before discussing the assembler definitions, th®RD CPU registers and their addressing
modes should be clarified. An address field uskgsain an instruction. The lower 3 bits specify
a register to be referenced for addressing, andpper 3 bits specify the addressing mode. The
register and the addressing mode are combinedrtoda address field which is used to specify
either a source operand or a destination operatigeiassembly instruction as required.
Registers and modes are defined as follows:

1 1S n--

CONSTANT ; Short hand for CONSTANT .

0ISRO 1ISR1 2ISR2 3ISR3 41S R4 5ISR 5
6 1S SP 71SPC 2I1SWwW 3I1SU 41S 1P 5I1SS

6 ISRP

RTEST tests register r for range between 0 anddd.rf&and mode to form address field addr-
field . Also leave a flag -1 on stack to indicdtattan address field is underneath.

:RTST r mode -- addr-field -1

OVER Get r to top for tests.

DUP 7 > Larger than 7 ?

SWAP 0 < Smaller than 0 ?

OR IF In either case, issue an error message,

."NOT A REGISTER:"

OVER . ENDIF
+

with the offending number appended.
addr-field = r + mode
The flag.

-1

The addressing modes are defined as executabtetiuefs using names similar to the operand
notation used in PDP assembly language with sonststw he stack effects are:

r -- addr-field , -1.
)+ 20 RTST; Post-increment register mode.
1) 40 RTST ; Pre-decrement register mode.
o) 60 RTST ; Indexed register mode.
T @)+ 30 RTST; Deferred post-increment mode.
C@-) 50 RTST ; Deferred pre-decrement mode.
C@l) 70 RTST ; Deferred index mode.

The addressing mode using the program countemgwsbat different from the modes using
other general purpose registers.

LH#

27 -1; Immediate addressing mode.
T O@#

37-1; Absolute addressing mode.

0 r -- addr-field -1 , for register deferred mo de.
n--n77-1, for relative deferred mode.
Top of stack is between 0 and 7, a regi
Make the address field.
Otherwise, top of stack is an ad
deferred mode.

DUP 10 U<
IF10+-1
ELSE 77 -1 ENDIF

ster.

dress offset. Make it the relative

The simplest instruction requires no operand. Tlresteuctions can be defined by a simple
defining word:

84



OP is a defining word to define instructions withoperands.

: OP n -- , at compile time
--, atrun time

<BUILDS Create an header for a mnemonic definition with the name following OP

, Compile the instruction code on stack to the par ameter field in the new
definition.

DOES> When the defined mnemonic definition is exec uted during assembly, execute
the following words:

@, Fetch the instruction code stored in paramete r field and assemble it to
the code definition under construction on top of t he dictionary.

0 OP HALT, 1 OP WAIT, 2 OP RTI, 3 OP BPT,

4 OP IOT, 5 OP RESET, 6 OP RTT,

241 OP CLC, 242 OP CLV, 244 OP CLZ, 250 OP CLN,

261 OP SEC, 262 OP SEV, 264 OP SEZ, 270 OP SEN,

277 OP SCC, 257 OP CCC, 240 OP NOP, 6400 OP MARK,

Instructions with operands are of course more wetl Those with only one operand are defined
by a defining word 10P . This word uses many othidity definitions. However, we shall first
present the high level 10P before getting intortitky gritty details of the other low level
definitions.

10P is a defining word to define instructions wotie operand.

1 10P n--

<BUILDS , DOES> The same defining word format.

@, When the defined word is executed during asse mbly, the basic
instruction code is fetched and assembled to the dictionary.

FIXMODE Take the mode packet on stack to resolve the address field.

DUP Copy the address field.

HERE 2 - ORMODE Insert the address field into the lower 6 bit destination field.

,OPERAND If the instruction needs a 16 bit value either as a literal or as an

address, assemble it after the instruction.

FIXMODE fixes the mode packet on the data stackOJB®MODE and ,OPERAND to assemble
the instruction correctly.

: FIXMODE addr-field -1 -- addr-field
r--r
n--n67
DUP -1 = Top of stack =-1 ?
IF DROP Yes, drop -1 and leave addr-field on top.
ELSE The top of the stack might be a register or a literal.
DUP 10 SWAP U< If top of stack is larger than 7 , PC relative mode.
IF 67 ENDIF Push 67 on top of n, indicating PC mode. Otherwise, leave the register

number on the stack.
ENDIF

ORMODE takes the address field value addr-field iasdrt it into the lower 6 bit address field
in the instruction code at addr .

: ORMODE addr-field addr --

SWAP Move addr-field to top of the stack.
OVER @ Fetch the instruction code at addr .
OR Insert address field.

SWAP ! Put the modified instruction back.

85



,OPERAND sssembles a literal to the dictionarydmplete a program counter
addressing instruction.

: ,OPERAND (n) addr-field --
DUP 67 = PC relative mode ?
OVER 77 = Or PC relative deferred mode?
OR IF In either case,
SWAP move operand n to top of the stack.
HERE 2 + - Compute offset from n to the next ins truction address.
SWAP Put the offset value under addr-field.
ENDIF
DUP 27 = PC immediate mode ?
OVER 37 =0OR Or PC absolute mode ?
SWAP Get addr-field for another test.
177760 AND 60 = OR Or if it is index addressing m ode.
IF , ENDIF | n any of the three cases, assemble th e literal after the instruction
code.
None of above. The instruction does not need a literal. Itis already
complete.

B modifies the instruction code just assembledhéodictionary to make a byte
instruction from a cell instruction.

:B -
100000 MSB of the byte instruction must be set.
HERE 2 - +! Toggle the MSB of the instruction cod e on top of dictionary.

B is to be used immediately after an instructiofinggon like op1l op2 MOV, B to move a byte
from opl to op2. The byte instruction can be defiseparately as MOVB,. However, the
modifier definition B is more elegant in reducidgethumber of mnemonic definitions by 25%.

5100 10P CLR, 5200 10P INC, 5300 10P DEC, 5400 1 OP NEG,
5500 10P ADC, 5600 10P SBC, 5700 10P TST, 6000 1 OP ROR,
6100 10P ROL, 6200 10P ASR, 6300 10P ASL, 6700 10 P SXT,

100 10P JMP,

ROP is a defining word to define two operand ingions. The source operand can only be a
register without mode selection. The destinatiotress field is the lower 6 bits, and the source
register is specified by bits 6 to 8.

: ROP n--

<BUILDS , DOES> Make header and store instruction code.

@, When defined instruction is executed, assembl e the basic

instruction code to the dictionary.

FIXMODE Fix the destination address field.

DUP Copy the just completed address field value.

HERE 2 - Address of the instruction.

DUP >R Save a copy of this address on the return stack to fix the source
register field underneath it on the stack.

ORMODE Insert the destination address field into the instruction.

,OPERAND If a literal operand is required, assemb le it here.

DUP 7 SWAP U< The register number must be less th an7.

IF ." ERR-REG-B" The register number is too big, issue an error mess age.

ENDIF

100 * R> ORMODE Justify the source register field value and insert it into the
instruction.

74000 ROP XOR, 4000 ROP JSR,

86



BOP is a defining word used to define branching esrttlitional branching instructions. This
word is included only for completeness since ttebhings are not structured. In Forth code
definitions, more powerful branching and loopingistures should be used, as will be discussed

shortly.

: BOP n--
<BUILDS , DOES> Make header and store instruction code.

@,

HERE - The target address is presummably on data stack. Compute the offset

value for branching.

DUP 376 > If the offset is greater than 376, issu e an error message:

IF ." ERR-BR+" .

ENDIF with the out of range offset.

DUP -400 < If the offset is less than -400, issue an error message:

IF ." ERR-BR-".

ENDIF with the out of range offset.

2 /377 AND The correct offset value is then

HERE 2 = ORMODE inserted into the instruction cod e.

400 BOP BR, 1000 BOP BNE, 1400 BOP BEQ, 2000 BOP BGE,
2400 BOP BLT, 3000 BOP BGT, 3400 BOP BLE, 100000 BOP BPL,
100400 BOP BMI, 101000 BOP BHI, 101400 BOP BLOS, 102000 BOP BVC,
102400 BOP BVS, 103000 BOP BCC, 103400 BOP BCS, 1 03400 BOP BLO,

103000 BOP BHIS,
20P is a defining word to define two operand ingians.

1 20P n--

<BUILDS , DOES> Make header and store instruction code.

@,

FIXMODE Fix the mode packet for destination field .

DUP HERE 2 - Get the address of the instruction t o0 be fixed.

DUP >R Save a copy of the instruction address on return stack.

ORMODE Insert the destination field.

,OPERAND Assemble a literal after the instruction if required.

FIXMODE Now process the source mode packet.

DUP 100 * Justify the source field value.

R ORMODE Insert the source field into the instruc tion.

,OPERAND Assemble a literal if required.

HERE R>-6 = If there are two literals assembled after the instruction, they are in
the wrong order.

IF SWAPOP ENDIF The two literals have to be swapp ed.

SWAPOP swaps the two literals after a two operasttuction. If either literal is used for PC
addressing, the offset value will have to be adui$o reflect the swapping.

: SWAPOP --

HERE2- @ Push the last literal on the stack.
HERE 6 - @ This is the instruction code itself.

6700 AND 6700 = PC relative mode?

IF 2 + ENDIF Yes, increment the last literal by 2

HERE 4 - @ Now work on the first literal.

HERE 6 - @ Get the instruction back again.

67 AND 67 = Is the destination field also of PC r elative mode?
IF 2 - ENDIF If it is, decrement the branching of fset by 2.
HERE 2 -! Put the first offset last,

HERE 4 -!; and the last offset first.

10000 20P MOV, 20000 20P CMP, 30000 20P BIT, 400 00 20P BIC,
50000 20P BIS, 60000 20P ADD, 160000 20P SUB,

87



Two more instructions need to be patched:

:RST, 2000R,;
:EMT, 104000 +, ;

The branching instructions are similar to the GOst&@ements in high level languages. They are
not very useful in promoting modular and structupeagramming. Therefore, their usage in
Forth code definitions is discouraged. Somewhatifisatforms of these branch instructions are
defined in the assembler to code IF-ELSE-ENDIF BRGIN-UNTIL types of structures.
Although these structures are very similar to tinecsures used in colon definitions, the
functions of these words in the assembler arereiffie Thus it is a good practice to define them
with names ending in commas as all other mnemaefioitions. However, the comma at the

end does not imply that an instruction code is gbnassembled by these special definitions.

The conditional branching instructions are defiasdonstants to be assembled by the words
requiring branching. The notation is reversed ftammPDP mnemonics because of this
assembling procedure.

1000 IS EQ 1400 IS NE 2000 ISLT 2400 IS GE

3000 IS LE 3400 IS GT 100000 IS MI 101000 IS LOS

101400 IS HI 102000 IS VS 102400 IS VC 103000 IS LO
103400 IS HIS

IF, takes the literal n on stack and assemblesdtdtionary as a conditional branching
instruction. Leave the address of this branchisgyirction on the data stack to resolve the
branching offset later.

R, n -- addr
HERE Address of the branching instruction.
SWAP , Assemble the branching instruction to the dictionary.

IPATCH uses the addresses left on the stack to ataripe forward branching offset and
patches up the instruction assembled by IF, .

1 IPATCH, addrl addr2 --

OVER - Byte offset from addrl to addr2.

2/1-377 AND The 8 bit instruction offset.

SWAP DUP @ Fetch out the branching instruction at addrl .
ROT OR Insert the offset into the branching instr uction.
SWAP ! Put the completed instruction back.

ENDIF, closes the conditional structure in a codfntion.

: ENDIF, addr --
HERE IPATCH, Call on IPATCH, to resolve the forwa rd branching.

88



ELSE, assembles an unconditional branch instruetiddERE , and patches up the offset field
in the instruction assembled by IF, . Leave thaesklof the current branch instruction on the
stack for ENDIF, to resolve.

: ELSE, addrl -- addr2

400, Assemble the BR, instruction to the diction ary.
HERE IPATCH, Patch up the conditional branching i nstruction at IF, .
HERE 2 - Leave address of BR, for ELSE, to patch up.

BEGIN, starts an indefinite loop.

: BEGIN, addr --
HERE Begin an indefinite loop. Push DP on stack for backward
branching.

UNTIL, assembles the conditional branching insiarch to the dictionary, taking addr as the
address to branch back to.

» UNTIL, addr n --

, Assemble n which must be one of the conditional branching instruction
codes.

HERE 2 - The address of the above instruction.

SWAP IPATCH, Patch up the offset in the branching instruction.

REPEAT, is used in the form: BEGIN, . . . WHILE,..REPEAT, inside a code definition.
Assemble an unconditional branch instruction pamto BEGIN, at addrl, and resolve the
forward branch offset for WHILE, at addr2 .

. REPEAT, addrl addr2 --

HERE Save the DP pointing to the current BR, inst ruction.

400, Assemble BR, here.

ROT IPATCH, Patch the BR, instruction to branch b ack to BEGIN, at addrl .

HERE This is where the conditional branch at WHIL E, should branch to on false
condition.

IPATCH, Patch up the conditional branch at WHILE,

WHILE, assembles a conditional jump instructiot&RE . Push the address of this instruction
addr on the stack for REPEAT, to resolve the fodyamp address.

: WHILE, n -- addr
HERE Push DP to stack.

SWAP Move n to top of stack, and
, assemble it literally as an instruction.

89



C; terminates a code definition started by ENTERE&QD

. C; addr --

CURRENT @ Restore CONTEXT vocabulary to CURRENT . Thus aband on the ASSEMBLER

CONTEXT! vocabulary to the current vocabulary where the new code definition was
added. The programmer can now test the new defini tion.

OLDBASE @ BASE ! Restore the old base before asse mbling.

SP@ 2+ = Compare the current SP with addr on the stack,

IF SMUDGE if they are the same, the stack was not disturbed. Restore the smudged
header to complete the new definition. Otherwise, i ssue an error message.

ELSE

." CODE ERROR,

STACK DEPTH

CHANGED"

ENDIF

NEXT, is the address interpreter returning execupimcess to the colon definition which calls
the code definition. This must be the last word itcode definition before C; .

: NEXT, --
IP )+ W MOV, Move the contents of IP to W. IP is incremented by 2.
W @)+ JMP, J ump to execute the instruction sequen ce pointed to by

the contents of W. W is incremented by 2, pointi ng to
the parameter field of the word to be executed.

The assembler vocabulary is now completed. Retutheg FORTH trunk vocabulary by setting
both CONTEXT and CURRENT to FORTH .

FORTH DEFINITIONS
DECIMAL Restore decimal base. The base was change d to octal when entering the a
process of creating the assembler.

8080 Assembler

The assembler is usually defined in an independaerdbulary separated from the trunk FORTH
vocabulary and other vocabularies. To generatd8®EMBLER vocabulary and to make some
modifications in the FORTH vocabulary, the follogiwords must be executed. These words
are commands to setup the ASSEMBLER vocabularys 8680 Assembler was authored by
John Cassidy, who also built the 8080 figForth Mode

HEX All 8080 codes will be represented in hexadeci mal base.

VOCABULARY ASSEMBLER  Create a new vocabulary for a ssembler.

IMMEDIATE Vocabulary must be of IMMEDIATE type to be used within

colon definitions.

' ASSEMBLER CFA Get the code field address of ASSE MBLER definition, and

';CODE OA +! patch up the code in ;CODE . This is to replace the word SMUDGE with
ASSEMBLER , so that the codes following ;CODE can be understood in the
context of the assembler. The function of SMUDGE is deferred to the end

of the code sequence in C; .

90



CODE is a more fully developed definition to staitode definition with error checking.

: CODE --

?EXEC If not executing, issue an error message.

CREATE Create a new dictionary header with the fo llowing name.

[COMPILE] Compile the next IMMEDIATE word.

ASSEMBLER Switch the CONTEXT to ASSEMBLER vocabul ary to search assembly mnemonics

first before the current vocabulary.

ICSP Store current stack pointer in CSP for later error checking.
; IMMEDIATE

C, terminates a new code definition. Check for rearad restore the smudged header.

1 G, -

CURRENT @ CONTEXT ! At the beginning of assembly, CONTEXT was switched to ASSEMBLER, to
search for the assembler mnemonics. After the code definition is
completed, CONTEXT must be restored to CURRENT voca bulary to continue
program development or testing.

?EXEC If not executing, issue an error message.

?CSP If the data stack was disturbed, issue an er ror message.

; IMMEDIATE

LABEL defines a subroutine which can be calledly assembler CALL instruction. It is not
necessary in Forth.

. LABEL --
?EXEC
0 VARIABLE Subroutine header is defined as a vari able with a dummy value 0. When
the name is executed, the address of its parameter field will be put on
the stack to be used by the CALLing instruction.
SMUDGE Smudge the header as usual.
-2 ALLOT Backup the dictionary pointer to overwri te the dummy 0 with the
subroutine.
[COMPILE] ASSEMBLER  Get the assembler to process the mnemonics following.
ICSP Store SP for error checking.
; IMMEDIATE

8* multiplies the top of stack by 8.

. 8* n--n*8
DUP + DUP + DUP +;  Faster than doing real multip lication on an 8080.

Set both the CONTEXT and CURRENT vocabularies t&EBIBLER . Now, all subsequent
definitions are put into the ASSEMBLER vocabulasybe referenced by CODE and ;CODE .
The definitions up to this point went into the FGRYocabulary.

ASSEMBLER DEFINITIONS

1 1S n--
CONSTANT ; Shorthand of CONSTANT .

Following are register name definitions:

0ISB 1IsC 2ISD 3ISE 41SH 5ISL 61 SM
7ISA 6 IS PSW 6 IS SP 2A28 IS NEXT

91



In 8080 fig-Forth, NEXT was defined as a code maistarting at address 2A28 in memory.

With NEXT thus defined as a constant, NEXT JMP s$thdne the last instruction in a code
definition before C; .

1Ml is a defining word to create single byte 8088tiuctions without operands. Ml stands for
machine instruction.

C1MI n-—
<BUILDS Create a header with name following.
C, Store instruction coe on the stack to the para meter field.
DOES> The following words are to be executed when the newly defined mnemonic
name is executed during assembly.
C@C, Fetch the instruction code stored in the pa rameter field and assemble it

into the dictionary as a byte literal.

76 IMI HLT 07 IMIRLC OF 1IMI RRC 17 1IMI RAL
1F 1MI RAR C9 1IMI RET D8 1MI RC DO 1MI RNC
C8 1MI RZ CO0 1MI RNZ FO 1MI RP F8 1Ml RM
E8 1MI RPE EO 1MI RPO 2F 1MI CMA 37 1IMI STC
3F 1MI CMC 27 1MI DAA FB 1MI EI F3 1MI DI

00 1MI NOP E9 1MI PCHL F9 1MI SPHL E3 XTHL

EB 1MI XCHG

2Ml is a defining word to define 8080A instructiongh a source operand. The source field is
the least significant 3 bits.

1 2MI n--
<BUILDS Create a header with name following.
C, Store instruction coe on the stack to the para meter field.
DOES> The following words are to be executed when the newly defined mnemonic
name is executed during assembly.
C@ +C, When the mnemonic defined is executed, th

e code value is pulled out from
ource register on the
ction is assembled to

the parameter field, the number representing the s

stack is added to the code and the completed instru
the dictionary.

80 2MI ADD 88 2MI ADC 90 2MI SUB 98 2MI SBB
A0 2MI ANA A8 2MI XRA BO 2MI ORA B8 2MI CMP

3Ml is a defining word to define 8080 instructiomgh destination register specified in the bits 3,
4, and 5.

: 3MI n-—
<BUILDS Create a header with name following.
C, Store instruction coe on the stack to the para meter field.
DOES> The following words are to be executed when the newly defined mnemonic name
is executed during assembly.
c@ When the mnemonic is executed during assembly, the basic code value is
fetched from the parameter field.
SWAP The operand's register number on the stack i s swapped over the code value,
and
8* multiplied by 8 to line up with the destinatio n field.
+C, Add the register number to the instruction a nd assemble it.
04 3MI INR 05 3MI DCR C7 3MIRST C5 3MI PUSH
C1 3MI POP 09 3MI DAD 02 3MI STAX OA 3MI LDAX
03 3MI INX 0B 3MI DCX

92



4Ml is a defining word to define 8080 instructioitiwan immediate byte value following the
instruction code.

T 4AMI n--
<BUILDS Create a header with name following.
C, Store instruction coe on the stack to the para meter field.
DOES> The following words are to be executed when the newly defined mneumonic
name is executed during assembly.
C@CcC,C, The instruction code is fetched from the parameter field and assembled
into the dictionary, and the byte value given on th e stack is assembled

following the instruction code.

C6 4MI ADI CE 4MI ACI D6 4MlI SUI DE 4MI SBI
E6 4MI ANI EE 4MI XRI F6 4MI ORI FE 4MI CPI
DB 4MI IN D3 4MI OUT

5MI is a defining word to define 8080 instructiakiing a 16 bit value as an operand, either as an
address or as an immediate value for operations.

1 5MI n--
<BUILDS Create a header with name following.
C, Store instruction coe on the stack to the para meter field.

DOES> The following words are to be executed when the newly defined mneumonic
name is executed during assembly.

Co C, When the defined mnemonic is executed, the instruction code is assembled
to the dictionary.

The number on the stack is assembled after the i nstruction.
C3 5MI IMP CD 5MI CALL 3 2 5MI STA 3A 5MI LDA
22 5MI SHLD 2A 5MI LHLD

The 8080 MOV instruction needs two operands toi§pdte source and destination registers for
data movements. The two register numbers are push#te data stack for the MOV definition
to pick up and assemble as one instruction code MWl and LXI instructions behave similarly.

MOV assembles a register mov instruction to théahary with b1 representing source register
and b2 destination register.

: MOV bl b2 --

8* b2*8 is the destination field.

40 Basic code for a MOV instruction.

++ Add the source and destination fields to the instruction.
C, Assemble to dictionary.

MVI assembles a move immediate instruction to diwdry, with b2 specifying the destination
field and b1 the immediate byte value following thstruction.

:MVI bl b2 --

8* Destination field.

6 Basic MVI instruction code.

+C, Assemble the instruction.

C, Assemble the immediate byte value after the in struction.

93



LXI assembles a load extended immediate instruatitim b specifying the destination register
pair, and n as a two byte immediate value to bdddanto the register pair.

L LXI nb--
8* 1+ C, Assemble the LXI instruction.
Assemble the two byte immediate value after the instruction.

The foregoing discussion covers most of the 808G ution set with the exception of
conditional jJump instructions. The reason is that tonditional jumps are used to construct the
more structured definitions like IF-ELSE-ENDIF aBEGIN-UNTIL. The non-structured jump
instructions such as CALL, RET, conditional CALEBSd RET's are defined in the assembler for
completeness.

Subroutines are better defined as independent avloade definitions. The short jumps in code
definitions are implemented in the following wagstead of the regular conditional jump
instruction, a set of Forth words are defined tabed with the conditional structures:

C2I1S0=D2ISCSE2ISPEF2IS 0<

NOT negates the conditional b1l to reverse the jagpondition.

:NOT bl -- b2
8+; The byte value b2 is to be assembled by the instruction IF , etc., to
effect conditional branching.

IF assembles the conditional b into the dictionapave on the stack the current dictionary
pointer to resolve later the forward branching addr and a flag 2 for error checking.

(IR b -- addr 2

C, Assemble the conditional b.

HERE Push current DP to stack as addr.

0, Assemble a dummy 0 here for forward jumping. The address will be
resolved by ELSE or ENDIF .

2 Flag for error checking.

ENDIF terminates an IF-ELSE-ENDIF structure in aealefinition. Check n for error. Use addr
to resolve the forward jumping address at IF or ELS

: ENDIF addr n --
2 ?PAIRS If nis not 2, issue an error message.
HERE SWAP ! Store the current DP to addr after IF or ELSE to complete the conditional

structure.

94



ELSE starts a false clause in a code definitiorsdRe the forward branching at addrl and leave
the present address addr2 and a flag on the sidekwsed by ENDIF .

:ELSE addrl n -- addr2 2

2 ?PAIRS If nis not 2, issue an error message.

C3IF Use IF to assemble a unconditional jump ins truction (C3) to the
dictionary, and also leave addr2 and 2 on the stack .

ROT Get addr1 to top of stack.

SWAP The stack is now addr2 addrl n2 .

ENDIF Take n2 and addrl from top of the stack to resolve the jump address at
IF .

2 n2 the flag.

BEGIN starts an indefinite loop such as BEGIN-AGAIN

BEGIN. . . UNTIL,
BEGIN ... WHILE ... REPEAT,
or BEGIN ... AGAIN .
: BEGIN --addr 1
HERE Leave current DP on stack for backward branc hing from the end of the
loop.
1 Flag for error checking.

UNTIL terminates an indefinite loop. Assemble aditional jump instruction b and address
addr of BEGIN for backward branching.

:UNTIL addrnb --

SWAP Get n to top of the stack for error checking

1 ?PAIRS If nis not 1, issue an error message.

C, Assemble b literally as a conditional jump ins truction.
Assemble the address addr of BEGIN for branchin g.

AGAIN also terminates an infinite loop. Assemblewsntonditional jump instruction to branch
backward to addr .

: AGAIN addr n --
1 ?PAIRS Check n for error.
C3C, Assemble the JMP instruction,

with the address addr .

WHILE terminates an infinite loop from the middheside the loop. Assemble a conditional
jump instruction b , and leave the DP and a flaghenstack for REPEAT to resolve the
backward jump address. Used in the form:

BEGIN. . . WHILE. . . REPEAT

: WHILE b -- addr 4
IF Use IF to do the dirty work.
2+ The flag left by IF is 2. Change it to 4 for REPEAT to verify.

95



REPEAT assembles JMP addrl to dictionary to clobsddop from BEGIN . Resolve forward
jump address at addr2 as required by WHILE .

: REPEAT addrl n1 addr2 n2 --

>R >R Get addr2 and n2 out of way.

AGAIN Let AGAIN assemble the backward jump.

R> R> 2- Bring back addr2 and n2. Change n2 back to 2.
ENDIF Check error. Resolve jump address for WHIL E.

The whole ASSEMBLER vocabulary is now completedstBee the CONTEXT and CURRENT
vocabularies to the trunk FORTH vocabulary for narprogramming activity.

FORTH DEFINITIONS
DECIMAL Restore base from hexadecimal.

96



| ndex

'52

#45

#> 45

#LAG 78
#LEAD 78
#LOCATE 77
#S 45

(") 39
(;CODE) 63
(+LOOP) 84
(ABORT) 32
(DO) 71
(FIND) 49
(LINE) 41
(LOOP) 72
(NUMBER) 42
, 48
,OPERAND 86
.46

40

LINE 41

R 46

2CSP 34
?ERROR 32
2EXEC 34
?LOADING 34
?PAIRS 34
2STACK 34

[ 28
[COMPILE] 67
128

+BUF 56
+LOOP 72

<# 43
<BUILDS 63
> 60
OBRANCH 68
1LINE 79

1MI 92

10P 85

2MI 92

20P 87

3MI 92

4MI 93

5MI 93
ABORT 21
AGAIN 70
AGAIN 95
ALLOT 48
ASSEMBLER 83
B 86,90

B/BUF 16
B/SCR 16
BACK 69
BASE 17
BEGIN 69,95
BEGIN, 89
BL 17
BLANKS 18
BLK 17
BLOCK 55
BOP 87
BRANCH 67
BUFFER 57
cs8o

C, 48

C; 90,91

CFA 51
CLEAR 76
CODE 83,91
COLD 19,29
COMPILE 67
Compiler 28
CONSTANT 64,174
Constants 8
CONTEXT 17
COPY 76
COUNT 38
CR 45
CREATE 29
CSP 17
CURRENT 17
D75

D. 46

D.R 46
DECIMAL 42
DEFINITIONS 50
DEFINITIONS 50,159
DELETE 79
DO 71
DOCOL 26
DOCON 64
DODOE 63
DOES> 63
DOUSE 65
DOVAR 64
DP 17

DPL 17

DRO 59

DR1 59
DUMP 47

E 75
EDITOR 73
Editor 73
ELSE 69,95
ELSE, 89
EMPTY-BUFFERS 58
ENDIF 68,95

ENDIF, 88
ENTERCODE 83
ERASE 19
ERROR 32
EXECUTE 26
EXPECT 35
F79

FENCE 17
FILL 18
FIND 79
-FIND 49
FIRST 17
FIXMODE 85
FLD 17
FLUSH 59
FORGET 52
FORTH 49
H74

HERE 48
HEX 42

HLD 17
HOLD 43
171,75

ID. 40

IF 68,94

IF, 88
IMMEDIATE 67
IN 17
INTERPRET 23
IP 25
IPATCH 88
IS 84,91
L78

LABEL 91
LATEST 51
LEAVE 71
LFA 51
LIMIT 17
LINE 74
LIST 41

LIT 27

LOAD 60
LOOP 83
LX1 94

M 78
MATCH 77
MESSAGE 33
MOV 93
-MOVE 74
MVI 93

N 79

NEXT 26
NEXT, 90
NFA 51

NOT 94
NULL 24
NUMBER 43

OFFSET 17
OP 85
ORMODE 85
ouT 17

P75

PAD 12

PFA 51

POP 27
PUSH 27
PUT 27
QUERY 35
QUIT 21

R 75

R# 17

R/W 57

RO 17
REPEAT 70,95
REPEAT, 89
ROP 86

RP 25

RTST 84
S75

S0 17

SCR 17

SIGN 45
SMUDGE 31
SP 25
SPACE 45
SPACES 46
SWAPOP 87
T78

TEXT 74
-TEXT 77

TIB 17

TILL 80

TOP 77
-TRAILING 39
TRAVERSE 51
TYPE 37
UNTIL 69,95
UNTIL, 89
UPDATE 57
USER 65
VARIABLE 64
Variables 8
VLIST 53
VOCABULARY 50
VOC-LINK 17
W 25
WARNING 17
WHILE 70,95
WHILE, 89
WIDTH 17
WORD 36

X 24,80



	Contents
	Figures
	Tables
	1. Language Definition of FORTH
	Programming Language
	Forth Words
	Standard Instructions
	User Instructions
	Structures and Colon Instructions
	Code Instructions
	Constants, Variables, and Vocabulary
	Create Defining Instructions
	Conclusion

	2. The figForth Model
	Forth as an Operating System
	Memory Map
	Instruction Set
	System Constants and User Variable
	Simple Colon Definitions

	Chapter 3. Text Interpreter
	4. Address Interpreter
	5. Compiler
	6. Error Handling
	7. Terminal Input and Output
	8. Numeric Conversions
	9. Dictionary
	10. Virtual Memory
	11. Defining Words
	12. Control Structures
	13. Editor
	String Editor

	14. PDP-11 and 8080 Assemblers
	Three Levels of Forth Assembler
	PDP-11 Assembler
	8080 Assembler

	Index

