
i

Systems Guide to figForth

C. H. Ting, Ph. D

Third Edition

Offete Enterprises, Inc

2013

ii

Systems Guide to figForth

Contents

 Preface To The Second Edition i
 Preface To The First Edition iii

1. Language Definition of Forth 1
2. figForth Model 11
3. Text Interpreter 19
4. Address Interpreter 25
5. Compiler 28
6. Error Handling 32
7. Terminal Input and Output 35
8. Numeric Conversions 42
9. Dictionary 48
10. Virtual Memory 54
11. Defining Words 61
12. Control Structures 66
13. Editor 73
14. Assembler 81

 INDEX 97

iii

Figures

1. Memory Map of a Typical Forth System 12
2. The Forth Loop 20
3. Text Interpreter Loop 22
4. Structure of a Definition 30
5. Error Handling 33
6. EXPECT 35
7. WORD 38
8. Numeric Conversion 42
9. Disk Buffers 55
10. BLOCK 57

Tables

1. Language Definition of Forth 1
2. Standard Instructions 4
3. User Instructions 6
4. Creating New Defining Instructions 9
5. Stack Instructions 14
6. Input Output Instructions 15
7. Memory and Dictionary Instructions 15
8. Defining Instructions and Control Structures 16
9. Miscellaneous Instructions 16
10. System Constants 16
11. User Variables 17

iv

Preface to the Third Edition

“Turn in Your Account!”

Last year, I told my friends in the Silicon Valley Forth Interest Group that I had to stop doing
Forth programming, so that I could take care of many other things I neglected for years. The
biggest project I took was to translate all Bach’s cantatas from German to Chinese. I had wanted
to listen to the cantatas, but could not understand the German text. I had thought of doing the
translation for 50 years, but never got the courage to start. Recently, I noticed that the website
www.bach-cantatas.com collected all information on Bach’s cantatas, including sheet music and
translations to many languages. Everything I needed to do the translation. Another thing was
that Google Translate had improved greatly, and it translates anything you throw at it instantly,
from any language to any other language. I had the raw materials and tools to start the
translation.

I used Google Translate to translate many articles from English to Chinese. The quality of its
translation had much to be desired, but it saved me lots of time and efforts, at least it looked up
in the dictionary and gave me some words that I could use. It took me four months to translate
all Bach’s cantatas, 249 of them in total! Ayreh Oron, the webmaster of www.bach-cantatas.com,
kindly took these translations and included them on the Texts & Translations pages.

The next projects were to select my favorite cantatas and make movies to the music, with
German and Chinese subtitles. This is how I like to enjoy the cantatas. So far, I made 21
complete cantata movies, with the B Minor Mass and St. Matthew Passion. They are listed on:
http://www.bach-cantatas.com/Texts/IndexTexts-Chi2-Note.htm
from which you can access and actually watch the movies.

I was struck by this Cantatas 168 titled “Turn in Your Account”. It was loosely based on a story
Jesus told in Luke 16. A rich master is about to fire a dishonest manager, and told him to turn in
his account. Bach told the story differently, in that one day we would all turn in our accounts to
God and settle all our debts. It reminded me that I should also look into my account, and tie up
all the loose ends while I still can.

Two particular loose ends were glaring at me: Inside F83 and Systems Guide to figForth. They
were out of print a long time ago, and people still asked for them. The texts of these books
survived but were in bad shapes. The figures and drawing existed only on a few remained copies
I kept. I made some feeble efforts in putting them back in electronic forms, but they were
nothing that I would be proud of. These were milestones in my early journey through the Forth
landscape, and I will be ashamed to turn them in.

Chapter 7 was lost in the original files I saved on disks, and it is now restored. All the figures
were re-drawn. I used the 12 point Times New Roman font for all narration, and the 8 point
Courier New font for all source code and documentation. Code and documentation are presented
in two columns. Left column is for code and right column for documentation. As the left
column is generally 1.5 inches wide, I allow only 1 character space indentation for each level of

v

nesting. It is hard to see the nested levels, but I think is adequate if you do want to inspect the
code in detail.

It brought me joy to revisit figForth. After more than 30 years, I can still remember the
excitements we shared in the SVFIG meetings, and the enlightenment we felt when we took the
figForth listings and got the first OK from our microcomputers. We got the magic wand which
turned pumpkins into chariots.

C. H. Ting

July 2013

vi

Preface to the Second Edition

figForth Refuses to Die

The first edition of Systems Guide to figForth was published almost ten years ago. Forth has
made significant changes, and perhaps some improvements since. The figForth Model was
supposedly replaced by Forth-78, Forth-79, and Forth-83 Standards, at least that is the
impressions Forth experts wanted us to believe. FigForth should have been laid to rest long, long
ago. In it place, there are many better, larger, and more comprehensive Forth implementations
available from many vendors and also in the public domain. Why would anybody want to use
this old fashioned figForth?

The fact remains that figForth is still very popular. Among all the publications sold by the Forth
Interest Group over the years, Bill Ragsdale's figForth Installation Manual has always been the
most demanded document. I have also decided many times to quit reprinting this book, but Roy
Martens of the Mountain View Press just keeps on ordering them. There must be some magic
behind figForth, keeping it alive despite its age, the lack of support, and its deficiency in tools for
serious program development.

However, there are many advantages in figForth which make it useful to many programmers and
new students of Forth. Here is a list:

1. Consistency. It is a single model implemented uniformly on many microprocessors. Many
implementations are readily available in assembly listings.

2. Well factored kernel. Less than 50 words are machine dependent. All other words are defined
in high level. It is easily portable to other microprocessors and operating systems.

3. The source code are in regular assembly, which can be understood by most programmers.
Most other Forth systems are generated through meta compilation, and the source code are only
available in Forth. The Forth source listing is difficult for Forth programmer to understand, let
alone non-Forth programmers.

4. Simplicity. It provides only the functionality to be self-supporting. Lacking of extensive and
complicated utility makes it easier to study and comprehend.

Generally, it is impossible to study and understand a commercial Forth system. The source code
is not available in most cases. Where the source code is provided, it is too complicated to be
dissected and to be put back together again. For people who are curious about how Forth really
ticks, figForth is the only Forth system that an average person can understand in a couple of
weeks. It is also easy to port figForth to a virgin computer un-adulterated by a prior Forth
implementation. This I found ten years ago, and I think it is still true today. We have no valid
alternative in teaching and learning Forth besides this old figForth.

vii

The original manuscript of this book was written using the ED line editor under the RT-11
operating system on a DEC LSI-11 microcomputer. That was the desk top publishing system of
the day. The text was first entered in upper case only, because the old ADM terminal I used did
not have lower case characters. It was painfully converted to lower case and eventually printed
out using a letter quality printer. However, lines were too long to fit on a page. The printing was
done using 1/10" characters with 1/16" spacings, and the characters tended to rub elbows with
one another. Lines were doubly spaced so that it gave the reader the illusion of a thick manual
with substance. The result was an eye-sore, whether I admitted it or not.

In spite of the poor condition of this book, I often ran into people who complimented me for it.
Many of them mentioned that it lead them to the understand of the figForth Model and the
appreciation of Forth as a programming language. Now, since I have much better tools for desk
top publishing, it is time to give this book a facelift so that it does some justice to the figForth
Model and its faithful users.

Only cosmetic touches are made in this revision. As I re-visited the chapters, I found most of the
discussions are still useful for people wanted to fully understand Forth. After ten years, we have
many more books on Forth. However, none of them tried to present Forth in the bottom-up and
inside-out fashion this book did. Besides, the discussions on syntax of Forth, the detailed
implementation of Forth editor and assemblers are not covered in available Forth literature.

I like to thank Bill Ragsdale, Kim Harris, Bob Smith, John James, John Cassidy, and the
members of the Forth Implementation Team to provide the figForth Model and implementations
and their efforts in my enlightenment. I am also indebted to Kevin Appert in helping me move
the manuscript from the RT-11 system into MS-DOS so that I had free access to the texts again.

C. H. Ting, San Mateo, California

April 1989

viii

Preface to the First Edition

Forth was developed by Charles Moore in the 1960's. It took the final form as we now know it in
1969, when Mr. Moore was at the National Radio Astronomy Observatory, Charlottesville, Va. It
was created out of his dissatisfaction with available programming tools, especially for
instrumentation control and automation. Distribution of his work to other observatories has made
Forth the standard language for observatory automation. Mr. Moore and several associates
formed FORTH, Inc. in 1973 for the purpose of licensing and support of the Forth operating
system and programming language, and to supply application software to meet customers' unique
requirements.

Forth Interest Group was formed in 1978 by a group of Forth programmer in Northern California.
It is a non-profit organization. Its purpose is to encourage the use of Forth language by the
interchange of ideas through seminars and publications. It organized a Forth Implementation
Team in 1978 to develop Forth operating systems for popular microprocessors from a common
language model, now known as figForth. In early 1979, the Forth Implementation Team
published six assembly listings of figForth for 8080, 6800, 6502, PDP-11, 9900, and PACE at
$10.00 each. The quality and availability of these listings, which are placed in the public domain,
made figForth the most popular dialect in Forth.

Most of the published materials on Forth are manuals which teach how to use a particular Forth
implementation on a particular computer. Very few deal with the inner mechanisms on how the
Forth system operates which is essential to the understanding and effective utilization of the
Forth language. My intention here is to describe how the Forth system does all these wonderful
things no other language can. With a deeper understanding of the inner mechanism, a user can
have a better appreciation of many unique features which make Forth such a powerful
programming tool.

Among other things, documentation on Forth is very difficult to read and to comprehend because
Forth definitions are short and their numbers are many. The definitions are very hard to arrange
in a logical order to promote better or easier understanding. For example, the glossary is
arranged alphabetically, which is great for reference purposes. If you know which definition you
are looking for, you can find it very conveniently in the glossary, but how a definition is related
to others and how it is to be used are not easy to find. The source codes, coded in Forth , are also
difficult to comprehend because the definitions are ordered from bottom up, i.e., low level
definitions must precede the higher level definitions using the low level definitions. I will not
mention the problems in reading codes written with postfix notations. These are problems for
which Forth is often criticized. A book on the systems aspect in the figForth Model can help
programmers to climb the learning curve and ease somewhat the growing pain in learning this
very strange language.

In this book I will attempt to explain the operation of figForth system in a systematic fashion.
The top level Forth definitions related to the system operations are treated in logical sequences.
Most of these definitions are defined in terms of other predefined Forth definitions; therefore, it
is required that the reader has some basic knowledge of the elements contained in the Forth
language, such as the dictionary, the data stack, and the return stack. However, Forth language is

ix

structured and modular, so that the logical contents of a definition are not difficult to grasp if the
functions of all the low level definitions involved are clearly stated.

Because of the modular structures inherent in the Forth language, the definition of a Forth word
itself is a fine vehicle to convey its function. In fact, the definition can be used in lieu of a flow
chart. In our discussions, Forth definition are laid out in a vertical format. The component
definitions are written in a column on the left hand side of a page, and the comments and
explanations are in columns toward the right hand side. When a group of words of very close
relationship (a phrase) appears, it is often displayed in one line to save space.

Many Forth words are defined in machine codes. They are called code definitions or primitive
definitions and they form the body of what is called the "virtual Forth machine ". These
definitions are used to convert a particular CPU into a Forth computer. The detailed contents of
these words cannot be discussed without resorting to the assembly language of the host CPU, and
we shall avoid their discussion as much as possible. In the cases where it is absolutely necessary
to use them in order to clarify how the system functions, the figForth PDP-11 codes will be used
because the PDP-11 instruction set is very close to what is required optimally to implement a
virtual Forth computer. The detailed definitions of Forth words will strictly adhere to those
defined in the figForth model as presented in the figForth Installation Manual. This model is the
most complete and consistent documentation defining a Forth language system which has been
implemented on a host of microcomputers. The Forth operating system written in Forth provides
the best examples for the serious students to learn the Forth language. Most of the programming
tools provided by the Forth system were developed to code the Forth system itself. By going
through the Forth system carefully, a Forth user can learn most programming techniques
supported by the Forth language for his own use.

In Chapter 1, I try to lay down the formal definition of Forth as a programming language. It was
completed only very recently, after all other chapters were done. Some terms used in Chapter 1
are not quite consistent with those used in the later chapters. The terms 'word', 'definition', and
'instruction' are used interchangeably in later chapters are differentiated in Chapter 1. Chapter 2
is an overview of the figForth operating system.

In the rest of the book, each chapter will dwell on a particular topic in the figForth system. The
more important definitions at the highest level, which the user will use most often are discussed
first to give an overall view of the tasks involved. The low level definitions or utility definitions
used by the high level definitions are then discussed in detail to complete the entire picture.
Descriptive comments are given for the low level definitions when they appear in a high level
definition before they are completely defined. Therefore, it will be helpful to re-read a chapter so
that the knowledge gained by studying the utility definitions can further illuminate the high level
definition outlining the task involved.

Special thanks are due to William F. Ragsdale, who authored the figForth Installation Manual
and guides the Forth Interest Group from its inception, to John S. James, who developed the
PDP-11 figForth and the PDP-11 Assembler, and to John Cassady, who developed the 8080
figForth and the 8080 Assembler. Thanks are also due to Robert Downs, Anson Averrell, Alice

x

Ferrish and Albert Ting, who kindly gave me long lists of corrections and made many helpful
suggestions on the manuscript.

C. H. Ting, San Mateo, CA

May, 1981.

1

Chapter 1. Language Definition of FORTH

Forth was developed as a programming tool to solve real time control problems. It has never
been formally defined as a programming language. I think Forth is mature enough now that it
can be defined very rigorously. The wide-spread use of this powerful language requires that a
common base should be established to facilitate the exchange of programs and ideas in a
standardized language form. The recent publication of Forth-79 Standard clearly reflects this
necessity. To define Forth as a programming language also helps us to focus our attention on the
basic characteristics of Forth and to understand it more fully.

In this Chapter, I will present the definition of Forth in the Backus Normal Form (BNF) notation.
The basic syntax is presented in Table 1, in which the focal point is the definition of 'word'.
Some detailed clarifications on colon definitions and defining words are worked out in Tables 2
to 4. Explanatory notes are arranged by sections to highlight some problems not readily
expressed in the formal definitions.

Table 1. Language Definition of Forth

<character> ::= <ASCII code>
<delimiting character> ::= NUL | CR | SP | <designa ted character>
<delimiter> ::= <delimiting character> |
<delimiting character><delimiter>
<word> ::= <instruction> | <number> | <string>
<string> ::= <character> | <character><string>
<number> ::= <integer> | -<integer>
<integer> ::= <digit> | <digit><integer>
<digit> ::= 0 | 1 | 2 | ... | 9 | A | B | ... | < base-1>
<instruction> ::= <standard instruction> | <user in struction>
<standard instruction> ::= <nucleus instruction> |
<interpreter instruction> |
<compiler instruction> | <device instruction>
<user instruction> ::= <colon instruction> | <code instruction> |
<constant> | <variable> | <vocabulary>

Programming Language

A programming language is a set of symbols with rules (syntax) of combining them to specify
execution procedures to a computer. A programming language is used primarily to instruct a
computer to perform specific functions. However, it can also be used by programmers to
document and to communicate problem solving procedures. The most essential ingredients of a
programming language are therefore the symbols it employs for expressions and the syntax rules
of combining the symbols for man-to-machine and man-to-man communications.

Forth uses the full set of ASCII characters as symbols. Most programming languages use subsets
of ASCII characters, including only numerals, upper-case alphabets, and some punctuation
characters. Use of punctuation characters differs significantly from language to language. Non-
printable characters are generally reserved exclusively for the system and are not available for
language usage. In employing the full ASCII set of characters, Forth thus allows the programmer
a much wider range of usable symbols to name objects. On the other hand, the prolific use of
punctuation characters in Forth makes comprehension very difficult by uninitiated programmers.

2

Only five of the ASCII characters are used by Forth for special system functions and are not for
programming usage: NUL (ASCII 0), BS (ASCII 7), RUB (ASCII 127), CR (ASCII 13), and SP
(ASCII 32). BS and RUB are used to nullify the previously entered character. They are used at
the keyboard interactively to correct typing errors. NUL, CR, and SP are delimiting characters to
separate groups of characters to form words. All other characters can be freely used to form
words and are used the same way. Non-printable characters are treated the same as printable
characters. Because non-printable characters are difficult to document and to display, their usage
is discouraged in normal Forth programming practice. However, the non-printable characters are
very useful in maintaining a secured system.

Forth Words

Words are the basic syntactical units in Forth. A word is a group of characters separated from
other words by delimiting characters. With the exception of NUL, CR, SP, BS and RUB, any
ASCII character may be part of a word. Certain words for string processing may specify a
regular character as the delimiting character for the string immediately following it, in order to
override the delimiting effect of SP. However, the delimiting effect of CR and NUL cannot be
overriden.

The usage of 'word' in Forth literature is very confusing because many quite different concepts
are associated with it. Without sorting out these different aspects of 'word' into independently
identifiable entities, it is impossible to arrive at a satisfactory description of Foth language. Here
'word' is defined as a syntactical unit in the language, simply a group of characters separated
from other words by delimiting characters. Semantically (which concerns the meaning of words),
a word in Forth can be only one of three things: a string, an instruction, or a number.

A Forth program is thus simply a list of words. When this list of words is given to a computer
with a Forth operating system loaded in, the computer will be able to execute or interpret this list
of words and perform functions as specified by this list. The functions may include compilation
of new words into the system to perform complicated functions not implemented in the original
Forth operating system.

A string is merely a group of characters to be processed by the Forth computer. To be processed
correctly, a string must be preceded by an instruction which specifies exactly how this string is to
be processed. The string instruction may even specify a regular character as the delimiting
character for the following string to override the effect of SP. It is often appropriate to consider
the string to be an integral part of the preceding instruction. However, this association would
disturb the uniform and simple syntax rule in Forth and it is better to consider strings as
independent objects in the language.

String processing is a major component in the Forth operating system because Forth is an
interpretive language. Strings are needed to supply names for new instructions, to insert
comments into source text for documentation, and to produce messages at run-time to facilitate
the human interface. The resident Forth instructions for string processing are all available to
programmers for string manipulations.

3

A number is a string which causes the Forth computer to push a piece of data onto the data stack.
Characters used in a number must belong to a subset of ASCII characters--the numerals. The
total number of numerals in this subset is equal to a 'base' value specified by the programmer.
This subset starts from 0 and goes up to 9. If the 'base' value is larger than 10, the upper-case
alphabets are used in their natural sequence. Any reasonable 'base' value can be specified and
modified at run-time by the programmer. However, a very large base value causes excessive
overlapping between numbers and instructions, and a 'reasonable base value' must avoid this
conflict in semantic interpretation.

A number may have a leading '-' sign to designate data of negative value. Certain punctuation
characters such as '.' are also allowed in numbers depending upon the particular Forth operating
system.

The internal representation of numbers inside the Forth computer depends upon implementation.
The most common format is a 16-bit integer number. Numbers are put on the data stack to be
processed. The interpretation of a number depends entirely on the instruction which uses the
number. A number may be used to represent a true-or-false flag, a 7-bit ASCII character, an 8-bit
byte, a 16-bit signed or unsigned integer, a 16-bit address, etc. Two consecutive numbers may be
used as a 32-bit signed or unsigned double integer, or a floating point number.

Forth is not a typed language in which numerical data type must be declared and checked during
compilation. Numbers are loaded on the data stack where all numbers are represented and treated
identically. Instructions using the numbers on stack will take whatever they need for processing
and push their results back on the stack. It is the responsibility of the programmer to put the
correct data on the stack and use the correct instructions to retrieve them. Non-discriminating use
of numbers on stack might seem to be a major source of errors in using Forth for programming.
In practice, the use of stack greatly ease the debugging process in which individual instructions
can be thoroughly exercised to spot any discrepancies in stack manipulation. The most important
advantage gained in the uniform usage of data stored on data stack is that the instructions built
this way are essentially context-free and can be repeatedly called in different environments to
perform the same task.

Numbers and strings are objects or nouns in a programming language. Typed and named
numbers in a program provide vital clues to the functions and the structures in a program. The
explicitly defined objects or nouns make statements in a program easy to comprehend. The
implicit use of data objects stored on the data stack makes Forth programs very tight and
efficient. At the same time, statements in a program deprived of nouns are difficult to understand.
For this reason, the most important task in documenting a Forth program is to specify the stack
effects of the instructions, indicating what types of data are retrieved from the stack and what
types of data are left on the stack upon exit.

Standard Instructions

In a Forth computer, an instruction is best defined as "a named, linked, memory resident, and
executable entity which can be called and executed interactively". The entire linked list of
instructions in the computer memory is called a dictionary. Instructions are known to the

4

programmer by their ASCII names. The names of the instructions in a Forth computer are words
that a programmer can use either to execute the instruction interactively or to build (compile)
new instructions to solve his programming problem.

In Forth literature, instructions are called 'words', 'definitions', or 'word definitions'. The reason
that I choose to called them 'instructions' is to emphasize the fact that an instruction given to the
Forth computer causes immediate actions performed by the computer. The instructions in the
dictionary are an instruction set of the Forth virtual computer, in the same sense as the
instruction set of a real CPU. The difference is that the Forth instructions can be executed
directly and the Forth instructions are accessed by their ASCII names. Therefore, Forth can be
considered as a high level assembly language with an open instruction set for interactive
programming and testing. The name 'instruction' conveys more precisely the characteristics of a
Forth instruction than 'word' or 'definition' and leaves 'word' to mean exclusively a syntactical
unit in the language definition.

An instruction set is the heart of a computer as well as of a language. In all conventional
programming languages, the instruction set is immutable and limited in number and in scope.
Programmers must circumvent the shortcomings of a language by writing programs to perform
tasks that the native instruction set is not capable of. The instruction set in a Forth computer
provides a basis or a skeleton from which a more sophisticated instruction set can be built and
optimized to solve a particular problem.

Because the instruction set in Forth can be easily extended by the user, it is rather difficult to
define precisely the minimum instruction set a Forth computer ought to have. The general
requirement is that the minimum set should provide an environment in which typical
programming problems can be solved conveniently. Forth-79 Standard suggested such a
minimum instruction set as summarized in Table 2. The instructions provided by the operating
system are called standard instructions, and are divided into nucleus instructions, interpreter
instructions, compiler instructions, and device instructions.

Table 2. Standard Instructions

The list of standard instructions is basically that in Forth-79 Standard.
Minor changes are made to conform to the instructio n set used in the fig-Forth Model.

<nucleus instruction> ::= ! | * | */ | */MOD | + | +! | - | -DUP | / | /MOD | 0< | 0= | 0> | 1+ |
1- | 2+ | 2- | < | = | > | >R | @ |ABS | AND | C! | C@ | CMOVE | D+ | D< | DMINUS | DROP | DUP |
EXECUTE | EXIT | FILL | MAX | MIN | MOD | MOVE | NO T | OR | OVER | R> | R | ROT | SWAP | U* | U/
| U< | XOR

<interpreter instruction> ::= # | #> | #S | ' | (| -TRAILING | . | <# | IN | ? | ABORT | BASE |
BLK | CONTEXT | COUNT | CURRENT | DECIMAL | EXPECT | FIND | FORTH | HERE | HOLD | NUMBER | PAD |
QUERY | QUIT | SIGN | SPACE | SPACES | TYPE | U. | WORD

<compiler instruction> ::= +LOOP | , | ." | : | ; | ALLOT | BEGIN| COMPILE | CONSTANT | CREATE |
DEFINITIONS | DO | DOES> | ELSE | ENDIF | FORGET | I | IF | IMMEDIATE | J | LEAVE | LITERAL |
LOOP | REPEAT | STATE | UNTIL | VARIABLE | VOCABULA RY | WHILE | [| [COMPILE] |]

<device instruction> ::= BLOCK | BUFFER | CR | EMIT | EMPTY-BUFFERS | FLUSH | KEY | LIST | LOAD |
SCR | UPDATE

5

User Instructions

Instructions created by a user are called user instructions. There are several classes of user
instructions depending upon how they are created. High level instructions are called colon
instructions because they are generated by the special instruction ':'. Low level instructions
containing machine codes of the host CPU are called code instructions because they are
generated by the instruction CODE. Other user instructions include constants, variables, and
vocabularies.

Instructions are verbs in Forth language. They are commands given to the computer for
execution. Instructions cause the computer to modify memory cells, to move data from one
location to the other. Some instructions modify the size and the contents of the data stack.
Implicitly using objects on the data stack eliminates many nouns in Forth programs. It is not
uncommon to have lines of Forth text without a single noun. The verbs-only Forth text earns it
the reputation of a 'write-only' language.

Forth is an interpretive language. Instructions given to the computer are generally executed
immediately by the interpreter, which can be thought as the operating system in the Forth
computer. This interpreter is called text interpreter or outer interpreter. A word given to the Forth
computer is first parsed out of the input stream, and the text interpreter searches the dictionary
for an instruction with the same name as the word given. If an instruction with a matching name
is found, it is executed by the text interpreter. The text interpreter also performs the tasks of
compiling new user instructions into the dictionary. The process of compiling new instructions is
very much different from interpreting existing instructions. The text interpreter switches its mode
of operation from interpretation to compilation by a group of special instructions called defining
instructions, which perform the functions of language compilers in conventional computers.

Syntax of these defining instructions are more complicated than the normal Forth syntax because
of the special conditions required of the compilation of different types of user instructions. The
syntax of the defining instructions provided by a standard Forth operating system is summarized
in Table 3. The most important defining instruction is the ':' or colon instruction. To define colon
instructions satisfactorily, a new entity structure must be introduced. This concept and many
other aspects involving defining instructions are discussed in the following subsections.

Structures and Colon Instructions

Words are the basic syntactical units in Forth language. During run-time execution, each word
has only one entry point and one exit point. After a word is processed by the interpreter, control
returns to the text interpreter to process the next word consecutively. Compilation allows certain
words to be executed repeatedly or to be skipped selectively at run-time. A set of instructions,
equivalent to compiler directives in conventional programming languages, are used to build
small modules to take care of these exceptional cases. These modules are called structures.

6

Table 3. User Instructions

The statement in parenthesis is according to the Fo rth syntax.

Colon Instruction
<colon instruction> ::= <structure list>
(: <colon instruction> <structure list> ;)
<structure list> ::= <structure><delimiter> | <stru cture><delimiter><structure list>
<structure> ::= <word> | <if-else-then> | <begin-un til> | <begin-while-repeat> | <do-loop>
<if-else-then> ::= IF<delimiter><structure list>THE N |
 IF<delimiter><structure list>ELSE<delimiter><struc ture list>THEN
<begin-until> ::= BEGIN<delimiter><structure list>U NTIL
<begin-while-repeat> ::=
 BEGIN<delimiter><structure list>WHILE<delimiter><s tructure list>REPEAT
<do-loop structure> ::= <structure> | I | J | LEAVE
<do-loop structure list> ::= <do-loop structure><de limiter> |
<do-loop structure><delimiter><do-loop structure li st>
<do-loop> ::= DO<delimiter><do-loop structure list> LOOP |
 DO<delimiter><do-loop structure list>+LOOP

Code Instruction
<code instruction> ::= <assembly code list>
(CODE <code instruction> <assembly code list>)
<assembly code list> ::= <assembly code><delimiter> |
<assembly code><delimiter><assembly code list>
<assembly code> ::= <number><delimiter>, | <number> <delimiter>C,

Constant Instruction
<constant> ::= <number>
(<number> CONSTANT <constant>)

Variable Instruction
<variable> ::= <address>
(VARIABLE <variable>)
<address> ::= <integer>

Vocabulary Instruction
<context vocabulary> ::= <vocabulary>
(VOCABULARY <vocabulary>)

A structure is a list of words bounded by a pair of special compiler instructions, such as IF-
THEN, BEGIN-UNTIL, or DO-LOOP. A structure, similar to an instruction, has only one entry
point and one exit point. Within a structure, however, instruction or word sequence can be
conditionally skipped or selectively repeated at run-time. Structures do not have names and they
cannot be executed outside of the colon instruction in which it is defined. However, a structure
can be given a name and be defined as a new user instruction. Structures can be nested, but two
structures cannot overlap each other. This would violate the one-entry-one-exit rule for a
structure.

Structure is the extension of a word. A structure should be considered as an integral entity like a
word inside a colon instruction. Words and structures are the building blocks to create new user
instructions at a higher level of program construct. Programming in Forth is progressively
creating new instructions from low level to high level. All the instructions created at low levels
are available to build new and more powerful instructions. The resulting instruction set then
becomes the solution to the programming problem. This programming process contains naturally
all the ingredients of the much touted structured programming in software engineering.

Using the definition of structures, the precise definition of a colon instruction is then a named,
executable entity equivalent to a list of structures. When a colon instruction is invoked by the

7

interpreter, the list of structures is executed in the order the structures were laid out in the colon
instruction.

When a colon instruction is being compiled, words appearing on the list of structures are
compiled into the body of the colon instruction as execution addresses. Thus a colon instruction
is similar to a list of subroutine calls in conventional programming languages. However, only the
addresses of the called subroutines are compiled into the colon instruction because the CALL
statement is implicit. Parameters are passed on the data stack and the argument list is eliminated
also. Therefore, the memory overhead for a subroutine call is reduced to a bare minimum of two
bytes in Forth. This justifies the claim that equivalent programs written in Forth are shorter than
those written in assembly language.

Compiler instructions setting up the structures are not directly compiled into the body of colon
instructions. Instead, they set up various mechanisms such as conditional tests and branch
addresses in the compiled codes so that execution sequence can be directed correctly at run-time.
The detailed codes that are compiled are implementation dependent.

Code Instructions

Colon instruction allows a user to extend the Forth system at a high level. Programs developed
using only colon instructions are very tight and memory efficient. These programs are also
transportable between different host computers because of the buffering of the Forth virtual
computer. Nevertheless, there is an overhead in execution speed in using colon instructions.
Colon instructions are often nested for many levels and the interpreter must go through these
nested levels to find executable codes which are defined as code instructions. Typically the
nesting and unnesting of colon instructions (calling and returning) cost about 20% to 30% of
execution time. If this execution overhead is too much to be tolerated in a time-critical situation,
instructions can be coded in machine codes which will then be executed at the full machine
speed. Instructions of this type are created by the CODE instruction, which is equivalent to a
machine code assembler in conventional computer systems.

Machine code representation depends on the host computer. Each CPU has its own machine
instruction set with its particular code format. The only universal machine code presentation is
by numbers. To define code instructions in a generalized form suitable for any host computer,
only two special compiler instructions, ',' (comma), and 'C,' are needed. C, takes a byte integer
and compiles it to the body of the code instruction under construction, and ',' takes a 16-bit
integer from the data stack and compiles it to the body of the code instruction. An assembly step
is thus a number followed by 'C,' or ','. The body of a code instruction is a list of numbers
representing a sequence of machine codes. As the code instruction is invoked by the interpreter,
this sequence of machine codes will be executed by the host CPU.

Advanced Forth assemblers have been developed for almost all computers commercially
available based on this simple syntax. Most Forth assemblers use names of assembly mnemonics
to define a set of assembler instructions which facilitates coding and documenting of the code
instructions. The detailed discussion of these advanced instructions is outside the scope of this
Chapter. Two typical Forth assembler are discussed in Chapter 14.

8

Constants, Variables, and Vocabulary

The defining instructions CONSTANT and VARIABLE are used to introduce named numbers
and named memory addresses to the Forth system, respectively. After a constant is defined,
when the text interpreter encounters its name, the assigned value of this constant is pushed on the
data stack. When the interpreter finds the name of a predefined variable, the address of this
variable is pushed on the data stack. Actually, the constants defined by CONSTANT and the
variables defined by VARIABLE are still verbs in Forth language. They instruct the Forth
computer to introduce new data items to the data stack. However, their usage is equivalent to that
of numbers, and they are best described as 'pseudo-nouns'.

Semantically, a constant is equivalent to its preassigned number, and a variable is equivalent to
an address in the RAM memory, as shown in Table 3.

VOCABULARY creates subgroups of instructions in the dictionary as vocabularies. When the
name of a vocabulary is invoked, the vocabulary is made the context vocabulary which is
searched first by the interpreter. Normally the dictionary in a Forth computer is a linearly linked
list of instructions. VOCABULARY creates branches to this trunk dictionary so that the user can
specify partial searches in the dictionary. Each branch is characterized by the end of the linked
list as a link address. To execute an instruction defined by VOCABULARY is to store this link
address into memory location named CONTEXT. Hereafter, the text interpreter will first search
the dictionary starting at this link address in CONTEXT when it receives an instruction from the
input stream.

Instructions defined by VOCABULARY are used to switch context in Forth. If all instructions
were given unique names, the text interpreter sould be able to locate them uniquely without any
ambiguity. The problem arises because the user might want to use the same names for different
instructions. This problem is especially acute for single character instructions, which are favored
for instructions used very often to reduce the typing chore and to reduce the size of source text.
The number of usable ASCII characters limits the choices. The second useful attribute of
vocabularies is that instructions of related functionality can be grouped into vocabulary modules
using vocabulary instructions. Context can then be switched conveniently from one vocabulary
to another. Instructions with identical names can be used unambiguously if they are placed in
different vocabularies.

Create Defining Instructions

Forth is an interpretive language with a multitude of interpreters. This is the reason why Forth
can afford to have very simple syntax structure. An instruction is known to a user only by its
name. The user needs no information on which interpreter will actually execute the instruction.
The interpreter which interprets the instruction is specified by the instruction itself, in its code
field which points to an executable routine. This executable routine is executed at run-time and it
interprets the information contained in the body of the instruction. Instructions created by one
defining instruction share the same interpreter. The interpreter which executes code instructions
is generally called the inner interpreter. The interpreter which interprets high level colon

9

instructions is called the address interpreter, because a colon instruction is equivalent to a list of
addresses. Constants and variables also have their respective interpreters.

A defining instruction must perform two different tasks when it is used to define a new user
instruction. To create a new instruction, the defining instruction must compile the new
instruction into the dictionary, constructing the name field, link field, code field which point to
the appropriate interpreter, and the parameter field which contains pertinent data making up the
body of this new instruction. The defining instruction must also contain an interpreter which will
execute the new instruction at runtime. The address of this interpreter is inserted into the code
field of all user instructions created by this defining instruction. The defining instruction is a
combination of a compiler and an interpreter in conventional programming terminology. A
defining instruction constructs new user instructions during compilation and executes the
instructions it created at run-time. Because a user instruction uses the code field to point to its
interpreter, no explicit syntax rule is necessary for different types of instructions. Each
instruction can be called directly by its name. The user does not have to supply any more
information except the names, separated by delimiters.

The most exciting feature of Forth as a programming language is that it not only provides many
resident defining instructions as compiler- interpreters, but also supplies the mechanism for the
user to define new defining instructions to generate new classes of instructions or new data
structures tailored to specific applications. This unique feature in Forth amounts to the capability
of extending the language by constructing new compilers and new interpreters. Normal
programming activity in Forth is to build new instructions, which is similar to writing program
and program modules in conventional languages. The capability to define new defining
instructions is extensibility at a high level in the Forth language. This unique feature cannot be
found in any other programming languages.

There are two methods to define a new defining instruction as shown in Table 4. The :--;
construct creates a defining instruction with an interpreter defined by high level instructions very
similar to a structure list in a regular colon definition. The interpreter structure list is put between
DOES> and ';'. The compilation procedure is contained between . Since the interpreter will be
used to execute all the instructions created by this defining instruction, the interpreter is
preferably coded in machine codes to increase execution speed. This is accomplished by the :-
<="" p="">

Table 4. Creating New Defining Instructions

<high-level defining instruction> ::=
 CREATE<delimiter><compiler structure list><DOES>>< delimiter> <interpreter structure list>
 (: <high-level defining instruction> CREATE <stru cture list> DOES> <structure list> ;)

<low-level defining instruction> ::=
 CREATE<delimiter><compiler structure list>CODE<del imiter> <interpreter assembly code list>
 (: <low-level defining instruction> CREATE <struc ture list> ;CODE
 <interpreter assembly code list>)

<compiler structure list> ::= <structure list>
<interpreter structure list> ::= <structure list>
<interpreter assembly code list> ::= <assembly code list>

10

Conclusion

Computer programming is a form of art, far from being a discipline of science or engineering.
For a specified programming problem, there are essentially an infinite number of solutions,
entirely depending upon the programmer as an artisan. However, we can rate a solution by its
correctness, its memory requirement, and its execution speed. A solution by default must be
correct. The best solution has to be the shortest and the fastest. The only way to achieve this goal
is to use a computer with an instruction set optimized for the problem. Optimization of the
computer hardware is clearly impractical because of the excessive hardware and software costs.
Thus one would have to compromise by using a fixed, general purpose instruction set offered by
a real computer and its language compiler. To solve a problem with a fixed instruction set, one
has to write programs to circumvent the shortcomings of the instruction set.

The solution in Forth is not arrived at by writing programs, but by creating a new instruction set
in the Forth virtual computer. The new instruction set in essence becomes the solution to the
programming problem. This new instruction set can be optimized at various levels for memory
space and for execution speed, including hardware optimization. Forth allows us to surpass the
fundamental limitation of an computer, which is the limited and fixed instruction set. This
limitation is also shared by conventional programming languages, though at a higher and more
abstract level.

Forth as a programming language allows programmers to be more creative and productive,
because it enables them to mold a virtual computer with an instruction set best suited for the
problems at hand. In this sense, Forth is a revolutionary development in the computer science
and technology.

11

Chapter 2. The figForth Model

Forth as an Operating System

A real computer is rather unfriendly. It can only accept instructions in the form of ones and zeros.
The instructions must be arranged correctly in proper sequence in the core memory. Registers in
the CPU must be properly initialized. The program counter must then be set to point to the
beginning of a program in memory. After the start signal is given to the computer, it runs
through the program at a lightening speed, and ends often in a unredeemable crash. An operating
system is a program which changes the personality of a computer and makes it more friendly to
the user. After the operating system is loaded into the core memory and is initialized, the
computer is transformed into a virtual computer, which responds to high level commands similar
to natural English language and performs specific functions according to the commands. After it
completes a set of commands, it will come back and politely ask the user for a new set of
commands. If the user is slow in responding, it will wait patiently.

An operating system also manages all the resources in a computer system for the user. Hardware
resources in a computer are the CPU time, the core memory, the I/O devices, and disk memory.
The software resources include editor, assembler, high level language compilers, program library,
application programs and also data files. It is the principal interface between a computer and its
user, and it enables the user to solve his problem intelligently and efficiently.

Conventional operating systems in most commercial computers share two common
characteristics: monstrosity and complexity. A typical operating system on a minicomputer
occupies a volume in the order of megabytes and it requires a sizable disk drive for normal
functioning. A small root program is memory resident. This root program allows a user to call in
a specified program to perform a specific task. Each program called uses a peculiar language and
syntax structure. To solve a typical programming problem, a user must learn about six to ten
different languages under a single operating system, such as a Command Line Interpreter, an
Editor, an Assembler or a Macro-assembler, one or more high level languages compilers, a
Linker, a Loader, a Debugger, a Librarian, a File Manager, etc. The user is entirely at the mercy
of the computer vendor as far as the systems software is concerned.

figForth is a complete operating system in a very small package. A figForth system, including a
text interpreter, a compiler, an editor, and an assembler, usually requires only about 8K bytes.
The whole system is memory resident and all functions are available for immediate execution. It
provides a friendly programming environment to solve many programming problems. The same
language and syntax rules are used in all phases of program development.

The bulk of this operating system is in the dictionary, which contains all the executable
procedures, instructions, and some system parameters necessary for the whole system to operate.
After the dictionary is loaded into the computer memory, the computer is transformed into a
virtual Forth computer. In this virtual Forth computer, the memory is divided into many areas to
hold different information. A memory map of a typical fig-Forth operating system is shown in
Figure. 1, which requires about 16K bytes of memory.

12

Figure 1. Memory Map of a Typical Forth System

Memory Map

At the bottom of the memory are the dictionary and boot-up literals. They comprise the basic
Forth system to be loaded into memory when the system is initialized upon power-up. The
dictionary grows toward higher memory when new definitions are compiled. Immediately above
the dictionary is a word buffer. When a text string is fed into the text interpreter, it is first parsed
out and then moved to this area to be interpreted or to be compiled.

About 68 bytes above the dictionary are reserved for the word buffer. Above the word buffer is
the output text buffer which temporarily holds texts to be output to a terminal or other devices.
The starting address of the output text buffer is contained in a user variable PAD . This text
buffer is of indefinite size as it grows toward high memory. It should be noted that the text buffer
moves upward as the dictionary grows because PAD is offset from the top of dictionary by 68
bytes. The information put into the text buffer must be used before new definitions are compiled.

The next area is a free memory space which can be used by the dictionary from below or by the
data stack from above. The data stack grows downward from high memory to low memory as
data are pushed on it. Data stack contracts back to high memory as data are popped off. If too
many definitions are compiled to the dictionary and too many data items are pushed on the data

13

stack, the data stack might clash against the dictionary, because the free space between them is
physically limited. At this point, it is better to clean up the dictionary. If the dictionary cannot be
reduced, more memory space should be allocated between the data stack and the dictionary,
involving the reconfiguration of the system.

Above the data stack is an area shared by the terminal input buffer and the return stack. The
terminal input buffer is used to store a line of text the user typed on the console terminal. The
whole line is moved into the terminal input buffer for the text interpreter to process. The terminal
input buffer grows toward high memory and the return stack grows from the other end toward
low memory. Usually 256 bytes are reserved for return stack and terminal input buffer. This
space is sufficient for normal operation. The return stack clashes into the input buffer only when
the return stack is handled improperly which would in any case cause the system to crash.

Above the return stack is the user area where many system variables called user variables are
kept. These user variables control the system configurations which can be modified by the user
to dynamically reconfigure the system at run-time. The functions of these user variables will be
discussed later in this Chapter.

The last memory area on the top of the memory is the disk buffers. The disk buffers are used to
access the mass storage as the virtual memory of the Forth system. Data stored on disk are read
in blocks into these buffers where the Forth system can use them much the same as data stored in
regular memory. The data in disk buffers can be modified. Modified data or even completely
new data written into the buffers can be put back to disk for permanent storage. The sizes and the
number of disk buffers depend upon the particular installation and the characteristics of the disk
drive.

Instruction Set

The virtual fig-Forth computer recognizes a rather large set of instructions, and it can execute
these instructions interactively. The instructions most often used in programming are
summarized in Tables 5 to 9. They are grouped under the titles of stack instructions, input/output
instructions, memory and dictionary instructions, defining instructions and control structures,
and miscellaneous instructions.

This instruction set covers a very wide spectrum of activities. At the very lowest level, primitive
instructions manipulate bits and bytes of data on the data stack and in the memory. These
primitive instructions are coded in the machine codes of the host computer, and they are the ones
that turn a real computer into a Forth virtual computer. At a higher level, instructions can
perform complicated tasks, such as text interpretation, accessing virtual memory, creating new
instructions, etc. All high level instructions ultimately refer to the primitive instructions for
execution. This very rich instruction set allows a user to solve many programming problems
conveniently and to optimize the solutions for performance.

14

Table 5. Stack Instructions

Operand Keys:
n 16-bit integer
u 16-bit unsigned integer
d 32-bit signed double integer
addr 16-bit address
b 8-bit byte
c 7-bit ASCII character
f boolean flag.

DUP (n - n n) Duplicate top of stack.
DROP (n -) Discard top of stack.
SWAP (n1 n2 - n2 n1) Reverse top two stack item s.
OVER (n1 n2 - n1 n2 n1) Copy second item to top .
ROT (n1 n2 n3 - n2 n3 n1) Rotate third item to top.
-DUP (n - n ?) Duplicate only if non-zero.
>R (n -) Move top item to return stack.
R> (- n) Retrieve item from return stack.
R (- n) Copy top of return stack onto stack.
+ (n1 n2 - sum) Add.
D+ (d1 d2 - sum) Add double-precision numbers.
- (n1 n2 - diff) Subtract (n1-n2).
* (n1 n2 - prod) Multiply.
/ (n1 n2 - quot) Divide (n1/n2).
MOD (n1 n2 - rem) Modulo (remainder from divisi on).
/MOD (n1 n2 - rem quot) Divide, giving remainde r and quotient.
*/MOD (n1 n2 - rem quot) Multiply, then divide (n1*n2/n3), with double-precision

intermediate.
*/ (n1 n2 - quot) Like */MOD, but give quotient only.
MAX (n1 n2 - max) Maximum.
MIN (n1 n2 - min) Minimum.
ABS (n - absolute) Absolute value.
DABS (d - absolute) Absolute value of double-pr ecision number.
MINUS (n - -n) Change sign.
DMINUS (d - -d) Change sign of double-precision number.
AND (n1 n2 - and) Logical bitwise AND.
OR (n1 n2 - or) Logical bitwise OR.
XOR (n1 n2 - xor) Logical bitwise exclusive OR.
< (n1 n2 - f) True if n1 less than n2.
> (n1 n2 - f) True if n1 greater than n2.
= (n1 n2 - f) True if n1 equal to n2.
0< (n - f) True if top number negative.
0= (n - f) True if top number zero.

15

Table 6. Input output Instructions

. (n -) Print number.
.R (n u -) Print number, right-justified in u c olumn.
D. (d -) Print double-precision number.
D.R (d u -) Print double-precision number in u column.
CR (-) Do a carriage-return.
SPACE (-) Type one space.
SPACES (u -) Type u spaces.
." (-) Print message (terminated by ").
DUMP (addr u -) Dump u numbers starting at addr ess.
TYPE (addr u -) Type u characters starting at a ddress.
COUNT (addr - addr+1 u) Change length byte stri ng to TYPE form.
?TERMINAL (- f) True if terminal break request present.
KEY (- c) Read key, put ASCII value on stack.
EMIT (c -) Type ASCII character from stack.
EXPECT (addr u -) Read u characters (or until c arriage-return) from input

device to address.
WORD (c -) Read one word from input stream, del imitedby c.
NUMBER (addr - d) Convert string at address to double number.
<# (-) Start output string.
(d1 - d2) Convert one digit of double number and add character to

output string.
#S (d - 0 0) Convert all significant digits of double number to

output string.
SIGN (n d - d) Insert sign of n to output strin g.
#> (d - addr u) Terminate output string for TYP E.
HOLD (c -) Insert ASCII character into output s tring.
DECIMAL (-) Set decimal base.
HEX (-) Set hexadecimal base.
OCTAL (-) Set octal base.

Table 7. Memory and Dictionary Instructions

@ (addr - n) Replace word address by contents.
! (n addr -) Store second word at address on to p.
C@ (addr - b) Fetch one byte only.
C! (b addr -) Store one byte only.
? (addr -) Print contents of address.
+! (n addr -) Add second number to contents of address.
CMOVE (from to u -) Move u bytes in memory.
FILL (addr u b -) Fill u bytes in memory with b beginning at address.
ERASE (addr u -) Fill u bytes in memory with ze ros.
BLANKS (addr u -) Fill u bytes in memory with b lanks.
HERE (- addr) Return address above dictionary.
PAD (- addr) Return address of scratch area.
ALLOT (u -) Leave a gap of n bytes in the dicti onary.
, (n -) Compile number n into the dictionary.
' (- addr) Find address of next string in dicti onary.
FORGET (-) Delete all definitions above and inc luding the

following definition.
DEFINITIONS (-) Set current vocabulary to contex t vocabulary.
VOCABULARY (-) Create new vocabulary.
FORTH (-) Set context vocabulary to Forth vocab ulary.
EDITOR (-) Set context vocabulary to Editor voc abulary.
ASSEMBLER (-) Set context vocabulary to Assembl er.
VLIST (-) Print names in context vocabulary.

16

Table 8. Defining Instructions and Control Structure Instructions

: (-) Begin a colon definition.
; (-) End of a colon definition.
VARIABLE (n -) Create a variable with initial v alue n.
 (- addr) Return address when executed.
CONSTANT (n -) Create a constant with value n.
 (- n) Return the value n when executed.
CODE (-) Create assembly-language definition.
;CODE (-) Create a new defining word, with runt ime code routine

in high-level Forth.
DO (end+1 start -) Set up loop, given index ran ge.
LOOP (-) Increment index, terminate loop if equ al to limit.
+LOOP (n -) Increment index by n. Terminate lo op if outside
 limit.
I (- index) Place loop index on stack.
LEAVE (-) Terminate loop at next LOOP or +LOOP.
IF (f -) If top of stack is true, execute true clause.
ELSE (-) Beginning of the false clause.
ENDIF (-) End of the IF-ELSE structure.
BEGIN (-) Start an indefinite loop.
UNTIL (f -) Loop back to BEGIN until f is true.
REPEAT (-) Loop back to BEGIN unconditionally.
WHILE (f -) Exit loop immediately if f is false .

Table 9. Miscellaneous Instructions

((-) Begin comment, terminated by).
ABORT (-) Error termination of execution.
SP@ (- addr) Return address of top stack item.
LIST (screen -) List a disk screen.
LOAD (screen -) Load a disk screen (compile or execute).
BLOCK (block - addr) Read disk block to memory address.
UPDATE (-) Mark last buffer accessed as updated .
FLUSH (-) Write all updated buffers to disk.
EMPTY-
BUFFERS

(-) Erase all buffers.

System Constants and User Variable

Some system constants defined in figForth are listed in Table 10. User variables are listed in
Table 11. Most of the user variables are pointers pointing to various areas in the memory map to
facilitate memory access.

Table 10. System Constants

FIRST 3BE0H. Address of the first byte of the dis k buffers.
LIMIT 4000H. Address of the last byte of disk buf fers plus one pointing to the free

memory not used by the Forth system.,
B/SCR 8 Blocks per screen. In the fig-Forth model , a block is 128 bytes, the capacity

of a disk sector. A screen is 1024 bytes used in e ditor.
B/BUF 128. Bytes per buffer.
C/L 64. Characters per line of input text.
BL 32. ASCII blank.

17

Table 11. User Variables

S0 Initial value of the data stack pointer.
R0 Initial value of the return stack pointer.
TIB Address of the terminal input buffer.
WARNING Error message control number. If 1, disk is present, and screen 4 of drive 0 is

the base location of error messages. If 0, no disk is present and error messages
will be presented by number. If -1, execute (ABORT) on error.

FENCE Address below which FORGETting is trapped. To forget below this point the user
must alter the contents of FENCE .

DP The dictionary pointer which contains the next free memory above the dictionary.
The value may be read by HERE and altered by ALLOT .

VOC-LINK Address of a field in the definition of t he most recently created vocabulary.
All vocabulary names are linked by these fields to allow control for FORGETing
through multiple vocabularies.

BLK Current block number under interpretation. If 0, input is being taken from the
terminal input buffer.

IN Byte offset within the current input text buffe r (terminal or disk) from which
the next text will be accepted. WORD uses and move s the value of IN .

OUT Offset in the text output buffer. Its value i s incremented by EMIT. The user
may alter and examine OUT to control output display formatting.

SCR Screen number most recently referenced by LIST .
OFFSET Block offset to disk drives. Contents of O FFSET is added to the stack number by

BLOCK .
CONTEXT Pointer to the vocabulary within which dic tionary search will first begin.
CURRENT Pointer to the vocabulary in which new def initions are to be added.
STATE If 0, the system is in interpretive or execu ting state. If non-zero, the system

is in compiling state. The value itself is impleme ntation dependent.
BASE Current number base used for input and output numeric conversions.
DPL Number of digits to the right of the decimal p oint on double integer input. It

may also be used to hold output column location of a decimal point in user
generated formatting. The default value on single n umber input is -1.

FLD Field width for formatted number output.
CSP Temporarily stored data stack pointer for comp ilation error checking.
R# Location of editor cursor in a text screen.
HLD Address of the latest character of text during numeric output conversion.

Simple Colon Definitions

In the figForth model, many arithmetic and logical instructions are Forth high level definitions or
colon definitions. They serve very well as some simple examples in programming and extending
the basic Forth word set. Some of them are listed here with their definitions:

: - MINUS + ;
: = - 0= ;
: < - 0< ;
: > SWAP < ;
: ROT >R SWAP R> SWAP ;
: -DUP DUP IF DUP ENDIF ;

Many memory operations which affect large areas of memory are also defined at a high level as
colon definitions. FILL is a basic word used to define many others. The definition of FILL is
presented here in the vertical format, which will be used extensively in our future discussions.

18

FILL fills n bytes of memory beginning at addr with the same value of byte b.

: FILL (addr n b --)
 SWAP >R store n on the return stack
 OVER C! store b in addr
 DUP 1+ addr+1, to be filled with b
 R> 1- n- 1, number of bytes to be filled by CMOVE
 CMOVE A primitive. Copy (addr) to (addr+1), (addr+1) to (addr+2),
 etc , until all n locations are filled with b.
;

FILL is used to define ERASE which fills a memory area with zero's, and BLANKS which fills
with blanks (ASCII 32).

: ERASE 0 FILL ;
: BLANKS BL FILL ; BL=32, a defined constant

19

Chapter 3. Text Interpreter

The text interpreter, or the outer interpreter, is the operating system in a Forth computer. It is
absolutely essential that the reader understand it completely before proceeding to other sections.
Many of the properties of Forth language, such as compactness, execution efficiency and ease in
programming and utilization, are embedded in the text interpreter. When the Forth computer is
booted up, it immediately enters into the text interpreter. In the default interpretive state, the
Forth computer waits for the operator to type a line of commands on his console terminal. The
command text string he types on the terminal, after a carriage return being entered, is then parsed
by the text interpreter and appropriate actions will be performed accordingly.

To make the discussion of text interpreter complete, we shall start with the definition, COLD ,
meaning starting the computer from cold. COLD calls ABORT . ABORT calls QUIT where the
text interpreter, properly named INTERPRET , is embedded. These definitions are discussed in
this sequence. It is rather strange to start the text interpreter with words like ABORT and QUIT .
The reason will become apparent when we discuss the error handling procedures. After an error
is detected, the error handling procedure will issue an appropriate error message and call
ABORT or QUIT depending upon the seriousness of the error.

This major Forth monitoring loop is schematically shown in Fig. 2. Although nothing new is
shown in the flow chart, it is hoped that a graphic diagram will make a lasting impression on the
reader to help him understand more clearly the concepts discussed here.

COLD is the cold start procedure. Adjust the dictionary pointer to the minimum standard and
restart via ABORT . May be called from terminal to remove application program and restart.

: COLD --
 EMPTY-BUFFERS Clear all disk buffers by writing z ero's from FIRST to LIMIT.
 0 DENSITY ! Specify single density diskette drive s.
 FIRST USE ! Store the first buffer address in USE and PREV , preparing for

disk accessing.
 FIRST PREV !
 DR0 Select drive 0 by setting OFFSET to 0.
 0 EPRINT ! Turn off the printer.
 ORIG Starting address of Forth codes, where initi al user variables are

kept.
 12H +
 UP @ 6 + User area
 10H CMOVE Move 16 bytes of initial values over to the user area. Initialize

the terminal.
 ORIG 0CH + @ Fetch the name field address of the last word defined in the

trunk Forth vocabulary, and
 FORTH 6 + ! Store it in the FORTH vocabulary link . Dictionary searches will

start at the top of FORTH vocabulary. New words wi ll be added to
FORTH vocabulary unless another vocabulary is named .

 ABORT Call ABORT , the warm start procedure.
;

20

Figure 2. The Forth Loop

21

ABORT clears the stacks and enter the interpretive state. Return control to operator's terminal
and print a sign-on message on the terminal.

: ABORT --
 SP! A primitive. Set the stack pointer SP to its origin S0 .
 DECIMAL Store 10 in BASE , establishing decimal n umber conversions.
 CR Output carriage return and line feed to termin al.
 ." fig-Forth" Print sign-on message on terminal.
 FORTH Select FORTH trunk vocabulary.
 DEFINITIONS Set CURRENT to CONTEXT so that new de finitions will be linked to

the FORTH vocabulary.
 QUIT Jump to the Forth loop where the text interp reter resides.
;

QUIT clears the return stack, stop compilation, and return control to terminal. This is the point of
return whenever an error occurs in either interpretive or compilation states.

: QUIT --
 0 BLK ! BLK contains the current disk block numbe r under interpretation.

0 in BLK indicates the text should come from the te rminal.
 [COMPILE] Compile the next IMMEDIATE word which n ormally is executed even in

compilation state.
 [Set STATE to 0, thus enter the interpretive sta te.
 BEGIN Starting point of the 'Forth loop'.
 RP! A primitive. Set return stack pointer to it s origin R0 .
 CR CR/LF
 QUERY Input 80 characters of text from the termi nal. The text is

positioned at the address contained in TIB with IN set to 0.
 INTERPRET Call the text interpreter to process t he input text.
 STATE @ 0= Examine STATE .
 IF STATE is 0, in the interpretive state
 ." ok" Type ok on terminal to indicate the line of text was successfully

interpreted.
 ENDIF
 AGAIN Loop back. Close the Forth loop .
;

If the interpretation was not successful because of some errors, the error handling procedure
would print out an error message and then jump to QUIT . Figure.3 shows the text interpreter
loop in which linesof text are parsed and interpreted.

22

Figure 3. The Text Interpreter Loop.

23

INTERPRET is the text interpreter which sequentially executes or compiles text from the input
stream (terminal or disk) depending on STATE. If the word cannot be found after searching
CONTEXT and CURRENT, it is converted to a number according to the current base. That also
failing, an error message echoing the name with a " ?" will be printed.

: INTERPRET --
 BEGIN Start the interpretation loop
 -FIND Move the next word from input stream to HE RE and search the

CONTEXT and then the CURRENT vocabularies for amatc hing entry.
If found, the dictionary entry's parameter field ad dress, its
length byte, and a boolean true flag are left on st ack.
Otherwise, only a false flag is left.

 IF A matching entry is found. Do the following:
 STATE @ < If the length byte < state , the word is to be compiled.
 IF CFA , Compile the code field address of this word to the dictionary
 ELSE Length byte > state, this is an immediate word,
 CFA then put the code field address on the dat a stack and
 EXECUTE call the address interpreter to execut e this word.
 ENDIF
 ?STACK Check the data stack. If overflow or und erflow, print error

message and jump to QUIT .
 ELSE No matching entry. Try to convert the text to a number.
 HERE Start of the text string on top of the dic tionary.
 NUMBER Convert the string at HERE to a signed d ouble number, using

current base. If a decimal point is encountered in the text, its
position is stored in DPL. If numeric conversion i s not
possible, an error message will be given and QUIT

 DPL @ 1+ Is there a decimal point? If there is, DPL + 1 should be greater
than zero, i. e., true.

 IF Decimal point was detected
 [COMPILE] Compile the next immediate word.
 DLITERAL If compiling, compile the double numb er on stack into a literal,

which will be pushed on stack during execution. If executing, the
number remains on stack.

 ELSE No decimal point, the number should be a s ingle 16 bit number.
 DROP Discard the high order part of the double number.
 [COMPILE]
 LITERAL If compiling, compile the number on st ack as a literal. The

number is left on stack if executing.
 ENDIF
 ?STACK Check the data stack overflow or underfl ow.
 ENDIF End of the IF clause after -FIND .
 AGAIN Repeat interpretation of the next text stri ng in the input

stream.
;

The text interpreter seems to be in an infinite loop without an exit, except the error handling
procedures in ?STACK and NUMBER. The normal exit from this loop, after successfully
interpreting a line of text, is buried in a mysterious, nameless word called NULL or 'X' in the
Forth source code. The true name of this procedure is an ASCII NUL character, which cannot be
accessed from the terminal. The text input procedure appends an ASCII NUL character to the
end of a text input stream in place of a carriage return which terminates the text stream. After the
text stream is successfully processed, the text interpreter will pick up this null character and
execute the NULL procedure.

24

X is a place holder word. Its name will be replaced by an ASCII NUL character. Terminate
interpretation of a line of text from terminal or from disk buffer. Fall into the Forth loop and
print " ok" on the terminal and wait for terminal input.

: X --
 BLK @ Examine BLK to see where the input stream i s from.
 IF BLK not zero, input from disk buffer.
 1 BLK +! Select the next disk buffer
 0 IN ! Clear IN, preparing parsing of input text .
 BLK @ There are 8 disk buffers. See if the curr ent buffer is the last7
 AND 0=
 IF The last buffer, the end of the text block.
 ?EXEC Issue error message if not executing.
 R> DROP Discard the top address on the return s tack, which is the address

of ?STACK after EXECUTE in the interpretation loop.
 ENDIF
 ELSE BLK=0. The text is from the terminal.
 R> DROP Pop off the top of return stack.
 ENDIF
;

The top item on the return stack was thrown away. At the end of 'X', the interpreter will not
continue to execute the ?STACK instruction, but will return to the next higher level of nesting
and execute the next word after INTERPRET in the Forth loop. This is when the familiar "
ok"message is displayed on the terminal, prompting the operator for the next line of commands.

25

Chapter 4. Address Interpreter

The function of the text or outer interpreter is to parse the text from the input stream, to search
the dictionary for the word parsed out, and to handle numeric conversions if dictionary searches
failed. When a matching entry is found, the text interpreter compiles its code field address into
the dictionary, if it is in a state of compilation. However, if it is in state of execution and the
entry is of the immediate type, the text interpreter just leaves the code field address on the data
stack and calls on the address interpreter to do the real work. The address interpreter works on
the machine level in the host computer, hence it is often referred to as the inner interpreter.

If a word to be executed is a high level Forth definition or a colon definition, which has a list of
code field addresses in its parameter field, the address interpreter will properly interpret these
addresses and execute them in sequence. Hence the name address interpreter. The address
interpreter uses the return stack to dig through many levels of nested colon definitions until it
finds a code definition in the Forth nucleus. This code definition consisting of machine codes is
then executed by the CPU. At the end of the code definition, a jump to NEXT instruction is
executed, where NEXT is a run-time procedure returning control to the address interpreter,
which will execute the next definition in the list of execution addresses. This process goes on and
on until every word involved in every nesting level is executed. Finally the control is returned
back to the text interpreter.

The return stack allows colon definitions to be nested indefinitely, and to correctly unnest them
after the primitive code definitions are executed. The address interpreter with an independent
return stack thus very significantly contributes to the hierarchical structure in the Forth language
which spans from the lowest machine codes to the highest possible construct with a uniform and
consistent syntax.

To discuss the mechanisms involved in the address interpreter, it is necessary to touch upon the
host CPU and its instruction set on which the Forth virtual computer is constructed. Here I have
chosen to use the PDP-11 instruction set as the vehicle. The PDP-11 is a stack oriented CPU,
sharing many characteristics with the Forth virtual machine. All the registers have pre-
decrementing and post-incrementing facilities very convenient to implement the stacks in Forth.
The assembly codes using the PDP-11 instructions thus allow the very concise and precise
definition of functions performed by the address interpreter.

The Forth virtual machine uses four PDP-11 registers for stacks and address interpretation. These
registers are named as follows:

SP Data stack pointer
RP Return stack pointer
IP Interpretive pointer
W Current word pointer

The data stack pointer and the return stack pointer point to the top of their respective stacks. The
familiar stack operators like DUP, OVER, DROP, etc and arithmetic operators modify the
contents as well as the number of items on the data stack. However, the user normally does not

26

have access to the interpretive pointer IP nor the word pointer W . IP and W are tools used by the
address interpreter.

NEXT is a run-time routine of the address interpreter. IP usually points to the next word to be
executed in a colon definition. After the current word is executed, the contents of IP is moved
into W and now IP is incremented, pointing to the next word to be executed. Now, W contains
the address of the current word to be executed, and an indirect jump to the address in W starts the
execution process of this word. In the mean time, W is also incremented to point to the parameter
field address of the word being executed. All code definitions ends with the routine NEXT,
which allows the next word after this code definition to be pulled in and executed.

In PDP-11 figForth, NEXT is defined as a macro rather than an independent routine. This macro
is expanded at the end of all code definitions.

NEXT:
 MOV (IP)+,W Move the content of IP, which points to the next wordto be

executed, into W . Increment IP , pointing to the second word in
execution sequence.

JMP @(W)+ Jump indirect to code field address of t he next word. Increment W
so it points to the parameter field of this word. After the
jump, the run-time routine pointed to by thecode fi eld of this
word will be executed.

If the first word in the called word is also a colon definition, one more level of nesting
will be entered. If the next word is a code definition, its code field contains the
address of its parameter field, i.e., the code field address plus 2. Here, JMP @(W)+
will execute the codes in the parameter field as machine instructions. Thus the code
field in a word determines how this word is to be interpreted by the address interpreter.

To initiate the address interpreter, a word EXECUTE takes the address on the data
stack, which contains the code field address of the word to be executed, and jump
indirectly to the routine pointed to by the code field.

EXECUTE executes the definition whose code field address cfa is on the data stack.

CODE EXECUTE cfa --
 MOV (S)+,W Pop the code field address into W , th e word pointer
JMP @(W)+ Jump indirectly to the code routine. In crement W to point to the

parameter field.

In most colon definitions, the code field contains the address of a run-time routine
called DOCOL, meaning 'DO the COLon routine', which is the 'address interpreter' for
colon definitions.

DOCOL: Run-time routine for all colon definitions.
 MOV IP,-(RP) Push the address of the next word to the return stack and enter a

lower nesting level.
 MOV W,IP Move the parameter field address into IP , pointing to the first

word in this definition.
 MOV (IP)+,W
JMP @(W)+ These two instructions are the macro NEX T . The old IP was saved

on return stack and the new IP is pointing to the w ord to be

27

executed. NEXT will bring about the proper actions .

Using the interpretive pointer IP alone would only allow the processing of a address list at a
single level. The return stack is used as an extension of IP. When a colon definition calls other
colon definitions, the contents of IP are saved on the return stack so that the IP can be used to
call other definitions in the called colon definition. DOCOL thus provides the mechanism to nest
indefinitely within colon definitions.

At the end of a colon definition, execution must be returned to the calling definition. The analogy
of NEXT in colon definitions is a word named ;S, which does the unnesting.

:S returns execution to the calling definition. Unnest one level.

CODE ;S --
 MOV (RP)+,IP Pop the return stack into IP , point ing now to the next word to

be executed in the calling definition.
NEXT Go ahead executed the word pointed to by IP . We shall not repeat

the definition of NEXT whichis MOV (IP)+,W JMP @(W) + .

The interplay among the four registers, IP , W , RP , and S allows the colon definitions to nest
and to unnest correctly to an indefinite depth, limited only by the size of the return stack
allocated in the system. This process of nesting and unnesting is a major contributor to the
compactness of the Forth language. The overhead of a subroutine call in Forth is only two bytes,
identifying the address of the called subroutine.

A few variations of NEXT are often defined in figForth for many microprocessors as endings of
code definitions. PDP-11 figForth did not use them because of the versatility of the PDP-11
instruction set. Nevertheless, these endings are presented here in PDP codes for completeness
and consistency.

PUSH pushes the contents of the accumulator to the data stack and return to NEXT .

PUSH:
 MOV 0,-(S) Push 0 register to data stack
NEXT

POP discards the top of data stack and return to NEXT .

POP:
 TST (S)+ Discard the top item of data stack
NEXT Return

PUT replaces the top of data stack with the contents of the accumulator, here register 0, and
NEXT return.

PUT: Copy accumulator to top of stack
 MOV 0,(S)
NEXT

LIT: Push literal on stack
 MOV (IP)+,-(S)
NEXT

28

Chapter 5. Compiler

Following words [,] , CREATE, CODE, : and ; are powerful FORTH words which causes new
words to be compiles on the top of FORTH dictionary. They are compilers in FORTH.

The Forth computer spends most of its time waiting for the user to type in some commands at the
terminal. When it is actually doing something useful, it is doing one of two things: executing or
interpreting words with the address interpreter, or parsing and compiling the input texts from the
terminal or disk. These are the two 'states' of the Forth computer when it is executing. Internally,
the Forth system uses an user variable STATE to remind itself what kind of job it is supposed to
be doing. If the contents of STATE is zero, the system is in the executing state, and if the
contents of STATE is not zero, it is in the compiling state. Two instructions are provided for the
user to switch explicitly between the executing state and the compiling state. They are '[', left-
bracket, and ']', right-bracket.

[uspends compilation and execute the words following [up to]. This allows calculation or
compilation exceptions before resuming compilation with]. Used in a colon definition in the
form:

 : nnnn -- [--] -- ;

: [--
 0 STATE ! Write 0 into the user variable STATE an d switch to executing

state.
; IMMEDIATE [must be executed, not compiled.

] resumes compilation till the end of a colon definition.

:] --
 C0H STATE ! the definition is an immediate word, i ts length byte is greater

than C0H because of the precedence and the s ign bits are both set.
Setting STATE to C0H will force non-immediate words to be compiled
and immediate words to be executed, thus entering i nto the
'compiling state'.

;

In either state, the text interpreter parses a text string out of the input stream and searches the
dictionary for a matching name. If an entry, a word of the same name, is found, its code field
address will be pushed to the data stack. Now, if STATE is zero, the address interpreter is called
in to execute this word. If STATE is not zero, the text interpreter itself will push this code field
address to the top of dictionary, and compile this word into the body of a new definition the text
interpreter is working on. Therefore, the text interpreter is also the compiler in the figForth
system, and it is very much optimized to do compilation just as efficiently as interpretation.

There are numerous instances when the compiler cannot do its job to build complicated program
structures. The compiler itself can only compile linear list of addresses, one word after another.
If program structures require branching and looping, as in the BEGIN--UNTIL, IF--ELSE--
ENDIF, and DO--LOOP constructs, the compiler needs lots of help from the address interpreter.
The help is provided through words of the IMMEDIATE nature, which are immediately
executed even when the system is in the compiling state. These immediate words are therefore

29

compiler directives which direct the compiling process so that at run-time the execution
sequences may be altered.

In this Chapter, we shall first discuss the words which create a header for a new definition in the
dictionary. These are words which start the compiling process. In Chapter 12 we shall discuss the
immediate words which construct conditional or unconditional branch to take care of special
compilation conditions.

A dictionary entry or a word must have a header which consists of a name field, a link field, and
a code field. The body of the word is contained in the parameter field right after the code field.
The header is created by the word CREATE and its derivatives, which are called defining words
because they are used to create or define different classes of words. All words in the same class
have the same code field address in the code fields. The code field address points to a code
routine which will interpret this word when this word is to be executed. The structure of a
definition as compiled in the dictionary is shown in Fig. 4.

CREATE creates a dictionary header for a new definition with name cccc . The new word is
linked to the CURRENT vocabulary. The code field points to the parameter field, ready to
compile a code definition. Used in the form:

 CREATE cccc

: CREATE --
 BL WORD Bring the next string delimited by blanks to the top of

dictionary.
 HERE Save dictionary pointer as name field addres s to be linked.
 DUP C@ Get the length byte of the string
 WIDTH @ WIDTH has the maximum number of character s allowed in the name field.
 MIN Use the smaller of the two, and
 1+ ALLOT allocate space for name field, and advan ce DP to link field.
 DUP 0A0H TOGGLE byte of the name field. Make a ' smudged' head so that dictionary

search will not find this name .
 HERE 1- 80H TOGGLE Toggle the eighth bit in the la st character of the name as a

delimiter to the name field.
 LATEST , Compile the name field address of the la st word in the link field,

extending the linking chain.
 CURRENT @ ! Update contents of LATEST in the curr ent vocabulary.
HERE 2+ , Compile the parameter field address into code field, for the

convenience of a new code definition. For other ty pes of
definitions, proper code routine address will be co mpiled here.

;

CODE creates a dictionary header for a code definition. The code field contains its parameter
field address. Assembly codes are to be compiled (assembled) into the parameter field.

: CODE --
 CREATE Create the header, nothing more to be done on the header.
 [COMPILE]
 ASSEMBLER Select ASSEMBLER vocabulary as the CONT EXT vocabulary, which has

all the assembly mnemonics and words pertaining to assembly
processes.

;

30

Figure 4. Structure of a Definition

It is important to remember that the text interpreter itself is doing the job for the assembler. Thus
all the words defined in the FORTH vocabulary are available to assist the assembling of machine
code words. In fact assembling code definitions is much more complicated than compiling colon
definitions. Many specialized utility routines have to be defined in the assembler vocabulary
before the simplest of code definitions can be assembled. This part of the assembler vocabulary
is generally called the pre-assembler, which is not in the figForth model because it is machine
dependent. In Chapter 14 we shall discuss the details involved in the assemblers, based on the
PDP-11 and 8080 instruction sets.

31

: starts a colon definition, used in the form:

 : cccc --- ;

It creates a dictionary header with name cccc as equivalent to the following sequence of words --
- until the next ';' or ;CODE . The compiling process is done by the text interpreter as long as
STATE is non-zero. The CONTEXT vocabulary is set to CURRENT vocabulary , and words
with the precedence (P) bit set are executed rather than compiled.

: : --
 ?EXEC Issue an error message if not executing.
 !CSP Save the stack pointer in CSP to be checked by ';' or ;CODE .
 CURRENT @ CONTEXT ! Make CONTEXT vocabulary the sa me as the CURRENT vocabulary.
 CREATE Now create the header and establish linkag e with the current

vocabulary.
] Change STATE to non-zero. Enter compiling stat e and compile the

words following till ';' or ;CODE .
;CODE End of the compiling process for ':'. The f ollowing codes are to

be executed when the word cccc is called. The addr ess here is to
be compiled into the code field of cccc .

DOCOL: Here comes the inner interpreter for colon definitions.
 MOV IP,-(RP) Push IP on the return stack
 MOV W,IP Move the parameter field address into IP , the next word to be

executed.
NEXT Go execute the next word.

Execution of DOCOL adds one more level of nesting. Unnesting is done by ';' (semi-colon),
which must be the last word in a colon definition.

; terminates a colon definition and stops further compilation. Return execution to the calling
definition at run-time.

: ; --
 ?CSP Check the stack pointer with that saved in C SP . If they differ,

issue an error message.
 COMPILE ;S Compile the code field address of the word ;S into the dictionary,

at run-time. ;S will return execution to the calli ng definition.
 SMUDGE Toggle the smudge bit back to zero. Resto re the length byte in

the name field, thus completing the compilation of a new word.
 [Set STATE to zero and return to the executing st ate.
; IMMEDIATE

The ending of a colon definition ;CODE as seen in the definition of ':', involves an advanced
concept of defining a defining word. The discussions of this concept will be the theme in Chapter
11 on the defining words. The detailed words which manipulates information in the dictionary
will be discussed in Chapter 9. The immediate words used in constructing branching structures
are treated in Chapter 12 concerning control structures.

32

Chapter 6. Error Handling

The figForth model provides very extensive error checking procedures to ensure compiler
security, so that compilation results in correct and executable definitions. To facilitate error
checking and reporting, fig-Forth model maintains an user variable WARNING and one or more
disk blocks containing error messages.

The user variable WARNING controls the actions taken after an error is detected. If WARNING
contains 1, a disk is present and screen number 4 in Drive 0 is supposed to be the base location
of all error messages. If WARNING contains 0, no disk is available and error messages will be
reported simply by an error number. If WARNING contains -1, the word (ABORT) will be
executed. The user can modify the word (ABORT) to define his own error checking policy. In
the fig-Forth model, (ABORT) calls ABORT which restarts the system (warm start). The error
handling process is best shown in a flow chart in Fig. 5.

?ERROR issues error message n if the boolean flag f is true.

: ?ERROR f n --
 SWAP Test the flag f.
 IF ERROR True. Call ERROR to issue error message .
 ELSE DROP No error. Drop n and return to caller.
 ENDIF
;

ERROR issues an error message and restarts the system. FigForth saves the contents in IN and
BLK on stack to assist determining the location of error.

: ERROR n -- in blk
 WARNING @ 0< See if WARNING is -1,
 IF (ABORT) if so, abort and restart.
 ENDIF
 HERE COUNT TYPE Print name of the offending word on top of the dictionary.
 ." ?" Add a question mark to the terminal.
 MESSAGE Type the error message stored on disk.
 SP! Clean the data stack.
 IN @
 BLK @ Fetch IN and BLK on stack for the operator to look at if he

wishes.
 QUIT Restart the Forth loop.
;

(ABORT) executes ABORT after an error when WARNING is -1. It may be changed to a user
defined procedure.

: (ABORT) --
ABORT ;

33

Figure 5. Error Handling

MESSAGE prints on the terminal n'th line of text relative to screen 4 on Drive 0.

: MESSAGE n --
 WARNING @ Examine WARNING .
 IF (WARNING)=1, error messages are on disk.
 -DUP
 IF n is not zero
 4 OFFSET @
 B/SCR / -

Calculate the screen number where the message resid es.

 .LINE Print out that line of error message.
 ENDIF
 ELSE No disk.
 ." MSG#" . Print out the error number instead.
 ENDIF
;

Now we have the utilities to handle error messages, we shall present some error checking
procedures defined in fig-Forth.

34

?COMP issues error message 11 if not compiling.

: ?COMP --
 STATE @ Examine STATE .
 0= Is it 0 ?
 11 ?ERROR Issue error message if STATE is 0, the executing state.
;

?EXEC issues error message 12 if not executing.

: ?EXEC --
 STATE @ If STATE is not zero,
 12 ?ERROR issue error message.
;

?PAIRS issues error message 13 if n1 is not equal to n2. This error indicates that the compiled
conditionals do not match.

: ?PAIRS n1 n2 --
 - Compare n1 and n2. If not equal,
 13 ?ERROR issue error message.
;

?CSP issues error message 14 if data stack pointer was altered from that saved in CSP .

: ?CSP --

 SP@ Current stack pointer
 CSP @ Saved stack pointer
 - If not equal,
 14 ?ERROR issue error message 14.
;

?LOADING issues error message 16 if not loading screens.

: ?LOADING --
 BLK @ If BLK=0, input is from the terminal.
 0=
 16 ?ERROR Issue error message.
;

?STACK issues error message 7 if the data stack is out of bounds.

: ?STACK --
 SP@ S0 > SP is out of upper bound, stack underflo w
 1 ?ERROR Error 1.
 SP@ HERE 128 + < SP is out of lower bound, stack overflow
 7 ?ERROR Error 7.
;

35

Chapter 7. Terminal Input and Output

The basic primitives handling terminal input and output in Forth are KEY and EMIT . The
definitions of them depend on the host computer and its hardware configurations. It is sufficient
to mention here that KEY accepts a keystroke from the terminal keyboard and leaves the ASCII
code of the character of this key on the data stack. EMIT pops an ASCII character from the
data stack and transmits it to the terminal for display. EMIT also increments the user variable
OUT for each character it puts out.

The word that causes a line of text to be read in from the terminal is EXPECT. EXPECT is
rather complicated because it allows the user to do a certain amount of editing on the text entered
through the keyboard. A flow chart in Figure 6 shows graphically how EXPECT processes
characters typed in through the terminal.

EXPECT transfers n characters from the terminal to memory starting at addr. The text may be
optionally terminated by a carriage return. An ASCII NUL is appended to the end of text.

: EXPECT addr n --
 OVER + addr+n, the end of text.
 OVER Start of text.
 DO Repeat the following for n times
 KEY Get one character from terminal
 DUP Make a copy of the character.
 OEH +ORIGIN Get the ASCII code of input backspace
 IF If the input is a backspace
 DROP Discard the backspace still on stack.
 8 Replace it with the backspace for the output d evice
 OVER Copy addr
 I = See if the current character is the first ch aracter of text
 DUP Copy it, to be used as a flag.
 R> 2 - + Get the loop index. Decrement it by 1 i f it is the starting character, or

decrement it by 2 if it is in the middle of the tex t.
 >R Put the corrected loop index back on return s tack. If the backspace is

the first character, ring the bell. Otherwise, outp ut backspace and
decrement character count.

 ELSE Not a backspace
 DUP ODH =
 IF

Is it a carriage-return? Yes, it is carriage-return

 LEAVE Prepare to exit the loop. CR is end of text line.
 DROP BL Drop CR from the stack and replace with a blank.
 0 Put a null on stack.
 ELSE DUP Input is a regular ASCII character. Mak e a copy. ENDIF
 I C! Store the ASCII character into the input b uffer area.
 0 11+ ! Guard the text with an ASCII NUL.
 ENDIF
 ENDIF
 EMIT
 LOOP DROP
;

QUERY inputs 80 characters (or until a carriage-return) from the terminal and place the text
in the terminal input buffer.

: QUERY

--

 TIB @ TIB contains the starting address of the inp ut terminal buffer.
 50H EXPECT Get 80 characters.
 0 IN ! Set the input character counter IN to 0. Te xt parsing shall begin at

TIB .
;

36

Figure 6. EXPECT

The work horse in the text interpreter is the word WORD, which parses a string delimited by a
specified ASCII character from the input buffer and places the string into the word buffer
on top of the dictionary. The string in the word buffer is in the correct form for a name field in
a new definition. It may be processed otherwise as required by the text interpreter. A flow
diagram of WORD is show in Fig. 7, following is a more detailed description.

37

WORD Read text from the input stream until a delimiter c is encountered. Store the text string
at the top of dictionary starting at HERE. The first byte is the character count, then the text
string, and two or more blanks. If BLK is zero input is from the terminal; otherwise, input
from the disc block referred to by BLK . It echoes the input character to terminal Loop back if
not the end of text. Discard the addr remaining on stack.

: WORD c--
 BLK @ BLK=0?
 IF BLK is not zero, go look at the disc.
 BLK @ The BLOCK number
 BLOCK Grab a block of data from disc and put it i n a disc buffer. Leave the

buffer address on the stack. BLOCK is the word to a ccess disc virtual
memory.

 ELSE BLK=0, input is from terminal
 .TIB @ Text should be put in the terminal input bu ffer.
 ENDIF
 IN @ IN contains the character offset into the cur rent input text buffer.
 + Add offset to the starting address of buffer, po inting to the next

character to be read in.
 SWAP Get delimiter c over the string address.
 ENCLOSE A primitive word to scan the text. From th e byte address and the

delimiter c , it determines the byte offset to the first non-delimiter
character, the offset to the first delimiter after the text string,
and the offset to the next character after the deli miter. If the
string is delimited by a NUL , the last offset is e qual to the previous
offset.

 (addr c --- addr n 1 n2 n3)
 HERE 22H BLANKS Write 34 blanks to the top of dict ionary.
 IN +! Increment IN by the character count, pointin g to the next text string to

be parsed.
 OVER->R Save n2-n1 on return stack.
 R HERE C! Store character count as the length byte at HERE .
 + Buffer address + nl, starting point of the text string in the text

buffer.
 HERE 1+ Address after the length byte on dictionar y.
 R> Get the character count back from the return st ack.
 CMOVE Move the string from input buffer to top of dictionary.
;

The text string moved over to the top of the dictionary is in the correct form for a new
header, should a new definition be created. It is also in the right form to be compared with
other entries in the dictionary for a matching name. After the text string is placed at HERE ,
the text interpreter will be able to process it.

Following are words for typing string data to the output terminal.

TYPE transmits n characters from a text string stored at addr to the terminal.

: TYPE addr n -
 -DUP Copy n if it is not zero.
 IF n is non-zero, do the following.
 OVER + addr+ n , the end of text
 SWAP addr, start of text
 DO Loop to type n characters
 I C@ Fetch one character from text
 EMIT Type it out
 LOOP
 ELSE n=0, no output necessary.
 DROP Discard addr
 ENDIF
;

38

Figure 7. WORD

Since text strings processed by the text interpreter have a character count as the first byte of
the string, as in the name field of a word, a special word COUNT is defined to prepare this
type of strings to be typed out by TYPE . COUNT itself is also useful in scanning a text string.

COUNT pushes the address and byte count n of a text string at addrl to the data stack. The first
byte of the text string is always a byte count. COUNT is usually followed by TYPE.

: COUNT addrl -- addr2 n
 DUP 1+ addr2=addrl+l
 SWAP Swap addrl over addr2 and
 C@ fetch the byte count to the stack.
;

39

If the text string contains lots of blanks at the end, there is no use to type them out. A utility word
-TRAILING can be used to strip off these trailing blanks so that some I/O time can be saved.
The command to type out a text string is

addr COUNT -TRAILING TYPE

-TRAILING adjusts the character count nl of a text string at addr to suppress trailing blanks.

: -TRAILING addr n 1-- addr n2
 DUP 0
 DO Scan nl characters
 OVER OVER Copy addr and n 1
 +1 addr+nl-l, the address of the last character i n the string.
 CQa BL - See if it is a blank
 IF LEAVE Not a blank. Exit the loop.
 ELSE 1 Blank. n2=n1-1 is now on the stack.
 ENDIF
 LOOP Loop back, decrementing n 1 until a non-blank character is found,

terminating the loop.
;

In a colon definition, sometimes it is necessary to include message to be typed out at run-time
to alert the user, or to indicate to him the progress of the program. These messages can be
coded inside a definition using the command:

." text string -- "

The word.." (dot-quote) will cause the text string up to " to be compiled at the compile time and
typed out at the run-time. The definition of ." uses a run-time procedure (.") which will be
discussed first.

(.”) is the run-time procedure compiled by." to type an in-line text string to the terminal.

: (.") --
 R Copy EP from the return stack, which points to t he beginning of the in-

line text string.
 COUNT Get the length byte of the string, preparing for TYPE.
 DUP 1+ Length+1
 R> + >R Increment EP on the return stack by length +l, thus skip the text str ing

and point to the next word after ", which is the ne xt word to be
executed.

 TYPE Now type out the text string.
;

40

.” compiles an in-line text delimited by the trailing ". Use the run-time procedure (.") to type this
text to the terminal.

: .” --
 22H ASCII value of the delimiter ".
 STATE @ Compiling or executing?
 IF Compiling state
 COMPILE (. ") Compile the code field address of (") so it will type out text at run-

tune.
 WORD Fetch the text string delimited by " , and s tore it on top of dictionary,

in-line with the compiled addresses.
 HERE C@ Fetch the length of string
 1+ ALLOT Move the dictionary pointer parsing the text string. Ready to compile the

next word in the same definition.
 ELSE Executing state
 WORD Get the text to HERE , on top of dictionary.
 HERE Start of text string, ready to be typed out .
 ENDIF
; IMMEDIATE

This word.." must be executed immediately in the compiling state to process the text string
after it. IMMEDIATE toggles the precedence bit in the name field of ." to make it an 'immediate
word'.

ID. prints an entry's name from its name field address on stack.

: ID. nfa -
 PAD Output text buffer address
 20H ASCII blank
 5FH FILL Fill PAD with 85 blanks
 DUP PFA LFA Find the link field address
 OVER - lfa=nfa, character count
 PAD SWAP CMOVE Move the entire name with the lengt h byte to PAD
 PAD COUNT Prepare string for output
 81 O1FH AND No more than 31 characters
 TYPE Type out the name
 SPACE Append a space.
;

It is necessary to move the name to PAD for output, because the length byte in the name field
contains extra bits contain important information which must not be disturbed by the output
procedures.

The basic word to print out text stored on a disk is LINE , which prints out a line (64
characters) of text store in a screen. LINE is also used to output error messages stored on
disk, and to display screens of texts in the editor.

41

LINE prints on the terminal a line of text from disk by its line number and screen number scr
given on stack. Trailing blanks are also suppressed.

: LINE line scr --
 (LINE) Run-time procedure to convert the line numb er and the screen number to

disk buffer address containing the text.
 -TRAILING TYPE Type out the text.
;

: (LINE) line scr -- addr count
 >R Save scr on return stack.
 C/L BBUF */MOD Calculate the character offset and the screen offset numbers from the

line number, characters/line, and bytes/buffer.
 R> B/SCR * + Calculate the block number from scr , blocks/scr, and the buffer number

left by */MOD.
 BLOCK Call BLOCK to get data from disk to the disk buffer, and leave the

buffer address on stack.
 + Add character offset to buffer address to get th e starting address of

the text.
 C/L 64 characters/line
;

LIST displays the ASCII text of screen n on the terminal.

: LIST n -
 DECIMAL CR Switch to decimal base and output a car riage-return.
 DUP SCR ! Store n into SCR to be used by the edito r.
 ." SCR #". Print the screen number n first.
 lOH 0 DO Print the text in 16 lines of 64 characte rs each.
 CR I 3 .R SPACE Print line number.
 I SCR @.LIIVE Call .LINE to print one line of tex t.
 LOOP
CR ; Output a carriage return after the 16th line.

42

Chapter 8. Numeric Conversions

A very important task of the text interpreter is to convert numbers from a human readable form
into a machine readable form and vice versa. Forth allows its user the luxury of using any
number base, be it decimal, octal, hexadecimal, binary, radix 36, radix 50, etc. He can also
switch from one base to another without much effort. The secret lies in a user variable named
BASE which holds the base value used to convert a machine binary number for output, and to
convert a user input number to binary. The default value stored in BASE is decimal 10. It can be
changed by

: HEX
 10H BASE ! ;

to hexadecimal,

: OCTAL
 8H BASE ! ;

to octal, and

: DECIMAL
 0AH BASE ! ;

back to decimal.

The simple command n BASE ! can store any reasonable number into BASE to effect numeric
conversions.

The word NUMBER is the workhorse converting ASCII represented numbers to binary and
pushing the result on the data stack. The word sequence <# #S #> converts a number on top of
the stack to its ASCII equivalent for output to terminal. These words and their close relatives are
discussed in this Chapter. The overall view on the process of converting a string to its binary
numeric representation is shown in Fig. 8.

 (NUMBER) is the run-time routine of number conversion. It converts an ASCII text beginning
at addr1+1 according to BASE. The result is accumulated with d1 to become d2. addr2 is the
address of the first unconvertable digit.

: (NUMBER) d1 addr1 --- d2 addr2
 BEGIN
 1+ DUP >R Save addr1+1, address of the first dig it, on return stack.
 C@ Get a digit
 BASE @ Get the current base
 DIGIT A primitive. (c n1 -- n2 tf or ff) Conv ert the character c

according to base n1 to a binary number n2 with a t rue flag on top
of stack. If the digit is an invalid character, on ly a false flag
is left on stack.

 WHILE Successful conversion, accumulate into d1.
 SWAP Get the high order part of d1 to the top.
 BASE @ U* Multiply by base value
 DROP Drop the high order part of the product
 ROT Move the low order part of d1 to top of stac k
 BASE @ U* Multiply by base value
 D+ Accumulate result into d1
 DPL @ 1+ See if DPL is other than -1
 IF DPL is not -1, a decimal point was encountere d
 1 DPL +! Increment DPL, one more digit to right of decimal point
 ENDIF
 R> Pop addr1+1 back to convert the next digit.
 REPEAT If an invalid digit was found, exit the lo op here. Otherwise

repeat the conversion until the string is exhausted .
 R> Pop return stack which contains the address of the first non-

convertable digit, addr2.
;

43

NUMBER converts character string at addr with a preceding byte count to signed double integer
number, using the current base. If a decimal point is encountered in the text, its position will be
given in DPL. If numeric conversion is not possible, issue an error message.

: NUMBER addr – d
 0 0 ROT Push two zero's on stack as the initial v alue of d .
 DUP 1+ C@ Get the first digit
 2DH = Is it a - sign?
 DUP >R Save the flag on return stack.
 + If the first digit is -, the flag is 1, and add r+1 points to the

second digit. If the first digit is not -, the fla g is 0. addr+0
remains the same, pointing to the first digit.

 -1 The initial value of DPL
 BEGIN Start the conversion process
 DPL ! Store the decimal point counter
 (NUMBER) Convert one digit after another until a n invalid char occurs.

Result is accumulated into d .
 DUP C@ Fetch the invalid digit
 BL - Is it a blank?
 WHILE Not a blank, see if it is a decimal point
 DUP C@ Get the digit again
 2EH - Is it a decimal point?
 0 ?ERROR Not a decimal point. It is an illegal character for a number.

Issue an error message and quit.
 0 A decimal point was found. Set DPL to 0 the n ext time.
 REPEAT Exit here if a blank was detected. Otherw ise repeat the

conversion process.
 DROP Discard addr on stack
 R> Pop the flag of - sign back
 IF DMINUS Negate d if the first digit is a - sign .
 ENDIF
; All done. A double integer is on stack.

<# initializes conversion process by setting HLD to PAD. The conversion is done on a double
integer, and produces a text string at PAD.

: <# --
 PAD PAD is the scratch pad address for text outpu t, 68 bytes above the

dictionary head HERE .
 HLD ! HLD is a user variable holding the address of the last character

in the output text string.
;

HOLD is used between <# and #> to insert an ASCII character c into a formatted numeric output
string.

: HOLD c --
 -1 HLD +! Decrement HLD .
 HLD @ C! Store character c into PAD .
;

44

Figure 8. Numeric Conversion

45

divides d1 by current base. The remainder is converted to an ASCII character and appended to
the output text string. The quotient d2 is left on stack.

: # d1 -- d2
 BASE @ Get the current base.
 M/MOD Divide d1 by base. Double integer quotient is on top of data

stack and the remainder below it.
 ROT Get the remainder over to top.
 9 OVER < If remainder is greater than 9,
 IF 7 + ENDIF make it an alphabet.
 30H + Add 30H to form the ASCII representation of a digit. 0 to 9 and A

to F (or above).
 HOLD Put the digit in PAD in a reversed order. H LD is decremented

before the digit is moved.
;

#S uses # to generate the complete ASCII string representing the number d1 until d2 is zero.
Used between <# and #> .

: #S d1 -- d2
 BEGIN
 # Convert one digit.
 OVER OVER Copy d2
 OR 0= d2=0?
 UNTIL Exit if d2=0, conversion done. Otherwise r epeat.
;

SIGN stores an ASCII - sign before the converted number string in the text output buffer if n is
negative. Discard n but leave d on stack.

: SIGN n d – d
 ROT 0< Is n negative?
 IF
 2DH HOLD Add - sign to text string.
 ENDIF
;

#> terminates numeric conversion by dropping off d, leaving the text buffer address and
character count on stack to be typed.

: #> d -- addr count
 DROP DROP Discard d.
 HLD @ Fetch the address of the last character in the text string.
 PAD OVER - Calculate the character count of the t ext string.
;

CR transmits a carriage-return and a line-feed to terminal.

: CR --
 0DH EMIT Carriage-Return
 0AH EMIT Line-Feed
;

SPACE transmits an ASCII blank to the terminal.

: SPACE --
 BL EMIT ;

46

SPACES transmits n blanks to the terminal.

: SPACES n --
 0 MAX If n<0, make it 0.
 -DUP DUP n only if n>0.
 IF
 0 DO Do n times
 SPACE Type a space on terminal
 LOOP
 ENDIF
;

Now we have all the necessary utility words to construct an ASCII text string representing a
double integer in whatever the current base, we can show some words which type out numbers in
different output formats.

D.R prints a signed double number d right justified in a field of n characters.

: D.R d n --
 >R Store n on return stack.
 SWAP OVER Save the high order part of d under d, to be used by SIGN to add a -

sign to a negative number.
 DABS Convert d to its absolute value.
 <# #S SIGN #> Convert the absolute value to ASCII text with proper sign.
 R> Retrieve n from the return stack.
 OVER - SPACES Fill the output field with precedin g blanks.
 TYPE Type out the number.
;

Other numeric output words are derived from D.R , and not much comments are necessary.

D. prints a signed double integer according to current base, followed by only one blank. This is
called the free format output.

: D. d --
 0 0 field width.
 D.R
;

.R prints a signed integer n1 right justified in a field of n2 characters.

: .R n1 n2 --
 >R Save n2 on return stack.
 S->D A primitive word. Extend the single integer to a double integer

with the same sign.
 R> D.R Formatted output.
;

. prints signed integer n in free format followed by one blank.

: . n --
 S->D Sign-extend the single integer.
 D. Free format output.
;

47

? prints the value contained in addr in free format according to the current base.

: ? addr --
 @ . Fetch the number and type it out.
;

A very useful word in programming and debugging a Forth program is the word DUMP , which
dumps out an area of memory as numbers for the user to inspect. It is also useful in cases to
show large blocks of data stored in contiguous memory locations. These data can be dumped out
on the terminal.

DUMP prints the contents of n memory cells beginning at addr. Both addresses and contents are
shown in the current base.

: DUMP addr n --
 0 DO DO n times
 CR Start a new line.
 DUP 8 .R Print the address of the first cell in this line.
 8 0 DO Print the contents of 8 cells in one line .
 DUP Copy addr on stack.
 @ Get the data,
 8 .R Formatted print in fields of 8 characters.
 2+ Address of next data to be printed.
 LOOP
 8 +LOOP Increment the outer loop count by 8 and r epeat.
 DROP Discard the last address on the stack.
;

48

Chapter 9. Dictionary

In a Forth computer, the dictionary is a linked list of named entries or words which are executed
when called by name. The dictionary consists of procedures defined either in assembly codes
(code definitions) or in high level codes (colon definitions). It also contains system information
as constants and variables used by the system. Inside the computer, the dictionary is maintained
as a stack, growing from low memory towards high memory as new definitions are compiled or
assembled into the dictionary. When the text interpreter parses out a text string form the input
stream, the text is moved to the top of dictionary. If the text is the name of a new definition, it
will be left there for the compiling process to continue. If it is not a new definition, the text
interpreter will try to find a word in the dictionary with a name matching the string. The word
found in the dictionary will be executed or compiled depending on the state of the text interpreter.
The dictionary is thus the bulk of a Forth system, containing all the necessary information
necessary to make the whole system work.

The dictionary as a stack is maintained by a user variable named DP, the dictionary pointer,
which points to the first empty memory location above the dictionary. A few utility words move
DP around to effect various functions involving the dictionary.

: HERE -- addr
 DP @ Fetch the address of the next available memo ry location above the

dictionary.
;

: ALLOT n --
 DP +! Increment dictionary pointer DP by n, reser ving n bytes of

dictionary memory for whatever purposes intended.
;

, (comma) stores n into the next available cell above dictionary and advance DP by 2, i. e.,
compile n into the dictionary.

: , n --
 HERE ! Store n into dictionary
 2 ALLOT Point DP above n, the number just compile d.
;

In fact, ',' (comma) is the most primitive kind of a compiler. With it alone, theoretically we can
build the complete dictionary, or compile anything and everything into the dictionary. All the
compiler words and assembler words are simple or complicated derivatives of ','. This feature is
clearly reflected in the nomenclature of assembly mnemonics in the Forth assembler in which all
mnemonics end with a comma.

For byte oriented processors, C, is defined to compile a byte value into the dictionary:

C, (c-comma) enters a byte b on dictionary and increment DP by 1.

: C, b --
 HERE C!
 1 ALLOT
;

49

-FIND accepts the next word delimited by blanks in the input stream to HERE, and search the
CONTEXT and then the CURRENT vocabularies for a matching name. If found, the entry's
parameter field address, a length byte, and a true flag are left on stack. Otherwise only a boolean
false flag is left.

: -FIND -- pfa b tf , or ff
 BL WORD Move text string delimited by blanks from input string to the top of

dictionary HERE .
 HERE The address of text to be matched.
 CONTEXT @ @ Fetch the name field address of the l ast word defined in the CONTEXT

vocabulary and begin the dictionary search.
 (FIND) A primitive. Search the dictionary starti ng at the address on stack for

a name matching the text at the address second on stack. Return the
parameter field address of the matching name, its length byte, and a
boolean true flag on stack for a match. If no mat ch is possible, only a
boolean false flag is left on stack.

 DUP 0= Look at the flag on stack
 IF No match in CONTEXT vocabulary
 DROP Discard the false flag
 HERE Get the address of text again
 LATEST The name field address of the last word d efined in the CURRENT vocabulary
 (FIND) Search again through the CURRENT vocabular y.
 ENDIF
;

Please note the order of the two dictionary searches in -FIND .The first search is through the
CONTEXT vocabulary. Only after no matching word is found there, is the CURRENT
vocabulary then searched. This searching policy allows words of the same name to be defined in
different vocabularies. Which word gets executed or compiled by the text interpreter will depend
upon the 'context' in which the word was defined. A sophisticated Forth system usually has three
vocabularies: the trunk FORTH vocabulary which contains all the system words, an EDITOR
vocabulary which allows a programmer to edit his source codes in screens, an an ASSEMBLER
vocabulary which has all the appropriate assembly mnemonics and control structure words. The
user can create his own vocabulary and put all his applications words in it to avoid conflicts with
words defined in the system.

A good example is the definition of the trunk vocabulary of all the Forth system words:

 VOCABULARY FORTH IMMEDIATE

All vocabularies have to be declared IMMEDIATE, so that context can be switched during
compilation. After FORTH is defined as above, whenever FORTH is encountered by the text
interpreter, the interpreter will set the user variable CONTEXT to point to the second cell of the
parameter field in the FORTH definition, which maintains the name field address of the last
word defined in the FORTH vocabulary as the starting word to be searched. Using the phrase

 FORTH DEFINITIONS

will set both the CONTEXT and the CURRENT to point to FORTH vocabulary so that new
definitions will be added to the FORTH vocabulary. The words VOCABULARY and
DEFINITIONS are defined as:

50

A defining word used in the form

 VOCABULARY cccc

to create a new vocabulary with name cccc . Invoking cccc will make it the context vocabulary
which will be searched by the text interpreter.
: VOCABULARY --
 0A081H , A dummy header at vocabulary intersectio n.
 CURRENT @ Fetch the parameter field address point ing to the last word defined

in the current vocabulary.
 CFA , Store its code field address in the second cell in parameter field.
 HERE Address of vocabulary link.
 VOC-LINK @ , Fetch the user variable VOC-LINK and insert it in the dictionary.
 VOC-LINK ! Update VOC-LINK with the link in this vocabulary.
 DOES> This is the end in defining cccc vocabulary . The next words are to

be executed when the name cccc is invoked.
 2 + CONTEXT ! When cccc is invoked, the second ce ll in its parameter field will be

stored into the variable CONTEXT . The next dictio nary search will
begin with the cccc vocabulary.

;

Used in the form:

cccc DEFINITIONS

DEFINITIONS makes cccc vocabulary the current vocabulary. Hence new definitions will be
added to the cccc vocabulary.

: DEFINITIONS --
 CONTEXT @
 CURRENT !
;

The header of a dictionary entry is composed of a name field, a link field, and a code field. The
parameter field coming after the header is the body of the entry. The name field is of variable
length from 2 to 32 bytes, depending on the length of the name from 1 to 31 characters in the
figForth model. The first byte in the name field is the length byte. The first and the last bytes in
the name field have their most significant bits set as delimiting indicators. Therefore, knowing
the address of any of the fields in the header, one can calculate the addresses of all other fields.
Different field addresses are used for different purposes. The name field address is used to print
out the name, the link field address is used in dictionary searches, the code field address is used
by the address interpreter, and the parameter field address is used to access data stored in the
parameter field. To facilitate the conversions between the addresses, a few words are defined as
follows:

51

TRAVERSE moves across the name field of a variable length name field. addr1 is the address of
either the length byte or the last character. If n=1, the motion is towards high memory; if n=-1,
the motion is towards low memory. addr2 is the address of the other end of the name field.

: TRAVERSE addr1 n -- addr2
 SWAP Get addr1 to top of stack.
 BEGIN
 OVER + Copy n and add to addr, pointing to the n ext character.
 7FH Test number for the eighth bit of a characte r
 OVER C@ Fetch the character
 < If it is greater than 127, the end is reached.
 UNTIL Loop back if not the end.
 SWAP DROP Discard n.
;

LFA converts the parameter field address to link field address.

: LFA pfa -- lfa
 4 - ;

CFA converts the parameter field address to code field address.
: CFA pfa -- cfa
 2 - ;

NFA converts the parameter field address to name field address.

: NFA pfa -- nfa
 5 - The end of name field
 -1 TRAVERSE Move to the beginning of the name fie ld.
;

PFA converts the name field address to parameter field address.

: PFA nfa -- pfa
 1 TRAVERSE Move to the end of name field.
 5 + Parameter field.
;

LATEST leaves the name field address of the last word defined in the current vocabulary.

: LATEST -- addr
 CURRENT @ @
;

To locate a word in the dictionary, a special word ' (tick) is defined to be used in the form:

 ' cccc

to search for the name cccc in the dictionary.

52

' (tick) leaves the parameter field address of a dictionary entry with a name cccc . Used in a colon
definition as a compiler directive, it compiles the parameter field address of the word into
dictionary as a literal. Issue an error message if no matching name is found.

: ' -- pfa
 -FIND Get cccc and search the dictionary, first t he context and then

current vocabularies.
 0= 0 ?ERROR Not found. Issue error message.
 DROP Matched. Drop the length byte.
 [COMPILE] Compile the next immediate word LITERAL to compile the parameter

field address at run-time.
 LITERAL
;
IMMEDIATE ' must be immediate to be useful in a co lon definition.

All the previous discussions are on words which add or compile data to the dictionary. In
program development, one will come to a point that he has to clear the dictionary of some words
no longer needed. The word FORGET allows him to discard some part of the dictionary to
reclaim the dictionary space for other uses.

Used in the form:

 FORGET cccc

FORGET deletes definitions defined after and including the word cccc . The current and context
vocabulary must be the same.

: FORGET --
 CURRENT @
 CONTEXT @ -

Compare current with context,

 18 ?ERROR if not the same, issue an error
 [COMPILE] ' Locate cccc in the dictionary.
 DUP Copy the parameter field address
 FENCE @ Compare with the contents in the user var iable FENCE ,
 < 15 ?ERROR If cccc is less than FENCE , do not f orget. FENCE guards the trunk

FORTH vocabulary from being accidentally forgotten.
 DUP NFA Fetch the name field address of cccc, and
 DP ! store in the dictionary pointer DP . Now th e top of dictionary is

redefined to be the first byte of cccc , in effect deleting all
definitions above cccc .

 LFA @ Get the link field address of cccc pointing to the word just below
it.

 CURRENT @ ! Store it in the current vocabulary, a djusting the current vocabulary
to the fact that all definitions above (including) cccc no longer
exist.

;

A powerful word VLIST prints of the names of all entries defined in the context vocabulary to
allow the programmer to peek at the definitions in the dictionary.

53

VLIST lists the names of all entries in the context vocabulary. The 'break' key on terminal will
terminate the listing.

: VLIST --
 80H OUT ! Initialize the output character counter OUT to print 128 characters.
 CONTEXT @ @ Fetch the name field address of the l ast word in the context

vocabulary.
 BEGIN
 OUT @ Get the output character count
 C/L > If it is larger than characters/line of th e output device,
 IF
 CR 0 OUT ! output a CR/LF and reset OUT .
 ENDIF
 DUP ID. Type out the name and
 SPACE SPACE add two spaces.
 PFA LFA @ Get the link pointing to previous word .
 DUP 0= See if it is zero, the end of the link,
 ?TERMINAL OR or if the break key on terminal was pressed.
 UNTIL Exit at the end of link or after break key was pressed; otherwise

continue the listing of names.
 DROP Discard the parameter field address on stack and return.
;

54

Chapter 10. Virtual Memory

In a computer system, the core memory or the semiconductor memory is a limited and the most
expensive resource which users wished to be infinite. Since it is physically impossible to have
infinite amount of memory inside a computer, the next best thing is the magnetic disk memory
using hard disks or floppy diskettes. Because the characteristics of the disk memory is very much
different from those of the core memory, the use of disk memory often requires some device
handlers to transfer data or programs between the computer and the disk. In most mainframe
computers, disks and other peripherals are treated as files managed by the operating system,
which insulates the users from the devices. The usage of the disk memory in high level language
thus needs a fair amount of software overhead in terms of memory space and execution speed.

Forth treats the disk as a direct extension of the core memory in blocks of B/BUF bytes. A user
can read from these blocks and write to them much the same as he is reading or writing the core
memory. Thus the disk memory becomes a virtual memory of the computer. The user can use it
freely without the burdens of addressing the disk and managing the I/O. Implementing this
virtual memory concept in the Forth system makes available the entire disk to the user, giving
him essentially unlimited memory space to solve his problem.

Disk memory in Forth is organized into blocks of B/BUF bytes. The blocks are numbered
sequentially from 0 to the disk capacity. Forth system maintains an area in high memory as disk
buffers. Data from the disk are read into the buffers, and the data in buffers can be written back
to disk. As implemented in the figForth model, each disk buffer is 132 bytes long, corresponding
to 128 byte/sector in disk with 4 bytes of buffer information. The length of buffer can be changed
by modifying the constant B/BUF which is the number of bytes the disk spits out each time it is
accessed, usually one sector. B/BUF must be a power of 2 (64, 128, 256, 512, or 1024). The
constant B/SCR contains the value of the number of blocks per screen which is used in editing
texts from disk. B/SCR is equal to 1024 divided by B/BUF. Disk buffers in memory are
schematically shown in Fig. 9, assuming that each buffer is 132 bytes long.

Several other user variables are used to maintain the disk buffers. FIRST and LIMIT define the
lower and upper bounds of the buffer area. LIMIT - FIRST must be multiples of B/BUF + 4
bytes. The variable PREV points to the address of the buffer which was most recently referenced,
and the variable USE points to the least referenced buffer, which will be used to receive a new
sector of data from disk if requested.

The most important and the most used word to transfer data into and out of the disk is BLOCK.
BLOCK calls another word BUFFER to look for an available buffer. BUFFER in turn calls a
primitive word R/W to do the actual work of reading or writing the disk. These and other related
words are to be discussed here. A flow chart of BLOCK is shown in Fig. 10 for better
comprehension.

55

Figure 9. Disk Buffers

BLOCK leaves the memory address of the disk buffer containing data from the n'th block in disk.
If the block is not already in memory, it is read from disk to the least recently written disk buffer.
If the contents of this disk buffer was marked as updated, it is written back to disk before the n'th
block is read and written over data in the buffer.

56

: BLOCK n -- addr
 OFFSET @ + Add disk offset to block number n, all owing access to second or

higher disk drives.
 >R Save the block number on return stack.
 PREV @ Get the block number contained in PREV, po inting to the most

recently accessed buffer.
 DUP @ Get the block number pointed to by PREV ,
 R - Compare to the block number saved on return s tack,
 DUP + Discard the left most bit, which is the upd ate indicator.
 IF Block number n was not previously referenced. Prepare disk access.
 BEGIN Scan the buffers and look for a buffer whi ch might contain block n

already.
 +BUF 0= Advance a buffer
 IF This buffer is pointed to by PREV , all buff ers scanned.
 DROP Discard the buffer address
 R BUFFER Find the disk sector, update the sect or if necessary.
 DUP R 1 R/W Read one sector from the disk.
 2 - Backup to the buffer address of block n.
 ENDIF
 DUP @ Beginning address of the buffer, with a b lock number in it.
 R - Compare to the block number n.
 DUP + 0= Discard the update bit,
 UNTIL Loop until buffer block number matches n.
 DUP PREV ! Store the buffer address in PREV .
 ENDIF
 R> DROP Clear return stack.
 2+ Get the address where data begin.
;

To access a disk block, one uses the command:

 n BLOCK

The word BLOCK leaves the address of the first cell containing data read from the disk, and the
user can now examine the information in this entire block. If he alters any data in this block, he
should make sure that the update bit in the cell preceding the data is set by using the command
UPDATE . This way new data will be written back to disk before the buffer is used to access
some other block of data.

+BUF advances the disk buffer address addr1 to the address of the next buffer addr2 . Boolean f
is false when addr2 is the buffer presently pointed to by the variable PREV .

: +BUF addr1 -- addr2 f
 B/BUF 4 + Size of a buffer
 + addr2
 DUP LIMIT = addr2=LIMIT?
 IF Yes, buffer out of bound.
 DROP FIRST Make addr2=FIRST
 ENDIF
 DUP PREV - Leave boolean flag on stack.
;

57

Figure 10. BLOCK

BUFFER obtains the next block buffer and assign it to block n . If the contents of the buffer were
marked as updated, it is written to the disk. The block n is not read from the disk. The address
left on stack is the first cell in the buffer for data storage.

58

: BUFFER n -- addr
 USE @ Fetch the user variable USE .
 DUP >R Save a copy on return stack.
 BEGIN
 +BUF Find the next buffer, avoiding the buffer p ointed to by PREV
 UNTIL
 USE ! Store the address to be used the next time.
 R @ 0< Test the first cell in the buffer. See if the update bit is set.
 IF The buffer was updated. Write its contents ba ck to disk.
 R 2+ The first cell of data memory.
 R @ 7FFFH AND Discard the update bit. What's le ft is the block number of the updated

buffer.
 0 R/W Write the buffer to disk to update the dis k storage. R/W is the

primitive word to read or write a sector of disk.
 ENDIF
 R ! Write n to address pointed to by USE .
 R PREV ! Assign this buffer as PREV .
 R> 2+ addr pointing to the first data cell in the buffer.
;

R/W is the fig-Forth standard disk read/write linkage. addr specifies the source or destination
block buffer, n is the sequential block number on disk, and f is a flag. f=0 for disk write and f=1
for read. R/W calculates the physical location of the block on disk, performs the read or write
operations, and does an error checking to verify the transaction. R/W is a primitive word whose
definition depends on the CPU and the disk interfacing hardware.

As mentioned before, each buffer has B/BUF + 4 bytes of memory. The first cell in the buffer
contains a disk block number in the lower 15 bits. Thus the Forth system can address up to
32767 blocks of virtual memory. The msb or 16th bit in this cell is call the 'update bit'. When this
bit is set by the word UPDATE, the Forth system will be notified that the contents in this buffer
were altered. When the memory space of this buffer is needed to receive another block of data,
the update bit when set causes the buffer to be written back to the disk before the other block is
read in. It is this update bit which controls the disk system so that the disk always has the data
kept up to date. If the update bit is not set, the contents in the buffer should be identical to those
on the disk and there is no need to rewrite the buffer back to disk. Hence the new block is
directly read in and overwriting the old block buffer.

The data of B/BUF bytes start at the second cell in the buffer. The last cell should always be zero,
which is the stop signal to the compiler. The user should be very careful not to change this cell.
If this cell is not zero, the compiler might compile across the buffer boundaries and most likely
would cause the system to crash. A null byte in the text string will force the text interpreter to
execute the NULL or 'X' word, which terminates the compiling process and returns control to the
text interpreter.

UPDATE marks the most recently referenced disk buffer, pointed to by PREV as altered. This
buffer will subsequently be written back to disk should it be required to store a different block of
data.

: UPDATE --
 PREV @ @ Fetch the first cell in the buffer point ed to by PREV .
 8000H OR Set the update bit.
 PREV @ ! Store back.
;

59

EMPTY-BUFFERS erases all disk buffers. Updated buffers are not written back to disk. This
word is used in case the user knows that the buffers were disturbed and he wishes to preserve the
unmodified data on disk.

: EMPTY-BUFFERS --
 FIRST Start of buffer
 LIMIT End of buffer
 OVER - Length of buffer in bytes
 ERASE Clear the buffers by writing zeros into the m.
;

In cases where more than one disk drive is used in a system, a user variable OFFSET is
maintained so that the user can easily access the second or higher drives as conveniently as the
first drive. OFFSET contains the first block number of a particular drive. The words DR0 and
DR1 are defined to switch between disk drives:

: DR0 --
 0 OFFSET !
;
: DR1 --
 2000 OFFSET !
;

In this case the first drive has 2000 sectors of storage volume.

FLUSH writes all updated buffers back to disk.

: FLUSH --
 NBUF+1 Total number of buffers + 1
 0 DO Go through all buffers
 0 BUFFER Force updated buffers to be written bac k to disk.
 DROP Discard the buffer data address.
 LOOP
;

Disk storage is mainly used for two purposes: to store programt ext, and to store data. The
storing and retrieving of data are topics of application outside the scope of this book. Basically,
the data flow to and from disk can be controlled by the word BLOCK and its relatives as
discussed previously in this Chapter. On the other hand, Forth has provided special mechanisms
to process program text stored on disk. The text interpreter can process input text either from the
terminal of from disk blocks and it interprets or compiles them in a similar fashion.

A user variable BLK contains the block number if the text to be interpreted comes from the disk
block of that number. If BLK contains a zero, the interpreter will assume that the input text is
from the terminal. The command to interpret text in block n is:

 n LOAD

60

LOAD begins interpreting screen n . Loading will be terminated at the end of the screen or at ;S .

: LOAD n --
 BLK @ >R Save BLK on return stack. BLK contains the current block number

under interpretation. Saving it allows one disk bl ock to load
other disk blocks, the nested loading.

 IN @ >R The character pointer pointing to the nex t word to be interpreted
has to be saved also.

 0 IN ! Initialize IN to point to the beginning of text block.
 B/SCR * Find the block number from the screen num ber n .
 BLK ! Store the block number in BLK .
 INTERPRET Call text interpreter to process the te xt block.
 R> IN ! After interpreting the whole block, resto re IN and BLK .
 R> BLK !
;

As discussed in WORD, WORD takes its input from the terminal if BLK is zero; otherwise, it
calls BLOCK to bring in a block of text disk and starts interpretation at the beginning of the
block. In each disk buffer the first cell (the head) contains a block number with its msb as the
update bit, and the last cell (the tail) contains two bytes of zero. After the text interpreter scans
over the entire block, it will eventually pick up the tail of zeros. The interpretation will be
terminated at this point because the zero (ASCII NUL) forces the interpreter to execute the
NULL or 'X' word which prints "ok" message on terminal and returns control to the terminal. To
terminate the interpretation before the end of a block, the word ;S should be used in a text block.

Saving BLK and IN on the return stack allows the nesting of LOAD commands. In a block of
text, 'n LOAD' can be used to suspend temporarily the loading of the current block and start
loading text from the n'th block. The general practice in most Forth systems is to reserve a block
containing nothing but load commands. This is called a load block. When the load block is
interpreted, it will load in all the blocks needed for an application, like a bootstrap routine in a
conventional computer.

In a large project the program text spreads over many blocks. If the text is sequential over a
range of blocks, a word --> can be used to continue interpretation across the block boundary to
start interpretation of the next block.

--> (next screen) continues interpreting the next disk block.

: --> --
 ?LOADING Issue an error message if not loading.
 0 IN ! Initialize IN , the character pointer.
 B/SCR Blocks/screen
 BLK @
 OVER MOD - Increment value to the next block.
 BLK +! New block number stored in BLK .
;
IMMEDIATE The crossover of block boundary must be executed immediately.

If the text is not written in sequential blocks, a load block should be used instead of the -->
command. The load block with appropriate comments serves also as a directory of the blocks
involved in an application. Since --> acts like a GOTO statement without returning to the place it
started, its use is discouraged. The loading block is much preferred.

61

Chapter 11. Defining Words

The Forth language is a major synthesis of many concepts and techniques used for sometime in
the computer industry, such as stacks, dictionary, virtual memory, and the interpreter. The single
most important invention by Charles Moore in developing this language which wrapped all these
elements tegether and rolled them into a small yet powerful operating system is the code field in
the header of a definition. The code field contains the address of a routine to be executed when
the definition is called. This routine determines the characteristics of the definition, and
interprets the data stored in the parameter field accordingly. In the basic Forth system, only a
very small set of code field routines are defined and are used to create many types of definitions
often used in programming. The types of definitions commonly used are colon definitions, code
definitions, constants, and variables.

The most interesting feature in the Forth language is that the machinery used to define these
definitions is accessible to the user for him to create new types of definitions. The mechanism is
simply to define new code field routines which will correctly interpret a new class of words. The
freedom to create new types of definitions, or in a mind bogging phrase--to define defining
words-- was coined as the extensibility of Forth language. The process of adding a new
definition to the dictionary--create a header, select the address of a code routine and put in the
code field, and compile data or addresses into the parameter field--is termed 'to define a word'.
The words like ':', CODE , CONSTANT , VARIABLE , etc., which cause a new word to be
defined or compiled into the dictionary, are thus called defining words. The process of
generating a word of this kind, the defining word, is 'to define a defining word'. Our subject in
this Chapter is how to define a word which defines a class of words.

To create a definition , two things must be done properly: one is to specify how this definition is
to be compiled and how this definition is to be constructed in the dictionary; and the second is to
specify how this definition is to be executed when it is called by the text interpreter.
Consequently, a defining word consists of two parts: one to be used by the compiler to generate a
definition in dictionary, and the other part to be executed when the definition is called. All words
generated by this defining word will have their code fields containing the same address pointing
to the same run-time routine.

There are two ways to define new defining words. If the run-time routine pointed to by the code
field is to be defined in machine assembly codes, the format is:

 : cccc ---;CODE assembly mnemonics

If the run-time routine is coded in high level words as in a colon definition, the format is:

 : cccc <BUILDS --- DOES> --- ;

In the above formats, cccc is the name of the new defining word, --- denotes a series of
predefined words, and 'assembly mnemonics' are assembly codes if an assembler has been
defined in the dictionary. If there is no assembler in the Forth system, machine codes in numeric
form can be compiled into the dictionary to construct the run-time code routine.

62

Executing the new defining word cccc in the form:

 cccc nnnn

will create a new definition nnnn in the dictionary and the words denoted by --- up to ;CODE or
DOES> are executed to complete the process of building the definition in the dictionary. The
code field of this new definition will contain the address of the routine immediately
following ;CODE or DOES> . Consequently, when the newly defined word is called by the
interpreter, the run-time routine will be executed.

The above discussion might be somewhat confusing because of the context of defining a defining
word. It is. The best way of explaining how the concept works is probably with a lot of examples.
Here we shall start with the figForth definitions of ;CODE , <BUILDS , and DOES> , followed
by the two simple defining words CONSTANT and VARIABLE . The most useful defining
word ':' was discussed previously in Chapter 5 on the compiler. It should be reviewed carefully.

;CODE stops compilation and terminate a new defining word cccc by compiling the run-time
routine (;CODE) . Assemble the assembly mnemonics following. Used in the form: : cccc --
 ;CODE assembly mnemonics

: ;CODE --
 ?CSP Check the stack pointer. Issue an error mes sage if not equal to what was

saved in CSP by ':' .
 COMPILE When ;CODE is executed at run-time, the a ddress of the next word will be

compiled into dictionary.
 (;CODE) Run-time procedure which completes the de finition of a new defining word.
 [COMPILE] Compile the next immediate word instead of executing it.
 [Return to executing state to assemble the follo wing assembly mnemonics.
 SMUDGE Toggle the smudge bit in the length byte, and complete the new

definition.
; IMMEDIATE

A class of definitions can then be created by using cccc in the form:

 cccc nnnn

The code fields in nnnn point to the code routine as assembled by the mnemonics
following ;CODE in the definition of cccc . The word nnnn when called to be executed will first
jump to this code routine and execute this routine at run-time. What will happen afterwards is
totally dependent on this code routine. The presence of the code field and hence the execution of
the code routine after the word is called makes figForth an indirectly threaded coded system. The
code field allows users to extend Forth language to define new data structures and new control
structures which are practically impossible in any other high level language. This property is
called the extensibility of Forth language.

63

(;CODE) is the run-time procedure compiled by ;CODE . Rewrite the code field of the most
recently defined word to point to the following machine code sequence.

: (;CODE) --
 R> Pop the address of the next instruction off th e return stack, which is

the starting address of the run-time code routine.
 LATEST Get the name field address of the word und er construction.
 PFA CFA ! Find the code field address and store i n it the address of the code

routine to be executed at run-time.
;

The pair of words <BUILDS -- DOES> is used to define new defining words in the form:

 : cccc <BUILDS --- DOES> --- ;

The difference from the ;CODE construct is that <BUILDS-DOES> gives users the convenience
of defining the code field routine in terms of other high level definitions, saving them the trouble
of coding these routines in assembly mnemonics. Using high level words to define a defining
word makes them portable to other types of computers also speaking Forth. The price to be paid
is the slower speed in executing words defined by these defining words. This is the tradeoff a
user must weigh to his own satisfaction.

When cccc is executed, <BUILDS will create a new header for a definition with the name taken
from the next text in the input stream.

: <BUILDS --
 0 CONSTANT Create a new entry in the dictionary w ith a zero in its parameter field.

It will be replaced by the address of the code fie ld routine after DOES>
when DOES> is executed.

;

DORS> defines run-time routine action within a high level defining word. DOES> alters the
code field and the first cell in the parameter field in the defining word, so that when a new word
created by this defining word is called, the sequence of words compiled after DOES> will be
executed.

: DOES> --
 R> Get the address of the first word after DOES> .
 LATEST Get the name field address of the new defi nition under construction.
 PFA ! Store the address of the run-time routine a s the first parameter.
 ;CODE When DOES> is executed, it will first do th e following code routine

because ;CODE puts the next address into the code field of CODE> .
DODOE: -- pfa
 MOV IP,-(RP) Push the address of the next instruc tion on the return stack.
 MOV (W)+,IP Put the address of the run-time routi ne in IP .
 MOV W,-(S) W was incremented in the last instruct ion, pointing to the parameter

field. Push the first parameter on stack.
NEXT

In the figForth model, there are three often used defining words beside ':' and CODE:
CONSTANT, VARIABLE, and USER. They are themselves defined as ;CODE words.

64

CONSTANT creates a new word with the next text string as its name and with n inserted into its
parameter field.

: CONSTANT n --
 CREATE Create a new dictionary header with the ne xt text string.
 SMUDGE Toggle the smudge bit in the length byte i n the name field.
 , Compile n into the parameter field.
;CODE The code field of all constants defined by C ONSTANT will have the address

of the following code routine:
DOCON: The constant interpreter.
 MOV (W),-(S) Push the contents of parameter field to the stack.
NEXT Return to execute the next word.

It is used in the following form:

 n CONSTANT cccc

to define cccc as a new constant. When cccc is later called, the value n will be pushed on the data
stack. This is the best way to store a constant in the dictionary for later uses, if this constant is
used often. When a number is compiled as an in-line literal in a colon definition, 4 bytes are used
because the word LIT must be compile before the literal so that the address interpreter would not
mistakenly interpret it as a word address. The overhead of defining a constant is 6 bytes and the
bytes needed for name field, averaging to about 10 bytes per definition. If the constant will be
used more than thrice, savings in memory space justify the defining of a constant.

VARIABLE defines a new word with the following text as its name and its parameter field
initialized to n. When the new word is executed, the parameter field address instead of its content
is pushed on the stack.

: VARIABLE n --
 CONSTANT Create a dictionary header with n in the parameter field. Compiling

action in defining a variable is identical to that of defining a
constant, but run-time behavior is different.

;CODE Code field in a variable points to following code routine.
DOVAR: Variable interpreter.
 MOV W,-(S) Push the parameter field address on da ta stack.
NEXT

Variables are defined by the following commands:

 n VARIABLE cccc

When cccc is later executed, the address of the variable is pushed on the data stack. To get the
current value of this variable, one should use the @ command :

 cccc @

and to change the value to a new one n1,

 n1 cccc !

65

USER creates a user variable with n in the parameter field. n is a fixed offset relative to the user
area pointer UP for this user variable.

: USER n --
 CONSTANT n is compiled as a constant.
;CODE The run-time code routine is labelled as DOU SE :
DOUSE: User variable interpreter.
 MOV (W),-(S) Push n on data stack.
 ADD UP,(S) Add the base address of the user area.
NEXT Return. Now the top of data stack has the ad dress pointing to the user

variable.

After a user variable is defined as:

 n USER cccc

the word cccc can be called. When cccc is executed, UP+n will be pushed on the data stack and
its contents can be examined by @ or modified by ! . In figForth, the user variables are used
similar to other variables. Their significance is not apparent because figForth generally does not
support multitasking. When Forth is used in a multitasking environment, each task owns a copy
of all the user variables, which define the context of a task and allow tasks to be switched
conveniently. This is a topic much too advanced to be discussed here.

66

Chapter 12. Control Structures

Most definitions in the Forth dictionary are defined by the colon ':' word. They are called colon
definitions, Forth definitions, or high level definitions. When the text interpreter sees the word ':',
it creates a header using the text string following colon as the name and then enters the
compiling state. In the compiling state, the text interpreter reads in a text line from the input
stream, parses out strings delimited by blanks, and tries to match them with dictionary entries. If
a string matches with a dictionary entry, the code field address of the matching word is added to
the parameter field of the new definition under construction. This is what we call the compiling
process. The compiling process ends when the terminating word ; or ;CODE is encountered.

When a colon definition is later executed, the word addresses in its parameter field are executed
by the address interpreter in the order as compiled. If it is necessary to alter the sequential
execution process at run-time, special word has to be used in the compiling process to set up the
mechanism of branching and looping, to build the control structures and the program constructs
in the colon definition. These special words are equivalent to compiler directives or assembly
directives in conventional computer languages. These words do not become part of the compiled
definition, but cause specific actions during compilation to build the control structure into the
definition and to ensure its correct execution at run-time. These special words in Forth are
characterized by the fact that they all have a precedence bit in the length byte of the name field
set to one. Words with precedence bit set are called immediate words because the text interpreter
turns these words over to the address interpreter for execution even during compilation.

In this Chapter, we shall concern ourselves with the means by which the following control
structures are built in a colon definition:

 IF -- ELSE -- ENDIF
 BEGIN -- UNTIL
 BEGIN -- WHILE -- REPEAT
and DO -- I -- LEAVE -- LOOP

However, before discussing the detailed definitions of these words, a few utility words should be
presented to make the discussions more intelligible. The word COMPILE and [COMPILE] are
used to handle special compiling situations. The words BRANCH and 0BRANCH are the actual
words which get compiled into the definition to do the branching and looping.

Words in a colon definition are normally compiled into dictionary and their code field address
are compiled into the parameter field of the colon definition under compilation. Sometimes the
compilation should be delayed to the run-time, i. e., the word is to be compiled not when the
colon definition is being compiled, but when the colon definition is later executed. To defer
compilation until run-time, the instruction COMPILE must precede the word.

67

COMPILE defers compilation until run-time. When the word containing COMPILE is executed,
the code field address of the word following COMPILE is compiled into the dictionary at run-
time.

: COMPILE --
 ?COMP Error if not compiling.
 R> Top of return stack is pointing to the next wo rd following
 COMPILE .
 DUP 2+ >R Increment this pointer by 2 to point to the second word ollowing

COMPILE , which will be the next word to be execut ed. The word
immediately following COMPILE should be compiled, not executed.

 @ , Do the compilation at run-time.
;

Immediate words, because of their precedence bits, are executed during compilation. However, if
one wanted to use the word sequence in an immediate word as a regular colon definition, i. e. to
compile it in-line, the word [COMPILE] can be used to force the following immediate word to
be compiled into a definition. The word [COMPILE] is used in the form

 : xxxx --- [COMPILE] cccc --- ;

in which cccc is the name of an immediate word.

[COMPILE] forces the compilation of the following immediate word.

: [COMPILE] --
 -FIND Accept next text string and search dictiona ry for a match.
 0= 0 ?ERROR No matching entry was found. Issue a n error message.
 DROP Discard the length byte of the found name.
 CFA , Convert the name field address to code fiel d address and compile it into

the dictionary.
; IMMEDIATE

The two words changing execution sequence in a colon definition are BRANCH and 0BRANCH,
both are primitive code definitions. They are of such importance that I feel they should be treated
fully. The codes are from PDP-11 fig-Forth.

The run-time procedure to branch unconditionally. An in-line offset is added to the interpretive
pointer IP to branch forward or backward.

BRANCH is compiled by ELSE, AGAIN, and REPEAT. It forces a branch to the offset address
following it.

CODE BRANCH --
 ADD (IP),IP Add the contents of the next cell poi nted to by IP to IP itself. The

result is put back to IP which points to the next word to be executed.
The next word can be out of the regular execution order.

NEXT Return to the word pointed to by IP , complet ing the unconditional
branching.

68

0BRANCH is the run-time procedure to branch conditionally. If f on stack is false (zero), the
following in-line offset is added to IP to branch forward or backward. Compiled by IF, UNTIL,
and WHILE.

CODE 0BRANCH f --
 TST (S)+ Test the flag f on stack.
 BNE ZBRA1 Not zero, continue executing next word b y skipping the offset.
 ADD (IP),IP f is zero, do the branching.
NEXT
ZBRA1: A common routine shared with LOOP.
 ADD #2,IP f is true, skip the in-line offset. Pi ck up the word following the

offset and continue execution.
NEXT

Conditional branching in a colon definition uses the forms:

 IF (true part) --- ENDIF
or IF (true part) --- ELSE (false part) --- ENDIF

At run-time, IF selects to execute the true part of words immediately following it, if the top item
on data stack is true (non-zero). If the flag is false (zero), the true part will be skipped to after
ELSE to execute the false part. After executing either part, execution resumes after ENDIF .
ELSE and the false part are optional. If ELSE part is missing, execution skips to just after
ENDIF .

IF compiles 0BRANCH and reserves one more cell for an offset value at addr . addr will be used
later to resolve the offset value for branching. n is set to 2 for error checking when ELSE or
ENDIF is later compiled.

: IF f -- , at run-time
 -- addr n , at compile time
 COMPILE 0BRANCH Compile the code field address of the run-time routine 0BRANCH into the

dictionary when IF is executed.
 HERE Push dictionary address on stack to be used by ELSE or ENDIF to calculate

branching offset.
 0 , Compile a dummy zero here, later it is to be replaced by an offset value

used by 0BRANCH to compute the next word address.
 2 Error checking number.
; IMMEDIATE IF in a colon definition must be execu ted, not compiled.

ENDIF computes the forward branching offset from addr to HERE and store it at addr . Test n to
match the previous IF or ELSE in the definition.

: ENDIF addr n -- , at compile time
 ?COMP Issue an error message if not compiling.
 2 ?PAIRS ENDIF must be paired with IF or ELSE . If n is not 2, the structure was

disturbed or improperly nested. Issue an error me ssage.
 HERE Push the current dictionary address to stack .
 OVER - HERE-addr is the forward branching offset.
 SWAP ! Store the offset in addr , thus completing the IF-ENDIF or IF-ELSE-ENDIF

construct.
; IMMEDIATE

69

ELSE compiles BRANCH and reserve a cell for forward branching offset. Resolve the pending
forward branching from IF by computing the offset from addr1 to HERE and storing it at addr1 .

: ELSE addr1 n1 -- addr2 n2 , at compile time
 2 ?PAIRS Error checking for proper nesting.
 COMPILE BRANCH Compile BRANCH at run-time when EL SE is executed.
 HERE Push HERE on stack as addr2 .
 0 , Dummy zero reserving a cell for branching to ENDIF .
 SWAP Move addr1 to top of stack.
 [COMPILE] ENDIF Call ENDIF to work on the offset for forward branching. ENDIF is an

immediate word. To compile it the word [COMPILE] must be used.
 2 Leave n2 on stack for error checking.
; IMMEDIATE

Indefinite loops are to be constructed using the following forms:

 BEGIN --- UNTIL
or BEGIN --- WHILE --- REPEAT

BEGIN simply leaves the current dictionary address on stack for UNTIL or REPEAT to pickup
and to compute a backward branching offset at the end of the loop. WHILE is similar to IF in
that it skips to just after REPEAT if the flag on stack at that point isfalse, thus terminating the
indefinite loop from inside the loop. UNTIL terminates the loop only at the end of the loop.

At compile time BEGIN leaves the dictionary address on stack with an error checking number n.
It does not compile anything to the dictionary.

: BEGIN -- addr n , at compile time
 ?COMP Issue an error message if not compiling.
 HERE Push dictionary pointer on stack to be used to compute backward branching

offset.
 1 Error checking number.
; IMMEDIATE

BACK is a run-time procedure computing the backward branching offset from HERE to addr on
stack, and compile this offset value in the next in-line cell in the dictionary.

: BACK addr –
 HERE - , Compile addr-HERE, the backward branchin g offset.
;

UNTIL compiles 0BRANCH and an in-line offset from HERE to addr. Test the error checking
code n. If not equal to 1, there is an error in the nesting structure.

: UNTIL addr n -- , at compile time
 1 ?PAIRS If n is not 1, issue an error message.
 COMPILE 0BRANCH Compile 0BRANCH at run-time.
 BACK Compute backward branching offset and compil e the offset.
; IMMEDIATE

When the colon definition containing the BEGIN-UNTIL structure is executed, the word
0BRANCH compiled by UNTIL at the end of a loop will test the flag on stack at that instant. If
the flag is false, 0BRANCH will branch back to the word following BEGIN. The words between
BEGIN and UNTIL will be repeatedly executed until the flag is true at UNTIL; at this instant,
the interpreter will abort this loop and continue executing the words following UNTIL.

70

AGAIN is similar to UNTIL but compiles BRANCH instead of 0BRANCH in the dictionary to
construct an infinite loop. Execution cannot leave this loop unless the words R> DROP are
executed in a word inside this loop.

: AGAIN addr n -- , atcompile time
 1 ?PAIRS Error checking.
 COMPILE BRANCH Compile BRANCH and an offset to BE GIN .
 BACK
; IMMEDIATE

The construct BEGIN-WHILE-REPEAT uses WHILE to abort a loop in the middle of the loop.
WHILE will test the flag left on stack at that point. If the flag is true, WHILE continues the
execution of following words until REPEAT, which then branches unconditionally back to
BEGIN. If the flag is false, WHILE causes execution to skip the words up to REPEAT, thus
exiting the loop structure.

WHILE compiles 0BRANCH and a dummy offset for REPEAT to resolve. addr1 and n1 as left
by BEGIN are also passed on to be processed by REPEAT.

: WHILE addr1 n1 -- addr1 n1 addr2 n2 , at compile time
 [COMPILE] IF Call IF to compile 0BRANCH and the o ffset.
 2+ Leave 4 as n2 to be checked by REPEAT .
; IMMEDIATE

REPEAT compiles BRANCH to jump back to BEGIN. Resolve also the branching offset
required by WHILE.

: REPEAT addr1 n1 addr2 n2 -- , at compile time
 >R >R Get addr2 and n2 out of the way.
 [COMPILE]
 AGAIN

Let AGAIN do the dirty work of compiling an uncondi tional branch back to BEGIN .

 R> R> Restore addr2 and n2 .
 [COMPILE]
 ENDIF

Use ENDIF to resolve the forward branching needed b y WHILE .

; IMMEDIATE

The IF-ELSE-ENDIF and the BEGIN-UNTIL types of constructs simply redirect the execution
sequence inside of a colon definition. As discussed previously, the definitions of these compiler
directives are quite short and simple, involving only branching and conditional branching. The
DO-LOOP type of construct is more complicated because additional mechanisms other than
branching are needed to keep track of the loop limits and loop counts. The run-time functions of
DO are to take the lower and upper loop limits off the data stack, push them on the return stack,
and setup the address for LOOP to jump back. LOOP at run-time will then increment the loop
count on top of the return stack and compare its value to that of the loop limit just under it on the
return stack. If the loop count equals or exceeds the loop limit, the loop is completed and
execution goes to the next word after LOOP. Otherwise, LOOP will branch back to DO and
continue the looping. +LOOP behaves similarly to LOOP except that it increment the loop count
by a number supplied on the data stack.

The words DO, LOOP, and +LOOP call on their respective run-time routines to do the work.
The detailed codes in these run-time routines will be discussed also.

71

DO-LOOP's are set up in a colon definition in the following forms:

 DO --- I --- LOOP
or DO --- I --- +LOOP

At run-time, DO begins a sequence of repetitive executionscontrolled by a loop count and a loop
limit. The starting value of the loop count and the loop limit are taken off the data stack at run
time. Upon reaching the word LOOP, the loop count is incremented by one. Until the new loop
count equals or exceeds the loop limit, execution loops back to the word just after DO. Otherwise,
the two loop parameters are removed from the return stack and the execution continues ahead at
the word after LOOP. Within a loop, the word I will copy the loop count to data stack to be used
in computations.

: DO n1 n2 -- , at run-time
 -- addr n , at compile time
 COMPILE (DO) Compile the run-time routine address of (DO) into dictionary.
 HERE Address addr for backward branching from LOO P or +LOOP.
 3 Number for error checking.
; IMMEDIATE

(DO) is the run-time routine starting a DO-LOOP. n1 and n2 are pushed on the return stack as
loop limit and loop index, respectively.

CODE (DO) n1 n2 --
 MOV 2(S),-(RP) Push the loop limit n1 on return s tack.
 MOV (S),-(RP) Push the initial loop count n2 on r eturn stack above n1 .
 ADD #4,S Adjust the stack pointer to drop n1 and n2 off the data stack.
NEXT Return.

I returns the current loop index inside a DO-LOOP.

CODE I -- n
 MOV (RP),-(S) Copy the loop count on return stack and push it to data stack.
NEXT

LEAVE makes the loop limit equal to the loop count and forces the loop to terminate at LOOP or
+LOOP .

CODE LEAVE --
 MOV (RP),2(RP) Copy loop count to loop limit on t he return stack.
NEXT

LOOP terminates a DO-LOOP structure in a colon definition.

: LOOP addr n --
 3 ?PAIRS Check the number left by DO . If it is not 3, issue an error message.

The loop is not properly nested.
 COMPLIE (LOOP) Compile (LOOP) at run-time when LO OP is executed.
 BACK Compute and compile the backward branch offs et.
; IMMEDIATE

72

(LOOP) is the run-time routine of LOOP .

CODE (LOOP) --
 INC (RP) Increment the loop count on return stack .
 CMP (RP),2(RP) Compare loop count with the loop l imit.
 BGE LOOP1 Jump to LOOP1 if the loop count is equa l or greater than the loop limit.
 ADD (IP),IP Add backward branch offset to IP and
 NEXT branch back to repeat the DO-LOOP.
LOOP1:
 ADD #4,RP Exit the loop. Discard the loop parame ters off the return stack.
 ADD #2,IP Advance IP over the in-line offset numb er and
NEXT continue executing the next word after LOOP .

When the loop count must be incremented by an amount other than one, +LOOP should be used
to close a DO-LOOP . It is used in the form:

 DO --- I --- +LOOP

+LOOP increments the loop index by n1 on the stack and test for loop completion. Branch back
to DO if not yet done.

: +LOOP n1 -- , at run-time
 addr n1 -- , at compile time
 3 ?PAIRS Check n. If it is not 3 as left by DO , issue an error message.
 COMPILE (+LOOP) Compile the address of (+LOOP) at run-time when the colon definition is

being built.
 BACK Compile back branch offset.
; IMMEDIATE

(+LOOP) is the run-time routine at the end of a DO--+LOOP loop.

CODE (+LOOP) n --
 ADD (S),(RP) Add n to the loop count on return st ack.
 TST (S)+ Test and pop data stack
 BLT LOOP3 If n is negative, jump to LOOP3 for spe cial processing.
 CMP 2(RP),(RP) n is positive. Compare loop count with loop limit.
 BLE LOOP2 If the loop is done, jump to LOOP2 to e xit.
 ADD (IP),IP Not yet done, return to DO .
 NEXT
LOOP2:
 ADD #4,RP Clear return stack.
 ADD #2,IP Advance IP to the next word after +LOOP .
NEXT
LOOP3:
 CMP (RP),2(RP) Negative increment n . Reverse co mparison.
 BLE LOOP2
 ADD (IP),IP Not yet done with the loop. Return t o the word after DO .
NEXT

73

Chapter 13. Editor

In a Forth computer, new definitions are stored in the dictionary in a compiled form. The source
text is not saved. Although there are many different ways to recover textual information from the
compiled definitions, to 'de-compile' a definition is not the best way to write and edit Forth
definitions. As we have discussed in Chapter 10 on the virtual memory, Forth uses the disk to
store source text which can be compiled very easily using the word LOAD . To enter source text
into the disk memory and to modify them repeatedly during program development and testing, a
text editor is indispensable. As in any other language processor, the editor is the principal
interface between a programmer and the computer. A good editor makes the programming tasks
easier, and in some rare cases enjoyable.

As of now, figForth has yet to have a standardized text editor. In the figForth model, however,
there was included a sample text editor by Bill Ragsdale. I will discuss this particular editor in
this Chapter. A text editor provides important and extensive examples in using Forth language to
handle texts and strings. It is worthwhile for a serious student of the Forth language to go
through these examples carefully, to learn techniques in string manipulations.

To facilitate text editing, texts on disk are organized in blocks of 1024 bytes (a unit of screen).
Each screen is divided into 16 lines of 64 characters each. A screenful of text thus arranged fits
comfortably on the screen of an ordinary CRT terminal, hence the name 'screen'. The text on a
screen is most conveniently accessed by lines. A string within a line can be searched and its
location indicated by a screen cursor for editing actions, like inserting or deleting characters. A
text editor generally performs two quite distinguishable tasks--line editing and string editing. In
this figForth sample editor, words are defined separately for these two tasks.

Line Editor

In the text editor, a screenful of text is maintained in the disk buffers, or the screen buffer. The
screen number which denotes the physical location of this screen of text on disk is stored in a
user variable SCR. The cursor location in this screen buffer is stored in another user variable R# .
Text to be put into the screen buffer or deleted from the screen buffer is temporarily stored in the
text buffer area pointed to by the word PAD, which returns the memory address 68 bytes above
the dictionary pointer DP. PAD is used as a 'scratch pad' during editing processes, holding text
for the screen buffer or strings to be matched with the text in the screen buffer.

Most of the editor definitions have single character names to ease typing during editing. Some of
these simple names cause conflects with the names of other definitions defined in the FORTH
vocabulary. It is thus advantageous to group all the editing definitions into a separate vocabulary
called EDITOR. The EDITOR vocabulary is defined as:

 VOCABULARY EDITOR IMMEDIATE

This phrase creates the EDITOR vocabulary which is linked to the trunk FORTH vocabulary.
EDITOR when called will make EDITOR the CONTEXT vocabulary, so that definitions defined
in EDITOR will be readily accessible in editing screens of text. The phrase

74

 EDITOR DEFINITIONS

makes EDITOR vocabulary also the CURRENT vocabulary. In this way new definitions will be
added to the EDITOR vocabulary instead of being treated as regular definitions adding to the
FORTH vocabulary.

Two basic utility words are used by the editor to perform the line editing functions. TEXT moves
a line of text from the input stream to the text buffer area of PAD. The word LINE computes the
line address in the screen buffer. Text lines of 64 characters can then be transferred from PAD to
screen buffer or vice versa. We shall first present these two words before getting into the line
editing commands.

TEXT moves a text string delimited by character c from the dictionary buffer (word buffer) into
PAD, blank- filling the remainder of PAD to 64 characters.

: TEXT c --
 HERE Top of dictionary, beginning of word buffer. The text interpreter puts

the text string here.
 C/L 1+ BLANKS Fill word buffer with 65 blanks.
 WORD Move the text, delimited by character c, fro m the input stream to the

word buffer.
 PAD Address of the text buffer.
 C/L 1+ CMOVE Move the text, 64 bytes of text and 1 length byte, to PAD.
;

LINE leaves address of the beginning of line n in the screen buffer. The screen number is in SCR.
Read the disk block from disk if it is not already in the disk buffers.

: LINE n -- addr
 DUP FFF0H AND Make sure n is between 0 and 15.
 17 ?ERROR If not, issue an error message.
 SCR @ Get the screen number from SCR .
 (LINE) Read the screen into screen buffer which i s composed of the disk buffers.

Compute the address of the n'th line in the screen buffer and push it on
stack.

 DROP Discard the character count left on stack by (LINE). Only the line
address is left on stack now.

;

-MOVE copies a line of text from addr to n'th line in the current screen buffer.

: -MOVE addr n --
 LINE Get the line address in screen buffer.
 C/L CMOVE Move 64 characters from addr to line n in screen buffer.
 UPDATE Notify the disk handler this buffer has be en modified. It will be

written back to disk to update the disk storage.
;

H copies n'th line to PAD. Hold the text there ready to be typed out.

: H n --
 LINE Get the line address.
 PAD 1+ Starting address of text in PAD .
 C/L DUP PAD C! Put 64 in the length byte of PAD .
 CMOVE Move one line.
;

75

S spreads n'th line with blanks. Down shift the original n'th and subsequent lines by one line. The
last line in the screen is lost.

: S n --
 DUP 1- Lower limit of lines to be moved.
 0EH 14, the last line to be shifted down.
 DO
 I LINE Get I'th line address
 I 1+ Next line
 -MOVE Downshift one line.
 1 +LOOP Decrement loop count and repeat till done .
 E Erase the n'th line.
;

D deletes the n'th line. Move subsequent lines up one line. The delete line is held in PAD in case
it is still needed.

: D n --
 DUP H Copy the n'th line to PAD.
 0FH The last line.
 DUP ROT Get n to top of stack.
 DO
 I 1+ LINE Next line to be moved.
 I -MOVE Upshift by one line.
 LOOP
 E Erase the last line.
;

E erases the n'th line in the screen buffer by filling with 64 blanks.

: E n --
 LINE Line address.
 C/L BLANKS Fill with blanks.
 UPDATE
;

R replaces the n'th line with text stored in PAD.

: R n --
 PAD 1+ Starting address of the text in PAD.
 SWAP -MOVE Move text from PAD to n'th line.
;

P puts following text on line n. Write over its contents.

: P n --
 1 TEXT Accept the following text of C/L character s or till CR to PAD.
 R Put the text into line n.
;

I inserts text from PAD to n'th line. Shift the original n'th and subsequent lines down by one line.
The last line in the screen is lost.

: I n --
 DUP S Spread line n and pad with blanks.
 R Move PAD into line n.
;

76

CLEAR clears the n'th screen by padding with blanks.

: CLEAR n --
 SCR ! Store screen number n into SCR .
 10H 0 DO Erase 16 lines
 FORTH I Get the loop count from return stack. I was redefined by the editor to

insert line into a screen. To call the I which ge ts the loop count,
FORTH must be called to make the trunk FORTH vocab ulary the CONTEXT
vocabulary, which is searched first to get the cor rect I. This
demonstrates the use of vocabularies.

 EDITOR E Set the CONTEXT vocabulary back to EDITO R vocabulary to continue editing
texts. E will erase the I'th line.

 LOOP
;

COPY copies screen n1 in drive 0 to screen n2 in drive 1. This is accomplished by reading
blocks in screen n1 to disk buffers and changing block numbers to those associated with screen
n2. The disk buffers are then flushed back to disk.

: COPY n1 n2 --
 B/SCR * First block in screen n2.
 OFFSET @ + Add block offset for drive 1.
 SWAP B/SCR * First block in screen n1.
 B/SCR OVER + Last block number + 1.
 SWAP DO Go through all blocks in screen n1.
 DUP Copy block number in screen n2.
 FORTH I Current block number in screen n1 as the loop count.
 BLOCK Read the block from screen n1 to disk buff er.
 2 - ! Store the block number in screen n2 into t he first cell of the disk

buffer, which contains the disk block number. This tricks the system to
think the block is in the screen n2.

 1+ T
 UPDATE Set update bit in disk buffer to be flush ed back to disk.
 LOOP
 DROP Discard the block number on stack.
 FLUSH Write all disk buffers containing data from screen n1 back to screen n2,

because the block numbers were switched.
;

String Editor

The above words belong to what might be called a line editor, which handles the text by whole
lines. The line editor is convenient in inputting lines of texts. However, if some mistakes are
discovered or only a few characters in a line need to be changed, the line editor is not suitable
because one would have to retype the whole line. Here, a string editor is more effective. The
string editor uses a variable R# as a cursor pointing to a character in a string which can be
accessed by the string editor most easily. The string editor must be able to search a line or the
entire screen for a specified string and point the cursor to this string. It must have means to delete
and modify characters neighboring the cursor. A colon definition MATCH is used to search a
range of text for a specified string and move the cursor accordingly. MATCH and a few utility
words are used here to build up the word set involved in the string editor.

77

MATCH compares two text strings. The text to be searched begins at addr1 and is n1 bytes long.
The string to be matched begins at addr2 and is n2 bytes long. The boolean flag is true if a match
is found. n3 is then the cursor advancement to the end of the found string. If no match is found, f
will be false and n3 be 0.

: MATCH addr1 n1 addr2 n2 -- f n3
 >R >R 2DUP Duplicate addr1 and n1.
 R> R> 2SWAP Move the copied addr1 and n1 to the t op of the stack.
 OVER + SWAP Now the stack looks like: (addr1 n1 addr2 n2 addr1+n1 addr1 --)
 DO Scan the whole source text.
 2DUP Duplicate addr2 and n2.
 FORTH I The loop index points to source text.
 -TEXT Is the source text here the same as the st ring at addr2 ?
 IF Yes, the string is found in the text.
 >R 2DROP R> Discard n1 and addr2 on the stack.
 - I SWAP - Offset to the end of the found strin g.
 0 SWAP Put a boolean underneath.
 0 0 LEAVE Put two dummy zeros on the stack and prepare to leave the loop.
 THEN
 LOOP No match this time. Loop back.
 2DROP Discard garbage on the stack.
 SWAP 0= SWAP Correct the boolean flag upon exit.
;

-TEXT also compares two text strings. If the strings at addr1 and addr2 match to n characters,
return a true flag. Otherwise, return a false flag.

: -TEXT addr1 n addr2 -- f
 SWAP -DUP
 IF If n1 is zero, bypass the tests.
 OVER + SWAP (addr1 addr2+n1 addr2 --)
 DO Scan the string at addr2 .
 DUP C@ Fetch a character from the first string.
 FORTH I C@ - Equal to the corresponding charact er in the second string?
 IF 0= LEAVE Not the same. Leave the loop.
 ELSE 1+ THEN Continue on.
 LOOP
 ELSE DROP 0= n is zero . Leave a false flag. Ne ither address may be zero.
 THEN
;

Here are the 32-bit double number instructions used in MATCH and –TEXT. They are defined
in the FORTH trunk vocabulary as following:

: 2DROP d --
 DROP DROP ; Discard two numbers from the stack.

: 2DUP d -- d d
 OVER OVER ; Duplicate a double number.

: 2SWAP d1 d2 -- d2 d1
. Bring the second double number to the top of the stack.
 ROT >R Save top half of the second number.
 ROT R> Move bottom half and restore top half.
;

TOP moves the cursor to home, top left of the screen.

: TOP --
 0 R# ! Store 0 in R# , the cursor pointer.
;

78

From the cursor pointer R# , #LOCATE computes the line number n2 and the character offset n1
in line number n2.

: #LOCATE -- n1 n2
 R# @ Get the cursor location.
 C/L /MOD Divide cursor location by C/L. Line num ber is the quotient and the

offset is the remainder.
;

From R# , #LEAD computes the line address addr in the screen buffer and the offset from addr
to the cursor location n.

: #LEAD -- addr n
 #LOCATE Get offset and line number.
 LINE From line number compute the line address in screen buffer.
 SWAP
;

From R# , #LAG computes the line address addr in the screen buffer and the offset from cursor
location to the end of line.

: #LAG -- addr n
 #LEAD Get the line address and the offset to curs or.
 DUP >R Save the offset.
 + The address of the cursor in screen buffer.
 C/L R> - The offset from cursor to end of line.
;

M moves cursor by n characters. Print the line containing the cursor for editing.

: M n --
 R# +! Move cursor by updating R#.
 CR SPACE Start a new printing line.
 #LEAD TYPE Type the text preceding the cursor.
 5FH EMIT Print a caret (^) sign at the cursor loc ation.
 #LAG TYPE Print the text after the cursor.
 #LOCATE . DROP Type the line number at the end o f text.
;

T types the n'th line in the current screen. Save the text also in PAD.

: T n --
 DUP C/L * Character offset of n'th line in the sc reen.
 R# ! Point the cursor to the beginning of n'th li ne.
 H Move n'th line to PAD.
 0 M Print the n'th line on output device.
;

L re-lists the current screen under editing.

: L --
 SCR @ LIST List the current screen.
 0 M Print the line containing the cursor.
;

79

1LINE scans a line of text beginning at the cursor location for a string matching with one stored
in PAD. Return true flag if a matching string is found with cursor moved to the end of the found
string. Return a false flag if no match.

: 1LINE -- f
 #LAG PAD COUNT Prepare addresses and character co unts to that as required by MATCH .
 MATCH Go matching.
 R# +! Move the cursor to the end of the matching string.
;

FIND searches the entire screen for a string stored in PAD. If not found, issue an error message.
If found, move cursor to the end of the found string.

: FIND --
 BEGIN
 3FFH R# @ < Is the cursor location > 1023?
 IF Yes, outside the screen.
 TOP Home the cursor.
 PAD HERE
 C/L 1+ CMOVE

Move the string searched for to HERE to be typed ou t as part of an error
message.

 0 ERROR Issue an error message.
 ENDIF
 1LINE Scan one line for a match.
 UNTIL
;

DELETE deletes n characters in front of the cursor. Move the text from the end of line to fill up
the space. Blank fill at the end of line.

: DELETE n --
 >R Save the character count.
 #LAG + End of line.
 FORTH R - Save blank fill location.
 #LAG
 R MINUS R# +! Back up cursor by n characters.
 #LEAD + New cursor location.
 SWAP MOVE Move the rest of line forward to fill the deleted string
 R> BLANKS Blank fill to the end.
 UPDATE
;

N finds the next occurrence of the text already in PAD.

: N --
 FIND Matching.
 0 M If found, type out the whole line in which th e string was
 found with the cursor properly displayed.
;

F finds the first occurrence of the following text string.

: F --
 1 TEXT Put the following text string into PAD .
 N Find the string and type out the line.
;

80

B backs the cursor to the beginning of the string just matched.

: B --
 PAD C@ Get the length byte of the text string in PAD .
 MINUS M Back up the cursor and type out the whole line.
;

Delete the following text from the current line.

: X --
 1 TEXT Put the text in PAD .
 FIND Go find the string.
 PAD C@ Get the length byte of the string.
 DELETE Delete that many characters.
 0 M Type the modified line.
;

TILL deletes all characters from cursor location to the end of the following text string.

: TILL --
 #LEAD + The current cursor address.
 1 TEXT Put the following text in PAD .
 1LINE Scan the line for a match.
 0= 0 ?ERROR No match. Issue an error message.
 #LEAD + SWAP - The number of characters to be del eted.
 DELETE Delete that many characters and move the r est of line to fill up the

space left.
 0 M Type out the new line.
;

C spreads the text at cursor to insert the following string. Character pushed off the end of line are
lost.

: C --
 1 TEXT PAD COUNT Accept text string and move to P AD .
 #LAG ROT OVER MIN >R Save the smaller of the character count in PAD and the number of

characters after the cursor.
 FORTH R Get the smaller count
 R# +! Move the cursor by that many bytes
 R - >R Number of characters to be saved.
 DUP HERE R CMOVE Move the old text from cursor on to HERE for temporary storage.
 HERE #LEAD + R>
 CMOVE

Move the same text back. Put at new location to t he right, leaving
space to insert a string from PAD .

 R> CMOVE Move the new string in place.
 UPDATE
 0 M Show the new line.
;

81

Chapter 14. PDP-11 and 8080 Assemblers

An assembler which translates assembly mnemonics into machine codes is equivalent to a
compiler in complexity if not more complicated. One might expect the assembler to be simpler
because it is at a lower level of construct. However, the large number of mnemonic names with
many different modes of addressing make the assembling task much more difficult. In a Forth
language system the assembling processes cannot be accomplished by the text interpreter alone.
All the resources in the Forth system are needed. For this reason the assembler in Forth is often
defined as an independent vocabulary, and the assembling process is controlled by the address
interpreter, in the sense that all assembly mnemonics used by the assembler are not just names
representing the machine codes but they are actually Forth instructions executed by the address
interpreter. These instructions when executed will cause machine codes to be assembled to the
dictionary as literals. The data stack and the return stack are often used to assemble proper codes
and to resolve branching addresses.

Three Levels of Forth Assembler

Before discussing codes in the Forth assemblers, I would like to present assemblers in three
levels of complexity:

Level 0: The programmer looks up the machine codes and assembles them to the
dictionary;

Level 1: The computer translates the assembly mnemonics to codes with a lookup-
table, but the programmer must fill in addresses and literals when
needed; and

Level 2: The computer does all the work, with mnemonics and operands supplied
by the programmer.

The Level 0 Assembler in Forth uses only three definitions already defined in the Forth Compiler:

CREATE Generate the header for a new code definiti on,
, Assemble a 16 bit literal into the dictionary, a nd
C, Assemble a byte literal into the dictionary, us ed in byte
 oriented processors.

These definitions were described as the most primitive compiler in Chapter 9. They might just as
well be the most primitive assembler if the new definition were a code definition. The
programmer would write down the machine codes first with the help of those small code cards
supplied freely by CPU vendors. The machine codes are entered on the top of the data stack and
then assembled to the parameter field of the new definition on top of the dictionary.

The Level 1 Assembler would use the defining word CONSTANT to define assembly
mnemonics relating them to their respective machine code. The text interpreter when confronted
with a mnemonic name would push the corresponding machine code on the stack. The code will
then be assembled to the dictionary by , or C, . An example is:

0 CONSTANT HALT

82

which defines HALT as a constant of 0. During assembly, the phrase

 ... HALT , ...

would assemble a HALT instruction into the dictionary. To make it easier for himself, the
programmer might want a new definition:

 : HALT, HALT , ;

Executing HALT, would then assemble the HALT instruction to the dictionary.

Historically all assembler definitions end their names with a comma for the reason just described,
indicating that the definition causes a machine instruction to be assembled to the dictionary. This
convention serves very well to distinguish assembler definitions from regular Forth definitions.

This scheme in Level 1 Assembler is quite adequate if there were a one to one mapping from
mnemonics to machine codes. However, in cases where many codes share the same mnemonic
and differ only in operands or addressing mode, the basic code must be augmented to
accommodate operands or address fields. It is not difficult to modify definitions as HALT, to
make the necessary changes in the code, which has to pass the data stack anyway. To define each
assembly mnemonic individually is messy and inelegant. A much more appealing method is to
use the construct in the Forth language to define whole classes of mnemonics with the same
characteristics, which brings us to the Level 2 Assembler.

In the last example of the HALT instruction, instead of using CONSTANT to relate the
mnemonic name with the code, a defining word is created as:

 : OP @ , ;

The instruction HALT, is then defined by the defining word OP as:

. 0 OP HALT, 1 OP WAIT, 5 OP RESET, . . .

Now, when HALT, is later processed by the text interpreter, the code 0 is automatically
assembled into the dictionary by the runtime routine @ , .

The construct can be applied to all other types of assembly mnemonics to assemble different
classes of instructions, providing some of the finest examples for the extensibility in the Forth
language. No other language can possibly offer such a powerfull tool to its programmers.

A syntactic problem in using the Forth assembler is that before the mnemonics can be executed
to assemble a machine code, all the addressing information and operands must be provided on
the data stack. Therefore, operands must precede the instruction mnemonics, resulting in the
postfix notation. The source listing of a Forth code definition is therefore very different from the
conventional assembly source listing, where the operands follow the assembly mnemonic. Using
the data stack and the postfix notation greatly facilitate the assembling process in the Forth
assembler. This is a very small price to pay for the capability to access the host CPU and to make
the fullest use of the resources in a computer system.

83

Two assemblers will be discussed in this Chapter in an effort to cover the widest range of
microprocessors. One is for the homely Intel 8080A which is a byte oriented machine with a
rather primitive instruction set. On the other end is the PDP-11 instruction set, which is
extensively micro-coded in a 16 bit wide code field. I feel that these two examples should be
sufficient to illustrate how Forth assemblers are constructed for most other microprocessors.

PDP-11 Assembler

The PDP-11 instruction set is typical of that for minicomputers. With a 16 bit instruction field,
very flexible and versatile addressing schemes are possible comparing with those used in the 8
bit instructions of most common microprocessors. In addition, PDP-11 is a stack oriented
machine in which all registers can be used as stack pointers in addition to normal accumulator
and addressing functions. There are 8 registers in the PDP-11 CPU: registers 0 to 5 are general
purpose registers, register 6 is a dedicated stack pointer, and register 7 is the program counter.
Registers can be used in many different addressing modes, making it very convenient to host a
Forth virtual machine in the PDP-11 computer. This assembler was programmed by John James
and was included in his PDP-11 figForth Model.

The following command sequence must be given first to initiate the ASSEMBLER vocabulary
and to prepare the Forth system to build the assembler.

OCTAL PDP-11 instructions are best presented in oc tal base because address
fields are 6 bits wide.

0 VARIABLE OLDBASE

To ease switching base to and from octal, the currently used base will be stored away in
OLDBASE, to be restored when the assembly process is completed.

VOCABULARY ASSEMBLER IMMEDIATE

Create the assembler vocabulary to house all the assembly mnemonics and other necessary
definitions.

ENTERCODE invoke ASSEMBLER vocabulary to start the assembly process.

: ENTERCODE --
 [COMPILE] ASSEMBLER Set CONTEXT to ASSEMBLER to s earch for the mnemonics.
 BASE @ OLDBASE !
 OCTAL Switch base to octal. Save old base to be r estored after assembly.
 SP@ Push stack pointer on stack for error checkin g at end.
;

CODE is a more refined defining word to start a code definition.

: CODE --
 CREATE Create a header with the name following CO DE .
 ENTERCODE Invoke ASSEMBLER .
;

Set both CONTEXT and CURRENT vocabularies to ASSEMBLER . New definitions hereafter
will be placed in the assembler vocabulary.

84

 ASSEMBLER DEFINITIONS

Before discussing the assembler definitions, the PDP-11 CPU registers and their addressing
modes should be clarified. An address field uses 6 bits in an instruction. The lower 3 bits specify
a register to be referenced for addressing, and the upper 3 bits specify the addressing mode. The
register and the addressing mode are combined to form an address field which is used to specify
either a source operand or a destination operand in the assembly instruction as required.
Registers and modes are defined as follows:

: IS n --
 CONSTANT ; Short hand for CONSTANT .

0 IS R0 1 IS R1 2 IS R2 3 IS R3 4 IS R4 5 IS R 5
6 IS SP 7 IS PC 2 IS W 3 IS U 4 IS IP 5 IS S
6 IS RP

RTEST tests register r for range between 0 and 7. Add r and mode to form address field addr-
field . Also leave a flag -1 on stack to indicate that an address field is underneath.

: RTST r mode -- addr-field -1
 OVER Get r to top for tests.
 DUP 7 > Larger than 7 ?
 SWAP 0 < Smaller than 0 ?
 OR IF In either case, issue an error message,
 ." NOT A REGISTER:"
 OVER . ENDIF with the offending number appended.
 + addr-field = r + mode
 -1 The flag.
;

The addressing modes are defined as executable definitions using names similar to the operand
notation used in PDP assembly language with some twists. The stack effects are:

 r -- addr-field , -1 .
:)+ 20 RTST ; Post-increment register mode.
: -) 40 RTST ; Pre-decrement register mode.
: I) 60 RTST ; Indexed register mode.
: @)+ 30 RTST ; Deferred post-increment mode.
: @-) 50 RTST ; Deferred pre-decrement mode.
: @I) 70 RTST ; Deferred index mode.

The addressing mode using the program counter is somewhat different from the modes using
other general purpose registers.

: #
 27 -1 ; Immediate addressing mode.
: @#
 37 -1 ; Absolute addressing mode.
: () r -- addr-field -1 , for register deferred mo de.
 n -- n 77 -1 , for relative deferred mode.
 DUP 10 U< Top of stack is between 0 and 7, a regi ster.
 IF 10 + -1 Make the address field.
 ELSE 77 -1 ENDIF Otherwise, top of stack is an ad dress offset. Make it the relative

deferred mode.
;

The simplest instruction requires no operand. These instructions can be defined by a simple
defining word:

85

OP is a defining word to define instructions without operands.

: OP n -- , at compile time
 -- , at run time
 <BUILDS Create an header for a mnemonic definition with the name following OP
 , Compile the instruction code on stack to the par ameter field in the new

definition.
 DOES> When the defined mnemonic definition is exec uted during assembly, execute

the following words:
 @ , Fetch the instruction code stored in paramete r field and assemble it to

the code definition under construction on top of t he dictionary.
;

0 OP HALT, 1 OP WAIT, 2 OP RTI, 3 OP BPT,
4 OP IOT, 5 OP RESET, 6 OP RTT,
241 OP CLC, 242 OP CLV, 244 OP CLZ, 250 OP CLN,
261 OP SEC, 262 OP SEV, 264 OP SEZ, 270 OP SEN,
277 OP SCC, 257 OP CCC, 240 OP NOP, 6400 OP MARK,

Instructions with operands are of course more involved. Those with only one operand are defined
by a defining word 1OP . This word uses many other utility definitions. However, we shall first
present the high level 1OP before getting into the nitty gritty details of the other low level
definitions.

1OP is a defining word to define instructions with one operand.

: 1OP n --
 <BUILDS , DOES> The same defining word format.
 @ , When the defined word is executed during asse mbly, the basic
 instruction code is fetched and assembled to the dictionary.
 FIXMODE Take the mode packet on stack to resolve the address field.
 DUP Copy the address field.
 HERE 2 - ORMODE Insert the address field into the lower 6 bit destination field.
 ,OPERAND If the instruction needs a 16 bit value either as a literal or as an

address, assemble it after the instruction.
;

FIXMODE fixes the mode packet on the data stack for ORMODE and ,OPERAND to assemble
the instruction correctly.

: FIXMODE addr-field -1 -- addr-field
 r -- r
 n -- n 67
 DUP -1 = Top of stack = -1 ?
 IF DROP Yes, drop -1 and leave addr-field on top.
 ELSE The top of the stack might be a register or a literal.
 DUP 10 SWAP U< If top of stack is larger than 7 , PC relative mode.
 IF 67 ENDIF Push 67 on top of n , indicating PC mode. Otherwise, leave the register

number on the stack.
 ENDIF
;

ORMODE takes the address field value addr-field and insert it into the lower 6 bit address field
in the instruction code at addr .

: ORMODE addr-field addr --
 SWAP Move addr-field to top of the stack.
 OVER @ Fetch the instruction code at addr .
 OR Insert address field.
 SWAP ! Put the modified instruction back.
;

86

,OPERAND sssembles a literal to the dictionary to complete a program counter
addressing instruction.

: ,OPERAND (n) addr-field --
 DUP 67 = PC relative mode ?
 OVER 77 = Or PC relative deferred mode?
 OR IF In either case,
 SWAP move operand n to top of the stack.
 HERE 2 + - Compute offset from n to the next ins truction address.
 SWAP Put the offset value under addr-field.
 ENDIF
 DUP 27 = PC immediate mode ?
 OVER 37 = OR Or PC absolute mode ?
 SWAP Get addr-field for another test.
 177760 AND 60 = OR Or if it is index addressing m ode.
 IF , ENDIF I n any of the three cases, assemble th e literal after the instruction

code.
; None of above. The instruction does not need a literal. It is already

complete.

B modifies the instruction code just assembled to the dictionary to make a byte
instruction from a cell instruction.

: B --
 100000 MSB of the byte instruction must be set.
 HERE 2 - +! Toggle the MSB of the instruction cod e on top of dictionary.
;

B is to be used immediately after an instruction definition like op1 op2 MOV, B to move a byte
from op1 to op2. The byte instruction can be defined separately as MOVB,. However, the
modifier definition B is more elegant in reducing the number of mnemonic definitions by 25%.

5100 1OP CLR, 5200 1OP INC, 5300 1OP DEC, 5400 1 OP NEG,
5500 1OP ADC, 5600 1OP SBC, 5700 1OP TST, 6000 1 OP ROR,
6100 1OP ROL, 6200 1OP ASR, 6300 1OP ASL, 6700 1O P SXT,
 100 1OP JMP,

ROP is a defining word to define two operand instructions. The source operand can only be a
register without mode selection. The destination address field is the lower 6 bits, and the source
register is specified by bits 6 to 8.

: ROP n --
 <BUILDS , DOES> Make header and store instruction code.
 @ , When defined instruction is executed, assembl e the basic
 instruction code to the dictionary.
 FIXMODE Fix the destination address field.
 DUP Copy the just completed address field value.
 HERE 2 - Address of the instruction.
 DUP >R Save a copy of this address on the return stack to fix the source

register field underneath it on the stack.
 ORMODE Insert the destination address field into the instruction.
 ,OPERAND If a literal operand is required, assemb le it here.
 DUP 7 SWAP U< The register number must be less th an 7 .
 IF ." ERR-REG-B"
 ENDIF

The register number is too big, issue an error mess age.

 100 * R> ORMODE Justify the source register field value and insert it into the
instruction.

;

74000 ROP XOR, 4000 ROP JSR,

87

BOP is a defining word used to define branching and conditional branching instructions. This
word is included only for completeness since the branchings are not structured. In Forth code
definitions, more powerful branching and looping structures should be used, as will be discussed
shortly.

: BOP n --
 <BUILDS , DOES> Make header and store instruction code.
 @ ,
 HERE - The target address is presummably on data stack. Compute the offset

value for branching.
 DUP 376 > If the offset is greater than 376, issu e an error message:
 IF ." ERR-BR+" .
 ENDIF with the out of range offset.
 DUP -400 < If the offset is less than -400, issue an error message:
 IF ." ERR-BR-" .
 ENDIF with the out of range offset.
 2 / 377 AND The correct offset value is then
 HERE 2 = ORMODE inserted into the instruction cod e.
;

400 BOP BR, 1000 BOP BNE, 1400 BOP BEQ, 2000 BOP BGE,
2400 BOP BLT, 3000 BOP BGT, 3400 BOP BLE, 100000 BOP BPL,
100400 BOP BMI, 101000 BOP BHI, 101400 BOP BLOS, 102000 BOP BVC,
102400 BOP BVS, 103000 BOP BCC, 103400 BOP BCS, 1 03400 BOP BLO,
103000 BOP BHIS,

2OP is a defining word to define two operand instructions.

: 2OP n --
 <BUILDS , DOES> Make header and store instruction code.
 @ ,
 FIXMODE Fix the mode packet for destination field .
 DUP HERE 2 - Get the address of the instruction t o be fixed.
 DUP >R Save a copy of the instruction address on return stack.
 ORMODE Insert the destination field.
 ,OPERAND Assemble a literal after the instruction if required.
 FIXMODE Now process the source mode packet.
 DUP 100 * Justify the source field value.
 R ORMODE Insert the source field into the instruc tion.
 ,OPERAND Assemble a literal if required.
 HERE R> - 6 = If there are two literals assembled after the instruction, they are in

the wrong order.
 IF SWAPOP ENDIF The two literals have to be swapp ed.
;

SWAPOP swaps the two literals after a two operand instruction. If either literal is used for PC
addressing, the offset value will have to be adjusted to reflect the swapping.

: SWAPOP --
 HERE 2 - @ Push the last literal on the stack.
 HERE 6 - @ This is the instruction code itself.
 6700 AND 6700 = PC relative mode?
 IF 2 + ENDIF Yes, increment the last literal by 2 .
 HERE 4 - @ Now work on the first literal.
 HERE 6 - @ Get the instruction back again.
 67 AND 67 = Is the destination field also of PC r elative mode?
 IF 2 - ENDIF If it is, decrement the branching of fset by 2.
 HERE 2 - ! Put the first offset last,
HERE 4 - ! ; and the last offset first.

10000 2OP MOV, 20000 2OP CMP, 30000 2OP BIT, 400 00 2OP BIC,
50000 2OP BIS, 60000 2OP ADD, 160000 2OP SUB,

88

Two more instructions need to be patched:

: RST, 200 OR , ;
: EMT, 104000 + , ;

The branching instructions are similar to the GOTO statements in high level languages. They are
not very useful in promoting modular and structured programming. Therefore, their usage in
Forth code definitions is discouraged. Somewhat modified forms of these branch instructions are
defined in the assembler to code IF-ELSE-ENDIF and BEGIN-UNTIL types of structures.
Although these structures are very similar to the structures used in colon definitions, the
functions of these words in the assembler are different. Thus it is a good practice to define them
with names ending in commas as all other mnemonic definitions. However, the comma at the
end does not imply that an instruction code is always assembled by these special definitions.

The conditional branching instructions are defined as constants to be assembled by the words
requiring branching. The notation is reversed from the PDP mnemonics because of this
assembling procedure.

1000 IS EQ 1400 IS NE 2000 IS LT 2400 IS GE
3000 IS LE 3400 IS GT 100000 IS MI 101000 IS LOS
101400 IS HI 102000 IS VS 102400 IS VC 103000 IS LO
103400 IS HIS

IF, takes the literal n on stack and assembles it to dictionary as a conditional branching
instruction. Leave the address of this branching instruction on the data stack to resolve the
branching offset later.

: IF, n -- addr
 HERE Address of the branching instruction.
 SWAP , Assemble the branching instruction to the dictionary.
;

IPATCH uses the addresses left on the stack to compute the forward branching offset and
patches up the instruction assembled by IF, .

: IPATCH, addr1 addr2 --
 OVER - Byte offset from addr1 to addr2.
 2 / 1- 377 AND The 8 bit instruction offset.
 SWAP DUP @ Fetch out the branching instruction at addr1 .
 ROT OR Insert the offset into the branching instr uction.
 SWAP ! Put the completed instruction back.
;

ENDIF, closes the conditional structure in a code definition.

: ENDIF, addr --
 HERE IPATCH, Call on IPATCH, to resolve the forwa rd branching.
;

89

ELSE, assembles an unconditional branch instruction at HERE , and patches up the offset field
in the instruction assembled by IF, . Leave the address of the current branch instruction on the
stack for ENDIF, to resolve.

: ELSE, addr1 -- addr2
 400 , Assemble the BR, instruction to the diction ary.
 HERE IPATCH, Patch up the conditional branching i nstruction at IF, .
 HERE 2 - Leave address of BR, for ELSE, to patch up.
;

BEGIN, starts an indefinite loop.

: BEGIN, addr --
 HERE Begin an indefinite loop. Push DP on stack for backward
 branching.
;

UNTIL, assembles the conditional branching instruction n to the dictionary, taking addr as the
address to branch back to.

: UNTIL, addr n --
 , Assemble n which must be one of the conditional branching instruction

codes.
 HERE 2 - The address of the above instruction.
 SWAP IPATCH, Patch up the offset in the branching instruction.
;

REPEAT, is used in the form: BEGIN, . . . WHILE, . . . REPEAT, inside a code definition.
Assemble an unconditional branch instruction pointing to BEGIN, at addr1, and resolve the
forward branch offset for WHILE, at addr2 .

: REPEAT, addr1 addr2 --
 HERE Save the DP pointing to the current BR, inst ruction.
 400 , Assemble BR, here.
 ROT IPATCH, Patch the BR, instruction to branch b ack to BEGIN, at addr1 .
 HERE This is where the conditional branch at WHIL E, should branch to on false

condition.
 IPATCH, Patch up the conditional branch at WHILE, .
;

WHILE, assembles a conditional jump instruction at HERE . Push the address of this instruction
addr on the stack for REPEAT, to resolve the forward jump address.

: WHILE, n -- addr
 HERE Push DP to stack.
 SWAP Move n to top of stack, and
 , assemble it literally as an instruction.
;

90

C; terminates a code definition started by ENTERCODE .

: C; addr --
 CURRENT @
 CONTEXT !

Restore CONTEXT vocabulary to CURRENT . Thus aband on the ASSEMBLER
vocabulary to the current vocabulary where the new code definition was
added. The programmer can now test the new defini tion.

 OLDBASE @ BASE ! Restore the old base before asse mbling.
 SP@ 2+ = Compare the current SP with addr on the stack,
 IF SMUDGE if they are the same, the stack was not disturbed. Restore the smudged

header to complete the new definition. Otherwise, i ssue an error message.
 ELSE
 ." CODE ERROR,
STACK DEPTH
CHANGED"

 ENDIF
;

NEXT, is the address interpreter returning execution process to the colon definition which calls
the code definition. This must be the last word in a code definition before C; .

: NEXT, --
 IP)+ W MOV, Move the contents of IP to W. IP is incremented by 2.
 W @)+ JMP, J ump to execute the instruction sequen ce pointed to by
 the contents of W. W is incremented by 2, pointi ng to
 the parameter field of the word to be executed.
;

The assembler vocabulary is now completed. Return to the FORTH trunk vocabulary by setting
both CONTEXT and CURRENT to FORTH .

FORTH DEFINITIONS
DECIMAL Restore decimal base. The base was change d to octal when entering the a

process of creating the assembler.

8080 Assembler

The assembler is usually defined in an independent vocabulary separated from the trunk FORTH
vocabulary and other vocabularies. To generate the ASSEMBLER vocabulary and to make some
modifications in the FORTH vocabulary, the following words must be executed. These words
are commands to setup the ASSEMBLER vocabulary. This 8080 Assembler was authored by
John Cassidy, who also built the 8080 figForth Model.

HEX All 8080 codes will be represented in hexadeci mal base.
VOCABULARY ASSEMBLER Create a new vocabulary for a ssembler.
IMMEDIATE Vocabulary must be of IMMEDIATE type to be used within
 colon definitions.
' ASSEMBLER CFA Get the code field address of ASSE MBLER definition, and
' ;CODE 0A + ! patch up the code in ;CODE . This is to replace the word SMUDGE with

ASSEMBLER , so that the codes following ;CODE can be understood in the
context of the assembler. The function of SMUDGE is deferred to the end
of the code sequence in C; .

91

CODE is a more fully developed definition to start a code definition with error checking.

: CODE --
 ?EXEC If not executing, issue an error message.
 CREATE Create a new dictionary header with the fo llowing name.
 [COMPILE] Compile the next IMMEDIATE word.
 ASSEMBLER Switch the CONTEXT to ASSEMBLER vocabul ary to search assembly mnemonics

first before the current vocabulary.
 !CSP Store current stack pointer in CSP for later error checking.
; IMMEDIATE

C, terminates a new code definition. Check for error and restore the smudged header.

: C; --
 CURRENT @ CONTEXT ! At the beginning of assembly, CONTEXT was switched to ASSEMBLER, to

search for the assembler mnemonics. After the code definition is
completed, CONTEXT must be restored to CURRENT voca bulary to continue
program development or testing.

 ?EXEC If not executing, issue an error message.
 ?CSP If the data stack was disturbed, issue an er ror message.
; IMMEDIATE

LABEL defines a subroutine which can be called by the assembler CALL instruction. It is not
necessary in Forth.

: LABEL --
 ?EXEC
 0 VARIABLE Subroutine header is defined as a vari able with a dummy value 0. When

the name is executed, the address of its parameter field will be put on
the stack to be used by the CALLing instruction.

 SMUDGE Smudge the header as usual.
 -2 ALLOT Backup the dictionary pointer to overwri te the dummy 0 with the

subroutine.
 [COMPILE] ASSEMBLER Get the assembler to process the mnemonics following.
 !CSP Store SP for error checking.
; IMMEDIATE

8* multiplies the top of stack by 8.

: 8* n -- n*8
 DUP + DUP + DUP + ; Faster than doing real multip lication on an 8080.

Set both the CONTEXT and CURRENT vocabularies to ASSEMBLER . Now, all subsequent
definitions are put into the ASSEMBLER vocabulary to be referenced by CODE and ;CODE .
The definitions up to this point went into the FORTH vocabulary.

ASSEMBLER DEFINITIONS

: IS n --
 CONSTANT ; Shorthand of CONSTANT .

Following are register name definitions:

0 IS B 1 IS C 2 IS D 3 IS E 4 IS H 5 IS L 6 I S M
7 IS A 6 IS PSW 6 IS SP 2A28 IS NEXT

92

In 8080 fig-Forth, NEXT was defined as a code routine starting at address 2A28 in memory.
With NEXT thus defined as a constant, NEXT JMP should be the last instruction in a code
definition before C; .

1MI is a defining word to create single byte 8080 instructions without operands. MI stands for
machine instruction.

: 1MI n –
 <BUILDS Create a header with name following.
 C, Store instruction coe on the stack to the para meter field.
 DOES> The following words are to be executed when the newly defined mnemonic

name is executed during assembly.
 C@ C, Fetch the instruction code stored in the pa rameter field and assemble it

into the dictionary as a byte literal.
;

76 1MI HLT 07 1MI RLC 0F 1MI RRC 17 1MI RAL
1F 1MI RAR C9 1MI RET D8 1MI RC D0 1MI RNC
C8 1MI RZ C0 1MI RNZ F0 1MI RP F8 1MI RM
E8 1MI RPE E0 1MI RPO 2F 1MI CMA 37 1MI STC
3F 1MI CMC 27 1MI DAA FB 1MI EI F3 1MI DI
00 1MI NOP E9 1MI PCHL F9 1MI SPHL E3 XTHL
EB 1MI XCHG

2MI is a defining word to define 8080A instructions with a source operand. The source field is
the least significant 3 bits.

: 2MI n --
 <BUILDS Create a header with name following.
 C, Store instruction coe on the stack to the para meter field.
 DOES> The following words are to be executed when the newly defined mnemonic

name is executed during assembly.
 C@ + C, When the mnemonic defined is executed, th e code value is pulled out from

the parameter field, the number representing the s ource register on the
stack is added to the code and the completed instru ction is assembled to
the dictionary.

;

80 2MI ADD 88 2MI ADC 90 2MI SUB 98 2MI SBB
A0 2MI ANA A8 2MI XRA B0 2MI ORA B8 2MI CMP

3MI is a defining word to define 8080 instructions with destination register specified in the bits 3,
4, and 5.

: 3MI n –
 <BUILDS Create a header with name following.
 C, Store instruction coe on the stack to the para meter field.
 DOES> The following words are to be executed when the newly defined mnemonic name

is executed during assembly.
 C@ When the mnemonic is executed during assembly, the basic code value is

fetched from the parameter field.
 SWAP The operand's register number on the stack i s swapped over the code value,

and
 8* multiplied by 8 to line up with the destinatio n field.
 + C, Add the register number to the instruction a nd assemble it.
;

04 3MI INR 05 3MI DCR C7 3MI RST C5 3MI PUSH
C1 3MI POP 09 3MI DAD 02 3MI STAX 0A 3MI LDAX
03 3MI INX 0B 3MI DCX

93

4MI is a defining word to define 8080 instruction with an immediate byte value following the
instruction code.

: 4MI n --
 <BUILDS Create a header with name following.
 C, Store instruction coe on the stack to the para meter field.
 DOES> The following words are to be executed when the newly defined mneumonic

name is executed during assembly.
 C@ C, C, The instruction code is fetched from the parameter field and assembled

into the dictionary, and the byte value given on th e stack is assembled
following the instruction code.

;

C6 4MI ADI CE 4MI ACI D6 4MI SUI DE 4MI SBI
E6 4MI ANI EE 4MI XRI F6 4MI ORI FE 4MI CPI
DB 4MI IN D3 4MI OUT

5MI is a defining word to define 8080 instruction taking a 16 bit value as an operand, either as an
address or as an immediate value for operations.

: 5MI n --
 <BUILDS Create a header with name following.
 C, Store instruction coe on the stack to the para meter field.
 DOES> The following words are to be executed when the newly defined mneumonic

name is executed during assembly.
 C@ C, When the defined mnemonic is executed, the instruction code is assembled

to the dictionary.
 , The number on the stack is assembled after the i nstruction.
;

C3 5MI JMP CD 5MI CALL 3 2 5MI STA 3A 5MI LDA
22 5MI SHLD 2A 5MI LHLD

The 8080 MOV instruction needs two operands to specify the source and destination registers for
data movements. The two register numbers are pushed on the data stack for the MOV definition
to pick up and assemble as one instruction code. The MVI and LXI instructions behave similarly.

MOV assembles a register mov instruction to the dictionary with b1 representing source register
and b2 destination register.

: MOV b1 b2 --
 8* b2*8 is the destination field.
 40 Basic code for a MOV instruction.
 + + Add the source and destination fields to the instruction.
 C, Assemble to dictionary.
;

MVI assembles a move immediate instruction to dictionary, with b2 specifying the destination
field and b1 the immediate byte value following the instruction.

: MVI b1 b2 --
 8* Destination field.
 6 Basic MVI instruction code.
 + C, Assemble the instruction.
 C, Assemble the immediate byte value after the in struction.
;

94

LXI assembles a load extended immediate instruction with b specifying the destination register
pair, and n as a two byte immediate value to be loaded into the register pair.

: LXI n b --
 8* 1+ C, Assemble the LXI instruction.
 , Assemble the two byte immediate value after the instruction.
;

The foregoing discussion covers most of the 8080 instruction set with the exception of
conditional jump instructions. The reason is that the conditional jumps are used to construct the
more structured definitions like IF-ELSE-ENDIF and BEGIN-UNTIL. The non-structured jump
instructions such as CALL, RET, conditional CALL's and RET's are defined in the assembler for
completeness.

Subroutines are better defined as independent colon or code definitions. The short jumps in code
definitions are implemented in the following way. Instead of the regular conditional jump
instruction, a set of Forth words are defined to be used with the conditional structures:

C2 IS 0= D2 IS CS E2 IS PE F2 IS 0<

NOT negates the conditional b1 to reverse the jumping condition.

: NOT b1 -- b2
 8 + ; The byte value b2 is to be assembled by the instruction IF , etc., to

effect conditional branching.

IF assembles the conditional b into the dictionary. Leave on the stack the current dictionary
pointer to resolve later the forward branching address, and a flag 2 for error checking.

: IF b -- addr 2
 C, Assemble the conditional b.
 HERE Push current DP to stack as addr.
 0 , Assemble a dummy 0 here for forward jumping. The address will be

resolved by ELSE or ENDIF .
 2 Flag for error checking.
;

ENDIF terminates an IF-ELSE-ENDIF structure in a code definition. Check n for error. Use addr
to resolve the forward jumping address at IF or ELSE .

: ENDIF addr n --
 2 ?PAIRS If n is not 2, issue an error message.
 HERE SWAP ! Store the current DP to addr after IF or ELSE to complete the conditional

structure.
;

95

ELSE starts a false clause in a code definition. Resolve the forward branching at addr1 and leave
the present address addr2 and a flag on the stack to be used by ENDIF .

: ELSE addr1 n -- addr2 2
 2 ?PAIRS If n is not 2, issue an error message.
 C3 IF Use IF to assemble a unconditional jump ins truction (C3) to the

dictionary, and also leave addr2 and 2 on the stack .
 ROT Get addr1 to top of stack.
 SWAP The stack is now addr2 addr1 n2 .
 ENDIF Take n2 and addr1 from top of the stack to resolve the jump address at

IF .
 2 n2 the flag.
;

BEGIN starts an indefinite loop such as BEGIN-AGAIN.

 BEGIN . . . UNTIL ,
 BEGIN ... WHILE ... REPEAT ,
or BEGIN ... AGAIN .

: BEGIN -- addr 1
 HERE Leave current DP on stack for backward branc hing from the end of the

loop.
 1 Flag for error checking.
;

UNTIL terminates an indefinite loop. Assemble a conditional jump instruction b and address
addr of BEGIN for backward branching.

: UNTIL addr n b --
 SWAP Get n to top of the stack for error checking .
 1 ?PAIRS If n is not 1 , issue an error message.
 C, Assemble b literally as a conditional jump ins truction.
 , Assemble the address addr of BEGIN for branchin g.
;

AGAIN also terminates an infinite loop. Assemble an unconditional jump instruction to branch
backward to addr .

: AGAIN addr n --
 1 ?PAIRS Check n for error.
 C3 C, Assemble the JMP instruction,
 , with the address addr .
;

WHILE terminates an infinite loop from the middle inside the loop. Assemble a conditional
jump instruction b , and leave the DP and a flag on the stack for REPEAT to resolve the
backward jump address. Used in the form:

 BEGIN . . . WHILE . . . REPEAT

: WHILE b -- addr 4
 IF Use IF to do the dirty work.
 2+ The flag left by IF is 2. Change it to 4 for REPEAT to verify.
;

96

REPEAT assembles JMP addr1 to dictionary to close the loop from BEGIN . Resolve forward
jump address at addr2 as required by WHILE .

: REPEAT addr1 n1 addr2 n2 --
 >R >R Get addr2 and n2 out of way.
 AGAIN Let AGAIN assemble the backward jump.
 R> R> 2- Bring back addr2 and n2. Change n2 back to 2.
 ENDIF Check error. Resolve jump address for WHIL E.
;

The whole ASSEMBLER vocabulary is now completed. Restore the CONTEXT and CURRENT
vocabularies to the trunk FORTH vocabulary for normal programming activity.

FORTH DEFINITIONS
DECIMAL Restore base from hexadecimal.

97

Index

' 52
45
#> 45
#LAG 78
#LEAD 78
#LOCATE 77
#S 45
(.") 39
(;CODE) 63
(+LOOP) 84
(ABORT) 32
(DO) 71
(FIND) 49
(LINE) 41
(LOOP) 72
(NUMBER) 42
, 48
,OPERAND 86
. 46
." 40
.LINE 41
.R 46
: 31
; 31
;CODE 62
;S 27
? 47
?COMP 34
?CSP 34
?ERROR 32
?EXEC 34
?LOADING 34
?PAIRS 34
?STACK 34
[28
[COMPILE] 67
] 28
+BUF 56
+LOOP 72
<# 43
<BUILDS 63
--> 60
0BRANCH 68
1LINE 79
1MI 92
1OP 85
2MI 92
2OP 87
3MI 92
4MI 93
5MI 93
ABORT 21
AGAIN 70
AGAIN 95
ALLOT 48
ASSEMBLER 83
B 86,90

B/BUF 16
B/SCR 16
BACK 69
BASE 17
BEGIN 69,95
BEGIN, 89
BL 17
BLANKS 18
BLK 17
BLOCK 55
BOP 87
BRANCH 67
BUFFER 57
C 80
C, 48
C; 90,91
CFA 51
CLEAR 76
CODE 83,91
COLD 19,29
COMPILE 67
Compiler 28
CONSTANT 64,174
Constants 8
CONTEXT 17
COPY 76
COUNT 38
CR 45
CREATE 29
CSP 17
CURRENT 17
D 75
D. 46
D.R 46
DECIMAL 42
DEFINITIONS 50
DEFINITIONS 50,159
DELETE 79
DO 71
DOCOL 26
DOCON 64
DODOE 63
DOES> 63
DOUSE 65
DOVAR 64
DP 17
DPL 17
DR0 59
DR1 59
DUMP 47
E 75
EDITOR 73
Editor 73
ELSE 69,95
ELSE, 89
EMPTY-BUFFERS 58
ENDIF 68,95

ENDIF, 88
ENTERCODE 83
ERASE 19
ERROR 32
EXECUTE 26
EXPECT 35
F 79
FENCE 17
FILL 18
FIND 79
-FIND 49
FIRST 17
FIXMODE 85
FLD 17
FLUSH 59
FORGET 52
FORTH 49
H 74
HERE 48
HEX 42
HLD 17
HOLD 43
I 71,75
ID. 40
IF 68,94
IF, 88
IMMEDIATE 67
IN 17
INTERPRET 23
IP 25
IPATCH 88
IS 84,91
L 78
LABEL 91
LATEST 51
LEAVE 71
LFA 51
LIMIT 17
LINE 74
LIST 41
LIT 27
LOAD 60
LOOP 83
LXI 94
M 78
MATCH 77
MESSAGE 33
MOV 93
-MOVE 74
MVI 93
N 79
NEXT 26
NEXT, 90
NFA 51
NOT 94
NULL 24
NUMBER 43

OFFSET 17
OP 85
ORMODE 85
OUT 17
P 75
PAD 12
PFA 51
POP 27
PUSH 27
PUT 27
QUERY 35
QUIT 21
R 75
R# 17
R/W 57
R0 17
REPEAT 70,95
REPEAT, 89
ROP 86
RP 25
RTST 84
S 75
S0 17
SCR 17
SIGN 45
SMUDGE 31
SP 25
SPACE 45
SPACES 46
SWAPOP 87
T 78
TEXT 74
-TEXT 77
TIB 17
TILL 80
TOP 77
-TRAILING 39
TRAVERSE 51
TYPE 37
UNTIL 69,95
UNTIL, 89
UPDATE 57
USER 65
VARIABLE 64
Variables 8
VLIST 53
VOCABULARY 50
VOC-LINK 17
W 25
WARNING 17
WHILE 70,95
WHILE, 89
WIDTH 17
WORD 36
X 24,80

	Contents
	Figures
	Tables
	1. Language Definition of FORTH
	Programming Language
	Forth Words
	Standard Instructions
	User Instructions
	Structures and Colon Instructions
	Code Instructions
	Constants, Variables, and Vocabulary
	Create Defining Instructions
	Conclusion

	2. The figForth Model
	Forth as an Operating System
	Memory Map
	Instruction Set
	System Constants and User Variable
	Simple Colon Definitions

	Chapter 3. Text Interpreter
	4. Address Interpreter
	5. Compiler
	6. Error Handling
	7. Terminal Input and Output
	8. Numeric Conversions
	9. Dictionary
	10. Virtual Memory
	11. Defining Words
	12. Control Structures
	13. Editor
	String Editor

	14. PDP-11 and 8080 Assemblers
	Three Levels of Forth Assembler
	PDP-11 Assembler
	8080 Assembler

	Index

