|nside F83

Dr.C.H.Ting

Fourth Edition

Offete Enterprises, Inc.

2013

(c) Copyright, 1991 by C. H. Ting
First Edition, November 1984
Second Edition, June 1985
Third Edition, June 1991

Fourth Edition, June 2013

All rightsreserved. Thisbook, or any part thereof,
may not be reproduced in any form

without written permision from the author.

Printed in the United Sates of America
by
Offete Enterprises, Inc.
156 14 th Avenue

San Mateo, CA 94402
Tel: (415) 571-7639

Prefaceto the Fourth Edition

It is thirty years since F83 was first releasediilye Perry and Henry Laxen. This book was out
of print a long time ago. Yet, I still receive texsts for the printed copies. The book was
originally produce on a CP/M microcomputer, witBiablo daisy wheel printer. All the text

was preserved, but the figures and tables coultd@oeproduced. Earlier, | released an
electronic edition with figures and tables scanfmech the original book. It was embarrassing,
because it exceeded the 25 MB limit for email d=lyy due to the scanned images. | think it is
probably time to do a better job, taking advantagfédicrosoft Words with its fonts and
formatting capabilities.

| am using the 12 point Times New Roman font fbnalration, and the 8 point Courier New
font for all source code and documentation. Codkdocumentation are presented in two
columns. Left column is for code and right colufandocumentation. As the left column is
generally 1.5 inches wide, | allow only 1 characjeace for each level of indentation. It is hard
to see the nested levels, but | think is adequdigteu do want to inspect the code in detail.

The only significant modification is on the term‘aords’. In the original book, Forth
commands were called Forth words, Forth definiti@msl sometimes Forth commands. Now |
have decided to call things which are executedhbyhbst computer machine instructions or just
instructions. What's executed by the Virtual FaCtbmputer are commands, which are mostly
colon commands and code commands. | think it v8 wery consistent in the narration.
However, in the documentation, words and defingiare not changed.

Many figures were listings produced by an old IBM ®hich was sent to dump yard long ago. |
was extremely please that | could get the 8086830 to run in a small CMD window on my
old desktop PC with Windows XP. The listings wpreduce by redirecting text output to a file.
F83 is still alive! It reads and writes to a flgpgisk in the A: drive. Boy! | am lucky that |

keep this PC which still has a 3.5” floppy driviealmost threw it away, as it developed some
intermittent disk problems.

Seeing a working F83 system in front of me, it®lseeing a good old friend coming back after
30 years. It makes me feel encourage, and givesope that this new edition of Inside F83
may still be useful for some friends out therewilt also save some trees.

C. H. Ting

July 2013
San Mateo, California

Prefaceto the Third Edition

It is almost eight years since F83 was first rededsy Mike Perry and Henry Laxen. It has been
widely distributed by many shareware and freewastidutors, as well as through many

bulletin boards. It also has found its way intonyaeal applications and useful products.
Although we have seen many better public domaithFeystems brought out over the years, F83
still stands out because of its high quality anchose it is available on three very popular
microprocessors: 8080, 8086, and 68000.

The quality of F83 is testified by the fact thakothe years, we have found only one bug in the
8086 F83 system (DOS Version 2.10). This bug wesodered by Mike Yantis at Maxtor Corp.
The ENTRY cell in the user area contains 90H (Né@#®) E9H (JMP) when the task is asleep.
E9H causes a jump to the next task, thus skippiagtirrent task. These two bytes are changed
to CDH and 80H (INT 80) when the task is to be wakiNT 80H wakes up this task when the
CPU control is passed to the task. This schemé&safore in most instances. This mechanism
falls apart only if the waking up routine is acted by an interrupt, and if the interrupt hits when
the CPU just finishes executing the NOP (90H) undion and is ready to execute the JMP (E9H)
instruction. Unfortunately, the waking up routsecretly changed E9H to 80H, whose behavior
at this point is unpredictable and in most casash&d the CPU. The probability of this
occurring is very small, only about once in 100,0@@rrupts, which were enough to bother

Mike Yantis. Mike fixed this bug by choosing INBH to start the wakened tasks.

Discussing this bug in detail is meant to be a donenmt to Mike Perry and Henry Laxen in their
efforts producing the F83 system. It took a buguth a oblique nature to escape Mike and
Henry's tight grips.

| take this opportunity to revise the book and picalit using a laser printer. | am always
amazed at how a laser printer can transform liestmth. In spite of the laser, | like to give
special thanks to Jay McKnight in reviewing thettemd corrected many of my grammatical and
technical errors.

F83 is one among the very few Forth systems whieluaeful while still understandable. Inside
F83 had helped many people gain the privilege &k peside a fully functional Forth system. |
hope it will help you also. Not just take a pelelt use it as a key and open a whole new field to
yourself.

C. H. Ting

June 1991
San Mateo, California

Prefaceto the Second Edition

After | implemented my first Forth system on a D@@neral Nova computer and got the 'OK’
message, | went back home and told my wife: 't puemoted myself from an applications
programmer to a system programmer!" | was so ed@nd my brain was so completely filled
with the intricate details of the Forth fabric thla¢ only way to get hold of myself was to dump
everything on paper. That was the Systems Guidigforth. | xeroxed it and brought a boxful
to the then Northern California FIG meeting andidis sold out immediately. Apparently | had
struck a chord in the Forth community which waspaeately in need of documentation and
instruction on Forth internals.

| was fortunate that a polyForth on LSI-11 compuwtas available at work. 1 tried to convince
Forth, Inc. to publish a similar book on polyFoathd obtained some support to proceed. | sent a
draft manual, titled Systems Guide to polyFortliréoth, Inc. Somehow, Forth, Inc. decided not
to publish or promote it, and had left it on thedokshelf. | heard that it found its way into the
underground Forth circle in Southern CalifornialyiForth is concise and powerful, and it
deserves better system documentation than whabvéded. | was very impressed as | went
through it screen by screen. | was delighted akipg a great mind, that of Chuck Moore

himself. It was like poetry.

When Mike Perry and Henry Laxen released theiripuddmain F83 system, | bought a listing

to read. It was a very worthy product, with lofgamls and utilities. The best part is that it is
complete with on-line documentation in the fornsbfdow screens. | thought there was little
for me to contribute. As F83 was spreading wider started to hear more complaints about the
difficulties in learning and using it. | reachedanclusion that Forth screens are good medium
for programming, but a screen is too small a windoemviewing and learning a large Forth
system, even with shadows. In reading the sowde,dt is necessary to look at many screens at
the same time, quickly moving from one screen ttlaer while keeping everything in plain

view. We have all been conditioned to read thingke printed form, making the best use of our
visual system with instant zooming and panning bdipa The visual system is very difficult to
emulate with a 24 by 80 character screen.

Then Wil Baden came to one of the FIG meetingssirodved the completely sorted index of

F83 words in all vocabularies. | rushed to thefrable and grabbed a copy of his handout with
the index, which was the tool | needed to naviglateugh the F83 system. With the help of the
index, lots of midnight oil, and ignoring my wifedsders to clean up my room, | was able to
rearrange the source code of F83 in a form momgilitento mortal souls. Most of the work was
simply rearranging the source code from the hotedo the vertical format and fill the right
hand side of the page with words taken from theleWascreens. | collected related source code
and present it in a logical sequence, which ofescot coincide with the loading sequence of
the source screens. Once the code is orderedalygipou will find it is much easier to
comprehend this very large and seemingly intimidasystem.

F83 provides a very extensive and solid founddmomprofessional programmers to build
application packages. It is also a very usefute®ior beginners to learn Forth programming
style and techniques. Its problem, as in any |&@th system, is the fragmentation of functions

\Y

in a multitude of words. With more than 1000 woritiss very difficult to have a firm handle on
F83. However, functions a user needs to prograonguter application or to use a computer
application are not that many. Once you are famwith those top level utility words, you can
dig into the underlying low level words and usenth® build your own castles. This book, |
hope, will serve the purpose of showing you the groand the beauty behind the Forth language.

We are all indebted to Mike Perry and Henry Laxamnréleasing the F83 system into the public
domain. It certainly sets a higher standard foneercial Forth systems and forces Forth
vendors to provide more powerful systems and batier support. Anything less than F83 will
not be acceptable anymore. Thanks are also dDe @& Y. Tang and Mr. John Peters for
reading the manuscript and making numerous sug@gssaind corrections. The Chinese brush
painting on the covers was provided by my mothes.MJean Hwang Ting. My father, Mr. C.
W. Ting, was the editor and also managed the ptaxtuof this book. This is a traditional
Chinese family business, small but efficient and/\Feorth-like.

C. H. Ting

May 1985
San Mateo, California

Vi

Part |

Part I

1.1
1.2
13
1.4

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

5.1
5.2
53

6.1
6.2
6.3
6.4
6.5

INSIDE F83

Contents

Introduction to F83 system

Theheritage of F83

The roots of the F83

Advancements in Forth-83 Standard
Creators of F83 system

Features of F83 system

Browsing F83 system

Listing the word names

Vocabulary

Viewing source code of word definitions
Shadow screen documentation

Files in F83

Printing utility

Debugger

Using the F83 system

Create your own file

The editor

Loading and testing your program
Memory dump

Debugging your program

The 8086 assembler

Multitasker

Save a system image

The meta-compiler

TheForth kerne

Interfaceto the host computer

Virtual Forth computer

Forth computer hosted on 8086

Inner interpreters

Interpreters for in-line data and strings
Interpreters for control structures

The Forth nucleus

8086 assembly language in Forth
Code definitions in Forth nucleus
Examples of code definitions

Terminal input and output

The BDOS I/O calls to the operating system
Terminal output commands

Interpreting control characters

More sophisticated input commands

String commands

Thevirtual memory

vii

1
3
4
6
8
9
10
13
15
16
17
19
21
21
23
25
26
28
29
33
34
35
37
37
38
41
46
48
51
51
52
53
56
56
57
57
58
60
62

10

12.

13.

Part I11

14.

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2

9.1
9.2
9.3
9.4

10.1
10.2
10.3
10.4
10.5
10.6

111
11.2
11.3
11.4

12.1
12.2
12.3
12.4
12.5

131
13.2
13.3
13.4
13.5
13.6

141
14.2
14.3
14.4
14.5
14.6

Mass storage and virtual memory
Disk buffers

The file control block (FCB)

Read and write disk files

Disk buffer management

Saving disk buffers to disk files

Dictionary and vocabulary
Threading of the dictionary
Hashing and searching the dictionary

Number input and output
Representation of numeric data
Input number conversion
Output number conversion
Double integer output

Word parsing

Text processing

Input stream and input buffers

Low level parsing commands

High level parsing commands

String commands defined using PARSE
End-of-buffer condition

Text interpreter

The operating system of Forth
Entering the text interpreter
INTERPRET

DONE? and X

Compiler

The colon definition

Colon and semicolon

The compiler loop

Low level supporting commands
Immediate commands

Structuresin colon definitions

Compiler directives

Compiling numeric data structures
Compiling string literals

Compiling control structures

Address calculation for control structures
Control structure compiler directives

Utilitiesin F83 system

The CP/M-DOSfiles

CP/M-DOS file primitive commands
The file control block

High level file commands

Save core image to a file

Directory accessing

System level file commands

viii

62
63
65
66
67
71

73
73
75

81
81
82
85
86

88
88
88
89
91
92
92

94
94
94
95
96

98
98
99
100
102
102

105
105
106
107
109
211
112

115
115
116
117
118
118
119

15.

16.

17.

18.

19.

20.

21.

Part IV

22.

23.

151
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10

16.1
16.2
16.3

17.1
17.2

18.1
18.2
18.3
18.4
18.5

19.1
19.2

20.1
20.2
20.3
20.4
20.5
20.6
20.7

211
21.2
21.3
21.4

22.1
22.2

23.1

Text editors

String utility

Terminal dependent deferred words
The cursor commands

Editing buffers

Line editing commands

String editor commands
Screen editor

The screen display commands
The screen editor commands
Configuring the terminal

Viewing source screens
The view field
The view files
The viewing command

WORDS
Output formatting commands
WORDS

Disk file utility

Displaying screens in a file
Disk buffers

Single block copying
Multiple block copying
Multiple file copying

Memory dump
The dumb DUMP
The smart DUMP

Decompiler

Positional case defining word
Associative defining word

Decoding different classes of words
Sorting and execution tables
Decompiling different word classes
Word classification

The decompiler SEE

Printing utility

Variables and setup

Printing two screens side by side
Printing 6 screens on a page
SHOW

8086 Specific utilities
Debugger
Low level supporting words

High level trace commands

M ultitasker
Multitasking

121
121
123
123
125
127
128
120
131
133
124

136
136
137
138

140
140
140

142
142
143
144
144
145

147
147
147

149
149
150
151
152
153
154
155

157

157
158
159

161

163
163
164

166
166

23.2
23.3
23.4
235
23.6

24.
24.1
24.2
24.3
24.4
24.5
24.6

25.
25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
25.10
25.11
25.12
25.13

Index

User variables and the user area
PAUSE and RESTART

The multitasker

Task definition

Background tasks

8086 Assembler

Assembly tools

8086 register definitions

Addressing mode operators
Defining words to generate opcodes
Special opcodes

Structures in code definitions

M etacompiler

Concept of metacompilation
Vocabularies for metacompilation
Accessing memory in the target system
Branching constructs

Forward referencing

Compiling new words to target system
Transition compiler directives

Defining words in metacompiler

User variables

Vocabulary

Resolving forward references
Redefining host words

Running the metacompiler

166
168
170
170
171

173
173
174
176
180
183
185

188
188
189

191

192

194

195
196
198

199

199
200

201

201

204

11
1.2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
3.1
4.1
4.2
6.1
7.1
7.2
8.1
8.2
8.3
9.1
10.1
12.1
13.1
13.2
13.3
15.1
15.2
16.1
20.1
20.2
21.1
23.1
24.1
24.2
25.1
25.2

Figures

The Forth family tree

The standard bearer

IBM-DOS files in F83 system

Forth commands

Assembler and DOS commands
Commands in other vocabularies
VIEW and SEE

File and directory commands
Debugging LIST

Memory dump

The virtual Forth computer

Memory map of F83 system
Representation of strings

The file control block

Disk buffer management

Structure of a Forth command
Vocabularies and dictionary structure
Four-way threading in a vocabulary
Input and output number conversion
Parsing with WORD

The interpreter and the compiler
Numeric data structures

The string literals

The control structures

The editing buffers

Screen editor display

The view field and the view files
Decoding different types of commands
Decompile different commands

Two printing formats

The round robin task scheduler
Register addressing mode constants
8086 instruction types

The chicken-egg cycle of meta-Forth
Supporting vocabularies for
metacompilation

Xi

11
11
12
15
18
20
27
29
42
61
64
68
75
77
80
83
91
101
107
108
111
126
131
137
152
156
160
169
175
179
285
191

2.1
3.1
3.2
3.3
3.4
3.5
3.6
3.7
4.1
6.1
9.1
23.1

Tables

Vocabularies in F83

Editor commands

Loading commands

8086 registers and Forth registers
Register addressing modes and mnemonics
8086 assembler commands, Forth style
Return commands

Machine code conditionals

8086 Register assignments for Forth
String commands

Data representation

User variables

Xii

10
23
26
30
30
31
31
32
39
60
81
167

Part|. Introduction to F83 System

Chapter 1. TheHeritage of F83

1.1. TheRoot of F83

Forth was invented by Charles Moore in the 60seadeveloped specialized programming tools
for various software projects and crystallized theto a language-operating system. Forth
spread to many continents following the radio wbges originally programmed by Mr. Moore
when he was with the National Radio Astronomy Obesterry. Forth was so prevalent in the
astronomy communities that the International Astraic Union formally adopted Forth as their
standard programming language in 1974.

Mr. Moore and some of his colleagues left NRAO &orched the Forth, Inc. to market Forth
systems and services in 1972. Over the yearsjessdrForth implementations were produced for
commercial minicomputers and microcomputers. Tipesducts evolved into poly-Forth, which
contained many advanced features such as intedriyet /0O, multitasking-multiprogramming,
data base management, transcendental functionsnetad or target compilation. It remains the
most comprehensive Forth system in the Forth maleee.

Forth users in Europe organized a user's grouledcBuropeanForth users Group (EFUG). To
encourage the exchange of Forth programs and iattwm EFUG published a list of Forth
commands with standard commands, commonly knowheaBorth-77 Standard. It documented

the then often used Forth commands in an effgotéwent these commands from mutation as more
Forth systems were installed.

The Forth Interest Group was organized in 197&tmerage the use of Forth on small personal
computers. Two major activities sponsored by FIG978 were the publication of figForth
Model and the organizing of the Forth Standardsnld2ecause of the low costs of the figForth
source listings and the quality of these figFontiplementations, figForth became the de facto
standard of Forth on small computers. The proftoat the Forth Standards Team, the Forth-78
Standard, however, was not as successful. It e@s srphaned by FIG. The Forth Standards
Team went back to the drawing board and producedrtith-79 Standard which was much more

1

precise in wording and consistent in the namingtahdard commands. Many vendors including
Forth, Inc. made genuine efforts to adopt thisddad into their products.

Forth Chips
FORTH-83
F&3
MOVIX
-
Lab Ilicro Sys LIVE
70 polyFOR.TH
Micromotion
FORTH-73
NS
i OR.TH
FORTH-77

FORTH

MEAD

Charles Moore
IMohasco

SLAC
MIT

Figurel.l TheForth family tree

Several problems kept the Forth Standards Teamimgork Among them, the more serious ones
are the state dependence of many commands, thetampure, the representation of falsehood,
integer division with negative divisor, and the magnof many commands. These problems were

2

resolved in the publication of the Forth-83 Staddarearly 1984. The exhausted Forth Standards
Team decided that no new Forth standard will besiciemed in the near future to let Forth-83
Standard some time to establish itself in the Footimmunity.

1.2. Advancementsin Forth-83 Sandards

Major improvements in Forth-83 Standards over masiForth standards are briefly discussed here.
Exhaustive discussions have appeared in Forth Dsioes, authored by the Secretary of the Forth
Standards Team, Dr. Robert L. Smith. Some of tbeemsignificant features in the Forth-83
Standard are summarized here.

Mono-Addressing

Four addresses are used to address different fremsommand in the dictionary, the name field
address, the link field address, the code fieldesk] and the parameter field address. To allow
maximum implementation flexibility and code poriélj the 83-Standard uses only one address,
the compilation address. It is equivalent to théecfield address in the figForth model. The
compilation address is the one returned by ' aNDiFcompiled to colon commands, and used by
EXECUTE to run the command. Only one extra commarnptovided in the standard to access
information stored in the parameter field: >BODY.

The importance of the compilation address cannaiveestressed. Mono-addressing recognized
this characteristics of Forth. It is also benefithat the compilation address serves as the focal
point in locating information stored in the commsand

Eliminating State Smart Commands

Many Forth commands in the early standards exeatifiezently depending upon whether the
system is in the execution mode or compiling md#le, LITERAL, ' (tick), .", etc. In Forth-83
the state smart commands are either eliminatedparate commands are defined for interpreting
and compiling states, making the system less ambgand faster.

Old "is split into two commands: 'and []. Olds splitinto .(and .".
Improved DO-L oop
The DO-LOOP structure went through a major overlvaélorth-83. The range of index is

extended to 64K so that full memory range can lokrem$ed in the loops.

LEAVE is made to terminate the loop immediate ufisexecution rather than wait until LOOP is
executed.

Improved Division

Division is now floored towards negative infinitystead of rounded towards zero. Itis more
useful in that the quotient and modulus have a $incdoange between positive integer and
negative integer domain when either divisor andividend is negative.

Representation of True Flag
A true flag generated by the Forth-83 system isasgnted by -1 instead of 1 in the older standards.
-1 is more useful than 1 in doing bit-wise logiceagtion.

Consequently, NOT can now be defined as one's @mwit operation instead of being simply an
alias of 0=.

Zero-based PICK and ROLL
Top of the data stack is treated as the basedn&raory area and addressing into this area is zero
based like addressing regular memory areas.

WORD Returning an Address

Word buffer was generally assumed to be at thetape dictionary. However, this is
implementation dependent. With WORD returningdldress of the word buffer, the word buffer
can be assigned to other memory areas. Practagkwf WORD always requires the address of
the WORD buffer. Including the word buffer addresthe WORD function is a convenience to
you. Aslight speed advantage can also be realized

1.3. Creatorsof the F83 Systems

F83 is a very extensive language and operatingsysteated by Henry Laxen and Mike Perry,
two professional Forth programmers in BerkeleyjfGalia. Both of them have been active in the
Forth Interest Group since its beginning, and pgdited in the work of the Forth Standard Team to
develop Forth-79 Standard and Forth-83 Standardhey have published papers and written
tutorials on Forth in Forth Dimensions and in ti@RML (Forth Modification Laboratory)
proceedings. As Forth-83 Standard evolved, thikyHfe need of a complete Forth system based
on this standard to carry the standard to Forthsusmed community, in the same way the figForth
implementations on the 6 popular microprocessansechthe figForth model. F83 system was
the result of their efforts.

MO
VIZIBLE
SUPPORT
INC

Figurel.2. The Sandard Bearer

The F83 system was designed to use the CP/M opgraygstem as its host for terminal
input-output and disk interface so it is ratheaigiintforward to be transported to a variety of
microcomputers using the CP/M system. It has lm@lemented for 8080-280, 8086-8088, and
68000 CPU's. Laxen and Perry put this systemarptiblic domain, according to the tradition of
the Forth Interest Group, as a vehicle to distelibhe newly established Forth-83 Standard. Wil
Baden at Los Angles ported it to the Apple Il cot@pand named his system F83X.

F83 Version 1.0 was released by Perry and Lax&eptember, 1983, shortly after the Forth-83
Standard was published. They also organized awe8&8ng group in the Northern California to
evaluate the F83 system for practical applicationshe F83 system, over the period of about a

5

year, was enhanced and upgraded several times. lafBsé version, Version 2.1 was released in
the summer of 1984. The authors promised thatgrsion will not be modified in the near
future, and it should be stable for you to get famwith it and to be distributed to a wider
audience.

This book is meant to be a reference manual t&-8&83system. It was originally written for the F83
system Version 1.0 for the 8086 processor on a @B/dperating system. Since the release of
Version 2.1, it was also upgraded to this versioDue to the overwhelming spread of the IBM
Personal Computers and its compatible models,stalso modified for using with the F83 system
for the MS-DOS system. As for the other F83 systaims useful as a reference for all the high
level Forth commands. For low level machine coalamands, you will have to refer to the
source code and documentation coming with the 8p&@3 system.

14. Featuresof F83 System

F83 is not a toy language like most other publimdm and some commercial Forth system. It
contains all the necessary utilities and toolsyfmr to develop application programs conveniently
and efficiently. Both executable object codes tredsource codes are provided and distributed on
floppy diskettes in the machine readable form. hailigh Laxen and Perry do not intend to

provide support and consultation on the F83 systanthey called their publishing firm No Visible
Support, Inc., the systems they distributed arexatllent quality and can stand on their own
strength. Extensive documentation are providdterform of shadow screens and in-line
comments.

Laxen and Perry intended that F83 should demoesarad bring out the best features in Forth as a
professional programming language. Many utiliaes tools were included in this system which
are not generally available even in the best ottiamercial Forth systems. Some of these
utilities are listed here:

Editor

Assembler for the host CPU

Full BIOS/BDOS interface

Multiple file accessing

Four-way threaded dictionary

Dynamically defined vocabulary search order
Source code viewing

Decompiler

Debugger

Memory dumping

Multitasking

Shadow-screen documentation

Source and documentation printing
Forward referencing

Metacompiler

Huffman code compression and expansion

In realizing all these functions, F83 has more th@@0 commands in its dictionary, comparing
with about 300 commands in the figForth model aBd dommands in the required command set
of Forth 83-Standard. Casual users may not nekddw the details of all these commands.
However, this whole F83 system is a huge resenfdtorth programming examples from which
serious Forth programmers can study and find reatitions to many of their programming
problems.

FigForth became the de facto standard of Fortmmadlomputer systems because of the quality
and the availability of the source listings distitded by the Forth Interest Group. The figForth
system is complete in the sense that it includeb@lnecessary system functions so that it can be
implemented on real life microprocessors. Thelr@&-Standard, on the other hand, had not
attained the popularity of figForth in spite of tinéensive lobbying efforts within and without the
Forth Interest Group. The principal reason is #taGtandard has to be supported by a system to
be useful. Forth Interest Group expected thasthmoort to Forth 79-Standard would come from
vendors of commercial Forth systems, and it didpnovide executable systems in supporting the
standard.

Forth-83 Standard is a refinement on the 79-Stahdavlany ambiguities in the 79-Standard were
resolved and all required commands are define@ttebprecision. The DO-LOOP structure was
overhauled. However, Forth Interest Group mairtgithe policy to let Forth vendors to provide
the system support to the 83-Standard. Becaute okservation they had in the capability of
vendor supports, Laxen and Perry built the F83esyss the bearer of the 83-Standard. They
also realized that the Forth community has matokest the years and a minimal system like
figForth will not satisfy the needs of Forth userduilding applications and systems. To be the
standard bearer, F83 had to go beyond the fighoadtiel and provides you with a complete
program developing environment.

Chapter 2. Browsing F83 System

| assume that you have either followed the instonstas described in the README.TXT file on
the original disk you obtained from Henry LaxerMike Perry and expanded the compressed files
to the full length files comprising the F83 systemsomebody did the expansion for you and you
have a set of floppy disks ready to be used tocgphis interesting and powerful Forth operating
system and language. If you did not have an exgzhsgistem, please read the instructions in the
README file and then run the executable file RUNMEYou will be guided step by step to create
a set of disks which will contain all the fileslie used by the F83 system, as show in Figure 2.1.

Vol unme in drive A has no | abel.
Vol ume Serial Nunber is 0000-0000

Directory of A\

02/ 09/ 1985 09: 23 PM 12, 288 CLOCK. BLK
02/ 09/ 1985 09:23 PM 53, 248 CPU8086. BLK
02/09/1985 09:23 PM 30, 720 EXTEND86. BLK
02/09/1985 09:23 PM 26, 368 F83. COM
02/ 09/ 1985 09:23 PM 4,993 F83-FI XS. TXT
02/ 09/ 1985 09:23 PM 43, 008 HUFFNMAN. BLK
02/09/1985 09:23 PM 190, 592 KERNEL86. BLK
02/09/1985 09:23 PM 49, 280 META86. BLK
02/ 09/ 1985 09:23 PM 112,640 UTILITY. BLK
06/ 24/ 2013 05:55 PM 0 2-2. TXT

10 File(s) 523, 137 bytes

0 Dir(s) 916, 480 bytes free

Figure2.1. IBM PC-DOSfilesin F83 system

In this chapter, | would like to show you what aostained in the F83 system and also the files on
the disks and help you to get familiar with thisteyn. All the commands and exercises
mentioned in this chapter can be used freely tocsseethe system so that you will gain certain
degree of confidence to use them later when yoludeiprogramming. These commands will in
no way disturb the information stored on the digkse best way to learn them is to type them in on
the keyboard and observe the results on the CRinat.

F83 system is very large comparing to earlier putdtimain Forth system like figForth . It has
about 1000 commands or commands in its dictionadowever, most commands are defined to
support other high level commands and are seld@d ios ordinary programming purposes.

Only a very limited number of commands are usednofind these are commands that a user must
learn and be fluent in them to use Forth produttivelncluded in this set of commands are the
required command set defined in the Forth-83 Staisgdavhich is a minimum set of commands
allowing you to compose solutions to a wide rangerogramming problems, and the set of utility
commands in this F83 system which allows you tothsespecific resources provided by your
computer. | further assume that you have alreadlysome knowledge on Forth by reading some

8

textbook like Leo Brodie's 'Starting Forth', oratguivalent, and used a Forth system from some
other source. Therefore, | will not try to explamndetails the elementary functions and
commands common to most Forth system and only sisitiose commands unique in the F83
system. The purpose is to get you to know thitesywell enough so that you will be able to use
it as a basis to build your application or your rfeevth system.

In this chapter, all the words or commands disalisse non-destructive. They will allow you to
browse through the entire system and exploredtses without writing anything to any of the files.
You must try them all and get to know them welldsefwe get to the next chapter where we will
try to edit files and make permanent changes disdisHowever, it is recommended that you
make some backup copies of the disks with the edgrhfiles and only use the copies for the
exercises, just to be safe.

21. Listingthe Command Names

Words or commands in Forth are very powerful cartgsr. They have the essence of subroutines
in FORTRAN, procedures in PASCAL and PL/I, charexta APL, macro instructions in assembly,
and command files in operating systems. Becauwgedte resident in a dictionary in the RAM
memory of a computer, they are available for imratxlexecution or for compilation into other
high level commands. Commands in the dictionaeyagranged in the form of a linked list so that
the execution procedure associated with a particaismmand can be located quickly by the Forth
operating system. A very useful utility commandddined to go through this linked list and print
the names of all the commands in the dictionary.is ¢alled WORDS in Forth-83 Standard, a
remarkable improvement over the old computereseendnST in the figForth model. Typing:
WORDS
on your keyboard will generate a long list of conrmeh@ames on the terminal, as shown in the
following figures. On the list of Forth commangsyu will find all the regular Forth commands
for arithmetic operations like + , -, *, /, anther division and ratio operators; the stack djpesa
like DUP , DROP , SWAP , OVER and ROT; the memaogrators like @ ,!, C@ , and C! ; etc.
In fact, all the Forth-83 standard commands arkuded in this list some where.

WORDS have few equivalent in other language or atpeg system. The Forth computer can tell
you all the commands it knows, which are availdbieyour use, any time you care to browse. In
other language or operating system, you have to@othem up in thick manuals and can never be
sure that they are really in your system. WORD&aés the current state of the dictionary. If
you add more commands to the dictionary, they appear at the top of the name list. It is very
handy when you are extending the system by definewg commands and add them to the
dictionary. In this case you will be interestedhe commands on the top of the dictionary and

9

not the rest of the long listing. You can stop laene listing by pressing any key on the
keyboard.

2.2. Vocabualry

Fig. 2.2 shows you how to list the commands inRbgh vocabulary. The dictionary in Forth is
usually not a single linked list of commands or coamds, but contains a number of logically
independent linked lists of commands called vocaiies. The purpose of vocabulary is
three-fold: to shorten the time needed to seanduth the dictionary, to group functional related
commands together, and to allow different commadod$are the same name. There are nine
vocabularies defined in the F83 system. The narh#gese vocabularies can be displayed by
typing the following command:

VOCS
and nine vocabulary names will be displayed orteh@inal. The function and contents of these
vocabularies are summarized in Table 2.1.

Table2.1. Vocabulariesin F83

NAME FUNCTIONS

ROOT Wordsto assign vocabulary searching order. A llvocabulary mustbe defined
in this vocabulary.

FORTH The main trunk vocabulary for all standard an d system words.

EDITOR All editing commands.

ASSEMBLER All words needed to define low level mach ine code routines.

DOS Words to use the underlying DOS utility.

USER User variables.

SHADOW Words to support shadow screens for comments and documentation.

BUG Words to support F83 debugger.

HIDDEN Miscellaneous supporting words not useful to the user.

Executing a vocabulary command makes the speacifiedbulary the ‘context' vocabulary. The
system will search the context vocabulary firdioicate a command entered by you. The
command WORDS displays only the list of commandfiécontext vocabulary. Since normally
the context vocabulary is the Forth vocabularycekeg WORDS usually displays the command
names in the Forth vocabulary as shown in Fig. 2E2xecuting WORDS after a vocabulary

command will list the command names in that vocatylas shown in the examples in Fig. 2.3-4.
k

ok

WORDS

EMPTY MARK HELLO BACKGROUND: ACTIVATE SET
(SEMIT) (PAGE) FORM-FEED PAGE #PAGE LOGO
ASSOCIATIVE: CASE: MAP OUT DL DU DUMP
(WHERE) FIX EDIT ED DONE EDITOR DARK
SCAN-1ST FOUND TO CONVEY (CONVEY) .TO H
(COPY) ESTABLISH L B N :: MANY TIMES

TRIAD LIST .SCR ?CR ?LINE RMARGIN LMARG
FUDGE P! PC! P@ PC@ MULTI SINGLE STOP
RESTART (PAUSE) UNBUG BUG DOES? DOES-SIZE
EXTEND86.BLK KERNEL86.BLK VIEWS VIEW-FILES
DIR CREATE-FILE MORE ROOT --> +THRU THR
DUMP .ID .S DEPTH BYE START OK INITIA

-TASK TASK: RESUME DEBUG LISTING SHOW

L/PAGE FOOTING INIT-PR EPSON SEE (SEE)
.HEAD ?.A ?.N DLN EMIT. D.2 .2 A S HADOW
AT -LINE BLOT REPLACE INSERT DELETE SEA RCH
OP CONVEY-COPY U/D HOPPED VIEW @VIEW CO PY
#TIMES WORDS LARGEST IND INDEX .LINEO
IN HIDDEN 0<= 0>= >= <= U>= U<= MS

WAKE SLEEP ILINK @LINK LOCAL INT#

DOES-OP LABEL UTILITY.BLK CPU8086.BLK

SAVE-SYSTEM FROM OPEN DEFINE B: A: DRIV E?
U ?ENOUGH ? (S \ L/SCR C/L RECURSE B Q
L COLD WARM BOOT QUIT RUN IS (IS) > IS

10

USER #USER CODE AVOC 2VARIABLE 2CONSTANT
CONSTANT RECURSIVE ; :] [DOES> ;COD

HIDE ?CSP !CSP CREATE "CREATE ,VIEW WHI
LOOP ?DO DO THEN BEGIN ?LEAVE LEAVE ?
<MARK >RESOLVE >MARK ?CONDITION ABORT ABO
(FORGET) TRIM FENCE " .* " (") (")

ASCII DLITERAL LITERAL IMMEDIATE COMPILE
STATUS ?STACK DEFINED ?UPPERCASE FIND #TH
>BODY LINK> NAME> BODY> L>NAME N>LINK F
'WORD PARSE PARSE-WORD SOURCE (SOURCE) PL
UD. (UD) .R . () U.R U. (U) OCTA

NUMBER (NUMBER) NUMBER? (NUMBER?) CONVERT
FLUSH SAVE-BUFFERS EMPTY-BUFFERS IN-BLOCK B

DEFINITIONS VOCABULARY DEFER VARIABLE
E (;CODE) ;USES ASSEMBLER (;USES) REVEAL
LE ELSE IF REPEAT AGAIN UNTIL +LOOP
<RESOLVE ?<MARK ?>RESOLVE ?>MARK <RESOLVE
RT" (ABORT") (?ERROR) ?ERROR WHERE FORGET
[COMPILE] [] ' ?MISSING CRASH CONTROL
EVEN ALIGN C, , ALLOT INTERPRET
READS (FIND) HASH VIEW> >VIEW >LINK >NA
ORTH-83 DONE? TRAVERSE \S (.(>TYPE
ACE /STRING SCAN SKIP D.R D. (D.) UD.
L DECIMAL HEX #S # SIGN #> <# HOLD
DOUBLE? DIGIT LOAD (LOAD) DEFAULT VIEW#
LOCK (BLOCK) BUFFER (BUFFER) MISSING

DISCARD UPDATE ABSENT? LATEST? CAPACITY D
READ-BLOCK >UPDATE BUFFER# >END >BUFFERS
REC/BLK B/REC B/BUF #BUFFERS QUERY TIB
CR-IN P-IN RES-IN BACK-UP (DEL-IN) BS-IN

(EMIT) (PRINT) PR-STAT CR KEY KEY? (CON
COMP -TRAILING PAD HERE UPPER UPC MOVE
BS BL END? #TIB SPAN >IN BLK VOC-LINK

LAST R# DPL WARNING STATE PRIOR SCR E
#LINE #OUT DP RPO SPO LINK ENTRY TOS

DMAX DMIN D> D< DU< D= DO= ?DNEGATE

4DUP 3DUP 20VER 2SWAP 2DUP 2DROP 2! 2

U< ?NEGATE <> = 0<> 0> 0< 0= UM/MOD

210 + ABS - NEGATE + OFF ON

AND ROLL PICK R@ >R R> ?DUP FLIP -R

RP@ SP! SP@ CMOVE> CMOVE C! C@ ! @
PERFORM EXECUTE >NEXT BOUNDS (?DO) (DO)
UNNEST EXIT FORTH ok

OS SWITCH FILE? .FILE WRITE-BLOCK
INIT-RO FIRST >SIZE LIMIT DISK-ERROR B/FC
EXPECT CC-FORTH CC DEL-IN CHAR (CHAR)
BEEP BACKSPACES SPACES SPACE TYPE CRLF
SOLE) (KEY) (KEY?) BDOS COMPARE CAPS-COMP
LENGTH COUNT BLANK ERASE FILL CAPS BE
WIDTH 'TIB CONTEXT #VOCS CURRENT CSP

MIT PRINTING IN-FILE FILE HLD BASE OFFS

*/ *MOD MOD / /MOD * MU/MOD M/MOD

D- D2/ D2* DABS S>D DNEGATE D+ 2ROT

@ WITHIN BETWEEN MAX MIN > < U>

U*D UM* 2- 1- 2+ 1+ 8* U2/ 2/

CTOGGLE CRESET CSET FALSE TRUE NOT XOR

OT ROT NIP TUCK OVER SWAP DUP DROP
(?LEAVE) (LEAVE) J | PAUSE NOOP GO
(+LOOP) (LOOP) ?BRANCH BRANCH (LIT) UP

Forth commands

ok
Figure2.2
ok
VOCS : SHADOW EDITOR HIDDEN BUG ROOT USER ASSEMBLEROS FORTH ok
ok
ORDER

Context: FORTH FORTH ROOT

Current: FORTH ok

ok

ok

ok

ASSEMBLER ok

ok

WORDS

2PUSH 1PUSH NEXT DO REPEAT WHILE AGAIN
U< > <= >= < 0>= 0< 0<> 0= A?<RES

XLAT WAIT SUB STOS STI STD STC SHR
REPNZ REP RCR RCL PUSHF PUSH POPF POP
LOOPE LOOP LODS LOCK LES LEA LDS LAHF
JGE JG JE JCXZ JBE JB JAE JA IRET

DAA CWD CMPS CMP CMC CLI CLD CLC CB
SS: ES: DS: CS: XCHG SEG INT ESC TE

6MI 5MI 4MI 3MI 2MI 1MI ?FAR FAR IN

RR, ,/C, SIZE, W, OP, BYTE SIZE RMID

MD [W] W [IP] IP [RP] RP S#) #) #

[SI+BX] [BX] [BP] [DI] [SI] [BP+DI] [BP

CX AX BH DH CH AH BL DL CL AL R

HERE , C, C; END-CODE ok

ok

ok

DOS WORDS

?DEFINE FILE: .NAME SAVE HEADER SELECT
SEARCH SEARCHO CLOSE RESET FCB2 DOS-FCB
FILE-WRITE FILE-READ SET-IO REC-WRITE REC-R
CLR-FCB FCB1 ?DISK-ERROR DISK-ABORT !FILES
ok

Figure2.3

ok

UNTIL BEGIN ELSE THEN IF OV U> U<=
OLVE A?<MARK A?>RESOLVE A?>MARK +RET XOR
SHL SCAS SBB SAR SAHF ROR ROL RET R
OUT OR NOT NOP NEG MUL MOVS LOOPNE
JS JPO JPE JO JNS JNO JNE JMP JL
INTO INC IN IMUL IDIV HLT DIV DEC
W CALL AND ADD ADC AAS AAM AAD AAA
ST 13MI 14MI 12MI 11MI 10MI 9MI 8MI
TER WR/SM, R/M, WMEM, MEM, B/L? LOGICAL
RLOW BIG? REG? #? SEG? MEM? R16? RS
DS SS CS ES [DI+BP] [SI+BP] [DI+BX]
+SI] [BX+DI] [BX+SI] DI SI BP SP BX

EGS REG ?<RESOLVE ?<MARK ?>RESOLVE ?>MARK

IFCB (!FCB) MAKE-FILE WRITE READ DELETE

OPEN-FILE DOS-ERR? FILE-SIZE FILE-IO

EAD IN-RANGE MAXREC# RECORD# SET-DMA
ok

Assembler and DOS commands

11

ME
WORD

2* 3

RP!

U>=
EPZ
E JL
DAS

MOV
™I

DX

ORDER

Context: FORTH FORTH ROOT
Current: FORTH ok

ok

ok

VOCS : SHADOW EDITOR HIDDEN BUG ROOT USER ASSEMBLEROS FORTH ok

ok

ROOT WORDS

WORDS VOCS ORDER DEFINITIONS FORTH PREVIO
ALSO ok

ok

ok

SHADOW WORDS

SHOW BRING G CONVEY COPY >IN-SHADOW >SH
DISPLACEMENT ok

US SEAL ONLY

ADOW (>SHADOW)

ok

ok

EDITOR WORDS

IBM IBM--LINE IBM-BLOT IBM-DARK IBM-AT SM ART DUMB .DUMB (DARK) (BLOT) (AT) GET-I D
NEW EDIT-AT .ALL CHANGED? REDISPLAY .LINE DY DX KTJTILLR DE S F FI ND?
BRING G M WIPE JOIN SPLIT X U P O | ?2STAMP STAMP ID ID-LEN 'F+ (TILL))
'C#A W K KEEP ?MISSING .BUFS .FRAMED 'VIDEO 'FIND 'INSERT C/PAD ?TEXT EOS

MODIFIED #END #REMAINING #AFTER 'LINE 'CU RSOR 'START +T COL# LINE# CURSOR T C

TOP C/SCR INSTALL CHANGED EDITING? AUTO .SCREEN ok

ok

ok

HIDDEN WORDS

PR-FLUSH PR-S-PAGE PR-PAGE PR-STOP PR-START P-FOOTING P-HEADING 2SCR 2PR PR TEXT?

SCR#S ((SEE)) .DEFINITION-CLASS

DEFINITION-CLASS .OTHER .USER-DEFER .DEFER .USER-VARIABLE .DOES> .: .VARIABLE .CONSTAN T
.IMMEDIATE .PFA .EXECUTION-CLASS

EXECUTION-CLASS .FINISH .UNNEST .(;CODE) .S TRING .QUOTE .BRANCH .INLINE .WORD ok

ok

ok

BUG WORDS

TRACE 'UNNEST (DEBUG) RES SLOW L.ID PNE XT DEBNEXT DNEXT FNEXT CNT IP> <IP 'D EBUG

ok

ok

ok

USER WORDS

DEFER VARIABLE CREATE ALLOT ok
ok

ok

FORTH ok

ok

ok

ORDER

Context: FORTH FORTH ROOT
Current: FORTH ok

ok

Figure2.4

Commandsin other vocabularies

The vocabulary structure in F83 is significantlypimved as compared with the vocabulary

structure in the figForth Model.

It is more flelehin that you can dynamically change the

vocabulary searching sequence and specify upamta different vocabularies in the searching

sequence.

The speed of dictionary searchingasnaigh faster than that in the figForth Model,

because all vocabularies in the dictionary are édstto four threads. In order to locate a

command, only a quarter of a vocabulary needs tchened. This hashed searching greatly
improves the speed of text interpretation and @wgcompilation.

Two commands are used to manage the vocabularghsegusequence: ONLY and ALSO.
ONLY initializes the searching sequence and make®R as the only vocabulary available for

12

searching. In the ROOT vocabulary, all the otheralmlary names must be defined so that they are
accessible. After ONLY is executed, executing ater vocabulary command will make that
vocabulary the context vocabulary which becomesditbevocabulary to be searched during text
interpretation. Executing ALSO pushes the contexiabulary on the top of a vocabulary stack
and makes it the first resident vocabulary. Otkerdent vocabularies already in the vocabulary
stack are pushed down so that they will be seartchedier after searches in the context and the
first resident vocabularies failed to locate a caanth

The context vocabulary, for all practical purposeshe equivalent to the context vocabulary in
figForth . The resident vocabularies are exterssadrthe context vocabulary to allow you to
specify the number and the order of vocabularidseteearched in runtime.

To arrange the searching order as DOS-EDITOR-ASSHBRBForth, one has to execute the
following command sequence:

ONLY FORTH ALSO ASSEMBLER ALSO EDITOR ALSO DOS
Here DOS becomes the context vocabulary and EDIBQRe first resident vocabulary to be
searched. If a command cannot be located in €23 or EDITOR, the ASSEMBLER and the
FORTH vocabularies will be searched in turn.

Another command ORDER will list the context and teésident vocabularies on the terminal. It
is a useful command to assure yourself the comt@dronment you are in at any time. If you
executed the above string of vocabulary commaygsd

ORDER

results in the following display on the terminal:

Context: DOS EDITOR ASSEMBLER FORTH ROOT
Current: FORTH ok

indicating the desired vocabulary search order. e durrent vocabulary, in this case FORTH, is the
vocabulary to which new commands are added. Itbeildiscussed later.

The command WORDS behaves similarly to VLIST irFbgth . However, WORDS only lists
the names of commands in the context vocabulaeyetbre, WORDS must be preceded by the
name of the vocabulary you wish to examine, likdORFH WORDS, DOS WORDS, etc. Since
the list of command names always starts with thrermaand defined last, it is often used to see
which was compiled last. If there were any ernanirty disk file loading, you can find quickly
where compilation stopped.

2.3. Viewing Source Code of Command Definitions

Since there are so many commands in the F83 sy#tenimpossible for anybody to remember the

13

meaning and the function of all these commandsthodigh the compiled object code of a
command in the dictionary contains all the infonmrtabout this command, it is not readily usable
to casual users. F83 system provides a very stiageand powerful tool set which permits you to
see the source code of any command in the systé@ims magic command is named 'VIEW'. If
you wanted to see how the command LIST was defiyma should type:

VIEW LIST
and the F83 system will open the file in which LI&@s defined and display the screen containing
the definition of LIST. On the top of the displayscteen, you will also find the named of the file.
This is shown in Fig. 2.4.

To use the viewing facility, you must have all dwurce files on disks and have them properly
inserted into appropriate disk drives. For somapaters, the files fit on a single floppy disk.
This is the ideal case because you don't have toyjabout where a particular fileis. For
computers with smaller disk drives, the files maustspread over two or more drives. If the
required file is not on the disk of your currenglddrive, you have to log on to the drive where the
file is located and repeat the viewing commandnsert the proper disk in the the log-on drive and
repeat the viewing command.

Commands are grouped by their functions and bytder of compilation into six major files in
the F83 system:

METANN.BLK The meta-compiler

KERNELNN.BLK The trunk FORTH system. Nucleus, inter preter and compiler.
EXTENDNN.BLK Vocabulary and file words.

CPUnnnn.BLK Assembler and CPU dependent words.

UTILITY.BLK Editor, debugger, decompiler, printing and other utility.
HUFFMAN.BLK Huffman compression.

where nn or nnnn identifies the CPU for which ti83 Bystem is hosted. 80 for 8080 and Z80, 86
for 8086 and 8088, and 68 for 68000.

If you have to choose which files to put on a di@kviewing, | suggest that you put
UTILITY.BLK, KERNELNN.BLK, and EXTENDnNN.BLK on onelisk and use it for viewing,
because they comprise the majority of useful contedinat you might be interested in browsing.

F83 also comes with a built-in decompiler which cagenerated the source code from the object
code in the dictionary. The decompiler comman8kiE', followed by the name of the command
you want to decompile. For example:

SEE LIST
will display the sequence of commands which deffireefunction of LIST on the terminal. The
displayed sequence of commands does not matcheiaeisequence in the original source code,

14

because the control structures are not decompuedilmply represented by the corresponding
runtime routines. Nevertheless, the decompilediesece does reveal the composition of the
source code faithfully. The advantage of the dgut@mover the viewing facility is that the
decompiler is always available for you to browsmnmands, even without the disk files.

The result of SEE LIST is also shown in Fig. 2.5. .

ok

ok

VIEW LIST is in A:UTILITY.BLK screen 4

Scr#4 A:UTILITY.BLK

0\ Managing Source Screens 22Mar84map
1:.SCR (S--) ."Scr#"SCR ? 8 SPACES F ILE? ;
2:LIST (Sn-)

3 1 ?ENOUGH CR DUP SCR! .SCR L/SCR 0

4 DO CR I3 .RSPACE

5 DUP BLOCK I C/L * + C/L -TRAILING >TYPE KEY? ?LEAVE
6 LOOP DROP CR;

7:TRIAD (Sn--)

8 12 EMIT (form feed) 3/3* 3 BOUNDS DO | LIST LOOP ;
9:.LINEO (Sn--)

10 DUP 3 MOD 0=IF CR THEN CR DUP 3 .R SPACE

11 BLOCK C/L -TRAILING >TYPE ;

12 : INDEX (Sn1n2--)

13 2 ?ENOUGH 1+ SWAP DO | .LINEO LOOP CR

14:IND (Sn-)

15 BEGIN DUP .LINEO 1+ KEY? UNTIL DROP ;

ok

SEE LIST
1 LIST 1 ?ENOUGH CR DUP SCR ! .SCR L/SCR 0 (DO) 3 8 CR 13 .R SPACE DUP
BLOCK I C/L * + C/L -TRAILING >TYPE KEY? (?LEAVE) (LOOP) -34 DROP CR ; ok

ok
ok

Figure25 VIEW and SEE
2.4. Shadow Screen Documentation

Since most people think that a Forth screen of 12ds is too small to put inline documentation
with the code in the same screen, the shadow steebnique was developed to give you an extra
screen to write comments and documentation for saalce screen. This documentation screen
is the shadow of the source screen.

F83 divides a screen file into two equal parts:fitst half will be used for source code and the
second half for documentation. one can toggle batveesource screen and its shadow screen with
the commands Aand L. After viewing the sourceecioda source screen, you can type AL and
switch to the shadow screen to see the commentdanunentation. Documentation thus
provided in the F83 system is quite extensive,yandare encouraged to examine the shadow
screens with their respective source screens. sfiadow screens generally bring out the purpose

and over-all function of commands which are notiobs in the source definition.
15

25. Filesin F83

F83 uses MS-DOS or CP/M operating system to acbeserminal and the disk files. Using a
readily available operating system to host the $§&2em has the advantage that it can be
transported to a large number of computers withdparating system. It also allows the
partitioning of the F83 system into several namies fwhich are easier to handle than simply
blocked disk. Within a file, however, F83 systeii deals with program or data in the 1024 byte
block format as required by the Forth-83 standafdost of the elementary file functions are
defined as Forth commands. However, you only refeav high level commands to use files to
store and to retrieve programs and data.

Three simple Forth commands have functions simidiaheir DOS or CP/M counterparts: DIR
lists on the terminal all the files on the currdigk drive, A: makes drive A the current drive,
and B: makes drive B the current drive. All fetivities are processed for files on the current
drive.

All the Forth commands using the disk mass storsgeh as BLOCK, BUFFER, FLUSH, etc.,
access the current file on the current disk. @Alfiecomes the current file when it is opened by the
command OPEN <filename>, and subsequent disk comsrane directed to this file. In our
previous example of the command VIEW, which displthe screen containing the source code in a
file, the command VIEW actually opens the file @ning the command and displays the
requested block on the terminal. If you want tarame or to modify data or source in a specific
file, you have to open it explicitly. Once a fileopened, you can display any block within that
file.

The size of a file is usually specified when the Was created. The size in number of 1024 byte
blocks can be recalled by the command CAPACITY. edtite CAPACITY and the number of
blocks in the current file is returned on the stacBource code files in the F83 system with the
extension BLK are arranged to have the source rothe first half of the file and the shadow
documentation in the second half.

To examine the contents of a BLK file, you can tieecommand INDEX to display the first lines
in a range of screens. For example, to displayitsiglines of all the source code screens, you
can type:

0 CAPACITY 2/ INDEX
and the first lines of those screens will be digpthon the terminal. By convention, the first line
in a screen should always be a comment to the eteneé this screen. Thus INDEX gives us the

16

information equivalent to a directory in a file. n&xample of the index listing of the
UTILITY.BLK file is shown in Fig. 2.6.

After you identify any screen of your interest, y@an examine the detailed contents of this screen
by the command LIST, preceded by the screen number:

1LIST
It will display the first text screen in a file. n bll the F83 source code files, screen one ot
screen of the file, i. e., it contains commands will load or compile the source screens in thst re
of the file. There are also some comments in scoee indicating the packaging of the screens in
the file.

To display the shadow documentation of any soutoees, you should type:

AL
The command A uses CAPACITY to calculate the scragnber of the associated shadow screen
and makes it the current screen. the command lagtsphe current screen. Executing A and L
again will display the source screen again.

2.6. Printing Utility

To make hard copy of the source screens and shed@ans, a simple method is to let the printer
follow the terminal display. In the CP/M systemsiygan type the control P code on the keyboard
to turn on the printer. Any character hereaftspltiiyed on the terminal will also be printed.

Now you can use any of the listing commands dismligs the last section to print index of a file or
individual screens. However, you do not have amn the printing format. F83 provides
some utility commands to print source code and @lestreens. If you have an EPSON printer
capable of printing in condensed format, you cantphe source screens side by side with their
shadows on single 8.5" by 11" paper, which is \emyvenient when studying the source code.

The print utility allows you to print a range ofreens on a printer. It must be properly initiatize
for your printer. If you do have an EPSON pringeu have to initialize it by the following
commands:

"EPSON IS INIT-PR
which initialize the vectored command, INIT-PR. eTfrint format is 6 screens to an page with
two 3 screen columns. The printer must be abjeitd 132 characters per line to fit two screens
side by side.

ok
ok
ok
DIR
CLOCK BLK CPUB8086 BLK EXTENDS86 BLK F83 COM F83-FIXS TXT

17

HUFFMAN BLK KERNEL86 BLK META86 BLK UTILIT

ok

ok

OPEN EXTENDS86.BLK ok
ok

ok

CAPACITY . 0 ok

ok

ok

0 15 INDEX

0\ The Rest is Silence
1 (Load Screen to Bring up Standard System
2\ Load up the system

3 (Commenting and Loading Words
4\ The ALSO and ONLY Concept
5\ The ALSO and ONLY Concept

6\ Load Screen for DOS Interface
7\ DOS Interface
8\ Create File Control Blocks

9\ Save a Core Image as a File on Disk
10\ Display Directory
11\ Define and Open files

12\ Viewing Source Screens
13\ My normal configuration
14

15

ok

ok

ok

1LIST

Scr#1 A:EXTENDS86.BLK

0 (Load Screen to Bring up Standard System
1) CR .(Loading system extensions.) CR
22 VIEW#! (This will be view file# 2)

3 WARNING OFF

4

5 3LOAD (BASICS)

6 6 LOAD (FILE-INTERFACE)

7 FROM CPUB8086.BLK 1 LOAD (Machine Dependen
8 FROM UTILITY.BLK 1 LOAD (Standard System

9
10 WARNING ON
11 -->

Figure 2.6

Y BLK 2-6 TXT ok

03Apr84map
07Apr84map
08MAY84HHL

160ct83map
07Feb84map
06Apr84map

07Apr84map
10Apr84map
19Apr84map

06Apr84map
13Apr84map
04Apr84map

08MAY84HHL
07Apr84map

07Apr84map

t Code)
Utilities)

Filesand directory commands

The command to print a range of screens is SHOW:

1 30 SHOW

will print screens 1 to 30.

There are two versions of SHOW in F83. The vergidrorth prints 6 screens per page and the
version in the SHADOW vocabulary prints 3 screeinsonirce with their corresponding shadow

screens.

18

1 30 SHADOW SHOW

prints source screens 1 to 30, 3 screens to aywidy8 shadow screens.

If your printer cannot handle 132 columns per lymy will have to use the command TRIAD to
print three screens on a page.

To obtain the complete listing of a file in the smetshadow format, there is a simple command
LISTING. LISTING was used to generate all the seuistings as distributed with the F83
systems, with file name, page number, and footing.

2.7. Debugger

The debugger is designed to let you single stepihiraugh the execution sequence of a high level
command. To invoke the debugger to trace a commssuk the following command:

DEBUG <name>
where <name> is the command to be debugged. Npti@ppens at this point. DEBUG sets
things up so that when the command is executedwlbget a single step trace showing the
command within <name> that is about to be execaietithe contents of the parameter stack.

While single stepping through a command, the naihtleeonext command to be executed and the
contents of the parameter stack are displayede®QRI terminal. The debugger then waits for a
key stroke on the terminal keyboard. Any key wélise the next command to be executed and
the debugging information displayed. Three spdagk, C, F, and Q, have the following
functions:

Q Quitthe debugging process and restore the debugg edwordtoits original state for normal
execution.

C Turn off the single stepping mechanism and let ex ecution run to completion.

F TemporarilyreturntoForthsystemsothatyouca nexecuteotherForthcommands,forexample,
tochangethedatastackitems.YoumusttypeRESUM Etocomebackandcontinuethedebugging

process.

An example to single step through the executioh bIST is shown in Fig. 2.7. Typing Q at the
bottom of the list terminates the execution.

ok

ok

OPEN UTILITY.BLK ok
ok

ok

DEBUG LIST ok

ok

ok

1LIST 1

1 -> 1 1
?ENOUGH --> 1
CR -->

1
19

bDupP -> 1 1

SCR -> 1 1 2998

! -> 1

.SCR -->Scr#1 AWUTILITY.BLK
LISCR -> 1 16

0 -> 1 16 O

(Do) > 1
CR ->

1

I > 1 0

3 -> 1 0 3
R >0 1

SPACE --> 1

DUP -> 1 1

BLOCK --> 1 64000

| --> 1 64000 O

C/L -> 164000 0 64
* --> 1 64000 O

+ --> 1 64000

C/L --> 1 64000 64
-TRAILING --> 1 64000 64
>TYPE -->\Load Screen to Bring up Standard
KEY? -> 1 0

(?LEAVE) --> 1

(LOOP) -> 1

CR -->
1
| -> 1 1
3 -> 1 1 3
R ->1 1

SPACE -> 1
DUP --> Unbug
ok
ok

Figure2.7

System 07Apr84map 1

Debugging LIST

20

Chapter 3. Using the F83 System

| suppose that you are now ready and eager tchede&3 system to do some programming on your
own. In this chapter | will try to give you somipg on how to use F83 to write programs and save
them on disk for posterity. It is not my job t@td you how to programming in Forth. There are
too many books on this subject in the book storé¥hat | want to do is to discuss many useful
commands in the F83 system which are very helpfgenerate code, test and debug the code, and
save them on the disk in files. Most of them guectic to the F83 system. You will find all of
them in the source code form and commented inithd®v screens if you study diligently the

entire F83 listings. Rather than postpone thespiesin exploring this system until you learn all
about it, | think you will appreciate a few tipsdet started immediately and do something useful.

Again | have to remind you to make backup copiegooir original F83 system disks. If you are
through with the viewing facility and do not nedbithe F83 source files, you may want to use a
formatted blank disk in the currently logged diskd for the exercises we will do here. Since all
the Forth commands are loaded into the dictionaligAM memory, you really do not need those
source files unless you want to copy and use sdrtieescreens. When we invoke the editor, we
will make permanent changes on the disk. You waeltiainly want a good F83 system backed
up so you have something to fall back to.

3.1. CreateYour Own File

To write your own programs, the first thing you Bdw do is to find some space on the disk to store
your program. You can get disk space in threebfit ways:

1. Open an existing file and use screens in it. u Wdl destroy some of the information in this
file.

2. Extend an existing file and use the increasadept the end of this file to store your code.

3. Create your own file and do whatever you warth\ii

If you wanted to modify F83 to suit your own comgrubr to make it perform better, you probably

will use the first approach. Just be sure thatikk is not write-protected so that you will bdeab

to save your program. Simply OPEN the file you tMaruse and select a screen by the command
n LIST or n EDIT.

Then you can use editor commands to enter newiotaléhe screen or edit its contents. We will

discuss the editor commands later.

21

If you chose the second approach to extend anrmexisie, you should first open the desired file
and use the command MORE to add more screensstbléni For example,

10 MORE
will add 10 screens to the end of the current fil&ll the added screens are filled with blank
characters. Now, the command CAPACITY will rettine total screen number on the stack.
From this number you can select any of the addezkss to enter your program. One problem
with this approach is that the shadow screensariilda will not match with the corresponding
source screens.

To create a new file on the disk for your privase uyou have to use the command CREATE-FILE.
Following is an example:

30 CREATE-FILE MYFILE.BLK
where MYFILE.BLK is the name of the new file, antlength of the file is 30 Forth blocks or
30K bytes. After a file is created this way, ihdze opened by the OPEN command:

OPEN MYFILE.BLK
and now we can use the command LIST or EDIT tacselee screen in this file to enter new text
or other information. The file name must confomthe rules of the disk operating system.
Usually the name can contain up to 8 charactets avthree character extension.

F83 allows you to open 2 files at a time so thateias can be copied from one file to the other.
The command FROM opens the second file which cae&e while the current file can be written.
For example,

FROM YOURFILE.BLK 1 10 COPY
opens YOURFILE.BLK file as the input file and kedd¥ FILE.BLK file as the current file. Of
course, you have to create YOURFILE before youagan it. The command COPY which
normally would copy screen 1 to screen 10 in MYEBREK will now copy screen 1 from
YOURFILE.BLK file to screen 10 in MYFILE.BLK. Whea file is OPEN’ed, it is made both the
current file and the input file. When a file isem@d by the command FROM, the file becomes the
input file only and can be used with the currelat fi

To copy a range of screens in the current file frora place to another, the command to use is
CONVEY. First you have to tell the F83 system hoany screens you want to skip over during
copying. If you want to copy screens 1-6 to scseE17, you should give the following

commands:

11 HOP 1 6 CONVEY
or 16TO 12 CONVEY

If the number before HOP is negative, the rangecogens will be moved towards the beginning of
the file.

22

If you want to copy screens 1-20 in YOURFILE.BLKHASFILE.BLK and put them down as

screens 11-30, the commands are:

OPEN HISFILE.BLK FROM YOURFILE.BLK
and 10 HOP 1 20 CONVEY
or 120 TO 11 CONVEY

You should be very careful about these commandausectwo files are involved. You always
read from the input file and write to the curreld.f In case that you want to copy screens from
the current file to the input file, you must use tommand SWITCH to exchange the current and
the input files before issuing COPY or CONVEY conmua

3.2. ThekEditor

There are two text editors in the F83 system: alegdine editor and a screen editor. The line
editor processes the text one line at a time andeaused with any type of terminal. Since most
terminals can display 24 80 column lines, therenaoee than enough space on the terminal screen
to display an entire Forth screen in the 16 byle4kformat, with ample space to enter editing
commands. The line editor is adequate for alimglidnd programming purposes. The only
drawback is that after entering 8 lines of commattuslisted screen starts to roll off the topladf t
terminal display and you will have to re-list itkeep it in the view. The screen editor keeps the
listed screen on the top of the terminal display eefreshes its contents after any editing command
is executed.

The line editor is compatible with the editor désed in Brodie's book 'Starting Forth’. The most
often used editing commands are summarized in Talle

Table3.1. Editor Commands

Bl ock Editing Comrands:

n LIST [Display screen n and make it the current scr een.

L Display the current screen.

N L Display the next screen.

BL Display the previous screen.

AL 'Toggle between the current screen and its shado w screen.

UPDATE Mark the current screen to be saved to the d isk file.

SAVE-BUFFERS Write all updated screens to their res pective disk files.

FLUSH SAVE-BUFFERS and de-allocate the buffers.

n LOAD Interpret the text in screen n.

Li ne Editing Conmmands

nT Select line n as the current line for editing.

P xxxx Put the string xxxx in the current line.

U XXXX Insert the string xxxx under the current lin e.

X Delete the current line.

n NEW Input multiple lines of text starting at line n.

String Editing Comands

F xxxx Frind string xxxx from the current cursor pos ition and place the
cursor at the end of xxxx.

D xxxx Find string xxxx and delete it.

| XXXX Insert string xxxx after the current cursor and move the cursorto
the end of xxxx.

TILL XXXX Delete all text till the end of string xx xx in the current line.

J XXXX Delete text till the beginning of string xxx X. (Justify).

23

To use the line editor, you first have to selesti@en as the current editing screen by the
command:

1 LIST EDITOR
Then, you can use the line editing commands ta éexe into this screen. The NEW command
is especially useful in entering several contigulnes into the screen. If screen 1 is a blank
screen, you probably will start with:

0 NEW
and follow with up to 16 lines of text. Two cona&ee carriage returns will terminate the NEW
command. If you find any error in the entered tgru can use the string editing command to
find text strings, delete strings, and also inserhgs. When you are satisfied with the contefts o
the screen, you can interpret or compile the scosérg the command:

1 LOAD
and start to debug your program entered in screersually you will find some errors or bugs in
the program, causing the interpreter to abort dutive loading process or giving wrong results
when you execute commands defined in this scremnwill then have to find the cause of the
problem and fix the bug, again using the editor.

F83 has a generic screen editor. However, thesesceditor must be customized to run on your
terminal. An example to install a screen editartie ADM-3A dumb terminal is shown in the
README file which is also a good example on the amend sequence in using the line editor.
Terminal characteristics are specified in four camas:

AT Move the display cursor to a specified screen co ordinate.
DARK Clear the screen and home the cursor.

-LINE Delete current line and roll up the rest of t he screen.
BLOT Erase till the end of line.

These four commands have to be vectored to the @masnwhich perform these functions on the
terminal you are using.

There are some new features in the F83 screermr.edidm automatic ID stamping utility inserts an
identification string on the top right of every een being edited. This is very convenient to keep
the date and person doing the entry and modifioatio FIX xxxx will locate the source command
of xxxx and display the screen of this command.aldb invokes the editor to let you edit the
command.

WHERE is also a very useful command during progdawelopment. When an error causes the
text interpreter to abort, executing WHERE willldaDIT to display the screen where the error
occurred while loading and the cursor will be pmgtright at the command causing trouble. All

24

the editing commands can then be used to fix thblem.

To use the screen editor, you have to select @ s@e your current editing screen. Instead of the
LIST command as used in the line editor, you shosklthe EDIT command:

23 EDIT
It invokes the screen editor to edit screen 23. e 3dreen editor first checks the ID field at thd en
of line 0. If this field is blank, it will ask yoto input a ten character string as a stamp tohil
ID field. The ID stamp helps you to keep trackled modifications you make on this screen.
The contents of the screen are then displayedeis¢heen window on the top of the terminal
display. You can now enter any of the line editmoghmands and the results will be shown
immediately in the screen window. The commandodjavill be scrolled in the command text
window at the bottom of the display screen whike skhreen text is stationary in the screen window
on the top of the display.

After you have completed the editing work and decalleave the screen editor, you should type:
DONE
and the editor will save this screen to the digkifiyou made any modification. The terminal
display will be returned to its normal scrolling deo To re-enter the screen editor to edit the
same screen you just parted, you can use:
ED

without specifying the screen number as you wosidgiEDIT.

3.3. Loading and Testing Program

Screens of 1024 bytes are about the optimal sizeriting and testing programs. The limited
size forces you to modularize your program andstsetasks of testing and debugging the
program.

A source screen may contain three types of infdonatommands to be interpreted or executed,
new commands to be compiled to the dictionary,@rdments. The text interpreter treats the
source text the same way as it treats text enfesedthe keyboard. The command to ask the text
interpreter to interpret source text in a scredrQ#é\D:

1 LOAD

will cause the system to fetch screen 1 from threect file and interpret its contents.

F83 has a few other commands to load source scrediney are collected in Table 3.2. here.

25

Table3.2. Loading Commands

n LOAD Interpret source text in screen n in the cur rent file.

n m THRU Interpret sequentially the source text in screens n to m.

n +LOAD Load the screen n blocks from the current s creen.

nm+THRU Load a range of screens n blocks offset f rom the current screen.
--> Exit the current screen and load the next scree n immediately.

F83 system allows you to open two files at the same by the command FROM. After you
open a file using FROM, the LOAD command will loedcreen from the from file instead of the
current file. This way you can load utility progra from other files while still maintain the file
you are using as the current file. However, LOABtores the current file to be the input file at
the end of its operation, so that you will be ableefer to the current file. Thus you can onlgdo
one screen from the FROM file with the LOAD command

3.4. Memory Dump

LIST allows you to display text data in a screeirlowever, screens can also be used to store
binary data or object code. Binary data cannotdted on the terminal or printed by a printer. If
binary data are accidentally send to the termingkimter, usually the terminal or printer will pti
garbage with lots of form-feeds. Sometimes theylmlocked up by some binary code and you
will have to turn off the entire system and re-booE83 provides a few commands to let you
examine binary data in memory or in disk files.

The dump utility gives you a formatted hex dumphwviiie ASCII text corresponding to the hex
bytes, on the right hand side of the screen. Tboeemands are available to specify the desired
dumping actions. DUMP requires an address andeadount on the stack to display the contents
of a range of memory. The dump is always in hex e current base is not disturbed. DU dumps
64 bytes at the specified address. The addréssreamented by 64 to facilitate dumping the next
memory range of 64 bytes.

Examples of using these commands are:

HEX 100 80 DUMP (Dump 128 bytes starting from 100H.)
DECIMAL 256 DU DU DROP (Do the same thing as a bove.)

DL dumps the specified line on the current scraeth the line number as the input on the stack.
This dump is useful in detecting nonprintable chte in the screen which disturb interpretation
and compilation.

13 DL (Dump the 13th line in the current editin g screen.)

A dumping example is shown in Fig. 3.1.

26

ok

ok
HEX ok

ok

ok
0 400 DUMP

V1234567 89ABCDE

OCD20FF9FO009AFOFE 1IDFODE 012104 4B
10 21 04 56 01 21 04 21 04 01 03 01 00 02 FF FF

20 FF FF FF FF FF FF FF FF FF FF FF FF 22 05 F2
30 6A 05 14 00 18 00 6A 05 FF FF FF FF 00 00 00
40 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00

50 CD 21 CB 00 00 00 00 00 00 00 00 00 00 20 20
60 20 20 20 20 20 20 20 20 00 00 00 00 00 20 20

70 20 20 20 20 20 20 20 20 00 00 00 00 00 00 00

80 00 0D 20 20 20 53 45 54 20 42 4C 41 53 54 45
90 3D 41 300D 64 64 72 65 73 73 2E 20 20 46 6F
A0 20 65 78 61 6D 70 6C 65 3A 0D 20 6F 6E 20 4E
B0 56 44 4D 2C 20 73 70 65 63 69 66 79 20 61 6E
C0 69 6E 76 61 6C 69 64 0D 20 6F 6E 6C 79 2E 0D
DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
EO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
100 E9 34 2B E9 2B 2B 52 50 AD 8B D8 FF 27 03 10
110 00 85 46 4F 52 54 C8 9A 29 63 66 D2 66 3D 66
120 65 00 00 43 43 4D 4D 89 76 00 8B F3 EB DA 04
130 00 00 84 45 58 49 D4 39 01 8B 76 00 45 45 EB
140 04 10 30 01 86 55 4E 4E 45 53 D4 39 01 87 EC
150 87 EC 5E 43 43 53 EB B0 43 43 53 EB AB 05 10
160 01 82 55 D058 01 72 2C 43 43 8B 07 EB 99 43
170 8B 07 03 06 66 01 EB 8F 05 10 00 00 85 28 4C
180 54 A9 84 01 AD E9 7F FF 09 10 OF 01 86 42 52
190 4E 43 C8 95 01 8B 34 E9 6E FF 09 10 00 00 87
1A0 42 52 41 4E 43 C8 A8 01 58 09 CO 74 E8 46 46
1B0 56 FF 0B 10 7A 01 86 28 4C 4F 4F 50 A9 BF 01
1C0010001460071CE 83 C50646 46 E9 39 FF
1D0 10 B4 01 87 28 2B 4C 4F 4F 50 A9 DD 01 58 EB
1EO0 OC 10 D1 01 84 28 44 4F A9 EB 01 58 5B 4D 4D
1F0 14 89 56 00 46 46 81 C3 00 80 4D 4D 89 5E 00
200 D8 4D 4D 89 46 00 E9 FF FE OC 10 E2 01 85 28
210 44 4F A9 150258 5B 39 C3 75 D2 8B 34 E9 E8
220 0C 10 8A 01 86 42 4F 55 4E 44 D3 23 01 E4 03
230 05 D4 03 4B 01 OE 10 22 02 85 3E 4E 45 58 D4
240 01 08 01 OE 10 5F 01 87 4558 45 43 55 54 C5
250 02 5B FF 27 OE 10 0B 02 87 50 45 52 46 4F 52
260 62 02 5B 8B 1F FF 27 43 43 8B 1F FF 27 43 43
270 07 03 06 66 01 8B D8 8B 1F FF 27 OE 10 9C 01
280 47 CF 84 02 C3 OE 10 37 02 84 4E 4F 4F DO 90
290 E9 75 FE OE 10 56 02 85 50 41 55 53 C5 9F 02
2A0 66 FE OF 10 4502 81 C9 AA 02 8B 46 00 03 46
2B0 E9 54 FE OF 10 87 02 81 CA BB 02 8B 46 06 03
2C0 08 E9 43 FE OF 10 95 02 87 28 4C 45 41 56 45
2D0 D2 0283 C504 8B 76 00 45 45 E9 2B FE OF 10
2E0 02 88 28 3F 4C 45 41 56 45 A9 EC 02 58 09 CO
2F0 E1 E9 14 FE 10 10 DF 02 81 CO FC 02 5B FF 37
300 06 FE 10 10 A4 02 81 A1 OA 03 5B 8F 07 E9 F8
31010107D 028243 C0 19 035B 29 CO8A 07 E9
320 FD 1010120382 43 A1 2A 03 5B 58 88 07 E9
330 FD 11 1023 03 85 43 4D 4F 56 C5 3D 03 FC 8B
340 8C D8 8E CO 59 5F 5E F2 A4 8B F3 E9 BAFD 11
350 3303 86 43 4D 4F 56 45 BE 5B 03 FD 8B DE 8C
360 BE C059495F5E01 CF01CE41F2A48BF3
370 E9 95 FD 12 10 50 03 83 53 50 C0 7D 03 8B C4
380 85 FD 12 10 75 03 83 53 50 A1 8C 03 5C E9 78
390 1210B50283 5250 CO9A 03 8B C5E968FD
3A0 1092 03 835250A1 A9 035D E95B FD 1310
3B0 02 84 44 52 4F DO B8 03 58 E9 4C FD 13 10 AF
3C0 8344 55 D0 C6 035850 E9 3C FD 13 1084 03
3D0 5357 41 DO D6 03 5A 58 E9 2B FD 13 10 CD 03
3EO 4F 56 45 D2 E6 03 5A 58 50 E9 1A FD 14 10 BE
3F0 84 54 55 43 CB F7 03 58 5A 50 E9 09 FD 14 10
ok

ok

Figure3.1

F V123456789ABCDEF

01 M ...p~p LK.

52 .. SET BLASTER
72 =A0.ddress. For
54 example:. on NT
20 VDM, specify an
00 invalid. only...

00 i4+i++RP-.X."...

ED ..FORTH.)cfRf=fm
10 e..CCMM.v..skZ..
C8 ...EXIT9..v.EEKH
56 ..0..UNNEST9..IV
42 |"CCSkOCCSk+..B
43 ..UPX.r,CC..k.CC

3F NCH...4in......7
E9 BRANCH(.X.@thFFi

0B ...F.qN.E.FFi9..
E2 .4..(+LOOP)].Xkb
8B ..Q..(DOYK.X[MM.
29 .V.FF.C.MM.")
3F XMM.F.i.~..b..(?
FE DO)..X[9CUR.4ih~
82BOUNDS#.d..
68 .T.K...".>NEXTh
51_..EXECUTEQ
CD .[.....PERFORM
8B b.[..'CC...'CC.

82 .f.X."...

02 GO..C..7..NOOP..
EO9 iu~..V..PAUSE..i

A9 .iC~.... (LEAVE)
C6 R.E.V.EEi+~. F
75 .(?LEAVE)L.X.@u

E9 ai~.._..@|.[7i
FD ~.$.1.[.ix}
E6 .}..C@.D@..if

D7 }....CI*[X..iW

DE }..#.CMOVE=.|."
10 X.@Y_"r$.si}..
D8 3..CMOVE>[}.A.X
FC .@Y!_".O.NAr$.s|
E9 i.}..P..SP@}..Di
FD .}..u..SP!L\ix}

12 .5..RP@...Eih}.
F6 ...RP)).Ii[}..v

03 ..DROP8.XiL}../.
84 .DUPF.XPi<}.....
84 SWAPV.ZXi+}..M..
03 OVERf.ZXPi.}..>.
Al .TUCKw.XZPi.}..! ok

Memory dump

27

3.5. Debugging Your Program

A program usually does not work and you will hawdind out why it doesn't work and try to fix it.
The advantage of Forth is that you can fix bugskjuibecause loading a screen and testing the
commands in a screen is simple and fast. It allpwsto experiment and try out ideas and
methods to solve your problem. If you limit youfseriting programs one screen at a time and
test the commands in the screen fully, the proldambe solved very efficiently. Of course, you
should make it easier for yourself by writing shedmmands which are easy to test, and if there is
a problem, easy to spot the problem and fix it. o@ng good names for your commands and
commenting the stack effects will make the prograarne readable and easier to modify or update.

F83 system gives you a powerful debugging tookisecyou cannot spot the bug by staring at the
source code long and hard. The F83 debugger alfowso single step through a colon command
and shows you the contents of the data stack atstap. By examining the data stack at each
step, it is a simple matter to find when and hoevlthig gets into your program. During the
tracing, you can jump back into Forth to poke aband change things like the data stack before
continue the tracing. These functions in the dglugeally help a Forth user to produce clean
code.

There are two steps in using the debugger. Figthave to prepare the command you want to
trace use the DEBUG command. Then, you have toutg¢he command in the normal way it is
used, with necessary data stack parameters. Thmand is then executed in steps. The
computer displays the name of the command in thetand to be executed next and the contents
of the data stack. You have to press a key oReliboard for it to step to the next command.
For example, we would like to debug the commandILIS

DEBUG LIST
It sets up the command LIST so that it will be exed in steps. Then we can debug LIST by
listing screen 1 using the patched LIST:

1 LIST
Now, LIST will be executed one step a time to aligmu the examine the data stack at each step.
The sequence of commands are shown in Fig. 2.7.

During single stepping, you can use three keysvertthe stepping action:

F temporarily enter FORTH so that you can use regul ar FORTH commands to change stack values
and anything else you care to do. executing resume allows you to come back to the proper
place to continue single stepping.

C executing the rest of the definition continuously to the end without pausing.

Q quit the debugger immediately and restore the deb ugged word to it original state.

28

If you keep your commands short and thoroughlyttessn as they are defined, you may not need
this debugger. However, every once a while yolifiidl that the capability in single stepping
through a command is very helpful in spotting sahscure bugs.

3.6. The8086 Assembler

F83 is available for 8080/280, 8086/88, 68000, alsd 6502 CPUs. Each version of F83 comes
with an assembler to assemble code routines imthine code of the host CPU. The assembler
is useful if you want to write machine code rousine speed up the execution of your program or
to utilize special hardware features in your corapsystem. Since Forth is fast and quite
efficient, and has the commands to access memakry/@rdirectly, it is not necessary to dip into

the machine code in normal circumstances. Howgvere are occasions that you have to
optimize the program. As the assembler for youd@provided free in F83, we might just as
well learn to use it for the fun of it. Since thisok is devoted to the version of F83 for IBM PC,
will only discuss the 8086 assembiler.

Another reason to describe the assembler in dstdiht the kernel of the F83 system is written
using the same assembler. Therefore, it is mangd#tat you are familiar with the 8086
assembler if you want to dig into the F83 systewh tarapply it to do useful work.

8086 has 12 registers in its CPU. All these regsstan be referenced in the assembler.
However, the F83 system uses four of the registeirmplement the Virtual Forth Computer.
These registers used by Forth have special nameditate their special functions in Forth, and
they should be preserved inside the code commanable 3.3. shows the 8086 registers and the
mapping with Forth registers.

In code routines, RP and IP must be restore if ey to be used. SP is used for data stack and
must be maintained to pass parameters between amsmaAX, CX, DX, and DI can be used
freely. W points to the code field of the commandrently being executed. If this address is
not needed, W register can also be used freelye s€gment pointers can be used to address
memory outside of the 64K code space, but they mdastbe restored to the original state before
the end of the code routine.

The 8086 registers can be used in a number ofeiffeaddressing modes. The addressing modes
defined in the Forth 8086 assembler are shown lteTa 4.

29

Table3.3. 8086 Registersand Forth Registers

8086 Forth Function of register

AX Accumulator

CX Counter

DX 1/O register

BX W Current word pointer
SP SP Data stack pointer

BP RP Return stack pointer
Sl IP Instruction pointer

DI Scratch

ES Extra segment pointer
CS Code segment pointer
SS Stack segment pointer
DS Data segment pointer

Table3.4. Register Addressing Modes and Mnemonics

Addressing Mode Mnemonics

8 bit register mode AL CL{DL BL AH CH DH BH

16 bit register mode AX CX DX BX BP SP SI DI ES CS SSDSW RP IP

Indirect register mode [SI] [DI] [BP] [BX] [RP] [IP 1 [W]

Indirect with index [BX+S[] [SI+BX] [BX+DI] [DI+BX] [BP+SI] [SI+BP] [BP+DI] [DI+BP]
Immediate 1

Immediate address #)

Inter-segment address S#)

All 8086 machine instructions are implemented is #83 8086 assembler, making it rather
complicated. It is not appropriate to discusshtadl possible combinations of the instructions and
the addressing modes. Here | shall discuss arfgaeritant aspects in making use of this
assembler. You should read the chapter on thenddseto study how the machine instructions

are assembled and how the addressing modes aespeakcto put together complete machine
instructions. Itis also a good idea to studydbde commands in the Forth kernel, where we have
hundreds of fine examples of code commands. Thkevimy to write a code command is to find
one of similar function in the kernel and make nfigdtions to the existing code to put in the
function you need.

A code command must start with the command CODEhvbreates a header in the dictionary and
invokes the ASSEMBLER vocabulary to do the assemlalsk. Then a sequence of assembler
mnemonic commands are executed to assemble mankingctions into the body of the code
command. At the end of the code command, there beua command to return control to the

Forth interpreter and a command to terminate tlle @@mmand:

CODE <name>
<assembly commands>
<return command>
END-CODE

where <name> is the name of the new code comma@@DE only creates the header. The
Forth text interpreter is still in control after ©8, and the sequence of assembly commands are
executed. Executing an assembly command causeaslama instruction to be assembled to the
dictionary. END-CODE terminates the assembly pge@nd makes the new code command

30

available for searching and compiling.

An assorted collection of assembly commands are/sho Table 3.5.

Note that the assembler

syntax is still reverse Polish: the operands atédptore the assembly command. The operands,
whether they are addresses, immediate valuesieegisr specification of addressing modes, are
all pushed on the data stack for the assembly cordrttaconsume and build the final machine

code into the dictionary.

Table 3.5.

8086 Assembly Commands, Forth Style.

Assenbly Comrand

Function

SNEXT #) JMP

Jump to address >NEXT.

1#AX MOV

Move value 1 into AX register.

6 # RP ADD

Add6tothereturnstackpointer.Popt
stack.

hree 16 bitnumbersoffthereturn

8000 # BX ADD

Add 8000 to the contents of BX.

0 [IP] DX MOV Coppy the contents of memory pointed t 0 by IP into DX register.
0 [W] W MOV Copy the memory pointed to by W registe rinto W register.
PDO JNE Jump to address PDO if the zero flag in sta tus is not set.

REP BYTE MOVS

Move a range of bytes in memory. Sou
pointed to by DI, and count in DX.

rce pointed to by SI, destination

0 [BX] POP Hop data stack into memory pointed to by BX register.

CX PUSH Push contents of CX on the data stack.

AX LODS Move memory pointed to by IP into AX regist er and increment IP by 2.
SP RP XCHG Exchange data and return stack pointers.

There are three return commands which assemble ijstoictions to the inner interpreter which
returns control of the CPU to the next commandet@xecuted or to the text interpreter.

Table3.6. Return Commands

NEXT Assemble a jump to >NEXT routine so that the n ext word pointed to by the IP will
be executed.

1PUSH Assemble ajumpto APUSH routine which pushes AXondatastackandthenfallsinto
>NEXT.

2PUSH Assemble ajumpto DPUSH routine which pushes DXondatastackandthenfallsinto
1PUSH.

F83 uses a centralized return mechanism by whidode commands eventually execute the code
routine at >NEXT, the inner interpreter. This $engeturn point makes it possible to implement
the powerful debugger which patches >NEXT to a dging routine to single step through the
execution sequence.

CODE generates executable machine instructionrresitivhich behave the same externally as high
level colon commands. The code routines are eat®st under the Forth operating system.
However, to write a piece of code which can beethéy many code commands, it is necessary to
build subroutines. The command to define subrouinéABEL, which is similar to VARIABLE in

the sense that it returns an address when invdkesl address can be used in other code

31

commands to assemble a CALL instruction doing theeutine calling. A LABEL routine
cannot be executed or tested directly. It can belgalled inside a code command.

Within a code command, the execution path canteeeal or repeated using structure commands
IF-ELSE-THEN, BEGIN-UNTIL, and BEGIN-WHILE-REPEATKimilar to those used in colon
commands. The principal difference is that thé ¢eaditions required by IF, UNTIL, and
WHILE are not taken from the data stack but from status register. These conditional
commands must be preceded by machine code coralgtisa that proper conditional branching
instructions can be assembled. The machine caaditmmnals are listed in Table 3.7.

Table3.7. Machine Code Conditionals
Forth Conditional Assenbl ed Code
0= JINE/INZ

0<> JENIZ

0< INS

0>= JS

< IJNL/JGE

>= JLIINGE

<= INLE/JG

> JLE/ING

U< JNB/JAE

U>= JB/INAE

U<= JNBE/JA

uU> JS

oV JNO

The Forth conditionals are reverse of the assencbide because the IF, UNTIL, and WHILE are
skip-on-condition, not jump-on-condition as in thachine instructions. A machine instruction
preceding the jump instruction sets the flags engtatus register in 8086 CPU for the jump
instruction to select the next instruction to be@xed. An example of the branching structure in
Forth style is:

5#CXCMP 0<IF AXBX ADD ELSE AXBX SUB THEN

The structure commands IF, ELSE, etc., are diffeirem those used in the colon commands.
The assembler structure commands are in the ASSE¥BLocabulary and those in colon
commands are in the FORTH vocabulary. Their belra\are quite different.

A very good example is the code command of UPPERMWDNverts a string of ASCII characters
to upper case characters:

CODE UPPER (‘addr length --)

CX POP BX POP Get parameters into registers.

BEGIN Setup the loop.

CX CXOR Is the count in CX zero?

0<> WHILE Exit the loop if CX is zero.

0 [BX] AL MOV Get one character to AL.

>UPPER #) CALL Call a subroutine to convert the ch aracter to upper case.
AL 0 [BX] MOV Put the converted character back int o the string.

BX INC Address of the next character.

CX DEC Character count.

32

REPEAT Convert the next character.
NEXT Done. Return.
END-CODE

CX CX OR sets up the status flag and 0<> WHILE sgtshe conditional jump instruction to exit
the loop. REPEAT assembles a jump instruction backX CX MOV to continue processing the
next character until the character string is extealis

Code commands are difficult to debug and are mactépendent. They are defined only as the last
resort to squeeze performance out of your compunershould not be considered lightly. In most
programs, there are only a few critical commandglwhre executed very often. You should try

to identify these commands and convert only thesencands to code commands.

3.7. Multitasker

The early Forth systems implemented by Charles Bleare multi- tasking systems and could
support many users or terminals to operate simedtasly. The implementers of figForth

neglected this feature in the figForth Model. Besmaof the popularity of figForth , Forth has

been regarded by most users as a system only Isuitalsingle user without the multi-tasking
capability. The Forth architecture was designeldei@ble to run many tasks at the same time. The
authors of F83 restored this important featureath-to the F83 system without too much effort.
The source code to put the multi-tasker back coesupnly about six screens. Tryto doitin
PASCAL!

Commands to create one or more tasks are alredithedén the FORTH vocabulary. A task

must be first created by the command TASK:, whilkbcates space in the dictionary needed by a
task, including area for user variables, returglstand data stack. When the task is later

activated by the command ACTIVATE, the task wileexte a sequence of commands and share the
CPU with the regular Forth system in a round rdabsk switching scheme. Each task uses the
CPU until it voluntarily gives up by executing PAB®r STOP and releases the CPU to the next
task in the round robin chain. All system I/O coamds have PAUSE's embedded to switch tasks
automatically. In the command sequence give tslat@aexecute, the command PAUSE or STOP
must be place properly so that the task will ndtfom to the CPU indefinitely.

Background tasks are defined by the command BACKGRD: . Examples are:
BACKGROUND: SPOOLER 1 CAPACITY SHOW STOP ;

SPOOLER is defined as a background task whichdistsmplete screen file to the printer while
you still have full control over the Forth computga your keyboard.

Once the SPOOLER is defined as a task, it can‘assigned to perform other chores. For
33

example:
: SPOOL-THIS SPOOLER ACTIVATE 3 15[SHADOW] SHOW STOP ;

will print the screens 3 to 15 with their shadowegns in a six screens per page format.

Another example is to maintain a counter countirgdycles around the round-robin task
switching loop. A global variable COUNTS is defih® keep the counts so that you can examine

it any time you want to.

VARIABLE COUNTS
BACKGROUND: COUNTER BEGIN PAUSE 1 COUNTS +! AG AIN;

which increments the variable COUNTS indefinitelytee background. You can run the
computer in the foreground, doing any thing yowedar Occasionally, you can read COUNTS to
see how many times the computer runs around tkesteisching loop.

After background tasks are defined, the command MUtarts the multi-tasker running. The
command SINGLE stops the multi-tasker. Individuathkground tasks can be stopped or restarted

by the following commands:

SPOOLER SLEEP (Put spooler on hold.)
SPOOLER WAKE (Restart the spooler.)

The multi-tasker is fun to play with. You havetty it your self to appreciate it. Windows are
built this way.

3.8. SaveA System Image

Suppose you have developed an application usingaR8&lso found a company interested in
buying this program from you. It would be nicehé user of this program can simply insert a
disk into his drive, type a magic command, and ltheeentire program running immediately. He
just wants to use the program and does not havengrgst on how this thing is written or how it
works. If you sell this program to the company yoay not want to reveal to them all the source
code you developed so that they will short cut yolihe best solution is to give them an
executable object file which can be loaded intodbm@puter and run, but very difficult to decipher
and modify.

F83 gives you a tool to generate an executablecohle from the dictionary of your running Forth

system. When this object file is loaded into themmory through the operating system, it restores

the computer to the same state as your currergrayst The command to do it is SAVE-SYSTEM:
SAVE-SYSTEM GISMO.COM

It copies the entire dictionary into a file namekb8O.COM. When you boot your system in DOS

or CP/M, typing GISMO will load this file into mempand start the Forth system. Now, you can

execute the highest level command in your appboadind run it.

34

3.9. TheMetacompiler

Using SAVE-SYSTEM you make an object file with yapplication program overlay on the top
of the F83 Forth system. It is fine this way ifuyallow the user open access to F83 system.
However, allowing an unsophisticated user unlimdedess to Forth can be disastrous for the
health of his computer and to your profit. Anotpesblem is that there is lots of code in the F83
system not needed by your application, but it$® alaved in the object file doing nothing but
occupying RAM space. The meta-compiler in F83vedigyou to strip out the dead wood and
build an application package best tailored to {hy@ieation. It recompiles the entire Forth system
with your application. During the compilation, ybave the option to omit any command not
needed by your application. If the target compigemot identical to the host computer you used
to develop the application, you can also modifydbarce code in the kernel so that the application
can be run on the target computer. The abilityeoerate a new Forth system from a Forth
system is called metacompilation. Metacompilattosometimes referred to as the 'extensibility
of the third kind', which is the highest level gbgramming activity on a computer.

F83 system was itself generated by the metacongrilarocess, and all the source code needed for
its self-generation are included in it. The comohaaquence to create the executable object
image F83.COM is as follows:

1. Prepare a disk with F83.COM file on it. ThisSKBOM file is the Forth system which will
do the metacompiling. Insert this disk into drive

2. Prepare a disk with METAnn.BLK and KERNELnn.BIfikes on it. METANN.BLK contains
the metacompiler and KERNELnn.BLK contains souragecfor the bare-bone Forth system.
Insert this disk into drive B.

3. Log on to drive B, and type the following comrdan

A:F83 METANN.BLK
1 LOAD

F83 is now loaded and builds a bare-bone Forttesysivhich is stored on the disk in drive A with
a name KERNEL.COM.

4. Type BYE toreturnto DOS or CP/M.

5. Copy KERNEL.COM to a new disk with three fileX'EENDnn.BLK, CPUnnnn.BLK, and
UTILITY.BLK. Insert this disk in drive A.

6. Log onto drive A and type the following command:

KERNEL EXTENDNNn.BLK
1 LOAD

All the extensions and utilities are now loaded antew version of F83.COM is created on drive
A.
7. Type BYE toreturnto DOS.

35

nn above stands for 80, 86, or 68 depending upehalst computer running the F83 system, and
nnnn stands for 8080, 8086, or 68000.

The above procedure was used to generate the B83rsy If you want to modify the system and
add your own programs to the system, you havedpase the files and load them in a sequence
similar to the above sequence. | must remind hatimeta-compiler is very complicated because
it has to compile the target code to a virtual mgnspace where the code cannot be executed.
There are many important conditions which mustdissfed for a successful metacompilation,
such as forward references, proper initializatibeystem variables, and the initialization of &kt
vectored execution routines. These subjects willliscussed in detail when we study the code in
the meta-compiler. You have to understand the ecoetailer fully before attempting your
modifications.

36

PartIl. TheForth Kernd

Chapter 4. Interfacetothe Host Computer

Source code discussed in this chapter is in teekiERNEL86.BLK, Screens 3 to 15.
4.1. Virtual Forth Computer

The Virtual Forth Computer is a program loaded thi® memory of a real computer. It partitions
the computer memory into areas of specific functlity and enables the real computer to process
Forth command streams. Fig. 4.1 is a schematreseptation of the functional parts in a Virtual
Forth Computer. It consists of a dictionary, twackss, a terminal input buffer, and a number of
disk buffers. These are the essential parts imtadl Forth Computer.

The Virtual Forth Computer uses a set of regidtekeep the most vital information and to control
the execution sequences. They are:

SP Data Stack Pointer
RP Return Stack Pointer
P Interpretive Pointer

w Current Word Pointer
PC Program Counter

The program counter PC and the return stack poiRfeare usually registers in the host CPU.
The data stack pointer SP, the interpretive poiiteand the current command pointer W can
reside in CPU as registers or implemented in menfidhg host CPU does not have enough
registers.

The dictionary is a linked list of commands. Eaommand consists of five fields: The name

field and the link field allow commands to be linki@ato a linear list which can be searched by the
text interpreter for a command by its name. Thaedteld contains the address of the inner
interpreter for this command and the parameted ftehtains necessary information specific for the
task defined for this command. The view field @ms$ information on where the source code of
the command is located on disk to help user intingahe source code and detailed documentation
on the command.

Two stacks are needed by the Virtual Forth Computé&he return stack contains a list of

addresses of commands which are waiting to be ée@car addresses to be returned to after

procedure calls. It is similar to the return staagked in most modern computers. The other
37

stack is called data stack, holding a list of numand logic parameters to be passed between
commands. Separating numeric parameters and radainesses into two stacks allows procedure
calls without passing parameters through expliglyameter lists. It greatly simplifies the syntax
of Forth and cuts down the overhead for procedalis.c

Buffers are used to reduce time and efforts toggsdlata transferred between the Forth computer
and the 1/0 devices. Since the two major I/O devin a typical computer system is the disk for
mass storage and the terminal for operator corttwol buffer areas, a disk buffer area and a
terminal input buffer, are allocated to handlelfidedata.

The kernel of the F83 system is the part of thé@hary which contains commands defined in the
machine code of the host computer, and transfonem&dst computer into a Virtual Forth
Computer so that the computer can accept and act Bprth commands give to it either through a
keyboard or through text loaded from a disk. this elementary Forth operating system, which
can be expanded by loading utility programs andiegipn programs, and then executing those
programs.

4.2. Forth Computer Hosted on 8086

The Virtual Forth Computer is a hypothetical congowdr an ideal structure of a computer which
can process (interpret or compile) Forth command s8o far, we have yet to see a computer built
based upon the Forth architecture. However, tluisitecture can be implemented on any CPU
worthy of the name. As a matter of fact, mosthef tommercial CPU's have at least one version
of Forth on them, including all popular microproses, minicomputers, and many mainframes.
Because Forth is simple and relatively small, it ba implemented on a computer with about one
man-month's effort. This is very short compario@ther operating systems or high level
languages.

F83 has three versions: one for 8080, one for BUBA, and one for 68000. Because the very
small number of registers are available in the 80BW, many Forth registers will have to be
simulated in memory. Most numbers processed ithFare 16 or 32 bits in width. They have to
be manipulated in 8 bit chunks in 8080. Forth cool@mmands in 8080 machine instructions are
thus very messy and very difficult to explain. Beén 8086 and 68000, my personal preference
is 68000 which has a much cleaner architecturenam@ orthogonal instruction set. Nevertheless, |
feel very feeble in raising a voice against thénitg wisdom of IBM, who picked 8088 for PC.
Since there are apparently more people using 8888000, it is better to write this manual in
terms of the 8086/8088 F83 model if | want to satire copies of this manual.

38

First of all, let see how the Forth registers asigned in the 8086 CPU:

Table4.1. 8086 Register Assgnmentsfor Forth
8086 Reg. Forth Reg. Function
AX Acratch Accumulator
CX Scratch Counter
DX Scratch 1/O control
BX W Current word pointer
SP SP Data stack pointer
BP RP Return stack pointer
Sl P Instruction pointer
DI Scratch
ES Extra segment
CS Code segment
SS Stack segment
DS Data segment
Free Space Data Stack Return Stack
Dizls Buffers
Dictionary Free Space
Tertmital
Inpnat Buffer
Virtual Forth Machine
Host Commputer
Figure4.1l TheVirtual Forth Computer

8086 has only one stack, with SP as stack powtach allows pushes and pops.

Other registers

do not have automatic incrementing or decremeritintjties, and increment/decrementing must

39

be done explicitly. An interesting exception is 8l index register. When Sl is used in the
supposed string instruction LODS and STOS, iteéseamented by 1 or 2 bytes to point to the next
string element. It is ideal for the interpretiv@mter. The stack pointer SP is used to implement
the Forth data stack, while the Forth return stacimulated using the BP register. Popping and
pushing on the return stack have to be done eMpllmy incrementing and decrementing the BP
register. The command pointer W is simulated leyBIX register. Lacking automatic
incrementing and decrementing facility, the W regrifias to be left pointing to the code field after
NEXT. It has to be incremented in code so thailitpoint to the parameter field. We will have
to use indirect JMP instructions through the caoelel to control the program flow.

Other 8086 registers, like AX, CX, DX, and DI, daeused freely in code routines. However,
parameters and other information cannot be passatddne command to another through these
registers. They have to be initialized approphabefore use, but they do not have to be restored
before the end of a code command. The W registéreoBX register contains the code field
address of the command under execution. If thisesd is not needed in the code command, this
register can be also used without restoring. TReRP, and IP registers, however, have to be
restored to the original values if they have taibed in a code command.

All information in the F83 system is contained vt single 64K byte memory segment, and the
four segment registers ES, CS, SS, and DS aralingd to the same segment. They can be
changes to address other segments of memory, sitbeuestored before the end of a code
command. F83 system does not use them.

Memory Map

RAM memory in the host computer, as used by thedy88m, is a contiguous 64 Kbytes of
memory. Forth separates this memory space indvadgions, each dedicated to specific
function. The lowest memory is used to hold thermpt vectors which is used by the hardware
to service external interrupts or software intetsup Immediately above the vector region is the
dictionary, holding all the executable codes ofcbmmmands. Above the dictionary is a free
space for you to define new commands. On the téipeomemory map is the region for disk
buffers. F83 allocate 4 Kbytes for the buffersyugh to hold 4 blocks of data from/to the disk.
Under the disk buffers is an area storing useiaées which are essential parameters for the Forth
system to work. Below the user area is the redtank, sharing its space with the terminal input
buffer, which is used to store characters receik@u the terminal keyboard before processed by
the text interpreter.

Below the terminal input buffer is the data stagplowing downward into the free memory space

40

above the dictionary. The space just above thedary are used to store temporary text data.
We can identify a word buffer, a text buffer callR8D, an insert buffer and a delete buffer used by
the text editor. A video buffer of 1 Kbytes is@ksssigned if the screen editor is invoked. These
buffers float on the top of the dictionary, movitmghigher memory as new commands are added to
the dictionary. Data stored in them have to bel lmefore new commands are defined.

Fig. 4.2. schematically shows the arrangement nbua regions in a typical F83 Forth system.
Most Forth system are arranged similarly.

43. Inner Interpreters

Inner interpreters in Forth are a set of execupimtedures, usually in the machine code of the host
computer, which execute various Forth commandsrbggssing the information stored in their
parameter fields. The address of such a procedlstered in the code field of a command.

Forth commands of the same class have the samesaddrtheir code fields. Two major inner
interpreters are used to process code commandseddfy machine instructions, and colon
commands, defined in terms of other existing Fodimmands. Many other minor inner
interpreters are used in F83 system to procesdamdssvariables, user variables, and other types
of data and structures.

Codelnterpreters

Forth commands defined by host machine instructewasexecuted by one of two routines,
EXECUTE or NEXT. EXECUTE can be used to start exiag any Forth command, given that
the code field address of the Forth command iseplan the data stack before calling EXECUTE.
EXECUTE is a regular Forth command which can beetesl interactively or called from the text
interpreter. At the end of all code commands,ghmeust be a jump to the machine routine labeled
NEXT, which transfer control to execute the nexhooand in the execution sequence. In F83,
NEXT is centralized so that every command mustrretoi it through a JMP instruction. NEXT
assumes that the code field address of the nextnema to be executed is stored in the IP register.

41

Disl Buffers

Disle Buffer Fointer
Feturn Staclk

TIE

Data Stak

Free Space

acreen Buffer

Insert Buffer

PAD Buffer

WORD Buffer

Top of Dictionary

Ultilities

Azzembler

Editor

Colon Compiler

Tesxt Interpreter

Muclens

Virtual Forth Iachine

Cold and Warm Bootup

Figure4.2 Memory map of F83 system

42

CODE EXECUTE (cfa--) Execute the word whose exec ution address is on the data stack.

W POP Pop execution address into W.

0 [W] IMP MakeanindirectjumpthroughW.Wisle ftpointingtotheEND-CODE
code field. It must be incremented if parameter fi eld must be
addressed.

LABEL DPUSH A label in the target system.
DX PUSH Push contents of DX on the data stack.
LABEL APUSH Another label.

AX PUSH Push contents of AX on the data stack.

LABEL >NEXT The principal point of return for all code definitions. The
executionaddressofthe nextwordtobe executedi nlPregister.

AX LODS Loadthe nextexecutionaddressfromIPin toAXandincrementIP.

AX' W MOV Copy execution address into W.

0 [W] IMP Indirect jump through W.

The codes of EXECUTE appears in Screen 36 of METBBR, and the codes of NEXT is in
Screen 25 in the F83 source. The fact that thedescare scattered in many separated blocks
makes it difficult for the reader to put a wholetpre together. It is the purpose of this manoal t
present you a well organized system descriptiod,tamelp you understand the F83 model fully.

: NEXT A macro definition to assemble a jump to >NE XT instruction atthe end of a code
definition.

>SNEXT #) IMP Assembler the jump instruction.

: 2PUSH Another macro definition.

DPUSH #) JMP Jump to DPUSH, push DX on stack.

1 1PUSH Macro definition pushing AX on the data sta ck before NEXT.

APUSH #) JMP

These commands are defined in the metacompildiasrsin the source code. Let us not worry
about them here.

AddressInterpreter
The address interpreter is used to execute a bigth Forth command whose parameter field
contains a list of execution address. It processedist by executing commands at these

addresses sequentially.

The address interpreter is not an executable Eortimand. It is a machine code routine labeled
NEST:

LABEL NEST IPhastheaddresstoreturnandWhast hecodefieldaddressofthecolondefinition
to be called.

W INC W INC Increment W to point to the parameter field of the callee.

RP DEC RP DEC Decrement return stack pointer and prepare for a push.

IP 0 [IP] MOV Push contents of IP, the return addr ess on the return stack.

W IP MOV Copythefirstexecutionaddressinto IP, to startthe called colon definition.

NEXT Assembler >SNEXT #) JMP here.

In 8086, W and RP have to be incremented twiceusecthese registers are byte pointers. All

43

code routine ends up with the code >NEXT #) JMPhisTs very convenient in debugging the
system or changing the behavior of the code iné¢epito include new features in the Forth system.

CODE EXIT Terminate a colon definition and return t o the caller routine whose address is
on top of the return stack.

0 [RP] IP MOV Pop the return address back to the | P register.

RP INC RP INC

NEXT Return.

CODE UNNEST
"EXIT ' EXECUTE !

The standard command EXIT is vectored to UNNESTcWvis the reverse of NEST. NEST is
equivalent to the high level subroutine call in FBFAN, and UNNEST is the equivalent of
RETURN.

Variable Interpreter

Variable interpreter uses the W register to parthe parameter field of the variable command and
returns the parameter field address on the dat& &tathe subsequent commands to access the
parameter field. This inner interpreter can baathdy other types of commands which uses the
parameter fields to store various types of dake, $trings, double integers, floating point numbpers
or even large arrays. When a new command is cr@atte dictionary, the compiler assumes that
the command is of this type, unless a new innerneter is defined. Instead of the old name
DOVAR in figForth , F83 uses the generic name DOGRE

LABEL DOCREATE W points to the code field.

W INC W INC Increment W to point to the parameter field.
W PUSH Push pfa on the data stack.

NEXT Return.

W register as returned by NEXT contains the coellel faddress of the variable command. To get
the parameter field address, W has to be increrddm@ee. This is called the post-incrementing
NEXT. In many other Forth systems, the W regigtencremented inside NEXT so that it points
to the parameter field at the end of NEXT. Theipogementing NEXT is more desirable than
the post-incrementing NEXT, because the post-inerging NEXT requires that the code field is
two bytes ahead of the parameter field. Becau8euE8s the W register to make the indirect
jump to the inner interpreter, the W register carreincremented before the jump.

Constant Interpreter

Constant interpreter is very similar to variableempreter. The only difference is that constant
interpreter returns the contents of the paramegkt Wwhile variable interpreter returns the address
of the parameter field.

44

LABEL DOCONSTANT W points to the code field.

W INC W INC Point W to the parameter field.
0 [W] AX MOV Fetch contents in the parameter field to AX register.
1PUSH JMP Push AX on the data stack and then retur n.

The constant interpreter first copies the contefthe parameter field into the AX register, and
then jumps to the APUSH routine which pushes AXrendata stack before falling into NEXT.

User Variable Interpreter

User variables are defined for a multitasking ottmser Forth system. These variables are not
addressed by their parameter field addresses ylan bffset into a memory area unique to the
current user, a user variable area whose startidgeas is stored in a register or a variable UP.
The user variables define the operating environrfagrd user at any point of its operation. Since
each user has its own user variables preservedmigae memory area, users or tasks can be
switched very conveniently with minimal house kaegpi

The user variable interpreter in F83 is defined as:

VARIABLE UP The user area pointer is defined as a v ariable.

LABEL DOUSER-VARIABLE

W INC W INC Point W to the parameter field.

0 [W] AX MOV Get the user area offset from the par ameter field.

UP #) AX ADD Add the offset to the base address in UP.

1PUSH Push the address of the user variable on the data stack and return.

The parameter field of a user variable stores ffsetovalue of the user variable in the user area.
This offset value is added to the starting addoésse user area as stored in the variable UP. The
address returned on the data stack is the addréss vser variable of the current user who is
controlling the Forth system at this moment.

With all the viable system parameters saved irude variable areas, the task switching in a Forth
multitasking system is very easy and very efficienthe multitasker only has to save and restore
the IP, RP, and SP in between two tasks. We willrge this in detail later. F83 has a very
interesting multitasker which is a good demonstradf the power and the versatility of Forth as a
system and as a language.

High Level Inner Interpreter

Inner interpreters are preferably coded in the hwsthine instructions, because they are the actual
routines executed by the host computer. Howe\88,does provide the CREATE ... DOES>

45

construct for users to define inner interpretersgibigh level Forth commands. These high level
inner interpreters are easy to develop and emyéathsportable across different host computers.
The mechanism which allows this type of inner ipteters to execute correctly is DODOES:

LABEL DODOES W points to the code field of the curr entwords and SP points to the high level
inner interpreter.

SP RP XCHG

IP PUSH Push current IP on the return stack.

SP RP XCHG

IP POP Pop address of the high level interpreter i nto IP.

W INC W INC Point W register to parameter field w hich may contain data.

W PUSH Push W on the data stack.

NEXT Returntoexecutethehighlevelinterpreter whilethetopitemonthedatastack

points to the parameter field of the current word.

Using this DODOES, the new commands defined by REATE-DOES> structure is almost
identical to those defined by the CREATE-;CODE clilte. DODOES must be the first
command to be executed in the high level innerpméter.

Deferred Command Interpreter

F83 uses a special technique to handle forwardemtes, which is normally not allowed in a
regular Forth system. A deferred command is cdeaith a blank parameter field. When the
contents of the deferred command is finally contpitee parameter field in the deferred command
is then patched with a pointer pointing to the hagig of the compiled codes so that the deferred
command can be executed. Before the contentslefesred command is defined, however, the
deferred command can be referred to by the comaildrbe compiled as other regular commands
even if it cannot be executed. This techniqueseful, especially during metacompilation, where
commands have to be referred before their fundlityr@an be precisely defined by the commands
compiled after them.

The deferred command interpreter fetches the adldnabe parameter field and makes an indirect
jump through it:

LABEL DODEFER Executethewordwhoseexecutionaddr essisstoredintheparameterfield ofthis
deferred word.

W INC W INC Get the parameter field address.

0 [W] W MOV Replace W with contents of the paramet er field.

0 [W] IMP Make an indirect jump through it.

The deferred address can also be stored as aarsale so that each user may have its own
version of the execution procedure to be referodalytthe same name.

4.4. Interpretersfor In-Line Dataand Srings

In the parameter field of a colon command therisnally a list of execution addresses, which is
46

scanned sequentially by the address interpreteeaacuted. However, there are many instances
that the execution sequence must be change imrardr that some special data have to be
included in-line with the execution addresses, litegal numbers and character strings. A set of
special commands are defined to take care theshtioos at runtime, when the colon command is
being executed. Although these special commarelgigen names like other commands and can
be found by both the text interpreter and the calompiler, they are not meant to be invoked by
either. They are compiled into colon commands bgraesponding set of immediate commands
or compiler directives. To indicate their assaoiag with corresponding compiler directive and
that they are not to be directly invoked, theyassigned names with enclosing parentheses.
Executing them interactively from a terminal is thest convenient way to crash a Forth system.
Be warned of it!

CODE (LIT) (--n) Push the contents in next cell on the data stack.

AX LODS Load the contents of nextcell, pointed to by IP,into AX. Increment|P to skip
over the numeric literal.

1PUSH Push the literal number on the data stack an d return.

LODS is an interesting 8086 instruction. It isdis@ access character strings in memory using the
Sl register as a pointer. After the memory fetghidl is automatically incremented. It happens
that the Sl register is the IP register in Forttiual computer and the incrementing is exactly what
we wanted in (LIT). It makes an extremely simpdele command for (LIT). APUSH pushes the
contents of AX register on the data stack befoltengainto the NEXT routine.

(LIT) thus overrides the natural tendency of thdrads interpreter to interpret data as execution
addresses and forces the interpretation of thesotgtn the next cell as an in-line literal. Tisis
the way literal numbers are compiled in a colon oc@nd, preceded by (LIT), so that in runtime,
the number will be pushed on the stack and noetmistaken for an execution address.

(M () Print the next character string to t he terminal.

R> RPis pointingtothe nextcellwhere the strin gstarts. Popthestringaddress
to data stack.

COUNT Get the string address and character count o n the stack.

2DUP + EVEN Compute the address of the next execut able word after the string.

>R Replace the next execution address back on the return stack.

TYPE ; Now, type out the string.

(.") and the character string following it are caleg by the immediate command ." , in-line with
the other execution addresses in a colon commawthen the colon command is executed, (.")
will pull this string out of the execution sequenpant it on the terminal, and then pass the aintr
to the command after the string. This is the waylet a colon command print messages on the
terminal to facilitate the user-computer interfac€omputer can be made much more friendly this
way if proper messages are printed timely.

(") (--addrn) Leave the address and the char acter count of the following string on the stack
and continue execution after the string.

47

R> COUNT Get the address and count on stack.
2DUP + EVEN Compute the next executable word add ress,
>R ; and put it back on the return stack.

(" is very similar to (.") in the way it handldsetin-line string and the execution sequence. The
difference between them is that (") leaves th@gtaddress and character count on the data stack
without doing any terminal output; therefore, thing data can be manipulated any way we want
in the colon command.

45. Interpretersfor Control Structures
BRANCH and ?BRANCH

We all think Forth is a totally structured programglanguage, even saying: "Look Mom, no
GOTO's!" GOTO's are replaced by structures lik€IISE-THEN , BEGIN-UNTIL , and
DO-LOOP, etc. Well, the hard truth is that Falties have GOTO's, disguised in names like
BRANCH and ?BRANCH, and many other commands. if arned how to use them, you
could jump anywhere you wanted and create reallysjmepaghetti codes. Novices are made to
believe Forth is GOTOless because they are shidétdedthe dark side of Forth.

BRANCH and ?BRANCH take the contents in the neltathe address of the next executable
command and direct the address interpreter toatl@drtess to start a new execution sequence.
This can be done simply by manipulating the intetige register IP.

CODE BRANCH (--) Perform an unconditional jump to the address in the next cell.

LABEL BRAN1

0 [IP] IP MOV Copy next cell into IP, thus

NEXT effecting the branch.

END-CODE

CODE ?BRANCH (f--) Iftheflag on stackis false , branch to the next address; otherwise, skip the
next cell and continue the execution sequence.

AX POP Pop the flag into AX register.

AX AX OR Set the CPU status register.

BRAN1 JE Branch if flag is false.

IPINC IP INC Skip the jump address if flag is tr ue.

NEXT

END-CODE

BRANCH is compiled by ELSE, REPEAT, and AGAIN. ?BRCH is compiled by IF, WHILE,
and UNTIL. The cell immediately following BRANCH @BRANCH is the address of the next
executable command in memory, and it directs timelitonal or unconditional branching,
deviating from the normal sequential execution patlored by the address interpreter.

The New F83 L oops

The DO-LOOP structure experienced a major surgetle birth of Forth-83 Standard, drastically
48

deviated from the DO-LOOP structure as Charles Maaovented. The basic reasons behind the
new DO-LOOP structure were to eliminate the disicarity of indexing through the 8000H
boundary and to leave the loop immediately at LEAVIES3 provides a solution by using three
numbers on the return stack to handle the indeasmthlooping. The number at the bottom of the
three is the address of the command right after BQioviding LEAVE with the return address to
terminate the looping. The second number is thp lomit, offset by 8000H so that the index
range from 0 to FFFFH becomes contiguous. Thetwpber is the difference between the index
and the limit, also offset by 8000H. At the endhad loop, LOOP increments the top number on
the return stack by either one or the amount sigelcifi the case of +LOOP, and tests for overflow
from bit 14 to bit 15. The overflow condition oeswhen the 8000H boundary is crossed from
either direction. Therefore, both the positive aedative increments are handled correctly with a
single run-time loop routine. Since the addreshefcommand after LOOP is carried on the
return stack, LEAVE can use this address to juntpbthe loop.

CODE DO Push the in-line exit address and the modified loop limitand scan range on the
(limit index --) return stack.

AX POP Get the index.

BX POP Get the limit.

LABEL PDO

RP DEC RP DEC Make room on the return stack.

0 [IP] DX MOV Get the in-line address following DO .

DX 0 [RP] MOV] Push the exit address on the return stack.

IPINC IP INC Pointing IP to the next executable word.

8000 # BX ADD Offset the limit by 8000H.

RP DEC RP DEC Make more room.

BX 0 [RP] MOV] Push the modified limit on the retu rn stack.

BX AX SUB Subtract limit from index, also offset b y 8000H.
RP DEC RP DEC Make room.

AX 0 [RP] MOV Push the index scan range on the ret urn stack.
NEXT All done.

END-CODE

CODE (?DO) Sameas(DO)exceptthatifindexisthesameasli mit,theentireloopisskipped.
(limind --)

AX POP Index.

BX POP Limit.

AX AX CMP Compare index and limit.

PDO JNE If not equal, execute the loop.

0 [IP] IP MOV If equal, jump over the do loop.

NEXT END-CODE

With the modified index, modified limit, and theieaddress on the return stack, the task for
end-of-loop routines are much easier. Believe iiat, this new loop structure is claimed to run
faster than the old, traditional loop.

CODE (LOOP) (--) Branchbacktothe executablew ordafterDOiftheindexdoesnotcrossthe 8000H
boundary. If it does, exit the loop after clearing the return stack.

1#AX MOV Increment by one. LABEL PLOOP Increment top of return stack,

AX 0 [RP] ADD the scanning index.

BRAN1 JNO Ifoverflowconditionisnotset,jumpt othein-lineaddresscompiledafter(LOOP)
and repeat the loop.

6 # RP ADD Pop all three numbers off the return st ack. Clean up the return stack to the
state before the do-loop.

IPINC IP INC Point IP to the next executable wor d. Exit the loop.

NEXT END-CODE

CODE (+LOOP)(inc--) Incrementthe scanninginde x by the value on the data stack and decide whether
or not to loop.

49

AX POP Get the increment.
PLOOP #) JMP Use the same loop routine in (LOOP).
END-CODE

Since the scanning index on top of the return stadot the index as we understood, the functions
of I and J are also different.

CODE | (-- index) Return the current loop index.

0 [RP] AX MOV Get the scanning index on top of the return stack.

2 [RP] AX ADD Add the modified limit to the scanni ngindex. Theresultis the actual current
index.

1PUSH Push it on data stack.

END-CODE

CODE J (-- index) Return the loop index of the n ext outer loop in nested do-loops.

6 [RP] AX MOV Get the outer index.

8 [RP] AX ADD Add the outer limit.

1PUSH Push the computed index on stack.

END-CODE

The New L eave

Forth-83 Standard requires that when LEAVE is etegtinside a loop, the loop be exited
immediately. It was agreed that the old LEAVE @¢ desirable in allowing execution to continue
to the next LOOP before exiting the loop. Unweleoguests should not be permitted to remain
when the party is over. Since the exit addresh@tommand after LOOP is compiled after (DO)
and tucked on the return stack, LEAVE can be exgtusing this piece of information:

CODE (LEAVE) (--) Immediately exit a DO-LOOP.

LABEL PLEAVE

4 # RP ADD Pop the index and limit off the return stack.

0 [RP] IP MOV Copy the exit address to IP, ready t 0 exit the loop.

RP INC RP INC Clear the return stack.

NEXT END-CODE

CODE (?LEAVE).(f--) Exit the loop immediately if the flag on stack is true. If not, continue the
looping.

AX POP Get the flag.

AX AX OR Test the flag for zero.

PLEAVE JNE True. Leave the loop.

NEXT False. Continue.

END-CODE

LEAVE is not very useful all by itself because iflwefeat the purpose of a do-loop. In most
cases, it is used after a testing condition like IELEAVE combines the functions of IF and
LEAVE, and is a much more useful command.

50

Chapter 5. TheForth Nucleus

The source code discussed here is in the file KEEB8BLK, Screens 16 to 37.

In the last chapter on Virtual Forth Computer, wivatdiscussed was the 'hardware' of this
conceptual computer, such as the registers, theonyesind its organization, buffers, and stacks.
The inner interpreters are similar to the CPU ia tomputer, which cause the machine to perform
the most primitive operations like jumping from di@th Command to the next. There is also a
'software’ part of the Virtual Forth Computer,.i.the primitive command set or the elementary
operations from which programs can be construacesbive complex, real life programming
problems. This primitive command set, the coupget of the microcodes or random logic
machine instruction set in a real, conventional poter, is what we mean by the Forth Nucleus.
In a real Forth computer, this instruction set witbbably be microcoded or committed to random
logic in the Forth CPU. Before that becomes atyedhe Forth Nucleus will have to be
implemented on a real CPU using its native macbaues.

F83 is available in three versions: one for 808® fwr 8086/8088 and one for the more recent
68000. It's a pain to discuss the Forth nucle@)B0 machine code, because we have to pretend
that the 8 bit 8080 is a 16 bit machine. Themisnuch noise in the 8080 codes that you can
hardly hear the beautiful music played in ForthO8®is far from being a dream machine. Being
a 16 bit machine with more than enough registefSRtJ, the Forth nucleus put on it looks much
nicer and the code is considerably shorter. Fatmbthe commands in the Forth nucleus, the
8086 code is less than 1 line in length and thetfans are fairly obvious. In fact, most code is
simple enough that | really don't have to go thtotlgem line by line, as | did for the inner
interpreters. | will only go through the code b étional groups, making some occasional
comments on special features in the F83 implemientat

| encourage you to read the code in the nuclewefudr because they are good examples of
assembly programming in. There are lots of tealmscand styles we can learn from these code.
When you want to write code commands to take adwggnof the speed and to tackle some
hardware facilities, the best way is to pick uppdeecommand in the nucleus of similar functions
and modify it to suit your need. Once you areahé with the manipulation of stacks and the
CPU registers in Forth assembly style, you wilklbe to build your own castles.

5.1. 8086 Assembly Languagein Forth

Assembly code in Forth is quite different from tieemal assembly code in conventional assembler.

51

The most eye catching difference is that the Fasembly codes are written in reverse Polish
notation, i.e., operands preceding the operatohe réason is simple. In Forth, the assembler is
not a gigantic program which assembles mnemoniesbde by line. The assembly functions

are scattered in many small pieces of Forth comsariich are given assembly mnemonic names.
When a Forth command like MOV is executed, it cdegpa machine code to the dictionary where
we are building the parameter field of a code comun&Vhen MOV is executed, it needs
information like source register, destination régisand address mode. These information, or the
operands, are provided on the data stack pridrganvocation of MOV. MOV takes the operand
information from the data stack, does some comjoutad derive the correct machine code, and
compiles this code to the top of the dictionary.ll the other assembly commands do similar
things, using data from the stack and compilinggjgecodes to the dictionary.

There is a major difference between the Forth cotumpiler and the Forth assembler, even though
they both build new commands on the dictionary. ewbompiling colon commands, the Forth
computer is in the compiling mode, under which cands parsed out from the input stream are
not executed, but have their addresses added thdtrenary. During assembly, the Forth
computer is in the interpretive mode, under whiktth@ assembly commands are executed. The
net result produced by the execution of an assendstynand is that a machine code is added to
the dictionary. In other words, we can claim tlha the Forth text interpreter who does the
assembly of machine codes. The full Forth systeni, all its resources, are supporting the
process to assemble machine codes. In a waysseendly process is so much more complicated
than compiling colon commands that it indeed nekdsupport of the whole Forth system. The
complexity of the assembler is best seen in theahcbdes of the Forth 8086 assembler, which will
be the subject in a separated chapter. At thisembmve just have to learn how to read the Forth
assembly code in the nucleus.

5.2. Code Definitionsin Forth Nucleus

In the F83 Nucleus, all the code commands areemritt the following general format:

CODE <name> < operands and assembly mnemonics > < end> END-CODE
A code command is enclosed between two commandsEC&pid END-CODE. Immediately
following CODE is the name given to the command fteAthe name, there is a sequence of
commands which are either assembly mnemonics oangs used by the mnemonics. The
assembly mnemonics are Forth commands which assendihine codes into the parameter field
of the code command under construction. The cordrbafore END-CODE must be a special
command which returns control to the routine whaals the command in runtime. Anywhere
inside or outside of the code command, commentplaced between (or (S and), which are
ignored by the Forth interpreter which does theiadsy.

52

The assembly commands have mostly the same nantfessasmnemonics used in the regular
8086 assembler provided by Intel. However, theyrat just names of machine instructions, they
are actually Forth commands which assemble machgteictions into the dictionary when they
are interpreted or executed. Many of these mnecrmmminmands require operands, which are

supplied before the mnemonic commands. If two apes are needed, the format is:
<source operand> <destination operand> <mnemon ics>

A partial list of the mnemonic commands is:

MOV PUSH POP JMP JE JNE JCXZ
ADD SUB MUL DIV AND OR XOR
MOVS PUSHF REPZ SAHF WAIT LODS XLAT

The following registers are defined in F83 for 8086

AL CL DL BL AH CH DH BH
AX CX DX BX SP BP SI DI
ES CS SS DS

Forth registers RP, IP, and W are equivalent toBPand BX, respectively.

Several registers are often used for indirect axkiing. The indirect addressing operands are the
following:

[RP] [IP] [W] [SI] [DI] [BP] [BX]
An offset number must precede the indirect addngssperand. Numeric values needed as
operands must be used with a numeric operatonioilpimmediately:

#) St)
where # is preceded by an immediate constant, gfeiseded by an address, and S#) is preceded by
an address for intersegment jump.

Three most frequently used code endings are NERUSH, and 2PUSH. They are assembly
macros which return control to the next commanthéexecution sequence. 1PUSH pushes the
AX register on the stack before jumping into NEXihd 2PUSH pushes first the DX register and
then jumps to 1IPUSH. Sometimes a JMP is useccadeaending. The routine jumped to must
eventually fall into NEXT so that the execution dacontinued.

5.3. Examplesof Code Definitions

The following are a few simple examples of the codemands. They are fully commented here
for the purpose of demonstrating the Forth assesyijax. Since 8086 has most of the functions
required by Forth in machine instructions, the coaimmands in the F83 nucleus are fairly simple
and obvious. | will not try to make dumb commesuty more.

53

CODE @ (addr--n) Fetch a 16 bit value from addr

BX POP Pop addr into BX register.

0 [BX] PUSH Push the contents of addr, indexed by BX with O offset, onto the data stack.
NEXT Jump to next and return.

END-CODE End of code definition.

CODE !(n addr --) Store a 16 bit value at addr.

BX POP Pop addr to BX register.

0 [BX] POP Pop n into memory at addr.

NEXT END-CODE

CODEC@/(addr--char) Fetch an 8 bit value from addr.
BX POP Pop addr into BX register.

AX AX SUB Clear the 16 bit AX register.

0 [BX] AL MOV Copy one byte at addr to AL.

1PUSH Push the byte value on stack and return.
END-CODE

CODEC!(charaddr--) Store an 8 bit value at ad dr.
BX POP

AX POP Pop char into AX.

AL 0 [BX] MOV Store byte into addr.

NEXT END-CODE

Other code commands in the nucleus are fairlygttorward and are also adequately commented
in the shadow screens. They are grouped togetldesteown here for references. You are
encouraged to read the detailed code and commetiis source listing.

Memory Commands

@ ! C@ C! CMOVE CMOVE> FILL ERASE BLANK MOVE HERE PAD

Stack Commands

SP@ SP! RP@ RP! DROP DUP SWAP OVER TUCK NIP
ROT ROT FLIP?DUPR> >R R@ PICKROLL

L ogic Commands

AND OR XOR NOT TRUE FALSE CSET CRESET CTOGGLE ON OFF

Arithmetic Commands

+ - ABS + 2 2/ U2/ 8 1+ 2+
1- 2- UuUM* U*D UM/MOD *D M/MOD MU/MOD * /MOD
/ MOD */MOD *

Comparison Commands

0= 0< 0> O0<> = <> 7?NEGATE U< U> <
> MIN MAX BETWEEN WITHIN

Double Integer Commands
54

2@ 2! 2DROP 2DUP 2SWAP 20VER 3DUP 4DUP 2ROT D+
DNEGATE S>D DABSD2/ D- DO= D= DU< D< D> DMINDMAX

Sring Commands

COUNT LENGTH -TRAILING UPPER COMP CAPS-COMP COMPAR

55

Chapter 6. Terminal Input and Output

The source code discussed in this chapter isarkKitRNEL86.BLK, screens 41 to 49.

Forth is an interpretive language which intimatekgracts with you through a CRT terminal.
Terminal input and output control is a very impattpart of the Forth system, allowing you to
enter commands and data into the computer andagligipe results or messages on the CRT.
Many Forth implementations have input/output comdsacoded in the host machine codes which
access the terminal directly. These Forth systenoften stand-alone system which do not need
support from a traditional operating system. F&3 wesign to run under the popular CP/M or
MS-DOS system, so that it can be transported betwdkerent host computers. The terminal
input/output commands in F83 thus utilize the CRAMDOS BIOS routines to receive information
from the keyboard and send information to the Cigpldy.

6.1. TheBIOSI/O Callstothe Operating System

The fundamental interface between Forth termir@lddmmands and the CP/M or DOS is the
Forth command BDOS:

CODE BDOS Loadfunction codeinto Cregisterand entry parame terinto Dregister. Callthe

(‘entry function -- BIOS. Return result are then pushed on the data st ack.

return-value)

CX POP Load function code into C register.

DX POP Load entry parameter into D register.

33INT CallBIOSbhyasoftwareinterrupt. Thisis theMS-DOSinterruptvector. ForCP/M,
itis 224 INT.

AH AH SUB Clear the high byte in the AX register.

1PUSH Return with the result on stack.

END-CODE

BDOS is not only used for terminal 1/O, it can alsused for most of the disk 1/O calls, making
Forth 1/0O commands very neat and simple.

C(KEY?) (--f) Return a true flag if the user pr esses a key. Otherwise, return a false flag.

011 BDOS Function 11 isthe direct console I/O ca Il. Entry O specifies a console status
command. If no character is ready, 0 is returned. If a character is entered,
FFH is returned.

0<> Reversed the BDOS flag.

: (KEY) (-- char) Wait until a key is pressed and return the ASCII code.

BEGIN Enter the wait loop.

PAUSE Releasethe CPUtoothertaskssothatthe multitaskingscheme canworksmoothly.

(KEY?) Is a key pressed?

UNTIL Yes, then exit the loop. Otherwise, wait an other round.

0 8 BDOS Entry para meter 0 specifies a console input function and retu rns an ASCII code

on the stack.

:(CONSOLE)(char--) Send the character on stack to the terminal for display.
PAUSE Let other task have a run on the CPU.
6 BDOS Call BDOS to send out the character.

56

DROP
1#OUT +!

: (PRINT) (char --)
PAUSE

5 BDOS
DROP
1 #OUT +!

: (EMIT) (char --)
PRINTING @

IF

DUP (PRINT)

-1 #OUT +!
.THEN
(CONSOLE)

BDOS always returns a number on the stack. |
Increment user variable #0UT, keeping tr

t has to be dropped.
ack of the output character count.

Send a character to the print er.
Alwayspauseb eforean|/O operationbecause I/O operationsareg
CPU can then be freed to serve other tasks or other
Function 5 is the BDOS call for output to |
Clear the stack.
Increment #OUT.

enerally slow.
users.
isting device.

Send the character to both the
Is the printing flag set?
Yes. Sent character to the printer.
Print character.
Back up #OUT so it will not be increme

terminal and the printer.

nted twice

Output to the terminal.

(KEY?), (KEY), and (EMIT) are the actual comman@stored to by KEY?, KEY, and EMIT.
EMIT can be vectored to (PRINT) or (EMIT) like thegular CP/M system to activate the printer
with the console.

6.2.

Terminal Output Commands

The following output commands are all simple darnixes of EMIT and they do not need extensive

comments:

:CRLF (--) Send a carriage return and a line fee d to the console.
3 EMIT Carriage return.

10 EMIT Line feed.

#OUT OFF Clear the output character count.

1 #LINE +! Increment the line count.

:TYPE (addrlen--) Display a string on the cons ole.
0 ?DO Repeat len times, but skip if len is zero.
DUP C@ EMIT Send one character.

1+ Increment character address.

LOOP

DROP Clear stack.

: SPACE (--) Send a space to console.

BL EMIT ;

:SPACES (n--) Send n spaces to console.

0 MAX Eliminate negative counts.

0?DO Repeat n times.

SPACE

LOOP ;

:BACKSPACES (n--) Send n backspaces to console.

0?DO

BS EMIT

LOOP ;

6.3. Interpreting Control Characters

Forth is capable of using most of the ASCII chazexctor command names.

Only a few ASCII

57

codes are reserved for system functions. ManyofigFsystem reserve the NUL (ASCII 0), CR
(ASCII 13), and SP (ASCII 32) as delimiters farth commands. The DEL (ASCII 127) is
used to nullify the previously entered charactdrich is important in correcting typing errors.
Other non-printable characters or control charazerbe used freely to name commands.
Because it is difficult to document the non-prinéatharacters, embedding them in names is
discouraged unless you want a very secured enveohm

F83, on the other hand, provides a mechanism fotgamplement special functions for control
characters. When a function is defined for a paldr control character, the function will be
executed immediately when that character is entenettie keyboard. A jump table is maintained
for all the 32 control characters. A few of thera ased for special purposes which are defined as
follows:

:BS-IN(nchar--n-1) Back up the input charact er buffer by dropping the character off the stack a nd
decrementing n by 1. If nis zero, sound the bell instead.
DROP Discard the character.
DUP IF Is n=07?
1- BS Yes. Decrement n and backspace.
ELSE
BELL n=0. Sound the bell.
THEN EMIT Send either BS or BELL to console.
1 (DEL-IN) (n char -- Backup the input and erase the previous character. If n=0, sound the bell.
n-1)
DROP
DUP IF
1-BS Backspace.
SPACE BS Send a space and backspace again. Erase the previous character.
ELSE BELL
THEN EMIT ;
‘BACK-UP(nchar--0) Erase the current line an d set the character count to zero.
DROP Discard the character on stack.
DUP BACKSPACES Backup to the beginning of the curr ent line.
DUP SPACES Erase all the characters on this line.
BACKSPACES Backup
0 Clear character count.
: RES-IN (char --) Reset the Forth system to a cl ean start again.
FORTH Set default vocabulary.
TRUE Force system abort.
ABORT" Reset" Abort with a message.
:P-IN (char --) Toggle the printer on or off.
DROP PRINTING @ Get the flag in PRINTING.
NOT Complement it to turn the printer on or off.
PRINTING ! Store it back.
:CR-IN(maddrnchar Finish input and remember the number of characters in SPAN.
--maddrm)
DROP SPAN! Store n in SPAN.
OVER Duplicate m.
BL EMIT Send out a space.
:(CHAR) (addr nchar Process a normal character by appending it to the i nput buffer.
--addrn+l)
3DUP EMIT Send character to console.
+ Addr+n, the memory address for the current chara cter.
! Store the character into the input buffer at add r+n.

58

1+ Increment n by 1 for the next character.

DEFER CHAR CHAR will be vectored to (CHAR).
DEFER DEL-IN DEL-IN will be vectored to (DEL-IN).
VARIABLE CC CC will be used to point to the current control character table.

CREATE CC-FORTH The controlcharactertablewhichc anhandle eachcontrolcharacterasaspecial

case. Itis actually an execution array which is in dexed into by EXPECT to do

the right thing when it receives a control characte r.

] Enter compilation mode to compile 32 execution ad dress for the 32 control
characters.

CHAR CHAR CHAR CHAR CHAR CHAR CHAR CH AR

BS-IN CHAR CHAR CHAR CHAR CR-IN CHAR CHAR

P-IN CHAR CHAR CHAR CHAR BACK-UP CHAR CHA R

BACK-UP CHAR RES-IN CHAR CHAR CHAR CHAR CHAR

[Reenter the execution mode.

6.4. More Sophisticated Input Commands

KEY is the most elementary command to accept kaybimgut. It simply gets a character and
puts its ASCII code up on the data stack, not & irgelligent command. Once we have the
control character table, we can build a very imgelit input command which can respond to many
control characters to do a wide range of diffethimgs in response to our keyboard strokes. This
command is EXPECT:

:EXPECT(addrlen--) Get a string f rom the terminal and place it in the buffer at addr
Perform a limited amount of line editing. Save the
in the variable SPAN. Process control characters as
character table pointed to by CC.

specified.
number of characters input
specified by the control

TIB 80 EXPECT

DUP SPAN'! Save len in SPAN.

SWAP 0 Stack is now: len addr O --

BEGIN Start the input loop.

2 PICK Copy len to top of stack.

OVER - (len addr count #left --)

WHILE Ifallcharacterswerereceived, exitthelo op. If#leftisnot0, continue on.
KEY Get one more character.

DUP BL < Is it less than 32, i.e., a control char acter?
IF Yes. A control character.

DUP 2* Offset to the CC table.

CC@+ The table entry address.

PERFORM Execute the CC table entry.

ELSE Not a control character.

DUP 127 = Isita DEL?

IF DEL-IN Yes. Do delete the prior character.

ELSE CHAR No. A regular character.

THEN

THEN

REPEAT End of string input loop.

2DROP DROP Clear the stack.
:TIB (-- addr) Get the address of the terminal i nput buffer.

'TIB @ TIB is vectored through 'TIB.
: QUERY (--) Getaninputstreamoftextfromthe terminalandstoreitinthe terminalinput

buffer. Prepare the system to interpret this input text.
Receive upto 80 characters into the terminal input buffer

.SPAN @ Get the actual length of the input stream, which may be less than 80.
#TIB ! Storeitin#TIBsothatthetextinterpret erwillknowwhenthetextisexhausted.
BLK OFF Clear BLK so that the tex t interpreter will use the terminal input buffer fo
text input.
>IN OFF Clear the character pointer to start from the beginning of the terminal input
buffer.

59

QUERY is the Forth input command at the highestllev It waits on you to type a line of text on
the keyboard. The line is terminated either bynang 80 characters from the keyboard or by
receiving a carriage return key. The line of iexdtored in the terminal input buffer. All the
pertinent parameters are set so that the texjpatar can take over and interpret or execute the
commands given in the input line.

6.5. String Commands

Screens 41 to 43 are a set of commands to oparatiings in memory. A string in Forth is a
sequence of ASCII characters preceded by a bytet.col\ string may have zero to 255 characters.
It is generally identified by the address of themobyte. However, most string commands

require the address of the first character in thegsas argument, not the address of the courmt byt
String commands use the following generalized sgnta

<source addr> <dest addr> <length> <string comman d>

Destination address is optional in cases of siaglag operations.

Most of the string commands are standard Forthe83ncands and their commands are simple and
straightforward. | will only list here their funons and stack parameters:

Table6.l. String Commands

Conmand Stack Effects Function

COUNT (addr -- addr+1 len) Convert the string add ress to address-length
representation.

LENGTH (addr -- addr+2 len) Returngddress-length forlongstringswhose character
count is 16-bits.

FILL addr len char --) Initialize 4 string to ch ar.

ERASE (addr len --) Initialize a string to NUL.

BLANK (addr len --) Initialize a string to blanks .

MOVE ('sour dest len --) Move a [string without ove rlapping.

UPC (char -- char") Convert a character to upper case.

UPPER (addr len --) Convart s string to upper cas e.

-TRAILING addr len -- addr len') Delete trailing blanks from a string by changing its
length.

COMP (sour destlen--n) Comparg sourcestringw ithdestinationstring. Return
-1 if source<destination. Return 1 if
source>destination. Return O if strings are the sam e.

CAPS-COMP (sour destlen--n) Compare two string s regardless of character cases.

COMPARE (sour destlen--n) Comparg two strings. If CAPS istrue, convertto upper
case before comparing.

60

Short String

|l zfz =z 6| TR Gl =zl =] x| =) =]=

Long String

Figure6.1 Representation of strings

61

Chapter 7. TheVirtual Memory

The source code discussed in this chapter is InNBEER6.BLK, Screens 50 to 56.
7.1. MassSorageand Virtual Memory

Mass storage is a very important and integral laatcomputer although we often think of it as a
peripheral or an appendage. The computer usdBAMememory for most of its normal
operations, executing programs stored in RAM aretatng on data stored in RAM. However,
programs and data must be saved to more permametess expensive media before the power to
the computer is turned off, or to transfer programdata from one computer to another. Without
mass storage, a computer is just as useful asea game, operating entirely from the ROM
memory with very limited amount of RAM. Most pre@gnming languages, by default or by
neglect, do not include facilities to deal with thass storage as part of the language. Thus we
have to have a huge beast, an operating systerarneath the language to supply the functions
necessary to use the mass storage convenientlgfiatively.

Charles Moore perceived the need to use mass steffigently, to make Forth not only as a
programming language, but also as a total enviraimewvhich you can describe and solve your
programming problems. At the time he put togetf@th, core memory was much more
expensive than now and its use had to be optinazedl costs. His design used the mass storage,
whether tape or disk, as a direct extension ottdre memory. The user can address the mass
storage in the same way he addresses the core yemithiout worrying the detailed processes in
storing data to disk or retrieving data from disK-his is the concept of 'virtual memory'.

The way how virtual memory operates is as follow$She mass storage, tape or disk, are divided
into consecutive blocks as the basic storage wrats) block consisting of 1024 bytes. The
blocks are numbered from O to the capacity of #ngak, and are addressed by the block number.
In the core or the RAM memory in the computer, sgaaalled disk buffer is reserved as
temporary storage for blocks of data from disk. edisk buffer is also of 1024 bytes and one or
more disk buffers can be reserved. When a blodatd is needed, it is read from the disk and
stored in one of the disk buffers. Data in thiskdiuffer can then be used or modified, as needed
by the program. When all disk buffers are filledidhe system needs to read another block, the
system will select the least used disk buffer teenee the new block of data. If the data in the
selected disk buffer was modified by the programh was marked as 'updated’, the contents of this
buffer will be written back to the disk before thew block is read in. This way, the data on disk
are assured of their integrity and constantly updiais required, while a few disk buffers can fulfil

62

the need to gain access to the entire disk witlamge overhead.

If you know how to read and write a sector of tiekdit is not a big job to implement the virtual
memory system in Forth. Many Forth systems incluteh functions. These Forth system have
no need for an operating system because the funsotiban operating system, handling terminal
I/O and managing mass storage, are all providettidy-orth system. In this sense, Forth is its
own operating system. F83 on the other hand wsigmied to run under the CP/M or MS-DOS
system and uses the file system in CP/M for masage. The advantage is that the resulting
Forth system can be easily transported from onepaten to another, under the umbrella of CP/M
or DOS, and that data can be dealt with within aeamoeanageable file system. The disadvantage
is that one cannot address disk at the sector ékethe performance is degraded.

7.2. Disk Buffers

A set of pointers and constants are needed tortmhshe virtual memory system in allocating the
disk buffers and defining their characteristics:

0 CONSTANT FIRST The starting address of the disk b uffers. The actual address is patched during
Forth initialization.

0 CONSTANT LIMIT The address above the top disk buf fer. Also patched at initialization.

4 CONSTANT #BUFFERS Four disk buffers are allocated in this example.

1024 CONSTANT B/BUF 1024 bytes per disk buffer.

128 CONSTANT B/REC 128 bytes per record in CP/M an d DOS.

8 CONSTANT REC/BLK 8 records per block of 1024 byte S.

42 CONSTANT B/FCB 44 bytes in a file control block

VARIABLE DISK-ERROR Storing error code after a disk operation.

#BUFFERS 1+ 8 * 2+ The size of a buffer-pointer array. Each disk buffe ruses 8 bytesinthis array

CONSTANT >SIZE to store buffer information:

0-1 Block number
2-3 Pointer to file
4-5 Buffer address
6-7 Update flag

This disk buffer pointer array is reserved jusolethe first disk buffer or FIRST. Whenever a
block is referenced, its pointer is moved to thachef this array, so that the most recently used
buffer is always checked first. This allows th&erences to multiple disk buffers to be very fast.
Disk buffers are 1024 bytes long. No trailing zeave needed to stop the text interpreter, as in
figForth , because the text interpreter in F83 piiicess only 1024 characters in a buffer. The
following commands are defined to get pointersddrass into this array:

:>BUFFERS (--addr) Return the address of the fi rst buffer pointer.
FIRST Starting address of first buffer.
>SIZE Total bytes in the pointer array.

First buffer pointer entry.

:>END (-- addr) Return the address of the last ¢ ell in the buffer pointer array
.FIRST 2- One cell below FIRST.

:BUFFER#(n--addr) Return the address of the n th buffer pointer.

8* Offset of the nth buffer pointer.

63

>BUFFERS Origin of the buffer pointer array.
+)

38 View File #
Ilas REC #
36
Fandom
Eecord
33 Mummber
4 Current FEC

Feserved for

DOS or
CPMI
1a
15 Fecord Count
13
12 Extent Nurnher
: Matne Extension
File MNatne
1
1]

Dirive Murnber

Figure7.1 TheFile Control Block

64

7.3. TheFileControl Block (FCB)

CP/M-DOS programs accesses the disk files throug®®8 calls. However, a program must
maintain a special memory array which containshalinformation about the file it is using. This
memory array is called FCB, File Control Block, aky 36 bytes in length. The first byte in FCB
stores the disk drive code. The next 11 byteedto file name and extension. Bytes 33, 34,
and 35 store the current random record numberad/veite operation. F83 reserves 8 more bytes
at the end of FCB for some special purposes. Awmm@able named FILE is used to store the
address of the FCB currently used by the Forthesystnd indicates the current file. All other
Forth commands doing disk 1/O refer to the filerged to by this user variable FILE.

To fully understand the structure of CP/M-DOS fitesl how they are utilized by programs is
beyond the scope of this book. You have to go batke CP/M manuals where these topics are
treated in details. What | shall do here is tdlgough the F83 disk I/O commands and explain
there functions. We only have to know a smalliparbf the CP/M to get a working knowledge
of the CP/M-DOS files as required by F83 system.

CREATEFCB1B/FCBALLOT Createadefaultfilecontr olblockintheNucleusofF83. 41bytesarereser ved.
: CLR-FCB (fcb --) Initializethe current FCB, gi venthe addressofthe currentFile Control Block.

DUP B/FCB ERASE Clear the entire array to zero.

1+ Address of the first byte of the file name.

11 BLANK Initialize the name and extension to blan ks, as required by CP/M.

: SET-DMA (addr --) Set direct memory transfer ad dress.

26 BDOS DROP A standard BDOS call.

: RECORD# (fcb -- Return the address of the 3 byte pointer to the cur rent random record.
addr)

33+ Offset to the random record pointer.

: MAXRECH# (fcb -- Returntheaddressofthefieldstoringmaximumrec ordnumberinthecurrentFCB.
addr)

38+ ;

:VIEW# (fcb--addr) Return the address where th e file number for viewing is stored.

40 +; The last cell in FCB.

: CAPACITY (--n) Return the number of blocks in the current file.

FILE @ Fcb of current file.

MAXREC# @ Get the maximum record number.

1+ 0 Make it a double number.

8 UM/MOD Unsigned mixed division.

NIP Discard the remainder.

VARIABLE DISK-ERROR A variable storing the record n umber out-of-range flag.

: IN-RANGE (fcb -- Make sure that the current random record is within range. Abort if it is not.
fcb)

DUP MAXREC# @ Maximum record in the file.

OVER RECORD# @ Current record number.

U< Do an unsigned comparison.

DUP DISK-ERROR'! Store the flag in DISK-ERROR# for diagnostics.

IF1 Error process.

BUFFER# ON Set buffer flag.

65

" Out of Range"
DISK-ABORT

Abort if out of range.
THEN ;

7.4. Read and Write Disk Files

The following commands are the fundamental interfiacthe disk drive through the CP/M-DOS
BDOS. They specify the disk drive, the memory addy the sector to be read or written, and do
the reading or writing.

: REC-READ (fcb --) Readonerecordfromthe curr

of random record.

entfile. Therecordnumberis storedinthe field

DUP IN-RANGE Check the random record number.
33 BDOS Call the read random function.
?DISK-ERROR Store the returned error code in DISK- ERROR.

: REC-WRITE (--)
DUP IN-RANGE
34 BDOS
?DISK-ERROR

Write one random record.

Check the random record number.
Write the record from memory.
Store error code.

One CP/M record is 128 bytes long. One Forth bled024 bytes long. To read or write one
Forth block, we have to do eight consecutive remdgrites. Another thing we have to take care
of is that there are four disk buffers allocatethie F83 system. The buffer to be used for disk

I/O has to be specified by a pointer to the appadprentry in the disk buffer pointer array in fton
of the buffer area.

DEFER READ-BLOCK
DEFER WRITE-BLOCK

: SET-10

DUP 2@
REC/BLK *

OVER RECORD# !
SWAP 4+ @
REC/BLK 0

: FILE-READ
SET-10

DO

2DUP SET-DMA

DUP REC-READ

1 SWAP RECORD# +!
B/REC +

LOOP

2DROP

. FILE-WRITE

SET-IO

DO

2DUP SET-DMA

. DUP REC-WRITE

. 1 SWAP RECORD# +!
. B/REC +

Vectored to FILE-READ.
Vectored to FILE-WRITE.

(buffer-pointer-entry -- buffer rec/blk

0)

Set up common parameters for file reads or writes.

Get the block number, the firstcellina b

The record number.

Use it as the random record number.
Gettheaddressofthediskbufferint
Thesetwoparametersaretheindexand|

and FILE-WRITE.

(buffer-pointer-entry --)

Read 1024 bytes from current file to the disk buffe
Set random record number and leave buffer a

stack.
Repeat 8 times.
Address for one record.
Read one record.
Increment the random record num
Address of next buffer area.

Discard the addr on stack.

(buffer-pointer-entry --)
Write a block to file.

Get buffer address and loop parameters.

Repeat 8 times.
Record address.
Write one record.
Next random record.
Address of next buffer area.

66

uffer pointer entry.
Put it in the FCB.

hethirdcellorthebufferpointerentry.
imitforread/writedo-loopsinFILE-READ

r specified on stack.
ddress and loop parameters on the

ber for the next read

LOOP

2DROP ;

:FILE-IO (--) Vector block 1/0 words to file /O words to use CP/M files.
[1 FILE-READ Get the address of FILE-READ.

IS READ-BLOCK Vector READ-BLOCK to it.

[1 FILE-WRITE Get address of FILE-WRITE.

IS WRITE-BLOCK Vector WRITE-BLOCK.

7.5. Disk Buffer Management

The above set of commands allow us to accessdifelisk. As mentioned earlier, F83 maintains
4 disk buffers in its memory. How are these bufiegsed? Who decides which buffer is given to
which block? When does the block on disk get ugdiat These are problems we have to face in
using a virtual memory system projected into adiystem. The following commands are
designed to deal with these problems. We mightleaim the 'Virtual Memory Management' in
F83 system.

Let's review what we know about the virtual memior{¥83. There are 4 disk buffers, each 1024
byte long. There is a buffer pointer array witartries, each entry being 8 bytes long. Each
entry has four cells containing the block numbeeg, pointer to a file, the buffer address, and the
update flag. This array has all the managemeatnmdtion on the disk buffers, while the buffers
contain the actual data from/to disk file.

The buffer pointer array is a prioritized structurewhich the first entry points to the most retten
used buffer and the last entry points to the Ie=stntly used buffer. When a file block is
requested, this array is searched. If the diskkois in one of the buffers, its pointer entry is
moved to the head of the array. If the disk blsckot in the buffers, then the buffer pointed yo b
the last pointer entry is assigned to the new biskk. However, if the contents of this buffers
was modified and the pointer entry was marked a&tgul, this buffer will be written back to the
disk file before the new disk block is read intsthuffer. Thus the disk file is maintained to
reflect the current state of any update and maatibos, while disk read/write is kept to a

minimum. The disk I/O activities are totally trgasent to you, as long as you use the commands
BLOCK or BUFFER to access his file.

67

Disk

FAN Memory

Buffer 3

Buffer 2

Sector n

Buffer 1

sector 1

Buffer 0

Buffer
Pointer
Array

UPDATE
blJF ADDE
FCB ADDR

BLOCE #

UPDATE
bUF ADDER
FCE ADDR

BLOCE #

Buffer Pointer
ArTay

Hector 1

sector k

. LATEST?

Figure7.2

(nfcb--fcb n|addrf)
Checkifblocknisthefirstentryinthe bufferp
the bufferaddress and afalse flag, and exitfrom

Disk buffer management

68

UPDATE
blF ADDE
FCB ADDR

BLOCE #

UPDATE
WlF ADDE
FCB ADDR

BLOCE #

Least
used
Buffer
Pointer

Most
Fecently
Arccessed
Buffer
Pointer

Transient
Buffer
Pointer

ointerarray. Ifitis, return
the callingword ABSENT?. If

DISK-ERROR OFF
SWAP OFFSET @ +
2DUP

1 BUFFER#

2@

D=IF
2DROP

1 BUFFER#
4+@
FALSE

R> DROP

THEN

not, return the block number n with the file contro

First reset the error flag.

Add the offset block number to obt
Leave a copy for return.
The first entry in the pointer array.

Get the FCB address and the block number of the

entry.
If block n is pointed to by the first entry,
Drop n and fcb. They are not needed.
Get the address of the entry again.
Get the address of the disk buffer.
Push a false flag on top.

Discardthetopaddressonthereturnstackandter

Thediskbufferwasfoundandthere'snopointtos
Block n is not the first entry.
Return with the block number intact.

| block address.

ain the true block number in the file.

buffer pointed to by the first

minatethecallingwordABSENT?.
earchthroughthepointerarray.

The most recently referred block is also the blodst likely to be referred to the next time.
LATEST? thus will cut down much buffer searchingedwad and improve significantly the

performance of the disk buffer management system.

. ABSENT?

LATEST?

FALSE

#BUFFERS 1+ 2 DO
DROP 2DUP

| BUFFER# 2@
D=1F

2DROP | LEAVE
ELSE FALSE THEN
LOOP

?DUP IF

BUFFER# DUP
>BUFFERS
. 8 CMOVE

>R

>BUFFERS

DUP 8 +

OVER R> SWAP

CMOVE>

1 BUFFER#
4+@

FALSE

ELSE
>BUFFERS 2!
TRUE

THEN

: >UPDATE (-- addr)
1 BUFFER# 6 + ;

: UPDATE ()
>UPDATE

ON

: DISCARD (--)

1 >UPDATE'!

The update cell in the buffer pointer entry is viemportant in the virtual memory management

(nfcb -- addr flag)

Search through the buffer pointer array for block n
is found, bring the buffer entry to the head of the

addresswith afalse flag. Ifblock nis notfound
address with a true flag.
Is block n same as the first entry in the
Otherwise continue.
Put a false flag on the data stack as the in
Scan through the buffer pointer a
Get the block number n and fcb address
Get the n and fcb in the pointer arr
Is the block number and fcb match?
Yes. Block n is in a buffer. Leav
No match. Put a false flag back.

If a buffer is found to contain the requir
Address of the pointer entry found.
Starting address of the pointer arrays o
Copy this entry to the Oth entry.
Save the address of entry found.
Address of Oth entry.
Address of 1st entry.
Current entry address.
Length of entries to be shifted downward by 8 b
Thisshiftbringstheentrywithblocknt
used buffer.
Address of the 1st entry with block n j
Get its block buffer address.
Put the ‘found' flag on data stack.
No match. The requested block is not in any
Store the block number and fcb in the
Return with a 'not found' flag.

Get the address of the update

Mark the most recently used buffer
Address of the update field in the 1st ent
Set it true to indicate that the buffer is modi

Markthemostrecentlyusedbuffer
back to disk.
Store a one in the update field in the

69

inthe currentfile. Ifit
array and return the buffer
inthe array, return adummy
buffer pointer array? Exit if so.

itial flag before looping.

duplicated

ay.

e the loop immediately.

ed block, do the following:

r the Oth entry

ytes.
othelstentry,makingitthecurrently

ust found and moved to he 1st entry.

of the disk buffers.
Oth pointer entry

field in the 1st buffer pointer entry.

as modified.

ry.
fied.

asunmodified,preventingitfrombeingwritten

1st entry, marking it as unmodified.

system. When this cell is set to true (-1), naghmll happen for the moment.

However, when

this buffer space is assigned to a new disk buaifiiek before the data in the new block is brought in
from the disk, the contents of this buffer will weitten back to disk to where it came from. This
way, any change we made in the disk buffer willrgually be written back to disk. On the other
hand, if the update cell is set to O or 1, presuyntiiat the contents of the disk buffer is the sase
those on the disk, there is no need of writingdat in the disk buffer back to the disk. Therefor
new disk block can be brought into this buffer inthagely without flushing the old block back to
the disk. The disk accessing can thus be redubdd the integrity of data on disk is assured.

- MISSING (--)

>END 2- @

O<IF

.>END 8 -
WRITE-BLOCK
>END 2- OFF
THEN

>END 4 - @
>BUFFERS 4 +!
1 >BUFFERS 6 +!
>BUFFERS
DUP 8 +
#BUFFERS 8*
CMOVE>

. (BUFFER) (n fcb --
addr)

PAUSE

ABSENT?

IF

MISSING

1 BUFFER#

4+@

THEN ;

:BUFFER (n--addr)
FILE @
(BUFFER)

: (BLOCK) (nfcb --
addr)

(BUFFER)
>UPDATE @

0>

IF

1 BUFFER# DUP
READ-BLOCK

6 + OFF

THEN ;

VARIABLE FILE
VARIABLE IN-FILE

:BLOCK (n--addr)

FILE @
(BLOCK)

Discard the least recently used di

Read ablock fromthe current

modified, it is written back to disk. The first th
are then shifted down by one entry. The first entr
new block to be brought in.
The address of the update cell in the la
least used one.
If it contains a true flag, write the buffer
The block number of the last entry.
Write this buffer back to disk.
Reset the update cell.

The buffer address of the last entry.
Make it the buffer address of the 0
Mark the Oth entry unmodified.
Source address of the down shift of point
Target address of the down shift.
Total bytes to be shifted.
Move from the last byte to first.
Last pointer entry is discarded. Firstentry is i
data.

Assignadiskbuffertoblocknandreturnthebuff
n is not read in from the disk.
Allow other tasks a chance of execution.
Is block n already in one of the disk buff
No. A buffer has to be allocated to block n.
Shift the pointer entries.
Get the first entry.
Fetch the buffer address therein.

Do (BUFFER) on the current f ile.

Fcb of the current file.
Assign a buffer to the disk block. Write
it was updated.

Return the address of a buffer which contains data
not already in one of the buffers, it is read in fr
Assign a buffer to the requested block.
Get the update field.
Isit1?
Yes. The block is not in the buffer.
Read it from the disk.

Reset the update flag to false.

Pointing to the file control block of
Pointing to the file control block

address.
Fcb of the current file.
Read it.

70

sk buffer. If this buffer was marked as

ree buffer pointer entries
y is made available to the

st buffer pointer entry, which is the

data back to disk

th entry.

er entries.

nitialized for a new block of

eraddressonthestack. Block

ers?

the old block in the buffer to disk if

from block n. Ifblock nis
om the disk.

the current file.

of the second opened file or the in-file.

fileifitis notinthe buffer. Return the buffer

F83 allows you to open and use two files conculyentThe first file is opened with the command
OPEN and is referred to as the current file. Téwoad file is open by the command FROM and
is called the in-file. The current file is alwaysed as the output file and the in-file is alwagsdi
as the input file. This way you can copy blocl@rone file to another. When OPEN is
executed, the invoked file is set to be both theeru file and also the in-file so that you candrea
and write to the same file. The file control blaaddress of the current file is stored in FILE, and
that of the in-file is in IN-FILE.

:IN-BLOCK(n--addr) Read a block from the in-f ile which is the second file opened to the system.
IN-FILE @ Get the fcb of the in-file.

(BLOCK) Read it.

BLOCK is the most important command to communieete the disk. It is the virtual memory
manager. If we need any block of data from dis&t give BLOCK the block number and it will
make sure that you have the data in one of theluiffiers. From the address returned by BLOCK,
you can access the disk block data using the requ#anory accessing commands. If you
remember to set the update cell when you changeattaein the disk buffer, BLOCK will see to it
that the modified data will be written back to diskThis is done explicitly using the UPDATE
command. You can command BLOCK to ignore any chajoy made in a disk buffer by the
command DISCARD.

In cases that you want to write raw data on teealfrdisk or you do not want to read in the disk
block, BUFFER is the command to use because it doedo the disk read. You can use BLOCK
for the same purpose, but then you will do a usaliesk read operation. When you are writing a
large file on to the disk, BUFFER can save yougadme time because only write operations are
performed.

7.6. Saving Disk Buffersto Disk Files

BLOCK and BUFFER will write to disk only when diskiffers are full and new disk blocks are
requested. If the computer is turned off, the énsffwill be lost because their contents do not have
a chance of being written back. The following coamais force the system to write all the

updated buffers back to disk. They are highly meended, especially when you are doing
editing work.

: SAVE-BUFFERS (--) Write backallthe updatedbu ffersto diskandthen markthemallas unmodified.

1 BUFFER# Address of the 1st pointer entry.

#BUFFERS 0 DO Scan all the pointer entries.

DUP @ Get the block number.

1+IF Blocknumbercellswereinitializedto-1a sempty buffer. Make sure the buffer

is not empty.

DUP 6 + Address of the update cell.

@ IF Is the buffer updated?

DUP WRITE-BLOCK Yes. Write it back to disk.

71

DUP 6 + OFF Reset the update cell.

THEN

8+ Address of the next entry.

THEN

LOOP

DROP Discard the entry address.

:EMPTY-BUFFERS (--) Firstwipeoutthedataint hebuffers. Initialize the buffer pointersto poin t
to the right addresses in memory and reset all the update cells.

FIRST LIMIT Boundary of disk buffers.

OVER - ERASE Erase the entire disk buffer area.

>BUFFERS Buffer pointer array.

#BUFFERS 1+ 8 * Bytes in the pointer array.

ERASE Clear the pointer array.

FIRST 1st buffer address.

1 BUFFER# Address of the 1st pointer entry.

#BUFFERS 0 DO Go through all pointer entries.

DUP ON Initialize the block number cell.

4+ 2DUP ! Initialize the buffer address cell.

SWAP B/BUF + Address of the next buffer.

SWAP 4 + Address of the next pointer entry.

LOOP

2DROP ; Clear the stack.

:FLUSH (--) Save and empty all the buffers.

SAVE-BUFFERS

0 BLOCK DROP Cheatthe CP/Msystemtodefeatitse xtrabufferinginBIOS. Byaccessingadummy
block,youcanbesurethattheoldoneisflushed outofthepipelineandwritten
to disk.

EMPTY-BUFFERS

Whenever you change disk, be sure to FLUSH ouhalbuffers to the old disk. During program
developments, if you have any concern about logdatg or crashing the system, FLUSH the
buffers first. If you are absolutely sure that tta¢a in the buffers are corrupted, use
EMPTY-BUFFERS to clear the buffers. If you wanthoow away only one buffer, use
DISCARD immediately after you access this buffeBiyOCK, making it the most recently used
buffe

72

Chapter 8. Dictionary and Vocabulary

The source code discussed in this chapter is ifilElKERNEL86.BLK, Screens 67-68, and 76.

If you had a figForth system, you might have nalitieat it toke a while to compile a screen of text.
If you were to load a sizable system or applicapargram, it might seem to be a long time before
the computer came back and put an 'ok’ on therscreEhe reason is that the dictionary in figForth
is basically a single, linearly linked list of corands. It takes some time for the text interpriter
travel through this list to find a command. Thersteases are the numbers. If the text
interpreter cannot find the command in the comtexibulary, it will search again in the current
vocabulary, which in most cases is the same asdhixt vocabulary with the entire root FORTH
vocabulary tagged at the end.

F83 improves this situation by breaking the dictigninto four separately linked lists. To locate
a command, only a quarter of the dictionary needsetsearched. This strategy visibly enhances
the performance of the text interpreter. In tleist®n, | hope that | can explain how this
dictionary structure is implemented.

8.1. Threading of theDictionary

First, there are several important system variabt@sh perform the house keeping chores in
managing the vocabulary and the searching of diatiy

VARIABLE DP Pointer to the top of the dictionary. R eturned by HERE.

VARIABLE CURRENT Pointer to the current vocabulary to which new definitions are linked.

8 CONSTANT #VOC The numberofvocabulariestobe se arched, asspecifiedbythearrayin CONTEXT.

VARIABLE CONTEXT The context vocabulary pointer.

#VOCS 2* ALLOT Space to hold 8 transient vocabulary pointers. The array specifies the search
order for the text interpreter.

VARIABLE VOC-LINK Pointer to the most recently defi ned vocabulary. Vocabularies are thus linked

in the order of their creation.

The 8 numbers stored in the transient array arpah@meter field addresses of up to eight different
vocabularies. The text interpreter searches umttd gocabularies and stops at the first encounter
of the name it looks for.

Next, let us see how the vocabularies are defineldhaw to select the context and current
vocabularies.

: VOCABULARY (--) Define a new vocabulary.

CREATE Take the following string as the name of th e new vocabulary.
#THREADS 0 DO Compile four 0's in the parameter fi eld.

0, They are the four threads

LOOP in the dictionary for the new vocabulary.

73

HERE
VOC-LINK @ ,
VOC-LINK'!

DOES>

CONTEXT !

: DEFINITIONS (--)
CONTEXT @
CURRENT !

The next cell is for the vocabulary link, VOC

Old vocabulary link is placed in this
Thenewvocabularyisthelastinthev
be stored in VOC-LINK.

End of the compilation of a new vocabulary e

vocabulary interpreter:

Store the parameter field address of this vocabular
CONTEXT array so that this vocabulary will be searc

interpreter.

Link subsequent definitions to
Get the address of the context vocabular
Store itin CURRENT. New definitions wi

to by CURRENT.

-LINK.
cell.
ocabularylinklist. Itslinkaddress must

ntry in dictionary. Next is the

y in the first cell of the
hed first by the text

the context vocabulary.

y.
IIbe linked to the vocabulary pointed

The interesting things are how new commands akedino the current vocabulary and to the
threads in the dictionary. We may think that tbeabularies are the logical groupings of
commands in the dictionary and the threads arehlgsical groupings of commands in the
dictionary. New commands are created by CREATE¢hvimvokes "CREATE to build the name
fields and link fields:

: "CREATE (--)

COUNT

HERE EVEN 4 +
PLACE

ALIGN

,VIEW

HERE O,

HERE LAST !

HERE

WARNING @

IF FIND

IF HERE COUNT TYPE
THEN

DROP HERE

THEN

CURRENT @ HASH

DUP @
HERE 2-
ROT!
SWAP !

HERE

DUP C@

WIDTH @ MIN 1+
ALLOT ALIGN
128 SWAP CSET

128 HERE 1- CSET
COMPILE [
DOCREATE ,

Create an header for a new definit

link field, and a name field.
Character count in the name.
Address of the name field.

Move the name string into the name field.
Aligntheheadertocellboundarybecauseth
Lay down the view field in which the top 4 b

ion. The header consists of a view field, a

eviewfieldcontainsal6bitinteger.
its contain a file number and the

lower 12 bits contain a block number in the file.

Save a cell for the link field to be fill

Store the name field address in LAST.

(Ifa nfa’) Get the name field address.
If the warning flag is set, search the d

If it is an existing name,

print the name, ."isn't unique

Clean the stack after DEFINED.

Hash the first character of the nam
of the four threads to be extended.

Get the name field address of the last defin

The link field address of the current defi
Store this link field address in the head of
Storethelinkfieldaddressofthelastde
definition and extend the linked chain.
Name field address saved on stack.
Character length of name.
Width of the name field.
Name field allocated.
Set the MSB of the length byte, the
delimiter.
Set the MSB of the last byte in n
Turn on the interpreter.
Compile the variable interpreter in the
Thus complete the header.

74

ed later.

ictionary to see if the name is unique.

" with an error message.

e with the current vocabulary to return one
ition of this thread.
nition.
thread in the current vocabulary.
finitioninthelinkfieldofthecurrent

first byte in name field as a name field
ame field as another delimiter.

code field.

VFL File Viewr Figls
Bloclk #

LF& Link Field
Link Address

ME& [L|P]5 Length Marme Field

0 ASCIT

0 ASCIT 2
Matne Characters

0 L5CII n-1

1 ASCIIn

CF& Inner Interpreter Code Field

FFa Parameter Field

Parameter List

Figure8.1 Structure of a Forth command

The header in this F83 Forth is not the same asettier more popular Forth systems. A view
field is added to help you locating a command ia ohthe CP/M files containing Forth source
screens. The link field is placed before the néieid so that the string comparisons can be
performed more quickly without traversing througke hame field. The linking of dictionary
entries involves only the link fields. Name fielai® no longer involved in the linkage.

8.2. Hashing and Searching the Dictionary

75

Two important commands in "CREATE above was ndyfekplained: HASH and DEFINED.
These are the key commands used by the text ieterpgo search specific commands in the
dictionary. HASH is a code command. DEFINED, howmevs a high level colon command
which eventually calls a code command (FIND) taliwactual searching. Let us look at HASH

and (FIND):
CODE HASH (' string-addr vocabulary-pfa -- thread-addr)
Given astring address and a pointer to a vocabular y, returnthe address of the
thread in the parameter field of the vocabulary.
CX POP Pfa of the vocabulary.
BX POP Address of the string.
BX INC Address of the first character.
0 [BX] AL MOV Get the first character which is the key of hashing.
3 #AX AND Use only the two LSB bits.
AX SHL Multiply it by 2 to get the cell offset to the proper thread.
CX AX ADD The actual address of the thread.
1PUSH Push the thread on stack and return.
END-CODE
CODE (FIND) (‘here Ifa -- cfa true, if found; here false, if no t found.)
Giventheaddressofastringandthelinkfieldad dressofawordindictionary,
search the dictionary and return an address and a f lag on the stack. Flag=1 for
animmediateword;flag=-1foraregularword;and flag=0ifthewordisnotfound.
If not found, the string address remains on the sta ck.
DX POP The link field address.
DX DX OR Test it.
0=1F
AX AX SUB Lfais 0.
1PUSH Push a false flag and return.
THEN Lfa not 0. Start comparing strings.
BEGIN
DX BX MOV
BX INC BX INC BX now points to the name field of the dictionary entry.
DI POP Here.
DI PUSH Get the string address to DI.
0 [BX] AL MOV Get the length byte of the dictiona ry entry.
0 [DI] AL XOR Compare it with the string length.
63 # AL AND Mask of two most significant bits, de limiter and precedence bits.
0=1IF Length bytes not equal, go for the next ent ry in the thread.
BEGIN
BX INC Length bytes equal, now scan the strings
DI INC Next character.
0 [BX] AL MOV From the dictionary entry.
0 [DX] AL XOR Compare with the one at HERE.
0<> UNTIL If equal, continue the comparison.
127 # AL AND Not equal. See if it is the last ¢ haracter in the name field.
O=1F Notthe lastcharacter. Stringsare nott he same. Goforthe nextentryinthe
thread.
DI POP Rid of the HERE.
BX INC Get the code field address.
BX PUSH Push it on the data stack.
DX BX MOV Get the link field address back to BX again, checking precedence bit.
BX INC BX INC Increment to the name field addre ss.
0 [BX] AL MOV Get the length byte again.
64 # AL MOV Examine the precedence bit.
0<>IF Not an immediate word.
1#AX MOV Set indicator to 1 for immediate w ord.
ELSE
-1 # AX MOV Not immediate, set AX to -1.
THEN
1PUSH Push the indicator on stack and return.
THEN
THEN
DX BX MOV String comparison failed. Prepare to t est the next entry in the thread.
0 [BX] DX MOV Getthe link field address of the n ext entry in the thread from the link field
of this entry.
DX DX OR Is the next link field address zero, end of the thread?
0= UNTIL Not the end of thread. Loop back for the next entry.
AX AX SUB End of the thread,
1PUSH push a false flag on stack and return.
END-CODE

76

Free Memory

FORTH
wocabnbry

Dovoc

Thread 1

Thread 2

Thread 3

Thread 4

WOCLIME

End of thread 2

Q End of thread 3

Hiite :

Onthe ok field
hdicates the exd of
i thread.

I End of thread 1

o Erud of thresd 4

Figure8.2 Four-way threadingin avocabulary.

(FIND) searches through one thread, with a givek field address of a dictionary entry. To pick
up one thread among four for searching and to dsdarching, a high level command FIND has to

be used.

77

4 CONSTANT #THREAD Number of threads implemented in this Forth system.
: FIND (string-addr -- cfa true, if found; strin g-addr false, if not found)
DUP C@ IF If the string is not a null string, do t he dictionary searching. Otherwise, do
the end of line processing.
PRIOR OFF PRIOR is a user variable storing the la st vocabulary searched. Clear PRIOR to
begin searching.
FALSE This is a dummy flag for the next do-loop.
#VOCS 0 DO #VOCS=8, the number of vocabularies to be searched.
DROP Drop the flag on stack.

CONTEXT I12*+ @

Get the vocabulary address in t

he CONTEXT array.

DUP IF If the vocabulary address is zero, skip i tbecause no vocabulary was specified
for this CONTEXT entry.
DUP PRIOR @ Get the contents of PRIOR, the last vocabulary searched.
OVER PRIOR! Update PRIOR with the vocabulary to be searched now.
=1IF If the PRIOR vocabulary is the same as the present vocabulary, here is no need
of repeating the searching.
DROP FALSE Drop the vocabulary and replacing with a false flag. Loop back.
ELSE Now search the new vocabulary.
OVER SWAP Save a copy of the string address.
HASH Hash the string and return the address of the head of a thread in the present
vocabulary.
@ Pick up the thread, the link field address o f the last entry in this thread in
the dictionary.
(FIND) Search the dictionary.
DUP ?LEAVE Iftosisatrueflag,awordisfoundinthedicti onary.Leavetheloopimmediately.
If tos is false, repeat the loop and search the nex t vocabulary.
THEN
THEN
LOOP
ELSE Null string processing.
DROP Discard the string address.
END? ON Turn on the end-of-line flag.
[1NOOP 1 PushtheNOOPaddressonthestackwit hatrueflagsothattheend-of-lineprocess
will happen immediately.
THEN ;

FIND thus scans the CONTEXT array, where up to &balaries can be specified and are to be
searched in the order of the array. When a voeapis to be searched, HASH selects one of the
4 threads, which are the link field addresses efldist entries in each of the threads stored in the
parameter field of the vocabulary, and hands tbhegrlink field address to (FIND) to scan the
thread for a name matching the given string. Wdogncabulary was searched, its address was
preserved in PRIOR to avoid searching the samebubaey repeatedly. This allows the same
vocabulary to be specified in the CONTEXT array entbran once without being searched more
than once. FIND can also skip nulls in the CONTEXfay. Nulls and multiple vocabulary
entries in CONTEXT are conveniences in manipulatiogabulary searching order, which will be
discussed in a moment.

: DEFINED (-- addr flag)
Parseoutthenextwordinthenputstreamandsear chthedictionary.lfamatching
entry is found, returnits cfaandan 1 or-1. If n ot found, return HERE and a
false flag.

BL WORD Parse the next word, delimited by blank ch aracters, and copy the word to HERE,
the word buffer.

CAPS @ IF Ifthecontentsof CAPSistrue,heword willbeconvertedtouppercasecharacters.

DUP COUNT UPPER Upper the cases.

THEN

FIND Now do the searching.

If an immediate command is found by FIND, the retilag is 1. If the found command is a regular,
78

non-immediate, command, -1 is returned. It is ingod for the colon compiler to know whether
a command is immediate or not. The colon compitgmally compiles the code field addresses
of regular commands, but executes the immediateramd to take care of special compiling
conditions or to build structures in a colon comahan

In F83, because of the more complicated CONTEXUcstire, it requires a few more commands to
handle the vocabularies and to use then effectivel}hen a vocabulary is invoked, its parameter
field address is stored into the first cell in ®®NTEXT array. Next time a search is initiated,

this vocabulary will be the first vocabulary to $®arched. The command ONLY is used to
initialized the CONTEXT array and places the adsli@sa very small searching control vocabulary
in the first and the last cell of the CONTEXT arraylhe commands in this control vocabulary
allow us to select appropriate working vocabulaliies FORTH, etc. The command ALSO

copies the first CONTEXT entry to the second eatng moves the second and subsequent entry up
by one cell, adding one entry to the searchingrord&his set of command can be used to specify
any searching strategy within the size of the COXTrray.

79

VOC-LINK S .

Free Wlemory

META

Shicans Yocabulary Stack

Link WETA

AZSFMBLEE. EDITCR Contezxt

LETA

Threads FORTH
AZSENBLER

Link

EDITOR. ROOT

FDITOR

Threads

Link

ROOT | EaL

Threads

Link

/ FORTH
FORTH

Threads

Figure8.3 Vocabulariesand thedictionary structure.

80

Chapter 9. Number Input and Output

The source code discussed in this chapter is inMBEE6.BLK file, Screens 58 to 61.

The Forth interpreter can only recognize two typesommands: commands or Forth commands
compiled into the dictionary, and numbers. A |apgetion of the Forth system is devoted to
processing numbers, including inputting numbermfomnsole or disk, doing arithmetic and logic
operations on them, and outputting them to consioteher devices in a required format. In the
nucleus layer, we've seen lots of arithmetic agitloperators. In this chapter, we will discuss
how numbers are converted from the external reptagen in ASCII strings to the internal
representation in the binary form, and vice versa.

9.1. Representation of Numeric Data

A very interesting aspect of Forth in its extenmegdresentation of numbers is that numbers can be
presented in many different bases. Not only deliowal, hexadecimal, and binary, but also in
any reasonable base from 2 to 70, limited by theber of ASCII characters available to represent
digits. The reason is that in Forth the primitiwuenber input and output commands are directly
accessible to you, giving you tools that you cam atswill to define and modify rules in doing
number input and output.

Internally, all numbers are represented in 16 ipiaty form and processed in 16 bit units. In the
case that more bits are required to represent latgger numbers, two 16 bit numbers are used
together as a 32 bit double precision integer. daba requiring less than 16 bits, they are
generally right justified in the 16 bit field anlaket high order unused bits are cleared to zeros.

F83 uses many different data types. Their rangestaow in the following table:

Table9.1. Data Representation

Date Type Range

True flag -1lor 32767

False flag 0

ASCII codes 0].127

Byte 0..255

Integer -32768..32767

Unsigned integer 0..65535

Address D..65535

Double integer -2,147,483,648..2,147,483,647
Unsigned double integer 0..4,2D4,967,295

Forth is not a typed language. We can talk abatd types and their external representations, but

81

once they are inside the Forth computer, they ldre@esented in the uniform 16 bit format.

Forth doesn't care what type a number was whenrput into Forth. Thus you can do arithmetic
on the flags and ASCII codes like any other numbéfou have to know what you are doing.

You must use the right operator to process theytataentered. This is the price you have to pay
for the convenience in using the data stack.

F83 maintains three user variables specificallytherpurposes of number input/output:

VARIABLE BASE The current base for numberinputand number output conversions. a 10 stored in BASE
causes input number strings to be treated as decima Inumbers. A16in BASE makesthe
conversions done in hexadecimal.

The decimal point location. It stores
number string, from the right end of the string. In
after the decimal point.

The number of digits stored in the num

VARIABLE DPL the location of the decimal point in an ASCII

other words, the number of digits

VARIABLE HLD ber output buffer for output.

9.2. Input Number Conversion

The text interpreter parses a word out of the irgingtam and places the parsed word in the word
buffer, just above the last entry in the dictionaryt first searches the dictionary to see if tharav
is a pre-defined Forth command. If it fails to ofathe parsed word to a command, the parsed
word is left in the word buffer for the number cension routine to convert it to a number. The
following set of F83 commands support the numbereosion process.

LABEL FAIL A common return routine used when failed to convert the string to a number due
to a number of reasons.

AX AX SUB Push a false flag on the stack

1PUSH and return to the NEXT routine.

CODE DIGIT(charbase

Return a flag indicating whether or not the charact

er is a valid digit in the

-nf) current base. If so, return the converted value wi th a true flag. Otherwise,
return the character with a false flag.

DX POP Pop base into DX.

AX POP Pop character into AX.

AX PUSH Push character back to stack just in case of a conversion failure.

ASCII 0 # AL SUB Subtract ASCII 0 (48) from the co de of the given character.

FAIL JB If char is below 0, it is not a valid digi t. Jump to FAIL.

9 # AL CMP Is char > 9?

> |F No, a regular digit. Skip to DIGI1.

17 # AL CMP Is char between 9 and A?

FAIL JB Yes. Invalid digit. Jump to FAIL.

7 # AL SUB Eliminate the gap between 9 and A. A must be the next digit following 9.

THEN

DL AL CMP AL has the converted value. Is it in th e range of BASE?

FAIL JAE If the value is equal or above the base v alue, it is not a valid digit. Jump
to FAIL.

AL DL MOV Copy value to DL for DPUSH.

AX POP Discard char from the stack.

TRUE # AX MOV Put true flag in AX.

2PUSH Push value and flag on stack and return.

END-CODE

82

Input Strearn

Terminal Input Buffer
or Disk Buffer

=M
% Drictiotary 61121343 PAD Buffer %
A
Word Buffer
CONVERT
Input Mumber Conversion Crouble Integer
Drata Stack

Double Integer

Drata Stack

S

< #z 45 hold # # &=

PAD

% Drictiotary Word Buffer ﬁ 2|13 |45 %

Output Mumber Cotrersion Terminal Input Buffer
ot Diisk Buffer

Figure9.1 Input and output number conversions

The sequence of digits is from 0 to 9, and frompAfithe base value is greater than 10.
Theoretically the sequence can go up to tilde (€A%26). Then anything you type would be

83

converted to a number.

: DOUBLE? (--f)
DPL @

Return a true flag if a period i

Get the contents of DPL. If no period is in

s encountered in the number string.

the number string, DPL is -1 as

initialized.

1+ 0 if no period.

0<> Logic NOT.

:CONVERT(udladdri-- Starting with the unsigned double integer ud1 on st ack and the number string at

ud2 addr2) addrl, convert the string to a number and add to ud 1 according to the current
base. Leave the resulting double integer and the a ddress of the unconvertable
digit addr2 on stack.

BEGIN This is an indefinite loop.

1+ Get the next character in the string.

DUP >R C@ Get one digit and save a copy of its ad dress on return stack.

BASE @ DIGIT Convert one digit.

WHILE Exit the loop if the digit is invalid.

SWAP BASE @ UM*
DROP

Left shift the upper half of the
Keep only the lower half of the product.

double integer by one digit.

ROT BASE @ UM* Leftshiftthelowerhalfofthed oubleintegerbyUM*. Resultisa doubleinteger
sitting on top of the value of converted digit and the left-shifted upper half
of udl.

D+ This is tricky, but the result s ud1*base+valu e.

DOUBLE? Have we seen a period?

IF 1 DPL +! THEN Yes, we get one more digit after the period. Increment DPL.

R> Recall the character address.

REPEAT

DROP Discard the invalid digit left by DIGIT.

R> Address of the invalid digit.

:(NUMBER?) (addr--d

Given a string at addr with at least one digit, con

vertitto adouble integer.

flag)

00 The initial value of the double integer servin g as accumulator.

ROT Get addr to top of stack.

DUP 1+ C@ Get the first digit.

ASCII - = Compare it to ASCII - sign.

DUP >R Save the negative flag on return stack.

- Otherwise, start conversion at the current addre ss.

-1DPL! Initialize DPL.

BEGIN

CONVERT Convert the number string.

DUP C@ Get the invalid digit.

ASCIl, ASCII/

BETWEEN them is a valid punctuation mark, equival ent to a period.

WHILE 0 DPL ! A punctuation mark is encountered. R eset DPL.

REPEAT Ignorethepunctuationmarkandcontinueco nvertingtherestofthenumberstring.
-ROT Rotate the invalid character address below th e double integer.

R> Get the negative flag.

IF DNEGATE THEN If the number is preceded by a - s ign, negate the double integer.

ROTC@ BL = Comparethelastinvaliddigitwithbl ankandleavetheresultonstackasaflag.

F83 accepts numbers with an optional preceedirgn-fer negative numbers.

Within the number

string, four punctuation marks, ', '-', ", ahdre allowed. When any of these punctuatiorksar
appear in the string, DPL is reset to zero so@@NVERT can keep track of the number of digits
following the punctuation mark, and the convertangcess continues on until an invalid digit other
than these punctuation marks is encountered.

‘NUMBER?(addr--df) Convert the number string
be preceded by a - sign, but must be terminated by
last punctuation mark is saved in DPL. A true flag
successful.

at addr to a double integer. The number string ma y
ablank. The location ofthe
is left on the stack if

FALSE Put up a default flag on stack.
OVER COUNT BOUNDS Set up loop limits to scan the s upposed number string.
?DO Scan the string for valid digit.

| C@ BASE @ DIGIT Is this a valid digit?

84

NIP | don't care its value now.

IF DROP TRUE LEAVE Leave the loop with a true f lag if a valid digit is found in the string.

THEN

LOOP The purpose of this test is to filter out a m istyped word in which case it is
just a waste of time to do the number conversion.

IF (NUMBER?) Do the conversion if the string is po tentially a number.

ELSE No valid digit in the string.

DROP Discard its address.

00 Put a null double integer on stack.

FALSE Top it with a false flag.

THEN ;

:(NUMBER)(addr--d) Convertanumberstringto adoubleinteger. Thestringmayhaveoptionalle ading
- sign and embedded punctuation. It must be termina ted by a blank.

NUMBER? Conversion.

NOT If not a number or not terminated by a blank,

?MISSING print an error message and abort.

DEFER NUMBER Vectored to (NUMBER).

With this set of input conversion tool, we can typ@umbers like:
415-424-3001 12/25/1983 123.45 -0.4567 987,654 ,321 534,234.00

If we are in hexadecimal base the following numiaeesalso valid:

Al F9 BAD-FAD FEED/BEAD -1B2A5D.0

However, after conversion, they are all internafigresented by double integers. The embedded
punctuation marks have no effect on the conversimept the contents of DPL.

9.3. Output Number Conversion

The primitive Forth output conversion routine cortse double integer to an ASCII string suitable
for outputting to a console or to a printer. Yanexplicitly format the string and insert special
characters into the string to design formats yairde Let's look at these small tool commands
first and then see how they are strung togethbutid number output commands often used in
routine Forth programming.

: HOLD (char --) Insertthecharactercharintot heoutputstring. HLDcontainsacharactempointer
to the output text buffer where he number output st ring is being constructed.
The number character string is built backwards from the least significantdigit
to the most significant digit. To insert a charact er into this string HLD has
to be decremented.

-1 HLD +!

HLD @ Get the character pointer.

Cl! Insert char to where HLD points.

C<#(-) Initialize the number conversion proces S.

PAD PAD returns the location of the text buffer us ed for output.

HLD! Point HLD to PAD so that the number string ¢ an be built in the PAD buffer.

(#>(d--addrlen) Terminate the output number conversion and leave the address and length of the
number string on stack suitable for TYPE to print o ut.

2DROP The double integer on stack is no longer nee ded.

HLD @ The address of the number string.

PAD The end of the string.

OVER - The length of string.

:SIGN (n--) If n is negative insert a minus sig n into the number string.

O<IF If n is negative,

85

ASCII - HOLD
THEN ;
“#(d1--d2)

BASE @ MU/MOD

ROT

9 OVER <

IF 7 + THEN
ASCII 0 + HOLD

“#S(d--00)
BEGIN

#
2DUP OR
0= UNTIL

With these tools, we can format numbers for outp@iny format we want.

Insert the minus sign.

Convert one digit and add the digi
dividedlbybase. Thequotientd2isleftonstac
to ASCII code and add to the output buffer.
Divide d1 by base. The remainder an
stack.
Get the remainder to top.
If the remainder is greater than 9,
add 7 to make A.
Convert to ASCII code and HOLD it i

tto the number string. The conversion is to
kandtheremainderisconverted

d the double integer quotient are left on

n the output buffer.

Convert a double integer until fi nished.
Convert one digit.
Is the quotient 0?

If it is zero, exit the loop. Otherwise, continue converting.

However, it is always

nice to look at how the F83 designers built som#hefstandard number output commands.

:(U.)(u--addrlen) Convert an unsigned single

0

<#
#S
#>

U . (u--)

u.)
TYPE SPACE

:U.R (ulen--)
>R

()

R>

OVER - SPACES

TYPE

:(.) (n--addrlen) Convert a signed single in

DUP ABS
0

<##S
ROT SIGN
#>

:(.)(n--)
TYPE SPACE

:.R(nlen--)
>R ()

R> OVER - SPACES

TYPE

9.4.

:(UD.)

<##S #>

Output an unsigned integer in a

Output a signed integer right jus

integer to a number string.
Make the unsigned integer a double integer.

Initialize the conversion.

Convert all digits.

Prepare for output.

Output an unsigned single integer wit
Convert.
Print.

h one trailing space.

field of len columns.
Save the column width.
Convert.
Recall column width.
Outputappropriate numberofspaces
justified.
Output the string.

sothatthenumberstringwillcome outright

teger to a number string.
Get the absolute value of n.

Make it a double integer.

Convert all digits.

Add a minus sign if n is negative.

Finish the output string.

Output a signed integer with a trailin
Convert.

Type.

g space.

tified in len columns.
Convert n first.
Pad with leading blanks.
Now print the number right justified.

Double Integer Output

(ud -- addr len)
Convert an unsigned double integer to a number stri ng.

86

:UD. (ud --) Output an unsigned double integer w ith a trailing space.

(UD))

TYPE SPACE ;

:UD.R (udlen --) Output an unsigned double inte ger right justified in len columns.

>R (UD.)

R> OVER -

SPACES TYPE ;

:(D.)(d--addrlen) Convert a signed double in teger to a number string.

TUCK Save a copy ofthe upper half of the double i ntegerunder he double integer. We
will need its sign.

DABS Convert the double integer to its absolute va lue.

<# #S Convert all digits.

ROT Get the saved upper half of the original doubl e integer

SIGN Put up its sign.

#> All done.

:D.(d--) Output a signed double integer with a trailing space.

(D)

TYPE SPACE ;

:D.R(dlen--) Output a signed double number ri ght justified in len columns.

>R (D.) R> OVER -

SPACES TYPE ;

87

Chapter 10. Word Parsing

The source code discussed in this chapter is ifillhlEERNEL86.BLK, Screens 62 to 64.
10.1. Text Processing

In communicating with you through a console, theapater must be able to accept a line of
commands and find out what is your intention. €bmputer then can carry out the commands
and do some useful work. In most conventional ajeg systems, the task which accepts
commands from console and interprets the contdriteeacommands is called a command line
interpreter (CLI). The user has to observe a Betles in entering commands, because the
computer uses this set of rules to determine wasité be done, given these commands. These
rules are the syntax rules, or more generallygthenmar of the command line interpreter. When
the command line interpreter becomes more powarfdlhas more functions built into it, its
syntax becomes more complicated and the syntag mldtiply very quickly.

Forth uses a very simple and straightforward syniiéxin interpreting command lines. The
command line consists of a sequence of words, aguhby blanks or spaces. The words
represent either commands pre-compiled in the Fbetionary or numbers. Thus the Forth
command line interpreter or text interpreter caekieemely simple, comparing to CLI's in other
languages or operating systems. The interpres¢hps to parse out words using blanks as
delimiters, searches the dictionary to locate ttexetable code of the commands, and executes the
code. If aword is not a command in the dictionéng interpreter will try to convert it into a
number and push the number on the stack. If thre vgmeither a command nor a number, it is
beyond the capability of the computer to do anyglabout it, and the interpreter will send an error
message to you protesting your mistake in a vetg manner.

The tool that provides the interpreter with thdigbto parse out words from a command line, or an
input stream of characters, is the Forth commancRVO Before we get into the details of
WORD, a few other supporting commands have to éefield.

10.2. Input Stream and Input Buffers

First, what is an input stream? Where does tlegpneter get the command lines? Forth
interpreter can accept commands from two diffesentrces: a console terminal or a disk. Two
special areas in the computer memory are deditatsibre commands coming from these sources:
a terminal input buffer or TIB for commands entetl®ugh the console, and one or more disk

88

buffers for commands coming from the disk. Thenieal input buffer is managed by a number
of variables and commands:

VARIABLE 'TIB

:TIB (-- addr)
TIB@ ;

VARIABLE #TIB
VARIABLE >IN

Return the address of the termina

Contains the starting address of the terminal input buffer.

| input buffer.

Maximum number of characters thatcan
Pointer to the character currently bei
starting address of the input buffer, whichis eith
or a disk buffer.

be held in the terminal input buffer.
ng processed. It is an offset from the
erthe terminal input buffer

The disk buffers are managed by the virtual memaapagement in Forth. The details of this
virtual memory system are discussed in a sepahagter. Here we are only concerned with the
one disk buffer which is assigned to the interpretethat the interpreter will get its commands

from this buffer.

VARIABLE BLK

The disk block number is stanaaiuser variable:

Block number of source on disk to be i

nterpreted.

The convention adopted by most Forth systems, dinetuF83, is that if BLK contains a zero, the
terminal input buffer is used for interpretatioth@rwise, the disk block specified by BLK is used.

10.3. Low Level Parsing Commands

DEFER SOURCE

: (SOURCE)

BLK @
?DUP IF
BLOCK

B/BUF
ELSE
TIB
#TIB @
THEN ;

Vectored to (SOURCE). Return the star
current input stream.

ting address of the buffer used to hold

(--addrlen)
Returnthe stringto be processed by thetextinter
address of the input buffer and len is the length o
Get the block number from BLK.
If the block number is not zero,
fetch the block of commands from disk and return wi
buffer.
Length of disk buffer is 1024 bytes.
If the block number is zero,
get the address of the terminal input buffer,
and the length of it.

preter. Addristhe beginning
f the input buffer.

th the address of the disk

Here are the hard stuff. Two code commands tlaat 8 input stream to locate special
characters in the stream.

LABEL DONE
CX PUSH

NEXT

CODE SKIP

AX POP

CX POP

DONE JCXZ

DI POP

DX DX MOV

DX ES MOV
REPZ BYTE SCAS
0<>IF

stream is exhausted.
n. CXregisterhastheremaining length

A common returning point when the input
PushthecontentsofCXonstackandretur
of the stream.

(‘addr len char -- addrl lenl)
Giventheaddressandlengthofastring,andacha
the string while we continue to find the character.
mismatch and the length of the remaining string.
Move char to AX register.
Move len to CX register.
If length of string is zero, jump to DON
Move addr to DI register.

ractertolookfor,scanthrough
Leave the address of the

E and return.

Set ES=DS for string manipulations.
Repeatedly scanthe string untilwe
CXnow has the count of charactersinther

89

findacharacterdifferentfrom thatin AX.
emaining string. If CXis not zero,

CXINC

DI DEC
THEN

DI PUSH
CX PUSH
NEXT
END-CODE

CODE SCAN

AX POP CX POP
DONE JCXZ

DI POP

DS DX MOV

CX BX MOV
REP BYTE SCAS
0=1IF

CXINC

DI DEC

THEN

DI PUSH

CX PUSH

NEXT

Dl is pointing to the first mismatched character.
Backspace.
Pointing to the last matching character.

Addrl.
Lenl.
Return.

(‘addr len char -- addrl lenl)

Given the address and length ofa string, run throug
the character. Leave the address of the match and t
string.

h the string until we find
he length of the remaining

Same as SKIP.

DX ES MOV

Set up looping parameters.

Repeat if character mismatches. Scan the string.
If the string is exhausted,
Backspace.

Restore string registers.

END-CODE

SKIP is used to skip over the leading spaces intfob a word, because words can be separated by
a number of spaces allowing source commands teebefdrmatted. SCAN, on the other hand,
will stop at the first match. Separating these turections into two commands gives F83 much
more versatility in handle strings than older vensi of Forth like figForth .

1 ISTRING

OVER MIN
ROT OVER +
-ROT -

. PLACE

2DUP C!
1+
SWAP MOVE

(addr len n -- addrl lenl)
Index into the string by n characters. Return addr+
Change n to the smaller of n and len.
Addr+n.
Len-n.

n and len-n.

(from-addr len to-addr --)
Move the characters at from-addr to to-addr. The f
length byte of len.

Store the length byte.

To-addr+1, address of the first character.
Copy the string.

inal string has a preceding

90

: HEX 16 BASE ! :

Word Buffer

% Dictionary ?ilL/ /ﬁﬁ.D Buffer

Start scanning after HEX m the Input Buffer,
Skip leading blanlk characters.

Scan string to nest blank character.

Copy the parsed string into the Word Buffer,

=M

S

R e

Figure10.1 Parsing with WORD
10.4. High Leve Parsing Commands

The real word parsing actions are embodied indHeviing two commands, which scan the input
stream and parse out words with specified delimitharacter.

: PARSE-WORD (char -- addr len)
Scantheinputstreamuntilcharisencountered. S kipoverleadingchars. Update
>IN pointer. Leave the address and length of the p arsed word.

>R Save char on return stack.

SOURCE TUCK Get the address and length of the inpu t buffer.

>IN @ /STRING Getthe currentcharacterpointerin >|Nand modifyaddrandlengthaccordingly.

R@ SKIP Skip over leading chars in the input strea m starting at >IN.

OVER SWAP R> SCAN Scan for the next occurrence of char.

>R Save length of the remaining string.

OVER - ROT Addr and length of the parsed string.

R> Retrieve the length of string.

DUP 0<> + - >IN +! Update>INtoonecharacteraft ertheparsedword. However,ifthe parsedstring

is a null string, do not move >IN.

: PARSE (char -- addr len)
Do the same as PARSE-WORD without skipping the lead ing char.
>R
SOURCE >IN @ /STRING
OVER SWAP R> SCAN SCAN instead of SKIP.
>R Len.
OVER - DUP Addr and length of parsed string.
R> 0<> - >IN +! Update >IN to end of string.

91

:'WORD (-- addr) Leave onstackthe addressofthewordbuffer, whichison topofthedictionary.
InF83'WORD isthe same asHERE. They might differ asindicatedin 83-Standard.
HERE ;

Finally, we get to the most important command WORD, which parses the next word in the input
buffer and copies the word to the word buffer for the text interpreter to do searching or number
conversion. WORD will skip over leading delimiters so that words in the input stream can be
spaced out to conform to various formatting conventions.

:WORD (char--addr) Parsetheinputstream for char and return a countdelimited string in the word
bufferatHERE. Notethatthereisalwaysablankfollowingthewordintheword

buffer.
PARSE-WORD Get the address and the length of the next word in the input stream.
'WORD PLACE Move the word into the word buffer, with a length byte as the first character.
'WORD DUP COUNT + The address following the string.

BL SWAP C! Append a blank at the end of string.

10.5. String Commands Defined Using PARSE

A couple of examples are handy here to illustrate the usefulness of these parsing commands:

() TheForthcommentcommand. Theinputstreamisskip peduntila)isencountered.
The enclosed comments are thus ignored by the text i nterpreter.
ASCIl) Use) as the delimiter.
PARSE Move >IN to the character after).
2DROP Nothing will be done with the comments. Discard its address and length.
; IMMEDIATE Declare (to be immediate so thatit will be executed inside a colon definition.
() Type the following string on the console during interpretation or compilation.
ASCIl) Use) as delimiter.
PARSE Parse out the next string upto but not including the) character.
>TYPE With addr and len on stack, type out the string.

:>TYPE(addrlen--) Same as TYPE. The string is copied to the PAD buffer before outputting for
multi-tasking environment.

TUCK PAD SWAP CMOVE Copy the string to PAD buffer.

PAD SWAP TYPE Type from the PAD buffer which is private to a task.

10.6. End of Buffer Condition

A blank character appended to the end of the parsed word in the word buffer is very important to
the F83 system. It serves many important functions. One of them is for the number conversion
routine to recognize the correct end of a number string. Another function is to help the text
interpreter to detect the end of an input stream so that the text interpreter can prepare itself to
process the next input stream or command line. For those familiar with the figForth system, there
the end of an input stream is artificially terminated by one or more ASCIlI NUL characters.

During console inputting, when a carriage return is received from the keyboard, the input routine
appends a NUL at the end of the input stream. When using source texts in disk blocks, each disk

buffer has two trailing NUL as the tail of the buffer. These artificial NULs force the interpreter
92

loop to be terminated in a non-obvious and hambmument fashion. F83 tries to treat the end of
line condition explicitly.

When WORD reaches the end of the input streametigth of the parsed word will be zero. A
string without character is then moved into thedvouffer. The count byte is zero with a blank
character appended to it. This null command, twtesor one cell long, has a hex value of 2000.
In the dictionary, there is a command of this nawiese hex value in the name field is A080.
Masking off the MSB in these two bytes (the delers of the name field), the real name has a hex
value of 2000, exactly the same as the parsecaniimand. The function of this null command

is to turn on the end-of-buffer flag. Seeing tthas flag is set, the text interpreter knows it has
reached the end of the input stream and termitlaést®op, readying itself for the next line of

input.

93

Chapter 11. Text Interpreter

The source code of the text interpreter is INKIERNEL86.BLK, Screens 65 to 69.

11.1. TheOperating System of Forth

The text interpreter is the heart of a Forth systeds a matter of fact, the text interpreter ig"th
operating system of Forth, if there is one in Fortiihe text interpreter accepts input stream from
console and extracts commands from the input stredtiooks up the commands in a dictionary
and causes the system to perform the functionglegiinto these commands. After it
successfully carries out the commands, it will cdraek to the console and ask for another line of
commands. If all the commands designed into tbeotiiary have names similar to English
commands commonly used, the Forth text interprasdtes a computer rather intelligent and easy

to use, using a computer industry cliche, usenttig

11.2.

Entering the Text Interpreter

The functions of the text interpreter is best tcafrem the very beginning in the booting up of the
Forth system to the point when a command line putiistream is accepted and processed.
Instead of explaining all the low level commandstfand build up layers of high level commands
to reach the top level of the text interpreterslaty this top-down approach: explaining the
functions of the high level commands and then tetpihe functions of the modules invoked in

the high level command.

The most logical commanstart is ABORT, which is the starting

point of the Forth system and also the point afnretvhenever an error condition is encountered.

DEFER ABORT Vectored to (ABORT). Re-initialize all the Forth registers and start the text
interpreter afresh.

1 (ABORT) (--) Unconditional abort routine.

SPO @ Get the initial data stack pointer from the user variable SPO.

SP! Stuff that pointer into the data stack pointer register of the virtual Forth
computer.

QUIT Jump to QUIT routine which is the point of re turn for normal forced termination
of execution.

:WARM (--) Perform a warm start.

TRUE Force an abort.

ABORT" Warm Start"

Abort with a message.

:COLD (--) High level cold start.

BOOT Execute a user defined bootup definition.

QUIT Jump to QUIT, a normal re-start oint.

DEFER BOOT Vectored to a user selected initializing routine. The default boot routine is
ABORT.

QUIT (--) ThemainForthloop. Getmoreinputfromthe conso leterminalandinterpretit.

94

Respond with "ok" if every thing is well.

SPO@ TIB'! Initialize the terminal input buffer to address just above the data stack.

BLK OFF Store a zero in BLK. Force the interprete r to process input from the console
terminal.

[COMPILE] [Storeazerointhevariable STATE,fo rcingthesystemintotheinterpretivemode.

BEGIN Enter the main Forth loop.

RPO @ RP! Initialize the return stack pointer.

STATUS Indicate status of the system. A defer wor d normally vectored to CR, doing a
carriage return.

QUERY Promptthe usertoenteraline of commands onthe console and copy thiscommand
line to the terminal input buffer

. RUN Process the command line.

STATE @ NOT If STATE is zero, the system is n the interpretive mode.

IF ." ok" THEN Then print the ok message.

AGAIN The Forthloopis aninfinite loop. Afteron ecommand lineis processed, itgoes
back to ask for another line. It goes on this way forever.

"RUN (--) AnenhancedINTERPRET. Itallowsfor multilinecompilation,enablingyoutoenter
a colon definition that spans over several lines.

STATE @ IF If STATE is not zero, the system must b e in the compiling dictionary.

STATE @ NOT After compiling one line of source co des, test STATE again.

IF INTERPRET THEN If the system left the compilin g mode, then interpret the rest of the line.
Otherwise, exit.

ELSE The state is zero,

INTERPRET interpret the command line.

THEN ;

11.3. INTERPRET

INTERPRET is a beautiful piece of code, a claszanaple of the simplicity and powerfulness of
Forth language in describing complicated computafiprocesses using high level commands. It
is worthy of our time to read the code and do astlio gain the fullest understanding of it. The
definition of INTERPRET reads:

. INTERPRET (--) The Forthinterpreterloop. It parses outawordfromtheinputstream. Ifthe
word is defined execute it, otherwise convert it to anumber and pushiton the
stack.

BEGIN Begin the interpret loop.

?STACK Check for stack underflow or overflow.

DEFINED Get the next word from the input stream a nd return its cfa and a flag.

IF EXECUTE If the word is defined, execute it usi ng the cfa left on stack.

ELSE NUMBER Otherwise, convert it to a number.

DOUBLE? Is it a double precision integer?

NOT IF DROP THEN No. Only a single precision nu mber. Drop the upper half of the double number,
preserving only the lower half single integer.

THEN

FALSE Put up a false flag for DONE?.

DONE? Is it the end of line?

UNTIL If we reach end of line here, exit the loop. Otherwise, loop back to interpret

the next word.

DEFINED is a very big command. It first parses@avout of the input stream and places it in
the word buffer on the top of the dictionary. Heh searches through the dictionary for a
command with the same name. If a command is foitsmdpde field address is placed on the data
stack followed by a true flag. A valid code figlddress is then turned over to EXECUTE.
EXECUTE executes this command by invoking the appate inner interpreter, which we had
discussed in the chapter on inner interpreters. FINED is discussed in the chapter on
vocabulary.

95

Now, if DEFINED failed to find a command with a rmhing name, control is passed to NUMBER,
which converts the parsed word to a double pretisionber on the data stack. If a period was
embedded in the number string, which causes DPRiffer from -1, the command DOUBLE?
returns a true flag and the double number remaitherstack. Otherwise, the higher half of the
double number is dropped from the stack and osiyngle precision number is left on the stack.

At the beginning of the loop, the data stack isc&led for overflow or underflow by ?STACK. If
the stack is ok, control falls into DEFINED to pess the next word in the input stream. If a stack
error condition is encountered, the system is fbinto ABORT to start all over again. If an error
condition is encountered during the number conearprocess, an abort is also forced. These are
the two conditions for abnormal exit from the INTERET loop.

11.4. DONE?and X

At the end of the INTERPRET loop, DONE? is executetest the end-of-buffer condition. If it
reached the end of the input buffer, the loop wdndderminated and the control falls into the outer
Forth loop in QUIT. Otherwise, the interpreterliMolop back to parse and execute the next word

in the input buffer.

A flow chart of this chain of activities might belpful in visualizing the sequence of events when
the Forth system is cranking in full steam, as showFig. 12.1.

A number of loose ends have to be patched beforfegé this chapter.

1 ?STACK (--) Check for data stack underflow or o verflow. Abort if any of the error
conditions occurred.

SP@ Get the current data stack pointer.

SP0 @ SWAP U< If the stack underflowed,

ABORT" Stack Underflow" Abort.

SP@ PAD U< If the stack grows too close to the top of the dictionary,

ABORT" Stack Overflow" Abort also.
; Otherwise, return normally.

:DONE? (n--f) Returnatrueflagiftheinputs treamis exhausted orthe STATE doesn'tmatch
with the current state.

STATE @ <> Is the state flag left on stack he sam e as that in STATE?

END? @ OR Or the end of line? Leave the or'ed fla g on stack.

END? OFF Turnofftheend-of-bufferflagtoletth einterpretergetanewlineofcommand

and start over.

In F83 systems before Version 2.0, the end-of-buddadition is detected and the END? flag is set
by a command with a null string as its name. Tk command was defined using a pseudo
name of X and later patched to null. When the irgbteam is exhausted, the last word parsed out
by WORD is this null command and it tells the testerpreter to stop processing the input buffer.

96

This technique had been used in most Forth systechaling figForth . In F83 Version 2.0 and
later, the end-of- buffer condition is detected #melEND? flag is set in the word FIND; therefore,
this mysterious null command is eliminated andtéx interpreter is in much better shape. The
discussion on the null command X is included hereebmpleteness and for users with older
versions of F83.

X (=) The null word to flag end-of-buffer and to terminate the interpreter loop.
END? ON Turn on the end-of-buffer flag in the user variable END?.

HEX A080 LAST @ !
IMMEDIATE DECIMAL

The real name of X in the Forth dictionary is al string, with a character count of 0 and a blank
character. This null string is returned by WORDRHe word buffer when the end of the input
stream is reached. The contents of the namediditis null command is A080 in hex, with the
MSB's in both bytes set as name field delimiter&s we reach the end of the input stream, this
null command is returned by WORD and executedturits on the END? flag and terminates the
interpret loop. Explicitly terminating the integioop at the end of input stream makes the
definition of INTERPRET comprehensible. Anothevaxtage is that the end-of-buffer condition
does not have to be artificially synthesized byeaqgjing a NUL character at the end of the input
line form the console or at the end of every digidy (as done in figForth), which can be easily
corrupted and causes the Forth system to behaaticaltty.

97

Chapter 12. Compiler

The source code discussed here is in the file KEEBSBLK, Screens 70, and 76 to 78.
12.1. TheColon Definitions

Colon commands are the most prevailing type of camas in Forth. A colon command has a
variable length parameter field where a list ofe@i®sn addresses is stored. Functionally, a colon
command is the equivalence of the sequence of comsnahose execution addresses are stored in
its parameter field. When the colon command isked, this sequence of commands are
executed by the address interpreter. Comparioghter high level languages, a Forth colon
command is similar to a procedure or a subroutifech contains a sequence of procedures or
subroutine calls:

Forth Colon Definition FORTRAN Subroutine
1 Z SUBROUTINE Z
CALL A
CALL B
CALLC
CALLD
RETURN

TToO0Owmr>

where A, B, C, and D are other pre-defined commamé&®rth or subroutines in FORTRAN.

Colon commands allow us to build higher level fumras from existing modules. The building
process can continue on until the final colon comdnlaecomes the solution to our programming
problem.

What, then, is the advantage of colon commandstbegprocedures or subroutines in other
languages, since they serve very much the sameses@ The answer is that although a Forth
colon command is the same as a procedure or awgui@on functionality, it serves the functions
more efficiently and it can be debugged more easiljhe result is a solution or a program of
much higher quality at lower cost. We can sumnesitie advantages of Forth colon commands
in two words: efficiency and modularity.

Efficiency

Efficiency in computer programming has three aspeunemory utilization, execution speed, and
programming productivity. Forth colon commandsetxe all these aspects as compared to other
high level languages. Each reference to anotleec@mpiled command in Forth costs two bytes
in memory, the execution address of the referredncand. The calling of a command and

08

returning to the caller in Forth is also very fdse to the efficiency in the inner interpreters,
especially in hosts of good architecture desigm executing high level language programs, by far
the largest overhead is doing subroutine callsrangns, with a host of parameters to be passed
between the caller and the callee. Since Forth theedata stack to pass all the parameters
between commands, the overhead in parameter passingto the minimum. Ease in testing and
debugging greatly improve the productivity of praigrmers using Forth as software development
tool.

Modularity

Forth commands are true modules because they an@meesident and individually executable
routines. Once a command is defined and compiledthe dictionary, it is immediately available
for execution and for compiling into other command# other languages, procedures and
subroutines are modules only in the abstract senBkey have to be compiled and linked to a
mainline program before they can be invoked tormowseful work, within the context of the
mainline program. In the example above, the contds#y B, C, D, and Z are all executable
modules in Forth. In FORTRAN, none of the subnoesi A, B, C, D, and Z are executable.
They are only modules on paper.

Why is true modularity so important? It greatlgngiifies the testing and debugging of a program
of large size, because individual modules can beotighly tested before being integrated into
modules at a higher level of construction. In dgpng a conventional program, the most
valuable tool is the break point facility, allowiggu to stop the program at selected break paints t
examine the progress of operations. In Forth, eaaimand can be tested at the interpreter level
with a natural break point at its end, eliminatihg need of a debugger.

Due to the small overhead in nesting commandshfartourages the breaking of large modules
into many small modules which can be tested thdiguand separately. This modularization
gives us a chance to prove the correctness ofja [aogram by proving the correctness of each
component and the correctness of their intercoroest

12.2. Colon and Semicolon

So much for propaganda. Let's now look at howctilen compiler itself is defined.

() Define a colon definition. The new defi nitionis hidden until itis completed.
The runtime code for : adds a nesting level.

ICSP Store the current stack pointer in a variable CSP for error checking at the end
ofadefinition. Normalcompilationshouldnotaff ectthedepthofthedatastack.
| stack depth ischanged, it is a potential error co ndition.

CURRENT @ CONTEXT ! Selectthecurrentvocabulary asthecontextvocabularytorestoretheenvironmen t

of compilation.

99

CREATE Create a header in the dictionary using the name following

HIDE Smudgethenamefield ofthenewheadersoit ishiddenfromdictionarysearches.

] Enterthe colon definition compiler to start con structing the listof execution
addresses in the parameter field.

;USES Insert the following code routine address in to the code field of the new
definition, making it a colon definition.

NEST , Compile the address of the address interpre ter NEST here so that it can be put

into the code field of new colon definitions.

() Terminate a colon definition. It compile s the runtime code of UNNEST to remove
a nesting level and changes STATE to terminate comp ilation.

?CSP Check the current stack pointer with the cont ents of CSP. If they are not the
same, abort.

COMPILE UNNEST CompileUNNESTattheendofthene wcolondefinitiontoforceexecutiontoreturn
to the caller.

REVEAL Unsmudge the name field of the new colon de finition, making it available for
dictionary searches.

[COMPILE] [Compile [here to terminate the compil ation of the new colon definition.

; IMMEDIATE ; must be executed in the compiling s tate. It must be declared immediate.

The compilation process is very similar to therpteting process in Forth. Instead of executing
the word parsed out of the input stream, the exacatddress of the command is added to the top
of the dictionary, where we are building the parsnéeld of a new colon command. If the word
is a number, instead of leaving the number on #ta stack, it is compiled into the new command
as a literal so that when the new command is eedgtexecuted, the same number can be
retrieved and put back on the stack. The comp@lembodied in the command], which is the
twin brother of INTERPRET, because they sharedbtsommon tools and structure. In figForth
and many older Forth systems, the compiling fumgtiare actually rolled into INTERPRET as one
single piece of command. The good doctors in th¢hFStandard Team decided that it is
unsightly that the Siamese twin should share tmaibilical cord forever, and cut them loose. The
compiling functions are then welded into]. F83 Ina choice but to follow the doctor's order.

12.3. TheCompiler Loop

10-) The compiling loop. It sets the compili ng flag in STATE, and parses the next
wordoutoftheinputstream. Ifthewordisfound inthedictionary,itiseither
executed or compiled depending on whether it is imm ediate or not. Ifitis a
number, itiscompiledintothedictionaryaseithe rasingleoradoubleinteger
literal. Continue until the input stream is exhaus ted.
STATE ON Set the flag in STATE and enter the compi ling mode.
BEGIN Loop to scan the input stream.
?STACK Check for stack over- or underflow.
DEFINED Parse out the next word and search the di ctionary.
DUP IF If it is found in the dictionary,
0> IF and if it is an immediate word,
EXECUTE then execute it.
ELSE If it is not an immediate word, compile its cfa into the dictionary.
THEN
ELSE It is not a word in the dictionary.
DROP Discard the flag left by DEFINED.
NUMBER Convert the word to a number.
DOUBLE? IF If a punctuation is detected in the s tring,
[COMPILE] DLITERAL compile the double integer | iteral.
ELSE No punctuation in the string.
DROP Discard the upper half of the converted do uble integer,
[COMPILE] LITERAL and compile the single intege r literal.
THEN
THEN
TRUE The compiling flag.
DONE? Ifthe input streamis exhausted, leave a t rue flag to exit the compiling loop.

100

UNTIL

Mo

(=)
STATE OFF

, IMMEDIATE

Otherwise, loop back to compile the next wor

Interpret

Parsea word
foarm input

siream

v

search
dictionary

Fitud wwrord?

Cotrrett to
mumnher

l

4
. Push mumber on
Ezecute it Bits ek
Yes
Figurel12.1

Stop compiling and start interpreting.
Turn off the compiling flag in STATE, fo
interpreting mode.
It is declared immediate so that its ef
compilation.

form ingat
stream

Parze a word

v

mearch
dictionary

Find wrord?

[mmediate?

Ezecute it

Cotrrett to
mirnher

l

Compile a literal

Cormpile it

v

Mo

Theinterpreter and the compiler

rcing the Forth system into the

fect can be revealed even during

101

12.4. Low Level Supporting Commands

We have presented the compiler at the highest.levEhere are a long list of supporting
commands behind these compiler commands to realliiee functions required in the compilation
processes. Let's try to give recognition to adlsihnunsung heroes.

VARIABLE DP Theuservariablewheretheaddressof thefirstfreememoryabovethedictionary
is stored. It helps the compiler to keep track of its memory.

: HERE (-- addr) Return the address above the dic tionary, the free memory available for the
compiler.

DP @ ;

:'WORD (-- addr) Return the address of the word buffer, same as HERE.

HERE ;

ALLOT (n--) Allocate more space on the diction ary by moving the DP pointer.

DP +! ;

S, (n--) Copy the top stack item to the top of the dictionary. This is the compiler in
its most primitive form.

HERE'! Compile n to dictionary.

2 ALLOT Move the DP pointer passing the item just compiled.

:C, (byte --) Compile one byte to the dictionary

HERE C! Compile one byte.

1 ALLOT Move DP.

: COMPILE (--) Compilethenextwordinacolond efinitiontothedictionarywhenthisdefinition
is executed. It can only be used inside a colon def inition.

R> The address of the next word is on the top of t he return stack. Retrieve it.

DUP 2+ >R Increment the top of return stack so tha t the next word will not be executed.

@ Get the execution address of the next word.

Compile it to the dictionary.

: IMMEDIATE (--) Mark the most recently defined w ord to make it an immediate word. An immediate
word will not be compiled by the] compiler but wil | be executed.

64 The precedence bit in the first byte of the nam e field.

LAST @ Get the name field address of the most rece ntly defined word from the variable
LAST.

CTOGGLE Set the precedence bit in the name field, marking the word immediate.

125. Immediate Commands

Two good examples of immediate commands are LITERAW DLITERAL in]. They are used

to compile literal numbers in a colon command. yraee needed because the address interpreter
treats the data stored in a colon command as egacddresses. If we need to put a number on
the stack between two addresses, we cannot sirapipite the number in-line, because then the
number will be interpreted as an address. Inilteeal numbers in a colon command must be
preceded by a special runtime command (LIT), wdhpush the following literal to the stack
when executed. To compile a number into a colonrand, LITERAL is executed immediately
to compile first (LIT) and then the number, builgithe correct literal structure in the colon
command.

102

:LITERAL (n--) Compile the single integer from the stack as a literal.

COMPILE (LIT) First compile the runtime routine (L IT).

, Then compile the number.

; IMMEDIATE Make it an immediate word.

:DLITERAL (d --) Compile the double integer from the stack as a double literal.

SWAP Reverse the order of the double integer so th at the right double integer will
be pushed on the stack when executed.

[COMPILE] LITERAL Do the literal compilation not n ow butwhen DLITERAL is executed. To force the
compilation of LITERAL, it must be preceded by [COM PILE].

[COMPILE] LITERAL Force compilation of the upper h alf of the double literal.

; IMMEDIATE

Words in a colon definition are normally compiledmmediate commands are not compiled but
executed immediately. To compile an immediate camilike other commands in a colon
command, the immediate command must be precedfd@WPILE]. To compile a command
only when the command is executed, the commanceeged by COMPILE. Itis rather
confusing for a new comer to Forth. But, you heveemember, building compiler is not an easy
task for everybody. These commands encompasst@stivi the designing of a compiler to build
commands which will have the correct behavior atime. You will have to go to a graduate
school of computer sciences to hear these topscsisised only peripherally. To understand these
concepts, you have to read more code in the Fortipder and let it gradually sink in. Or, try to
write a few compiler routines yourself and see hogy function.

| can offer you one more hint: immediate commandslae equivalents of the compiler directives
or assembly directives in the conventional programgnfanguages. They may or may not
generate executable code in the program, but thwetyal the process of compilation or assembly
and they are executed during the compilation cgrab$y, but not when the final codes are
executed. We will discuss more of these immediatemands in the following chapter.

:[COMPILE] (--) Force compilation of the followi ng immediate word.
' (tick) Find the execution address of the next word.

, (comma) Compile it.

; IMMEDIATE It must be executed immediately.

[COMPILE] cannot wait to let the] compiler to fitde address it needs, because] might have to
execute the next command. [COMPILE] is executstdmthe compiler loop and it has to find
the address of the next command immediately to dentp Therefore, [COMPILE] uses a
special dictionary searching command ' (tick) tafuedictionary search:

' (--cfa) Returntheexecutionaddressofthe nextword. Ifthewordcannotbefound,abort.
DEFINED Parse the next word and search the diction ary for it.
0= If the search failed,
?MISSING Abort with an appropriate message.
If the word is found, return its code field addre ss.
1 ?MISSING (f--) Tell the user the word does not exist and abort.
IF The flag is true,
'WORD COUNT TYPE Type the word failed to match.
TRUE ABORT" ?" Abort with a very mild message.
THEN Return if the flag is false.

103

104

Chapter 13. Structuresin Colon Definitions

The source code discussed in this chapter is iInMBEER6.BLK, Screens 70-71, and 74-75.
13.1. Compiler Directives

We have discussed in great detail the contentshenflinctions of the colon command compiler
which compiles colon commands, and the addresspiatier which executes colon command as a
list of execution addresses. |If that is all, tkefulness of colon commands is severely limited, as
they will not be able to cope with the wide variefysituations a programmer must solve using his
computer. Very few problems can be solved by lilyestrung procedures or commands. We
need the capability of altering the execution seqgaeon the fly, depending upon the results
obtained in runtime. We need the capability to pienand use different types of data and data
structures, which are used to encode input/outgatmation and to hold intermediate information
during processing. Compiler directives are usedalltw you to specify explicitly alternate or
repetitive execution sequence and compile speatal structures inside a colon command.
Compiler directives are also called immediate comusebecause they have to be executed
immediately during compilation so that special stuwes can be built inside a colon command.
Immediate commands can be distinguished from nocoraimands by the fact that a bit, the
precedence bit, in the first byte of the name fisldet.

The compiler loop] can compile normal, non-imméelicommands and single or double integer
literals. However, it incorporates an extremelypdul hook to take care of any special

compiling conditions in the form of immediate cormda. Whenever we have a situation that the
compiler] is not able to handle, we will designiammediate command to do whatever is necessary
to take care of the situation and then let the alnpcontinue its normal compilation.

A few examples were shown in the chapter on thercobmpiler. In fact, literals are handled this
way. When the compiler fails to locate a commamnthe dictionary, it converts the word into a
number and asks LITERAL or DLITERAL, two immediatemmands, to compile the numbers
into the dictionary in the form of two data typss)gle integer literal or double integer literal.

This way, numbers can be compiled into colon condsaim-line with the execution addresses
which are the default data type in colon commands.

There are other data types and different methodsefpreting them within the context of a colon
command. F83 is very rich in these special commgaiod the convenience of you the user.
Let's look at them closely.

105

13.2. Compiling Numeric Data Structures

Two data types were taken care of: the single ertétgral and the double integer literal. The
immediate commands which compile them are LITERAH BLITERAL. The runtime
commands which interprets them, pushing the nurabehe data stack, is (LIT).

Two immediate commands are provided to compile ASGdes. They also use (LIT) to interpret
the compiled character literals:

2 ASCII (-- char) Compile the next character in t he input stream as an ASCII character literal.

BL WORD Parse out the next character.

1+C@ Get the ASCII code of this character from th e word buffer.

STATE @ Are we in the compiling state?

IF [COMPILE] LITERAL Yes. Compile the character a sasingle integer literal. However, technically
it is a character literal.

THEN If interpreting, just leave the character on stack.

; IMMEDIATE

: CONTROL (-- char) Compile the next character in the input stream as a control character literal.
The character must be upper case.

BL WORD Get the next character.

1+ C@ Get its ASCII code.

ASCIl @ Offset between the control character and t he upper case character.

- Control ASCII code.

STATE @ If compiling,

IF [COMPILE] LITERAL Compile the control code as a literal.

THEN Leave the character on stack if interpreting.

; IMMEDIATE

We can always lookup the ASCII table and use tlaastier codes directly in colon commands.
ASCIl and CONTROL, however, make very clear docutagon to the intention of the
programmer. Using these commands to invoke AS@es explicitly is highly recommended.

Ever heard of address literals? Well, there amyrsuch things. Its usefulness has been
demonstrated in many applications in which we wambcate a command in the dictionary in
runtime. An example is to find the address of lam@ommand so that we can jump into the
middle of it. The reason of doing so is not obgi@nd certainly is not orthodox Forth practice.
Anyway, if you need the address of another comniaside a colon command, the command [] is
the one to use.

I1(-) Compiletheaddressofthenextworda saliteral. Atruntime,returnthataddress
to the stack.

' (tick) Find the execution address of the next word in the input stream.

[COMPILE] LITERAL Compile the address as a literal

; IMMEDIATE

106

Literal Donghle ARCTI Control Address
Mutmnber Literal Character Character Literal
Mutnber

(LITY (LIT) (LIT) (LITY (LIT)
1l d lowr chatrracter EE;?;ET& address
(LITY
d high

Figure13.1 Numeric data structures.
13.3. Compiling String Literals
String literals are very useful data type. Thely ba used to compile messages in a colon

command. At runtime, the message will be typedoouthe console, creating a friendly
environment for the end users.

:(") (- addrlen) Return the address and the le ngth of an in-line string.

R> Address of the in-line string compiled immediat ely after (").
COUNT Get the addr and len of the string.

2DUP + The address of the executable code after th e string.

EVEN Align to cell boundary.

>R Replace it on the return stack to continue the execution process.
(M) Type out the in-line string and conti nue executing the word after the string.
R> Address of the in-line string.

COUNT Addr and len.

2DUP + EVEN >R Replace the address of the next wor d to be executed.

TYPE Output the string to console.

() Compile the following string to the dic tionary.

ASCII" Use " as the delimiter of the string.

PARSE Parse the string out.

TUCK 'WORD PLACE Copythestringintothewordbuf fer,justtherightplacetocompilethisstring.
1+ ALLOT ALIGN AllwehavetodoistomovetheDP pointertoincludethestringithedictionary.

107

COMPILE (")

; IMMEDIATE

COMPILE (")

' IMMEDIATE

Compiled String
n mll

/—_/

Error Mezssage
ABORT" o

/__/

l:_ ":I I:II:I l:_l_{",EI [:]RT":]
length length length
atring to be String compiled Error message
printed inling to he printed

- e

Figure13.2

Sl

VA

Thestring literals.

d out later.

Compile the following string to be type
Compile the runtime code (.") before
interpreted correctly.
Compile the string into the dictionary.
This is a compiler directive. Declare

the string so that the string will be

it to be immediate.

Compile the string. At runtime, return
Compile the runtime routine (").
Compile the string after ().

Must be immediate.

its address and length.

108

An important command also using string literalthis command ABORT". It forces the Forth

system to return to the text interpreter with anlstate to start over again.

It can also pribtou

message explaining why it has to take such a drastasure to help you figure out what happened
in the computer at run time.

: (ABORT") (f--)
R@ COUNT
ROT

?ERROR

R> COUNT + EVEN >R

: ABORT" (f--)
COMPILE (ABORT")

. IMMEDIATE
DEFER ?ERROR

:(?ERROR) (addrlenf
IF

>R >R

SP0 @ SP!

PRINTING OFF

BLK @ IF

>IN @ BLK @ WHERE

THEN
R> R>

SPACE TYPE SPACE
QuUIT

ELSE

2DROP

THEN

DEFER WHERE

There are other data structures that can be codnipile the colon commands.
them can be taken care of by variables and arraygedl from variables.

The runtime routine compiled by

If the flag is true, issue an err

ABORT".

Get the addr and len of the following str ing literal.
Move the flag to the top of stack.
Turn over to 7ERROR to process the error co ndition.

Move the top of return stack to
as the error condition was not true.

the word after the string, toresume execution

or message and quit.
Compile runtime routine.
Compile the message.

Vectored to (?ERROR).

Iftheflagistrue,execute WHEREtostoreuseful
and quit.

If the flag is true, prepare to quit.

Save the string parameters.

Initialize the data stack.

Turn off the printer.

If BLK is not zero, we are processing dat

Savethecharacterpointertoth

to provide debugging aids.

debuggingdata,typeamessage,

a from a disk block.
einputbufferandtheblocknumberandcall WHERE

Restore the string parameters.
Print the abort message.
Restart the text interpreter.
No error condition.
Clear the data stack.

WHERE is vectored to an editor routine
with the cursor pointing to the word that causes th

(WHERE) to display the block of source
e abort.

However, many of
Other recurring

structures may be handled by the CREATE-DOES> igclen

13.4.

Forth is a structured language.

Compiling Control Structures

A structured laggthas provisions for you to do two things:

successive refinement to decompose a problem imédlex parts hierarchically, and building

modules with control structures.
program or groups of program statements which loaleone entry and one exit.

Control strucsy@ simply structures, are segments of a
The one-

entry-one-exit property of control structures aléothie structures to be stacked linearly to form

larger segments which can be built into other stimes at a higher level.
alternate paths or repeat a portion of the path within a structure.

Execution can take
Very complicated high level

structures can be built on simple structures, englgrogrammers to deal with real life problems

efficiently.

109

In a previous chapter, | emphasized that Forthtiglg modular language because the commands
in Forth are true modules, which can be indepetylerecuted and compiled, quite different from
modules in other languages which can function anitliin the context of a mainline program.
Forth commands are also structures, with one emdyone exit. There are some exceptions when
error conditions are encountered. In these casesution is forced to abort to the text interprete
Forth commands, as structures, can be stackedlinegether to form higher level structures,
which are basically the colon commands. Besideslly stacked structures, Forth provides a
special set of commands which allows you to builtekomore sophisticated control structures
inside colon commands so that alternate paths eamtsen and segments can be repeated in
runtime. These structure building commands argrafiediate commands, because they have to
perform extra work to build the desired structwresgectly while the compiler is running.

110

[F-THEM IF-ELSE-THEM DO-LOCF BEGIMN-UNTIL BEGIN-WHILE-EFPFAT
Bratich Branch Loop Loop Loap
Structure Structure atructure Strucure Structure

/‘_‘_J

/—_‘_/

/'_L

-

TBEAMNCH YBEAMCH (D
address address address
Fepeat clanse Fepeat clauze |
True clause Repeat clause
TBRAMCH YBRAMNCH
True clauze
address address
BRAMCH (LOOF)
address address
\—/____\ Fepeat clavse 2
Falze clause
hod BRANCH
address

Figure13.3. Thecontrol structures

The set of structure building commands in F83 isted here according to the syntax of their
usages:

IF <true clause> THEN

IF <true clause> ELSE <false clause> THEN

BEGIN <repeat clause> UNTIL

BEGIN <repeat clause> AGAIN

BEGIN <repeat clause 1> WHILE <repeat clause 2> RE PEAT
DO <repeat clause> LOOP

DO <repeat clause> +LOOP

?DO <repeat clause> LOOP

?DO <repeat clause> +LOOP

111

Inside the do-loops, the optional commands LEAVE ahEAVE can be used to force the
termination of the loop.

13.5. Address Calculation for Control Structures

In the chapter on the kernel commands, we havadyjrdiscussed the low level commands which
change the execution sequence in runtime. Whatdttbeture building commands have to do is to

compile these runtime routines into the colon comanaith additional branching addresses so that
the execution sequence in runtime can be changmeuidicg to pre-defined rules. Thus a group of

supporting commands are needed to calculate tmetireg addresses during compilation.

: 2CONDITION (f--)
NOT

ABORT"ConditionalsWrong"

: >MARK (-- addr)
HERE
0,

: >RESOLVE (addr --)
HERE
SWAP !

- <MARK (-- addr)
HERE

: <RESOLVE (addr --)

: ?2>MARK (-- f addr)
TRUE
>MARK ;

: ?>RESOLVE (f addr -)
SWAP ?CONDITION
>RESOLVE ;

: 2<MARK (-- f addr)
TRUE
<MARK ;

: 2<RESOLVE (f addr -)
SWAP ?CONDITION
<RESOLVE ;

Compile time error checking.
Invert the flag.
Abort with a message.
This simple error checking is adequate for most s

If the flag is false, abort.

ituations.

Mark the point of a forward bra nch by saving its address on stack.
Addr in which the forward branching address w ill be placed.
Compile a dummy address for the moment.

Resolve a forward branch.
This is the address to jump to.
Store this address in the memory addr where the forward jump originates.

Set up a backward branch by lea ving the current address on stack.

This is the address the backward branch will jump to.
Resolve a backward branch.
Compile the backward jump address at this poi nt.

Set up a forward branch with
Put up a true flag for error checking.
Do the work.

error checking.

Resolve an backard branch
Check conditional error first.
Then resolve the forward branch.

with error checking.

Set up a backward branch wit
The flag for error checking.
Backward jump address.

h error checking.

Resolve a backward branch
Error checking.
Resolve the backward branching.

with error checking.

Error checking is a valuable service to you to mske that you have laid down the control

structures correctly. Structure commands not pigpaired are frequent causes of system

crashes, because execution can be steered to nowmladdress.

13.6.

Control Structure Compiler Directives

Here come the real heroes that compile the costrottures in colon commands:

112

JIF (--faddr) Set up the IF-ELSE-THEN structur e.

COMPILE ?BRANCH Conditional branch.

?>MARK Set up forward branch.

; IMMEDIATE

:ELSE (fladdrl--f2 Resolve the forward branch from IF and set up forwa rd branch to THEN.

addr2)

COMPILE BRANCH Unconditional branch.

?>MARK Set up flag and address to jump to THEN.

2SWAP ?>RESOLVE Resolve the jump address at IF.

; IMMEDIATE

: THEN (f addr --) Resolve the forward jump from either IF or ELSE.

?>RESOLVE Resolve the jump address.

; IMMEDIATE

:BEGIN (--faddr) Mark the address for backward branching.

?<MARK ; IMMEDIATE

:UNTIL (faddr--) Compile a conditional branch to BEGIN.

COMPILE ?BRANCH Compile the conditional branch run time routine here.

?<RESOLVE Put the address of BEGIN here to close t he loop.

; IMMEDIATE

: AGAIN (faddr--) Compile an unconditional bran ch to BEGIN.

COMPILE BRANCH Unconditional branch.

?<RESOLVE Address of BEGIN.

; IMMEDIATE

:WHILE (--faddr) Compile a conditional exit in the BEGIN-WHILE-REPEAT loop.

[COMPILE] IF Functionally, WHILE isidenticaltol F. Toexecute|lFwhenWHILE iscalled,you
have to use [COMPILE] to override the immediate eff ect of IF.

: REPEAT (f1 addrl f2 Compile anunconditional branch to addrl left by BE GIN, andresolve the forward

addr2 --) branch for WHILE at addr2.

2SWAP Get f1 and addr1 to top of stack.

[COMPILE] AGAIN Use AGAIN to compile the unconditi onal branch back to BEGIN.

[COMPILE] THEN Since WHILE is identical to IF, we can use THEN to resolve its forward branch.

; IMMEDIATE

: DO (faddr--) Compile the header of a do-loop.

COMPILE (DO) Put the runtime (DO) here.

?>MARK (DO) needs the address after LOOP, making i tlook like a forward branching for

a real backward branching.
; IMMEDIATE

:?DO (faddr --) Compile the header for ?2DO-LOOP
COMPILE (?DO)

?>MARK ; IMMEDIATE

: LOOP (faddr--) Complete the do-loop.

COMPILE (LOOP) Compile the runtime routine here.

2DUP 2+ ?<RESOLVE The backward branch address is 2 bytes after (DO), because (DO) needs two bytes
to store the address after (LOOP), in case LEAVE ne eds it.

?>RESOLVE Put the address after (LOOP) to the memo ry just after (DO).

; IMMEDIATE

:+LOOP (faddr--) Compile the ending of the +lo op.

COMPILE (+LOOP)
2DUP 2+ ?<RESOLVE

?>RESOLVE ; IMMEDIATE

. LEAVE (--) Compile (LEAVE).
COMPILE (LEAVE) ; IMMEDIATE

: ?LEAVE (--) Compile conditional leave.
COMPILER (?LEAVE) ; IMMEDIATE

These structure commands look very simple and ohtlezy are. All they have to do is to pick
and compile the right runtime routine and resoheltranching addresses. The runtime routines

113

know what to do with the branching addresses aadg# the execution sequence if necessary.
These branching addresses can be considered aal sppielress literals, different from the normal
execution addresses compiled by the] compiler.

As it is evident in the definitions of these cohstyucture commands, these commands must used
in pairs, and they can be considered as the deligiior structures in the colon command, clearly
indicating the entry points and the exit pointshef structures. |IF must be followed by THEN.

DO must be paired with either LOOP or +LOOP. BE®GNSst be paired with UNTIL, AGAIN,

or REPEAT. Structures can be nested but can novédapped. If the structures are
overlapping, the system will behave erraticallgot crashed.

The error checking in compiling the structures 838 ks not as extensive as that in the figForth
model, in which different types of structures assigned different error checking numbers instead
of a true-false flag. figForth prohibits the cotmmg of improperly nested structures.
Nevertheless, F83 is better than those earliehFRy$tem without any error checking on the
control structures. If you want speed in compalatiyou can strip out the error checking in F83
by using >MARK in place of ?>MARK, etc., and charajethe 2DUP to DUP. Then you are
entirely on your own.

114

Part I11. Utilitiesin F83 System

Chapter 14. TheMSDOSFiles

The source code managing files in the F83 systesnattered in Screens 51 and 57 in
KERNEL86.BLK and also in Screens 7 to 12 in EXTENDBLK. Some of them were discussed
in the chapter on the virtual memory.

14.1. CP/M-DOS File Primitive Commands

The DOS file management system consists of a sggramands in the DOS vocabulary that access
the BDOS functions of the CP/M-DOS operating systemech as creating, opening, and deleting
files. There is also a command that parses agsamal creates a file control block (FCB). A

very useful command SAVE is also provided to séneecontents of memory as an executable DOS
file. A number of commands were also defined mhlasic F83 system which are used to access
the default file defined by the FCB1 control block.

VOCABULARY DOS AlltheDOSwordsareputinthisvo cabulary. ForCP/Msystems,itsnameisCP/M,
of course.

DOS DEFINITIONS Make DOS the current vocabulary so that all subsequent words will be added to
this vocabulary.

CREATEFCBI1B/FCBALLOT Allocate space for the firs t FCB block of the current file.

CREATEFCB2B/FCBALLOT Allocate space for the seco nd FCB block of the in-file.

: CLR-FCB (fcb --) Initialize the specified FCB.

DUP B/FCB ERASE Clear the FCB to nulls.

1+ 11 BLANK Initialize the file name and extension to blanks.

The following commands are simply BDOS functionghmiorth names. Descriptive names make
the Forth programs or commands more readable.

:RESET (--) 0 13 BDOS DROP ;

: CLOSE (fcb --) Close the given file and report errors.
16 BDOS Call BDOS to close the file.

DOS-ERR? If there is error,

ABORT" Close error" report it.

: SEARCHO (fcb --n)
17 BDOS;

: SEARCH (fcb --n)
18 BDOS;

: DELETE (fcb - n)
19 BDOS ;

115

: READ (fcb --) Read the next record and report a ny error.

20 BDOS Read next record.

DOS-ERR? If read error,

ABORT" Read error" abort with a message.

:WRITE (fcb --) Write the next record and report error if any.
21 BDOS Write the record.

DOS-ERR? Any error?

ABORT" Write error" Report and abort.

:MAKE-FILE (fcb--) Create a new directory entry for a new file. Report error if any.
22 BDOS Create directory.

DOS-ERR? Error?

ABORT" Can't make

file"

14.2. TheFile Control Block

The file control block FCB is a table containingestial information so that the DOS system can
manage the file in association with the blocks. e Tiext two commands build FCB blocks which
is almost all that is needed to create files and gecess to them using the above commands.

:(IFCB)(addrlenfcb Usethe stringataddrandthelength, len,toset upafilecontrolblock. This
-) istheprimitivefilenameparsingword whichbrea ksthedrive/filename/extension
stringintoadrivespecifier, thefilename,andt heextension,andinsertsthem
into the proper fields in the FCB.
DUP B/FCB ERASE Clear the entire FCB to zeros.
DUP 1+ 11 BLANK Clear the name/extension fields to ASCII blanks.
>R Save the FCB address for later use.
OVER 1+ C@ Get the second character in the string on stack.
ASCIl: = IF Ifitisa"', then getthe firstch aracter and use it as the drive specifier.
OVER C@ Get the first character.
[ASCII A]LITERAL Store ASCII code of A here a s a literal.
- Subtract65 (ASCII A) fromthe drive specifier. Theresultisthe drive number.
R@ C! Store it in the drive number field in FCB.
2 ISTRING Adjust the string address and length to point to the file name.
THEN
R> 1+ Address of the name file in FCB.
-ROT Get the string length to top of stack.
0 DO Now fill the file name field.
DUP C@ ASCII . = Is the character a period?
IF Yes. End of file name and start of extension.
SWAP Swap the FCB field pointer to top of stack.
81-+ Compute the address of the extension fie Id in FCB.
ELSE Not a period. Stuff the character in the nam e or extension field.
2DUP C@ Get the character from string.
SWAP C! Store it in the FCB.
SWAP 1+ Increment the FCB pointer.
THEN
SWAP 1+ Increment the string pointer also.
LOOP
2DROP Clean the stack to exit.
:IFCB (FCB-addr--) Use the following string as the file name string and create an FCB for it. If
CAPS is false, allow lower case file names.
BL WORD Parse out the next string and place it in the word buffer.
COUNT Get the string length from the word buffer a ddress left by WORD.
CAPS @ IF If CAPS is true,
2DUP UPPER convert the string to upper case.
THEN Otherwise, allow lower case string.
ROT Get the FCB address to top of stack for (IFCB) .
('FCB) Now, get (IFCB) to fill the FCB with the na me string in the word buffer.
: SELECT (drive --) Make the given drive the defa ult drive.

116

14 BDOS DROP ;

14.3. High Leve File Commands

The following commands are defined in the basic §&3em as shown in KERNEL86.BLK file,
screen 57. However, their functions make themtarabpart of this chapter on the MS-DOS files.
One of the problems in reading Forth source codeaisthe order in loading the Forth source codes
does not necessarily bear any relationship withdpeal order of commands. In this book, |

hope that grouping commands together accordinigeio tunctionalities will help you to perceive
more clearly the logical structures in the F83 etyst

:FILE-SIZE(fcb--n) Return the size of the cur rent file in number of records.

35 BDOS DROP BDOS function 35 returns the file siz e in the field of random record number.

RECORD# @ Get the file size.

: DOS-ERR? (--f) Return a true flag if the previ ous DOS operation is in error.

255 = BDOS returns 255 if an error occurred

: OPEN-FILE (--) Open the current file and store the size of this file in MAXRECH#.

IN-FILE @ 15 BDOS Open the in-file.

DOS-ERR? IF Is there an error?

." Open error"

DISK-ABORT

THEN If so, abort.

DUP FILE-SIZE Otherwise, size the file.

1- SWAP Number of the last record in file.

MAXREC# ! Save it.

92 CONSTANT DOS-FCB The zero page address where DOS puts a parsed FCB.

: DEFAULT (--) Openthe default DOSfile. Movet he parsed FCB blockto FCB1 and open the fil e.
If no file is in DOS-FCB, do nothing.

FCB1 DUP IN-FILE ! Make the default file as specif ied by FCB1 both the in-file

DUP FILE! and the current file.

CLR-FCB Erase FCB1.

DOS-FCB 1+ C@ Get the first character in the name field of the DOS file in DOS-FCB.

BL <> IF If the first character of file name is no t blank, there is a DOS file.

DOS-FCBFCB112CMOVE Copy the drive number, file name, and extension into FCB1.

OPEN-FILE Open the current file.

THEN ;

:CREATE-FILE(n--) Create a new file and alloca te n blocks to this file.

FCB2 DUP IFILES Set the file pointers in both the current file and in-file to point to FCB2.

DUP !FCB Build a FCB at FCB2 and make it the curre ntfile. The file name is taken from
the input stream.

MAKE-FILE Call BDOS to make the file.

MORE Allocate the require blocks.

: MORE (n--) Add n blocks to the current file.

1 ?ENOUGH I need at least one stack item.

CAPACITY SWAP Current maximum size in blocks.

SWAP DUP 8* Record number to be added.

FILE @ MAXREC# +! Add to the maximum record field in the current FCB.

BOUNDS ?DO Now initialize the whole file to blanks .

| BUFFER Get a disk buffer.

B/BUF BLANK Clear the disk buffer to blanks.

UPDATE Mark the buffer as modified. Nexttime BUF FER is called to use this buffer, the
blanks will be written to the file.

LOOP

SAVE-BUFFERS Flush the remaining buffers out to di sk.

FILE @ CLOSE Close the file.

117

14.4. Save CorelmagetoaFile

A very special usage of the file commands is teghe entire core image in a file which can be
called for execution from DOS. This will save lofscompiling time to load in many blocks of
utilities. It is also a good way to build an applion program without giving the user all the Fort
source code, a good way to protect your softwaveymt.

DEFER HEADER Create a vectored word.

'NOOP IS HEADER HEADER is used in the DOS system.

:SAVE (addrlen--) Usethenamefollowingasth efilenameandcreateanexecutableDOSfile. Mem ory
fromaddrtoaddr+lenissavedintothisfile. The currentfileisnotdisturbed.

FCB2 DUP IFCB Build a new FCB at FCB2, using the n ame following SAVE.

DUP DELETE DROP If this file already exists, delet eit.

DUP MAKE-FILE Create a new file.

HEADER Build an executable header.

-ROT BOUNDS DO Scan the given range of memory.

| SET-DMA Specify memory address for DMA transfer

DUP WRITE Write one record of 128 bytes.

128 +LOOP Increment the index of length for next r ecord.

CLOSE Close the file.

: SAVE-SYSTEM (--) Thehighlevelcommandtosave thecodeimagetoafile. Youdonothavetoreme mber
the dictionary addresses.

256 Starting memory address of the Forth dictionar y.

HERE End of dictionary.

SAVE Make the executable file.

14.5. Directory Accessing

F83 can access the DOS directory on a disk diregthyout having to leave the Forth environment.
They are convenience that makes you feel at homelminate the necessity of learning the DOS
system and fight against it.

:.NAME (n--) Print the name of the nth entry in the DOS directory.

#OUT @ Get the current output character count in # OUT.

C/L > If it exceeds the line length,

IF CR THEN send a CR to start a new line.

32 *PAD + 1+ The address of the nth entry, alread y copied to the PAD buffer.

8 2DUP TYPE SPACE Print the file name.

+ 3 TYPE 3 SPACES Print the extension.

:DIR (--) Print the DOS directory.

[DOS] Switch context to CP/M vocabulary.

" RP0?2?02.277" Put a file name template in PAD.

FCB2 (IFCB) Create a new FCB with the ? marks in i ts name and extension fields.

CR PAD SET-DMA Fetch the directory information to PAD.

SEARCHO Search for the first directory entry that matches the ? mark name. Any valid
file name would do. The stackitem returned is the entry number of the file in
PAD, just right for NAME.

BEGIN Scan the entire directory.

.NAME Print the file name and extension.

SEARCH Search the next matching file name, i.e., the next file name

DUP DOS-ERR? End of the directory?

UNTIL If any error flag is returned, we have reach ed the end of the directory. Exit
now. Otherwise, loop back to print the next file n ame.

DROP Drop off the invalid entry number.

118

. .FILE (addr --)
COUNT ?DUP IF

ASCIl @ + EMIT ." "

THEN

8 2DUP
-TRAILING TYPE
+

3 TYPE SPACE
“FILE? ()
FILE @

.FILE

F83 allows you to have two files opened at the stame: a current file and an in-file.
is used for input and the current file is useddotput.

Given the address of an FCB, pr int the name of this file.

If the drive number is not zero,

then print the drive prompt.
Name field width.
Print the file name without the tra
The address of the extension field.
Print a period sign between name and extensi on.
Print the extension.

iling blanks.

Print the name of the current file.
Get the FCB of current file.
Print its name.

The in-file
The command SWITCH can be used to

switch these two files so you can input from thevpsus current file and output to the previous

in-file.

: SWITCH (-)
FILE @ IN-FILE @
FILE ! IN-FILE !

S IFILES (fcb --)

Exchange the current file and the i n-file.
Two fcb's.

Exchange the fcb addresses.

Set both the current file and t he in-file to the given fcb.

DUP FILE! Setcurrentfile.

IN-FILE !

14.6.

Set in-file.

System Level File Commands

The utility commands defined above allow the F8&ey to manage DOS files and the associated
facility. As a user, you will probably have no dder them unless you have to dig down into the

system level.
level to create files and to gain access to thaitents.

To use the file management systemnged only a few commands at the top Forth
This section describes these commands

and their functions.

:FILE: (--fcb)

>IN @
CREATE

>IN'!

HERE DUP
B/FCB ALLOT
IFCB

DOES>
IFILES

: ?DEFINE (--fcb)
>IN @

DEFINED
IF NIP >BODY

ELSE
DROP

Use the following string as the file name and create a new file. The address of
the FCB is returned on the stack.
Savetheinputcharacterpointerbecausewe
Create a Forthword using the following nam
file of the same name in DOS will be opened and mad

Restore the input character pointer to the f

willusethenextnamemorethanonce.
e. Whenthiswordisreferenced, the
e the current file.
ront of the file name.

The parameter field address of the file d efinition.
Put the FCB in the parameter field.
Now stuff the FCB with the new file name.
Now comes the execution part of the file def inition.
Initialize both the current and the in-file
Definethenextwordasafile ifitisnotalreadydefine. LeaveitsFCBaddres s

on stack.

Save the input character pointer.

Search the dictionary for the next word, w hich is supposedly a file name.

Ifthefiledefinitionisinthedict ionary,discardthecharacterpointerbecause

we will not need it. The cfa returned by DEFINED i s then changed to pfa which
is the FCB of the defined file.

No. The file was not defined.

Throw away the word buffer address.

119

>IN ! Restore the character pointer to the front of the file name.
FILE: Define a new file with a new file definitio n in the dictionary.
THEN ;

FORTH DEFINITIONS

e put into the DOS vocabulary, which are not
cerningfilesaretobedefined
d conveniently.

All the file management words wer
accessiblefromForth. Thetwomostusedwordscon
in the FORTH vocabulary so that they can be accesse

:OPEN (--) Open the following file and make it t he current file.
[DOS] OPEN has to refer to words in the DOS voca bulary.
?DEFINED Find the file in dictionary. If failed, c reate a new file.
IFILES Make this file the current file.

OPEN-FILE Open it.

: DEFINE (--) Define the following word as a new file without opening it.

?DEFINE DROP

:FROM (--) Make the nextwordinthe input strea mthe FROMfile. Itwill be created if not
already being defined.

?DEFINE Open a file.

IN-FILE ! Make it the in-file.

OPEN-FILE And then open it.

DEFER LOAD Interpret a screen.

In the previous Forth systems, including F83 VersipLOAD always interprets a screen from the
current file. To allow more natural and more cameat access to multiple files, F83 Version 2
modified the LOAD command so it will load a scrdeam the in-file, which is set up as the input
file. Most of the other file commands access tingent file as default. To make sure that other
file commands can still access the current fileADOonly loads one screen from the in-file and

then restores the current file.

:(LOAD) (n--) Interpret one screen from the in- file.

FILE @ >R Save the current file fcb.

BLK @ >R Save the currently processed screen numbe r on the data stack.
>IN @ >R Save the word parsing pointer also.

>IN OFF Start at the beginning of the screen.

BLK! Store n into BLK to process screen n.

IN-FILE @ FILE ! Make the in-file the current file for interpreting.

RUN Interpret the screen.

R>>IN! Restore the parsing pointer.

R>BLK'! Restore the previous screen number.

R> IFILES After loading from the FROM file, restor e the current file.

' (LOAD) IS LOAD

1 CONSTANT INITIAL

Vector LOAD to execute (LOAD).

Inallthe F83 sourcefiles, scr een lisalways aload screenwhichloadsinthe
code in the file. INITIAL is defined to load this s creen.

: OK (--) Load applications in the current file.
INITIAL LOAD ;

DA (--) Select drive A as the default drive.

0 SELECT ;

(B (=) Select drive B as the default drive.

1 SELECT;

120

Chapter 15. Text Editor

The source code of the editors are in the file UTL.BLK, Screens 12 to 27.

An editor is the most often used utility in an aerg system to support programming activity.
The friendliness of an operating system dependsillgean the editor it provides to you. Since
the source code in Forth is organized around blotl€924 bytes and the editor has to deal only
with blocks of fixed size, the editor is simpleaththe editors in other systems, which have to be
able to handle large text files, usually of varegalgngth.

The line editor in F83 system is compatible wita &ditor described in the popular book "Starting
Forth". For details on the various commands ia &dlitor, see the book by Leo Brodie. There
are a few extensions, most notably the command NENgh allows you to enter multiple lines of
text.

A screen editor is also provided in F83 so that glovays have a full text screen showing on his
terminal. The screen editor will be discussed va@er 16.

15.1. String Utility

The string manipulation primitives include stringngparison and searching. The string search
command is used in the line editor to find the ekbstring. The only unusual feature about this
string package is the presence of a variable c&llS, which determines whether or not to
ignore the case of the source and target strinsase is ignored then A-Z=a-z. The default is
to ignore case.

Many string primitives are defined in the kerniédelstring compare, lower-to-upper case
conversion, etc. Many of them are defined in maelmstructions to increase execution speed.
Here their high level commands are shown for cotepless and for reference. You should
consult the sections in the kernel for the coderamds actually used in the editor, in the file
KERNELS86.BLK, Screens 41-43.

VARIABLE CAPS If true, lower case characters are to be converted to upper case.
:UPC(char--char') Convert a character to uppe r case.

DUP Copy char for comparison.

ASCIl a ASCIl z Is it between a and z?

BETWEEN

IF BL - THEN If so, convert to upper case by subtr acting 32.

: ?CHAR (char -- Convert a character to upper case if CAPS flag is s et.

char")

121

CAPS @
IF UPC THEN

: COMPARE

>R

0

-ROT

R>

0?DO
OVERIC@
?UPCHAR
OVER I C@
?UPCHAR

- DUP

IF

>R

ROT DROP
R>

O<IF-1
ELSE 1 THEN

-ROT
LEAVE
ELSE DROP
THEN
LOOP
2DROP

- INSERT

ROT OVER MIN >R
R@ -

OVER DUP

R@ +

ROT CMOVE>

R>

CMOVE

: REPLACE

ROT MIN
CMOVE

:DELETE(bablsl--)

OVER MIN >R

2DUP

SWAP DUP

R@ +

-ROT SWAP CMOVE
THEN

+

R> BLANK

VARIABLE FOUND

: SEARCH

FOUND OFF
OVER >R

ROT TUCK -

1+ 0 ?DO

3DUP COMPARE
0=1IF

Is CAPS true?
If so, convert; otherwise skip.

(addrladdr2count--n)Comparetwost
CasemaybesignificantdependingonCAPS. Oisre
lisreturnedif string at addrl is greater than th

if the string at addrl is less than that at addr2.

ringsataddrlandaddr2ofequallength.
t urnedifthestringsareequal.
atataddr2. -1lisreturned

Save the count.
The initial value of n to be returned.
Put it under addrl.
Retrieve the count.
Scan through the strings.
Get a character from string 1.
Convert it to upper case if needed.
Get the corresponding character from st
Convert.
Are the characters the same?
No. The characters are not equal.
Save the comparison result.
Discard the initial n.
Retrieve comparison result.
If it is less than zero, return -1 beca
Ifthe comparisonispositive, retur
string 2.
Put the result below addrl, replacing the i
Quit the do-loop immediately.
Characters are equal. Discard the resu

Discard the addresses.

(saslbabl--)Insertastring atsai

string inserted is the smaller of sl and bl.

Save the smaller of sl and bl on t

bl-sl or O if sI>bl.
Buffer address ba.

Address of the remainder of the buffer.
Shiftthestringinthebufferforward,

Restore the count of insert string.
Copy string to buffer.

(saslbabl--)Copy astring from sa
of sl and bl.

Smaller of sl and bl.
Copy from sl to ba.

Delete sl characters from the start of buffer, ba.

blanks.
Save the smaller of bl and sl.
The remainder of the buffer.

Any character to be move forward in the buf
Yes. Copy the remainder of buffer forward to t

Duplicate ba and remainder of buffer.
Buffer address ba.

Address of remainder of buffer.
Copy the remainder of buffer to t

Address of remainder of buffer.
Fill the remainder of buffer with blanks.
A local variable to be used by SEARC

(saslbabl--nf) Search for the stri

found, returnthe offsetofthe found stringasna

f is false and n is meaningless.
Initialize FOUND to be false.
Save buffer address ba.
bl-sl.
Scan the buffer for the string. Stack is
Is the string found at this position
If found,

122

ring 2.

use string 2 is larger.
nltoindicatethatstring lisgreaterthan

nitial n.

It of comparison.

nto the buffer at ba. The length of

he return stack.

makingroomforthestringtobeinserted.

to ba. Characters copied is the smaller

Fill the end of buffer with

fer?
he start of buffer.

he beginning of the buffer.

H as a flag.

ng at sa inside the string at ba. If
ndatrueflag. Ifnotfound,

now (sabasl--)

FOUND ON Turn on the FOUND flag,

LEAVE and quit the do loop immediately.

THEN

SWAP 1+ SWAP Increment the buffer address ba to d o the next comparison.

LOOP

DROP NIP Discard sl and sa.

R> - Offsetfromthebeginningofthebuffertoth estartingpointofthefoundstring.
FOUND @ Get the found flag.

These string commands are the basic commands mgaglementing the string editing commands
which are needed in both the line editor and thheesteditor in this F83 system.

15.2. Terminal Dependent Deferred Commands
Several commands which will be used to controlestidisplay in the screen editor are defined here

as deferred commands so that commands define@ im#heditor can be used also in the screen
editor by re-vectoring these deferred commands.

DEFERAT (colrow--) Paosition the cursor at the given location specified by the stack numbers.
DOES> A vectored word.

-ROT 2DUP #LINE ! Store col in #LINE.

#OUT ! Store row in #OUT.

ROT PERFORM Execute the word vectored to by AT.

AT Execute AT vectors to itself.

DEFER BLOT (col --) Delete the rest of the curren tline.

DEFER -LINE (--) Delete the current line and scro Il the rest of screen up by one line.

:DARK (--) Clear the screen and home the cursor.

DOES> Dark is a deferred word and can be re-vector ed.

PERFORM Firstexecutetheroutinewhoseexecution addresswasputintotheparameterfield.
#LINE OFF Reset line count.

#OUT OFF Reset character count.

DARK Vector DARK to itself.

VOCABULARY EDITOR Create a new EDITOR vocabulary.

EDITOR ALSO Make it the current vocabulary so that following de finitions will be included
DEFINITIONS in it.

DEFER .SCREEN (--) Display the entire screen.

: (AT) (col row --) Do a carriage return in line e ditor mode.
2DROP CR ;

: (BLOT) (col --) Fill the rest of line with spac es.

C/L SWAP - Characters in the rest of this line.

SPACES Output spaces.

1 (DARK) (--) Clear the screen with line feeds.

24 0 DO CR LOOP Send 24 carriage returns.

"(AT) ISAT Initialize AT,

'(BLOT) IS BLOT and the rest of the deferred words to support the dumbest possible terminal.
' (DARK) IS DARK

"NOORP IS -LINE

'CR IS .SCREEN

15.3. The Cursor Commands

123

The cursor in the line editor is a pointer pointtoghe character position where the next editing

actions will occur.

this variable.

VARIABLE R#

:TOP (--)
R# OFF

:C(n-)
R# @
C/ISCR 1-
AND

R# !

:T(n-)
TOP
CIL*

C

: CURSOR (--n)
R# @

CLINE# (--n)
CURSORC/L/

:COL#(--n)
CURSOR C/L MOD

24T (n-)
LINE# +
T

J'START (-- addr)
SCR @
BLOCK

:'CURSOR (-- addr)
'START
CURSOR +

C'LINE (-n)
COL#-

#AFTER (--n)
ciL
COL# -

: #REMAINING (--n)

CURSOR -

“#END (--n)
#REMAINING
CoL#

g

The cursor position is stone@ variable R#, as the offset from the beginning
of the screen buffer to the address of the cuckatacter.

All cursor commands use or modify

Often the cursor is represented bgret ' on CRT display.

Defined in the nucleus.

Go to the top of the screen.
Initialize R# to zero.

Move the cursor by n characters, right
Current cursor position.
1023, a 10 bit mask.

Ensure the cursor is within the screen.

Replace it.

Go to the beginning of line n.
Reset R#.
Beginning of the nth line.
Set the cursor. Always within screen.

Return the current cursor positio

Return the current line number.
Divide the cursor position by charact

Return the current column number.
The modulo of cursor position.

Increment the current line by n.
Get the new line number.
Select it as the current line.

The buffer address of the star
The current screen number.
The address of the buffer.

Theactualaddressofthecur
Beginning of the screen.

Add cursor offset to get the address in t

Theaddressofthebeginningofth

Subtract the column number to get back to t

eturn the number of characters af
Characters per line.
Characters after cursor.

Returnthe number of characte
screen.
Characters after cursor on screen.

Number of characters betweenthe be

Characters from cursor to end of screen
Characters from start of line to cursor on cu

124

or left.

ers per line.

t of the screen.

rentcharacterinthebufferpointedtobythecurs or.

he buffer.

ecurrentline. 'CURSORAddressofthecursor.
he beginning.

ter the cursor on the current line.

rs after the cursor on screen B/BUF Characters per

ginning of currentlinetothe end of screen.

rrent line.

15.4. Editing Buffers

PAD returns the address of a text buffer used byhFxystem for string output and temporary
storage. The Starting Forth editor requires twaiteghal text buffers: an insert buffer and a find
buffer. The insert buffer stores a text string ehwill be inserted into the screen during editing,
and the find buffer stores a string to be usedringsearch. These two buffers are assigned
immediately above the PAD buffer and they all flsaime distance above the top of the dictionary.
Since they are using the free memory space bettheetata stack and the dictionary, they do not
require fixed allocation in the RAM memory.

Some of other editing utility commands are alsorasef here.

VARIABLE CHANGED Avariableindicatingthatthe cur rentscreenhasbeen edited sothatdate stamp
can be applied automatically.
: MODIFIED (--) Mark the screen as updated and al so set the CHANGED flag.
CHANGED ON Set CHANGED flag.
UPDATE Set the UPDATE flag.
ASCIl ~ CONSTANT EOS EOS isthe character to denote the end of a string on input. It allows multiple
editing commands on one line.
P ?TEXT (addr -- addr+1 n)
Accept a string to addr. For a null string, do not disturb the string already
at addr.
>R Save addr on return stack.
EOS PARSE Scan the input stream for ~ or end of li ne.
DUP Get the character count of the input string.
IF If character count is not 0, do the string copy ing.
R@ Retrieve addr.
C/L 1+ BLANK Clear one line at addr.
HERE COUNT The string is in the word buffer.
R@ PLACE Copy the string to addr.
ELSE 2DROP Clean the stack after PARSE.
THEN
R> Get the addr back.
COUNT Replace it by addr+1 and count.
10 CONSTANT ID-LEN Length of the id stamp buffer.
CREATEID ID-LENALLOT Id stamp buffer containing t he user name and date stamp.
ID ID-LEN BLANK Initialize the id stamp buffer.
84 CONSTANT C/PAD All text buffers are to be 84 cha racters long.
J'INSERT (-- addr) Return the address of insert buffer.

PAD C/PAD + 84 bytes above PAD.

125

:'FIND (-- addr)
'INSERT C/PAD +

. 'VIDEO (-- addr)
'FIND C/PAD +

: .FRAMED (addr --)

COUNT TYPE

. BUFS (-)
CR.MI"

'INSERT .FRAMED
CR."F"

'FIND .FRAMED

. ?MISSING

0=1IF
DROP

Free Memory

%

Wideo Screen Buffer
(1024 Bytes)

Figure15.1

Return the address of find buff
84 bytes above the insert buffer.

Return the screen editor buffe
4 bytes above the find buffer.

Print a string at addr framed
Print preceeding quote.
Print the string.
Print following quote.

Display the contents of the insert a
Header for insert string.
Print insert buffer.
Header of find string.
Print find buffer.

(nf--n,orabort)lfflagisfalse,
return only n.
If flag is false, do the following.

J—\

-4— "VIDED
Find Buffer

-4— FIND
Inzert Buffer

-— '[NEERT
Text Buffer

-f— PaD
Word Buffer

-f— HERE

Dictionary

The editing buffers.

126

er.

with single quotes.

nd find buffers.

printthefindbufferandabort. Otherwise,

'FIND .FRAMED Print contents of find buffer.

" not found " This is used when a string cannot be found in the screen.

QUIT Give up and return to the text interpreter.

THEN ;

:KEEP (--) Copy the current line into the insert buffer.

'LINE Address of current line.

C/L'INSERT PLACE Copy the line to insert buffer.

K(-) Exchange the contents of the insert and find buffers.

'FIND PAD C/PAD CMOVE Copy find buffer into PAD bu ffer.

'INSERT 'FIND C/PAD Copy insert buffer to find buffer.

CMOVE

PAD 'INSERT C/PAD Copy old find string to insert buffer.

CMOVE

'F+(nl--n2) Add the length of the found stri ng to nl.

'FIND Address of the find buffer.

c@ Length of find string.

+)

W (--) Abbreviation of SAVE-BUFFERS.

SAVE-BUFFERS ;

!'C#A(--addrcount) Returnthe address ofthe cursor and the characters after cursor on the curre nt
line.

'CURSOR Address of the cursor.

#AFTER Characters after cursor.

MODIFIED Update flags.

() (-- len'insert len ‘cursor #after)
Getinputstringintotheinsertbufferandleavea ddressesandlengthsnecessary
to do the insertion.

'INSERT ?TEXT Get input text and copy it into the insert buffer.

TUCK Tuck a copy of len under address of insert bu ffer.

'CHA Push cursor address and character count on st ack.

15.5. Line Editing Commands

Line editing commands modify the contents of theremt line in the current screen. Many of
these commands expect a string immediately follgviire command in the same input line. The
string may be a null string, i.e., the commandlkived immediately by a carriage return. In this
case, the contents of the appropriate buffer agd usplace of input string. The text string is
shown as <text>, which is a sequence of ASCII dtara. Blanks or spaces can be included in
the string. The string is terminated either byaaiage return or by the carat character "'

(=) | <text> inserts text string on the cur rent line at the cursor.

() Get the insert string.

INSERT Insert it on the current line.

C Move the cursor to the end of the inserted strin g.

0 (-) O <text> overwrites text string on the current line at the cursor.

() Get the insert string.

REPLACE Write over the current line with the inser t string.

C Move cursor to end of inserted string.

P(-) P <text> replaces the current line with <text>and blank fill the rest of the
line.

'INSERT ?TEXT Get insert string.

DROP Discard character count.

'LINE C/L CMOVE Copy the entire line.

127

MODIFIED Update flags.

U(-) U <text> inserts a line under the curre ntline. Subsequentlineinthe screen
are pushed down by one line. The last line is lost

CiLC Move the cursor to next line.

'LINE C/L OVER #END

INSERT Insert a dummy line at the next line and pu sh all subsequent line down.

P Put the insert string at the next line.

X (=) Delete the current line and save itin t he insert buffer.

KEEP Save the current line in the insert buffer.

'LINE#END C/L DELETE Delete the current line.

MODIFIED Update flags.

2 SPLIT (--) Break the current line in two at the cursor.

PAD C/L 2DUP BLANK Clear the PAD buffer.

'CURSOR #REMAINING Address of cursor and character s to end of screen.

INSERT Insert a line of blanks at the cursor.

MODIFIED

:JOIN (--) Put a copy of next line after the cur sor.

'LINE C/L + Beginning of the next line.

C/L Copy one line,

'C#A INSERT to the cursor.

MODIFIED

:WIPE (--) Clear the screen to blanks.

'START B/BUF BLANK Fill the screen with blanks.

MODIFIED

:M(mn--) Mcopiesthe currentlinetonthlin einthemthscreen. Misneutralizedbecause
theeditorshouldnotaffectotherscreensandMmo vesthecurrentlinetoanother
screen.

TRUE ABORT" Use G!" Always abort.

:G (screenline--) Get a line from another scre en and insert it in front of the current line.
C/L* character offset to the line.

SWAP IN-BLOCK + Get the source block from the in-f ile. Add offset to the source line.
C/L'INSERT PLACE First put the source line in the insert buffer.

C/L NEGATE C Move the cursor to the line above.

U Insert the source line.

C/LC Move the cursor back.

: BRING (screen first last --)

Get a range of lines from another screen.

1+ SWAP DO Scan the range of lines.

DUP Source screen number.

[FORTH]I Select the loop index in FORTH, not t he | defined above in EDITOR.
G Get one line.

LOOP

DROP Discard the screen number.

15.6. String Editor Commands

The main task of the string editor is to locatéreng inside the current screen and place the curso
at the end of the found string. This allows yountodify strings in a screen quickly, and to make

local modifications as you debugs source code. sfitreg pattern to be searched is put in the find
buffer.

:FIND? (--nf) Get the find string from the inp ut stream and search for a matching string in
the screen starting at the current cursor position. Returnthe character offset

128

'FIND
?TEXT

of the found string as n and a true flag if the str

flag if not found, and n is meaningless in this cas e.

Address of the find buffer.
Get the input text into find buffer.

'CURSOR #REMAINING

SEARCH

F(-)
FIND?
?MISSING
'F+C
E(-)
'FIND C@

DUP NEGATE C
'C#A ROT DELETE

:S(n-)

1 7ENOUGH
FIND?

IF 'F+ C EXIT THEN

DROP

FALSE

OVER SCR @ DO
N

TOP

'FIND COUNT

'CURSOR #REMAINING

SEARCH

IF

'F+C

DROP TRUE
LEAVE
ELSE DROP
THEN

KEY? ABORT" Break!"

LOOP
?MISSING

S(TILL) (--)
'FIND ?TEXT
'C#A SEARCH
?MISSING

STILL ()
‘CH#A (TILL)
'F+ DELETE

: JUST (-)
'C&A (TILL)
DELETE

KT ()

‘CURSOR (TILL)

Search the screen from the cursor down

F <text> finds the text and leaves the
Get the find string and do the searching.
Quit with an error message "?" if string
Move cursor to the end of the found string.

E <text> erases the string just found.
The character count of the found string.
Move the cursor to the beginning of t
Delete the found string.

D <text> finds and deletes a string.
Find.
Erase.

R<text> replacesthetextstringjust
Erase the found string.
Insert the insert string.

nS<text>searchesforthetextthrou

n. Eachtimeamatchisfound, nremainsonthe st

Abort if the data stack does not have at
Search the current screen.
Found in current screen. Move

Discard dummy number on stack when string is
Put a false flag on stack for do loop scanni

Scan a range of screens.
Next screen.
Beginning of next screen.
Find string.
Buffer address and count in th
Search the text string.
Found the string.
Move cursor to end of found string.
Replace false flag with true.
Exit the do loop.
Discard the character offset if string

If any key is received on the

n should be on the stack.

Search in the current line for the
Get the text string and put it in the
Search current line from the cursor fo
If string can't be found, abort.

TILL <text> deletes all text on the
find string.
Search the find string.
Delete from cursor to end of found stri

Justify. Delete up to but not inclu
Find the text string.
Deleteallcharactersbetweenthe cursoran
string.

Keep-Till. Copy all the characters be
string into the insert buffer.
Find the text string.

129

tof ind a match.

cursor just pass it.

is not found.

he found string.

foundwiththestringintheinsertbuffer.

ghallscreensfromthecurrentuptoscreen
least one item on it.
cursor and quit.

not found.
ng.

e next screen buffer.

is not found.

keyboard, quit the searching.
Otherwise, continuing the search to the next

screen.

text string.
find buffer.
r the find string.

currentline from cursor to the end of the

ng.

ding the text string.

dthestarting character ofthefound

tween the cursor and the end of the text

ing is found. Return a false

ackuntilscreennisreached.

'F+ The end of string.
'INSERT PLACE Copy the characters into insert buff er.

15.7. Screen Editor

The line editor works on the source screen onediretime. It serves well all the editing
functions. The only problem is that the text sordisplayed on the terminal scrolls up with the
entering of new lines at the bottom of terminakser. After some editing, compiling and testing,
the text screen starts to disappear over the tdpeaierminal and you must type L command to
re-display the text again. As the terminals ggtEmarter and smarter, it is nice if we can use
some of the extra functions in the terminal to kébeptext screen at the top of the terminal all the
time. This is basically what a screen editor doesny time the text screen is modified, the
modification will be written on the displayed tesdreen immediately.

If all the terminals were built the same way, ituMbbe a simple exercise to write a screen editor.
However, terminals are built with different scresamtrol commands. The screen editor must be
tailored to the specific terminal to use its speaifirsor and display control commands. The
screen editor in F83 uses all the commands dewveliopie line editor for editing functions. The
terminal-specific functions are concentrated inrfoommands: AT, DARK, BLOT, and -LINE,
which manage a continuous display of the editetidepeen. The display is updated
automatically as each command line is executed.

130

Lines Contents

0 Screnn Mumber and File MNatme

1 Cotntnet ID Starmp

15 Lines of Screen Text

14
17 Current Line
13
Scrolling Command Window
23

Figure15.2 Screen editor display
15.8. The Screen Display Commands

The display on the terminal is assumed to havelayZBD character format. The screen editor
displays the screen number on the top line orQioa the screen display. Lines 1 to 16 are used
to display 16 lines of text in the current screehine 17 display the current line. Lines 18 to 23
are used as a scrolling window for command inpdt@raracter output. The text screen stays at
the top of display and always shows the updatetiafethe current screen under editing.

3 CONSTANT DX Column offset for screen text. Allow room for line numbers.
1 CONSTANT DY Row offset for screen text. Allow ro om for screen number.
1 .LINE (--) Display the current line, with the ¢ ursor shown as an up-arrow or caret.
LINE# 2 .R SPACE Display the current line number.

'LINE COL# >TYPE Display the text before cursor.

ASCII " EMIT Display *, current position of the cu rsor.

'CURSOR #AFTER >TYPE Display the text after the cu rsor.

‘REDISPLAY(line#--) Update the image of line n on the terminal.

0 OVER DY + Column and row of line n on the displa y.

AT Move the display cursor to the display coordina tes.

DUP 2 .R SPACE Print the line number.

DUP C/L * Character offset of line n.

'START + Address of line n in screen buffer.

C/L TYPE Display the entire line.

SPACE . Display the line number.

#OUT @ BLOT Erase the rest of the line.

131

: CHANGED?

C/L*

DUP 'START +
SWAP 'VIDEO +
C/L COMP

 ALL (-)

DISK-ERROR @ 0=
IF

DX 0 AT .SCR
#OUT @ BLOT
[FORTH |
2STAMP
L/SCR 0 DO

| CHANGED?
IF | REDISPLAY
THEN

LOOP

'START 'VIDEO B/BUF

CMOVE

0 18 AT .LINE
019 AT -LINE
023 AT
#OUT OFF
THEN

: EDIT-AT (--)

CURSOR C/L /MOD
SWAP DX +

SWAP DY +

AT

“NEW (n --)

L/SCR SWAP DO
[FORTH]I
[EDITOR]T
EDIT-AT
>IN OFF
QUERY
SPAN @

IF

P

ELSE
[FORTH]I
REDISPLAY
LEAVE
THEN
SCREEN
LOOP
.SCREEN

:GET-ID (--)

ID ID-LENGTH
-TRAILING NIP 0=
IF
CR."EnteryoulD:"
ID-LEN 0 DO
ASCIl . EMIT
LOOP

ID-LEN BACKSPACES

ID ID-LEN EXPECT
THEN

(line# --f)

Return atrue flag if the line has changed since la

to case changes.

Character offset to the line.

Address of the line in the buffer.

Address of same line in the video bu
Compare the lines in text screen and vide
Return true if two line are different.

Redisplay all lines which have change
scroll the command region.
If no disk error, display the scre

Display the screen number.
Erase the rest of the line.
Switch context to FORTH because
Stamp the screen if not done.
Scan all the lines in the screen.
Has this line been changed?
If changed, redisplay the new lin

Update the video buffer.
Display the current line under the
Delete line 18 on display and scrol

Position the display cursor at the bottom
Clear output character count.

Move the display cursor to show th

functions.

Convert cursor offset to screen co

Column number.
Row number.

Move the display cursor.

Move the display cursortothe begin
linesuntilanullline (aline beginswith acarri
2 CR's gets you out of NEW.
Scan from line n down.

Loop index.
Position editor's cursor.

Position the display cursor.
Reset the input character offset.
Wait for a line of input text.
Number of characters in the input text.

If not a null line,

Put the text in the current line.

For a null line,

Get the current line number,
Put back the old line.

Quit here.

Refresh the display.

Check the ID stamp field. If it is
Get the ID string address and length.

Is the length 0?

Yes. Prompt the user.

Display a string of dots.

Backspace over the dots.
Input the id stamp to the id sta

stdisplay. Itis sensitive

ffer.
o buffer.

d, the screen number, the cursor line, and

en.

displayed screen.
| up the rest of screen display.
ofdisplay, assuming 24 line display.

e position of the editor cursor for editing

ordinates.

ning of line n and accepttextfor following
agereturn)isentered,i.e.,

empty, prompt for user's id and date.

mp buffer.

:STAMP (--) Put the stamp at the end of line O i

ID Id buffer address.

'START C/L + End of line 0.

ID-LEN 1- - Backup the length of stamp text.
ID-LEN 1-

CMOVE Copy the stamp to screen.

1 ?STAMP (--) Update the ID if the screen has cha
CHANGED @ IF Changed?

STAMP Stamp the screen.
CHANGED OFF Reset changed flag.

THEN ;

2VARIABLE AUTO
VARIABLE EDITING?

Addresses of CR and STATUS to patch
Set during editing.

VARIABLE CHANGED Set if the edited screen has been
S INSTALL (--) Initialize the screen editor.

EDITING? @ NOT IF If not in the editing mode, init
[1.SCREEN Address of the screen refresher.
AUTO @ ! Vector it through AUTO.

EDITING? ON Turn on editing flag.

CHANGED OFF Turn off changed flag.

THEN

DISK-ERROR OFF Turn off the disk error flag always

15.9. The Screen Editor Commands

FORTH DEFINITIONS Thefollowing screen editing comm

FORTH vocabulary.

:DONE (--) Normal exitfrom the screen editor. U
wasmodified, flushthescreentodiskfile,andre

[EDITOR]

EDITING? @ IF If still in the editing mode,

PREVIOUS

EDITING? OFF turn off editing flag,

CR SCR? type the screen number,

>UPDATE @ 0< NOT IF and look at the update field

Un" THEN Not updated. Print prefix.

" modified" Complete the message.

?STAMP Update the ID stamp.

w Save contents to disk file.

THEN

DISK-ERROR OFF Turn of disk error flag to normal s

AUTO 2@ !

Revector CR

Re-enterthescreeneditor. Clearand
screen refresh.
Get id stamp.

ED(--)

[EDITOR] GET-ID

n the current screen.

nged and clear the change flag.

vectors for CRT and TTY, respectively.

changed.

ialize screen editor.

ands should be made accessible fromthe common

pdate the id stamp, tell you if the screen
moveautomaticscreenrefresh.

crolling mode.

initializethedisplayandbeginautomatic

INSTALL Initialize the screen editor.

EDITOR Make EDITOR the context vocabulary.

'VIDEO B/BUF ERASE Clear the video buffer.

DARK Home the cursor and clear CRT.

ALL Print the screen on CRT.

EDIT(n--) Set n as the current editing screen and call ED to do screen editing.
1 ?ENOUGH Abort if the stack has less than one ite m.

SCR! Store n in SCR, making screen n the current editing screen.
[EDITOR] TOP Move editor cursor to top of screen

ED Do screen editing.

{(WHERE)(posscr--) Whenanerroroccurred dur ing compilation, the position and screen numberwhe re

error occurred are saved on the data stack. (WHERE)
invoke the screen editor and show the screen to be
by disk reading.

DISK-ERROR @ 0=
IF

Make sure the error is not caused

133

uses these two numbers to
edited.

EDIT Do screen editing.

[EDITOR]1-C Position the display cursor befor e the error.
'WORD COUNT 'FIND Put the word in trouble into the find buffer.

PLACE

THEN ;

15.10. Configuring The Terminal

Each terminal manufacturer has its own way of adinig the display on the terminal screen. To
use the full power of a screen editor, the screforemust know how to position the display cursor
at any position on the display screen and a fewrdtiings like initialize the display, erase omeli
and delete one line. In F83 system, terminal gométion commands are provided for a number
of popular terminals. If your terminal is not img list, you will have to define the proper
commands. You can follow the pattern as providdtis not a very difficult task.

An example is shown here. You should consult B Iisting for other terminals.

: SMART (--) Initialize vectored routines for the IBM PC.
[1CRLF Execution address of carriage return.

[1CR >BODY Vector address in the deferred word C R.
AUTO 2! Store them in the AUTO area.

[1.ALL IS .SCREEN Vector .SCREEN to .ALL.

CODE IBM-AT (col row Position cursor at the specified location on CRT sc reen.

AXPOPDXPOPALDHMOV Copy col and row into DX.

BH BH XOR Clear BH register.

2 # AH MOV Cursor positioning code.

16 INT Call BIOS.

NEXT

END-CODE

CODE IBM-DARK (--) Clear screen and home the curs or.

2 # AX MOV Home code.

16 INT Call BIOS.

NEXT

END-CODE

CODEIBM-BLOT(col--) Clear from cursor to end o fline.

80 SWAP - Remaining characters on the line.

SPACES Output that many spaces.

CODE IBM—LINE (--) Delete the current line and sc roll the rest of the screen.
BP PUSH Save BP register.

BH BH XOR Clear BH.

3#AH MOV 16 INT Call BIOS for cursor position.

DH CH MOV Line number moved to CH.

CL CL XOR Column number cleared to zero.

24 256 * 79 + Bottom line and right-most column

DX MOV copied to DX register.

7 # BH MOV

6256 *1+#AX MOV Code stored in AX.

16 INT Call BIOS.

BP POP Restore BP.

NEXT

END-CODE

IBM (--) Initialize the screen editor for IBM P C.
SMART Vector CR and .SCREEN.

[1IBM-AT IS AT Vector the rest of terminal speci fic commands.

[11BM-DARK IS DARK
[TIBM--LINEIS-LINE
[11BM-BLOT IS BLOT

134

135

Chapter 16. Viewing Source Screens

The source code about viewing is scattered in UTYLBLK, screen 7, EXTEND86.BLK screen
12, and KERNEL.BLK Screens 66 and 76.

Forth with its hosts of commands can be looked dpam two opposing points of view. For the
Forth advocates, it is called modularity becausernands can be individually executed or
compiled to build higher level commands. For aghiers called fragmentation, because functions
are scattered in hundreds of small bits and piec&s.decipher a colon command, you have to
know the exact functions of every command in tloisimand. It is not an easy job to find them
because they seldom are grouped in one place.

F83 has more than 1000 commands in it. How carfipouany particular command in this mess?

The designers of F83 provide us with a viewingligoivhich allows us to locate the source code
of all the commands in the dictionary and displag block of texts that contains the source of the
command we look for. To accommodate this facilityg format of Forth commands in the
dictionary is changed from the traditional formnaime field, link field, code field and parameter
field to that as shown in Fig. 16.1.

16.1. TheView Field

The view field is used to store information abotiene the source code of the command is located.
It is two bytes long and divided into two sub figldhe lower 12 bits contain the block number of
the source code and the upper four bits contaifilthaumber of a DOS file containing the block.
Let's first examine some of the low level commaasisociated with the view field:

: VIEW# (-- addr) Return the view field in the cu rrent FCB.

FILE @ Address of the current FCB.

40 + Offset by 40 bytes to the view field.

S, VIEW (--) Compile the view field in a new defi nition.

VIEW# @ Get the view file number of the current fi le.

4096 * Shift it to the upper 4 bit file number sub field.

BLK @ + Add the block number of the screen under ¢ ompilation.

:"CREATE (--) Create the header of a new definit ion. This definition was discussed in the

chapter on the vocabulary structure.

:>VIEW (cfa--vfa) Go from code field to the vi ew field.
SLINK Go to link field first.
2- View field is two bytes ahead of the link field

136

VIEW-FILES Array Word Definition

0D METARS.BLE Filed# Blocks#
1 KFREMNFELES BLE Link Field
2 EXTENDEA BLE
3 CPUE086. BLE
Marne Field
4 UTILITY.BLE
5 CLOCE.BLE
Code Field
Paramter Field

Figure16.1 Theview field and the view files.

:VIEW> (vfa--cfa) Go from view field to code f ield.
2+ To link field.

LINK> From link field to code field.

16.2. TheView Files

The view field in a command has a view file numipethe view field. From this number the
viewing command will have to find the file and opefor viewing. The view file number for
different source files are assigned and pertingotination are stored in an array called
VIEW-FILES. In the file control block (FCB) in theefinition of each source file, bytes 40 and
41 are used to store the view file number. Thavijoles the file number to store into the view
field when the command was first compiled into din&ionary.

CREATE VIEW-FILES Anarraywheretheviewfilesare arrangedinsequentialordersothattheviewing
command can find and open the source file of a word definition.

32 ALLOT There is enough space to define 16 files f or viewing.

VIEWS (n--) Assign the view file number on the stack to a file and store the fcb addressin

137

the corresponding entry in the VIEW-FILES array.

[DOS]

?DEFINE Searchthedictionary forthe word name fo llowing VIEWS. Itmustbe afilename
and the fcb address is returned.

2DUP 40 +! Store number n into the view# field in the FCB of the file

BODY> Get the execution address of the file defini tion.

SWAP 2* The address offset into the VIEW-FILES arr ay.

VIEW-FILES +! Store the fcb address into the VIEW -FILES array.

Now, view files can be assigned view file number§ilt the VIEW-FILES array:

1 VIEWS KERNEL86.BLK
2 VIEWS EXTEND86.BLK
3 VIEWS CPU8086.BLK
4 VIEWS UTILITY.BLK

These are the source files in the F83 system. thalcommands loaded from these files can be
viewed. If you have some application programsnther file, you will have to assign a view file
number to it using the VIEWS command as above. erAfiat, you can load in your application
and can view the commands loaded in from your file.

16.3. TheViewing Command

Assuming that all the source code files are ordéifault disk drive, it is very easy to display a
screen which contains the command you want to exami The command is as following:

VIEW <name>
where <name> is the name of the command you wametview. The command VIEW will locate
the word <name> in the dictionary and find outfileeand the screen number of the source code of
this command. It will then open that file and reélad screen from the file and display the screen
on the CRT terminal.

: @VIEW (cfa--scri#file#) From the code field a ddress of adefinition, find its view
field and returnthe screen number andthe file num ber storedinthe viewfield.

>VIEW Get the view field address.

@ DUP 4095 AND Mast off the top 4 bits in the view field and leave only the screen number.

DUP 0= If the screen number is 0,

ABORT" entered at abort because the word is not loaded from a file.

terminal”

SWAP 4096 / 15 AND Extract the view file number fr om the top 4 bits.

CVIEW (--) Allow the user to see the source scre en of the following word. If the VIEW# is
zero, thenthe currentfile is used. Otherwise, th e associated field is opened
and viewed.

Find the cfa of the following word.

@VIEW Get the screen number and the view file numb er.
?DUP IF If the file field is zero, use the current file. If not zero,
2*VIEW-FILES + @ find the cfa of the view fil e in array VIEW-FILES.
Misin" Print the file name first.

2DUP >BODY .FILE

" screen . And also the screen number.

EXECUTE Make the file our current file.

OPEN-FILE Open it for reading.

ELSE The definition is in the current file.

" may be in the
current file: "

FILE? Print the file name,

" screen " DUP > and the screen number.

138

THEN
LIST Show the screen.

View file number O is reserved for the current filé has not been assigned a view file number.
Up to 15 files can be stored in the VIEW-FILES grfar viewing. If you have to use the second
drive to store some of the files, the drive nunmheheir FCB must be assigned accordingly.

139

Chapter 17. WORDS

The source code in this chapter is in file UTILIBLK, Screens 3 and 5.

The command WORDS (VLIST in older Forth systemspliys all the commands defined in a
vocabulary. It is very useful in inspecting thetainary contents, and also in determining the
progress of compilation when a large applicatiobamg loaded. The implementation of this
command in F83 system is slightly more complicdtedause the vocabulary is hashed into four
threads.

17.1. Output Formatting Commands

To display a sequence of variable length names®ICRT terminal or printed on a printer, it is
necessary to wrap a whole word around the endinéanstead of breaking a word. A few
commands allow us to detect the end of line comdi&ind insert a carriage return before printing
the last word.

VARIABLE LMARGIN The column number of the left marg in.

0 LMARGIN'!
VARIABLE RMARGIN The column number of the right mar gin.

70 RMARGIN !

:?LINE (n--) Ifthe currentline does not have space for n more characters, move to the next

line.

#OUT @ Current character count.

+ RMARGIN @ > IF Add nto it. If it is greater th an the right margin,

CR Move to the next line.

LMARGIN SPACES Align to the left margin.

THEN ;

:?2CR (=) Move to next line if we had passed the left margin already.

0 ?LINE

17.2. WORDS

In the parameter field of the command of a vocalydammand like FORTH, EDITOR, or DOS,
etc., there are four addresses pointing to the ehfisir thread in the dictionary. They are the
link field addresses of the four newest commandisiel@ in the vocabulary. To print out the
entire list of names in the vocabulary, we havedoe through these four threads and print out
command names in the descending order accorditigetaddresses. These four addresses are
first moved to the top of the dictionary. The kesgaddress is first used to print the name which
was defined last. This address is replaced byéixéaddress in its thread, and the process is
repeated until all names are printed.

: LARGEST (addr n -- addr' val) Given an address and a number on the stack, return the
140

OVER 0 SWAP
ROT 0 DO
2DUP @ U<
IF

-ROT 2DROP
DUP @ OVER
THEN

2+

LOOP

DROP

:WORDS (--)

CR LMARGIN @ SPACES

CONTEXT @
HERE #THREADS 2*
CMOVE

BEGIN

HERE #THREADS
LARGEST

DUP WHILE

DUP L>NAME
DUP C@ 31 AND
?LINE

.ID

SPACE SPACE

@ SWAP'!

KEY? IF EXIT THEN
REPEAT

2DROP

ROOT DEFINITIONS
: WORDS WORDS ;

FORTH DEFINITIONS

List the words in a vocabulary. It ¢

address and the value of the largest entry in the a rray.
Add 0 and addr on the stack.
Scan through the array.
Compare contents of an array entry with
If the entry is greater,
discard the old address and its value
and replace them with the new address

the current largest value.

and its value.
Next address to be scanned.

Discard the address used for scanning.

an be interrupted by pressing any key.
Align to the left margin.

The context vocabulary.

Copy the array of thread ends to the word buffer.

Begin the printing loop.
Pick the largest address in the thread array.

If it is not zero, print a name. Otherwi se, the vocabulary is exhausted.
From the link field, move to the name field.
The length of the name.
Make sure there is enough room at the end o
Print one name.
Add 2 spaces.
Replace the largest addressin the threa
in the thread.
Exit if a key is pressed.
Continue until all names are printed.
Discard the address and a value, which is ze ro.

faline.

darray by the address of the next word

WORDS must also be defined in the ROOQT vocabulary.

WORDS can now be accessed any wher e in the F83 system.

141

Chapter 18. Disk File Utility

The source code in this chapter is in UTILITY.BL8Greens 4, 7 and 8.
18.1. Displaying Screensin aFile

The line editor allows us to examine and modifyesas, one at atime. For large application
which requires many screens, it is necessary te bamne commands which allow us to scan the
contents of a file so that we will know which sard¢e examine in detail. These cammands are
also useful in generating hardcopy of source cada printer.

:.SCR () Print the current screen number and t he file name.

."Scr#"SCR? Print the screen number,

8 SPACES FILE? and the file name.

(LIST (n--) Listthe specifiedscreeninthe 16 by 64 characterformat. Pressingakeystops
the printing. LIST also makes n the current screen

1 ?ENOUGH Make sure n is on the stack.

CR DUP SCR'! Make n the current screen.

.SCR Print screen number and file name.

L/SCR 0 DO Scan 16 lines.

CR |3 .R SPACE Print the line number first.

DUP BLOCK Get the screen from the file and return the buffer address.

IC/IL*+ Line address in the buffer.

-TRAILING >TYPE Print one line of text.

KEY? ?LEAVE Quit if a key is pressed.

LOOP

DROP CR House keeping.

To print multiple screens on paper, it is niceti@age three screens to a page. By convention,
the first screen number is a multiple of threehsd & group of three screens forms a unit in
arranging your source code. TRIAD is the commangkrint screens in this style.

:TRIAD (n--) Print three screens on a page. The nth screen must be printed. The top screen
has a screen number modulo 3.

12 EMIT Form feed.

3/3* Modulo 3 boundary.

3 BOUNDS DO Print only 3 screens.

I LIST One screen at a time.

LOOP ;

The top line in a screen is usually a comment linBesides the documenting function, it also
allows you to scan a range of screens and ideth&\contents of screens easily. F83 also puts an
ID stamp at the end of the top line. The commatdEX prints the top lines of a range of
screens. lItis very handy as a substitute of @escdirectory.

:.LINEO (n--) Print line O of nth screen.

DUP 3 MOD If n is evenly divisible by 3,
0=IF CR THEN send out an extra line feed.
CR DUP 3 .R SPACE Print the screen number.
BLOCK Get the screen from file.

142

C/L -TRAILING >TYPE Print the top line.

INDEX(startend--) List the top lines in ara nge of screens.
2 ?ENOUGH It needs two parameters.

1+ SWAP DO Scan the range of screens.

| .LINEO Print top line only.

LOOP

CR

IND (n--) Start printing index lines from scre en n. Continue until a key is pressed.
BEGIN Start with screen n.

DUP .LINEO Print one top line.

1+ Increment n .

KEY? UNTIL Stop when a key is pressed.

DROP ;

18.2. Disk Buffers

Screens or blocks of 1024 bytes are the basic foritsorth program source code. The size of
block is convenient to develop modularized progréaesause the block of text fits comfortably
inside a standard CRT screen, while allow enougimrto do loading and testing of the source
code. Since the screens can be compiled indeptynders the common practice to use a load
screen which loads other screens in the ordeighatjuired by the application. Therefore,
screens do not have to be arranged in a specdaror However, there are times when we would
like to move texts screens around and physicatgngre them in some order, especially if the texts
are to be printed and communicated to other peosk copying utility in F83 enables you to
copy single or multiple screens within a file atgbarom one file to another.

To fully appreciate the disk copying utility in F88is necessary to understand fully the disk &uff
structure used in the F83 system to handle thedfadm and to the disk files. Let us briefly
review the F83 disk buffers.

In the high RAM memory, a number of disk buffers assigned by the system at boot up time.
Each buffer is 1024 bytes in size to hold a blotctegt or data, corresponding to the data stored in
a corresponding block in a disk file. The numbledisk buffers is specified in a constant
#BUFFERS. Immediately before the first disk buftbere is an array storing the essential
information about the disk buffers. Each disk btgfhas a corresponding entry in this array. An
entry consists of four cells for the block numkaepointer to the parent file, the address of tls& di
buffer, and an update flag. Whenever a block es®ed, its array entry is moved to the
beginning of the array, indicating it is the mastently accessed buffer. The buffer with an array
entry at the end of the array is the least accdsstdr and will be re-assigned to receive othekdi
block when necessary.

In doing multiple block copying, it is generallysieble to read/write all the disk buffers together
and in sequence to minimize the disk head movenaishe start/stop of the disk drive. F83

143

disk copy utility tries to optimize the disk acaess as it normally uses four disk buffers.

More detailed information on the disk I/O is cowkre the chapters dealing with the nucleus and
DOS of the F83 system.

18.3. Single Block Copying

To copy one block of text or data to another blocthe same disk file, the most efficient way is
not physically copying the block, but to bring gmurce block into one disk buffer and reassign
that buffer to the destination block with the updéidg set. The data in the buffer will be flushed
into the destination block when the buffer is nekfite other disk 1/0 transaction.

:ESTABLISH (n--) Setthe blocknumber ofthe mo strecently referencedblockton, thusassignthe
buffer to the nth block.

FILE @ SWAP Get the current file fcb.

1 BUFFER# Get the address of the first entry in th e buffer pointer array.

2! Store ninto thefirst cellin that entry, forc ing the most recently referenced
block to become the nthblock. The currentfilenu mberis storeintothe second
cell.

:(COPY)(fromto--) The primitive word to copy one block to another.

OFFSET @ Get the block offset number of the curren t file.

+ The actual block number of destination.

SWAP Get the source block number to top of stack.

IN-BLOCK Get the source block into the most recent ly referenced buffer.

DROP The buffer address is not needed.

ESTABLISH Claim this buffer for the destination bl ock.

UPDATE Update the buffer so that it will be writte n back to the destination block.

: COPY (fromto --) To be careful, copy a block a nd explicitly flush it to disk.

FLUSH Empty the disk buffersto diskfiles. Impor tantwhen accessing multiple files.

(COPY) Do the copying.

FLUSH Flush the destination block.

18.4. MultipleBlock Copying

When we copy a range of consecutive blocks frompdaee to another, complication arises if the
destination range overlaps with the source rang@ avoid conflicts in the overlapped copying,
the direction of copying must be carefully selected

VARIABLE HOPPED The number of screens to skip when copying.
VARIABLE U/D The direction of copying to avoid over lap.

DEFER CONVEY-COPY Adeferredword. Itwillbeused tocopywithinonefile and copy betweenfiles.
'(COPY)ISCONVEY-COPY For the moment, define it t 0 copy blocks in the same file.
:HOP (n--) Specify the number of screens to ski p in copying.
HOPPED ! ;

1. TO(n1n2--n1n2) Print a message while copy ing.

CR OVER. Print n1.

o "

DUP . Print n2.

: (CONVEY) (blk n -- Move a range of screens in th e direction specified by U/D.

144

blk+-n)

0?DO Copy n blocks. If n=0, exit immediately.

KEY? ?LEAVE Stop if user hit a key.

DUP DUP Source block number.

HOPPED @ + Destination block number.

.TO Print something to indicate that the computer is workin hard.

CONVEY-COPY Copy one block a time.

UbD @ + The next source block.

LOOP

FLUSH Flush the blocks still in the disk buffers.

: CONVEY (first last --)
Move a set of screens. First determine the directi on of copying to prevent
overlap. Move the blocks as a set whose size is de termined by the number of
available disk buffers.

FLUSH Clear the buffers.

HOPPED @ Get the screen number to skip.

O<IF If copying from high block to low block,

1+ OVER - Number of blocks to copy.

1 Copy in the forward direction.

ELSE Copying from low block to high block.

DUP 1+ ROT - Number of blocks to copy.

-1 Copy in the backward direction.

THEN

umD! Store the direction code into U/D.

#BUFFERS /MOD Groups of blocks to be copied togeth er.

>R (CONVEY) R> Copy the remainder blocks which do not fill the pipeline.

0?DO Pipe the rest of block through all the buffe rs.

#BUFFERS (CONVEY) Copy #BUFFERS blocks all at onc e.

LOOP

DROP Leftover block number.

If you know the destination block number and dowaht to use HOP to specify the number of
blocks to be skipped, you can use the following ©@nds to do the copying:

<first> <last> TO <destination> CONVEY
where "first', 'last’, and 'destination’ are bladknbers indicating the range of source blocks had t
first destination block number.

:TO (first last -- first last)

Calculate the blocks to be hopped and store the num ber in HOPPED.
SWAP Get 'first' to top of stack.
BL WORD Read the next number.

NUMBER DROP

Convert the number to an integer.

OVER - The hopping distance.
HOP Store it in HOPPED.
Restore the 'first last' order on data stack.

SWAP

18.5. MultipleFile Block Copying

F83 Version 2.0 and above was modified so that véteeens are copied, it is always read from the
in-file and written to the current file. Thereforeis not necessary to define special commands to
copy screens from one file to another. You musteraber that when you OPEN a file, you

assign the file to both the current file and thdil|. If you open another file using the FROM
command, this file becomes the in-file which isa@y& to be read. In the early versions of F83 the
role of in-file was not clearly defined, and mangdi copying commands had to be redefined in
the FILES vocabulary. The following discussion laggoonly to the F83 Versions 1.x.

145

One of the advantages in using the DOS operatisigsyto host a Forth system is that we can
organize the disk storage into named files whidp he using the disk storage more conveniently
by grouping related screens into separated filétowever, it is often necessary to transfer
common utility from one file to another. The mplé file screen copying utility in F83 system
makes it easy to copy either single screen or gerah screens from one file to another by new
versions of COPY and CONVEY. These commands atefireed in the FILES vocabulary so
that they can be accessed independent of therexiSOPY and CONVEY commands in the
FORTH vocabulary.

ONLY FORTH ALSO FILES = Make FORTHand ONLY the residentvocabulariesand F ILES the contextand current

DEFINITIONS vocabulary.

: COPY (fromto --) CopyascreenfromtheFROMf iletothecurrentfile. TheFROMfilemustbedec lared
by the FROM xxx commands, where xxx is the FROM fil e name.

SWAP Get the source block number to top of stack.

EXCHANGE Exchange the FROM file with the current f ile.

BLOCK Read the source block from the FROM file.

SWAP Get the destination block number to top of st ack

EXCHANGE Restore the current file.

BLOCK Get the destination block from the current f ile.

B/BUF CMOVE Copy the contents of the source screen into destination screen buffer.

UPDATE Update the destination block so it will be copied back to the current file.

: CONVEY (first last --)
Copy arange of screens fromthe FROMfiletothe c urrentfile. The screenrange
isthe currentfileis offsetfromthatinthe FROM filebythenumberinHOPPED.

[TCONVEY-COPY >BODY Get the parameter field of t he word CONVEY-COPY.

@ The execution address of (COPY).

>R Save it on the return stack.

[1COPY Execution address of the COPY in the FILE S vocabulary, which does copy between
files.

IS CONVEY-COPY Vector CONVEY-COPY to the COPY we j ust defined above.

CONVEY Now, CONVEY will copy a range of screens fr om FROM file into the current file
because CONVEY-COPY is vectored to the new COPY com mand.

R>[] CONVEY-COPY
>BODY ! Restore CONVEY-COPY to the old single file COPY.

This is an example in using a deferred word to ifferént thing by vectoring it to different
commands. The commands using the deferred worsbdbave to be change at all.

146

Chapter 19. Memory Dump

Source code discussed here is in the UTILITY.BLK, fScreens 28 to 30 and KERNEL86.BLK
screen 87.

Source code and text data can be displayed orepruding commands like LIST, SHOW, and
TYPE at the primitive level. Non-ASCII data likbject code and numeric data cannot be display
conveniently. The dumping utility provided in F8Bows you to review the binary data in a
conveniently formatted form. Large area of memamg large numeric data set can be either
displayed on terminal or listed on printer.

19.1. TheDumb DUMP

A simple and primitive dump command is includedha kernel of F83 system. It helps you to
debug the system before it is fully checked out.

:DUMP (addrlen--) Dump a range of memory from addr in bytes.
0 DO Set up the loop.

CR Start a new line.
DUP 6 .R SPACE Print the address first.
16 0 DO Dump 16 bytes.

DUP C@ Get one byte.

3.R Print one byte.

1+ Increment address.
LOOP

16 +LOOP Loop for more lines.
DROP ;

19.2. TheSmart DUMP

More sophisticated dumping routines present dakeih numeric and ASCII forms because in
many cases the ASCII data are intermixed with lyigiata. It is convenient to have both types of
display side by side. It is also nice if one caarsthe memory forward and backward. The
more elaborate dumping utility in F83 has manyuezd not available in other systems.

.2(n--) Display a 2 digit number followed by a space.
0 Make a double number of n.

<# ##H#> Convert two digits.

TYPE SPACE Type two digits with a trailing space.

:D.2 (addrlen--) Display a line of 2 digit num bers.

BOUNDS

OVER + SWAP Convert addr len to the limit-index f ormat.
?DO Skip if len=0.

IC@ .2 Print one number.

LOOP ;

:EMIT. (char --) Emit one character if it is pri ntable. Otherwise display a period.
127 AND Mask off MSB.

DUP Save a copy of char.

147

BL 126 BETWEEN Is it between 32 and 126, the print able range?

NOT IF DROP ASCII . If not printable, replace char with ".".

THEN

EMIT Send either char or "." .

:DLN (addr --) Dump 16 bytes of data starting at addr. Display address first, then 2 sets of
8 bytes, followed by the ASCII equivalent.

CR New line.

DUP 4 U.R 2 SPACES Display the address.

8 2DUP D.2 SPACE Display 8 bytes.

OVER + 8 D 2 SPACE Second set of 8 bytes.

16 BOUNDS DO Scan 16 bytes

|C@ EMIT Print ASCII characters.

LOOP ;

2N (n1n2--n1) Ifnl=n2, display a downwards pointer, otherwise display the number.

2DUP = nl=n2?

IF." V" DROP Equal. Display pointer and drop n2

ELSE 2 .R THEN Otherwise, display n2.

SPACE ;

:?2A(nln2--nl) Ifnl=n2, display a 'v' symbo |. Otherwise display one character.

2DUP =

IF." V" DROP

ELSE 1 .R THEN Display only one character.

. .HEAD (addr len -- Displaythe headerfield ofadump, makingiteasy toindexintothe dataportion

addrl lenl) of the dump.

SWAP Get addr to top of stack.

DUP -16 AND Mask off the least significant 4 bits in the address.

SWAP Second copy of address.

15 AND Preserve only the lower 4 bits.

CR 6 SPACES Skip the address field.

80DO | ?.NLOOP Print numeric field markers.

SPACE

16 8 DO | ?.N LOOP Second set of field markers.

SPACE

16 0 DO | ?.ALOOP ASCII field markers.

ROT + Leave addrl and lenl on stack, enabling full line display.

:DUMP (addrlen--) Dump arange of memory speci fied on stack. The dump is always in HEX, but the
current base is preserved.

BASE @ -ROT Save base under addr.

HEX Use hexadecimal conversion.

.HEAD Print the display header.

BOUNDS DO Scan the memory range.

| DLN Display a line.

KEY? ?LEAVE Quit if any key is pressed.

16 +LOOP 16 bytes per line.

BASE ! Restore the original base.

:DU(addr--addr+64) Dump 64 bytes atthe speci fiedaddress andincrementthe addr sothatnextbl ock
of memory can be display next

DUP 64 DUMP Dump 64 bytes in a block.

64 + Increment addr.

:DL (line# --) Dumpthespecifiedlineinthecu rrentscreentoverifynon-printablecharacters.

C/L* Starting character count.

SCR [LOCK Get the current block buffer address.

+ Address of the specified line.

C/L DUMP Dump one line.

148

Chapter 20. Decompiler

The source code of the decompiler is in UTILITY.BLEBcreens 31 to 42.

A decompiler is a program which can translate geatlprogram in machine executable form back
to the source program a human being can read. i§h@mally impossible because traditional
compilers produce more object code than source, @basving a 'code expansion'. However,
decompilation is rather easy in Forth because tisesia one-to-one correspondence between the
source code and object code in Forth, as a woadcommand in Forth is compiled to an execution
address in the object. Exception to this one-te+@bationship occurs in the control structures
and some other special compiler directives. Alrddcompiler must be able to deal with these
exceptions.

The final command doing the decompilation is SERicW is used in the following fashion:

SEE <name>
where <name> is the name of a Forth command. &bendpiled source code will be displayed
on the terminal as a sequence of Forth commandksiim the original source code.

20.1. Positional Case Defining Command

This is the simplest among the CASE control stmegweffecting an n-way branching. In the
parameter field of the case command, there arguesee of execution addresses. One address in
the list is selected by the number on the stackexeduted. In this version of case, additional
range checking is also implemented for safety.

:OUT (npfa--) Displayanerrormessageifthe indexisoutofrangeforacasewordwhoseparamet er
field address pfa is on th stack.

CR."Subscriptoutof Initial error report.

range on "

DUP BODY> Get the code field address first.

>NAME Then the name field address.

.ID Print the name of the case word

" Maxis " ? Print the range allowed by the cas e word.

S otried " . The index tried.

QUIT Abort.

:MAP (npfa--addr) Giventhepfaofacasewor dandtheindexnforcaseselection,returntheex ecution
address selected. Abort if the index is out of rang e.

2DUP @ Fetch the range from pfa

U<IF Is the index n within range?

2+ SWAP 2* + Address of the execution code.

ELSE OUT Abort if out of range.

THEN ;

The case defining command is CASE: . It is usettiénsame way as a regular colon defining

command. The name of the new case command folBARE:, and then a list of regular Forth
149

commands followed by ;. A range number shouldméhe stack before CASE: is encountered

to specify the number of branches in the case camdma
n CASE: <name> <list of FORTH words> ;

When the new case word <name> is executed, itthse®p item on the stack as an index to select
one of the Forth commands in the list and exedtites

:CASE: (n--) Apositionalcasestatement. Ther angenisusedforerrorchecking. Atruntime,
the nth word is executed, depending on the value on stack when executed.

CONSTANT Compile the range n as a constant.

HIDE Smudge the name field as : would do.

] Now,usethecoloncompilertocompilethecases . Compilationwillbeterminated
by the ; command.

DOES> (index --) At runtime, use the index to fi nd the execution address among the
compiled cases and execute it.

MAP Return the address pointing to one of the case s compiled.

PERFORM Execute it.

Because of the multitude of special compiler divest used in the F83 system, we need a big case
statement to handle all the exceptions. This CAf&ffining command, though very simple by
borrowing facilities in the colon compiler, is eaanely powerful to take care of a wide range of
n-way branching structures. The limitation is taththe cases must be defined as single
commands. This is not a problem because it isod goactice to modularize the cases into single
testable commands before putting them into a leg s&ructure.

20.2. Associative Defining Command

An associative commands also has a list of valué@s parameter field. At runtime a value on the
top of the data stack is compared with the listadfies in the associative command. If a match is
found, the index of the matched value in the patanfeeld is returned. This is the inverse of an
array.

:ASSOCIATIVE:(n--) Storethe maximumrange of theassociative array asaconstant. Thevalueswi Il
be compiled explicitly by the , (comma) command.
CONSTANT Compile n as a constant.
DOES> (value -- index) Search value in the param eter field and return the index if
found.
DUP @ Get the range n.
-ROT (nvalue pfa--)
DUP @ Get another copy of n.
0DO Scan the list in parameter field.
2+ Next number in the list.
2DUP @ = Match?
IF Yes.
2DROP DROP Clear the stack.
100 Put on the index and flags.
LEAVE Quit the loop.
THEN
LOOP
2DROP Return only the index. If no match, return n+1.

Associative and case commands are using to budldgdo drive the decompiler.

150

20.3. Decoding Different Classes Of Commands

There are several types or classes of command$wekecute differently and thus require different
actions to decode them. The decompiler does n@ teado much other than printing the names
of the commands and taking care of the additiamfakmation compiled into the object code with
the command.

DEFER (SEE) A deferred word vectored to decompile d eferred words.
HIDDEN DEFINITIONS Hide all the supporting words in the HIDDEN vocabulary.
:.WORD (ip--ip+2) Display the name of a colon word and increase the ip by 2.
DUP @ Execution address.

>NAME .ID Print the name.

2+ ;

.INLINE(ip--ip+4) Display an inline literal and its value.

.WORD Print the name.

DUP @ . Print the value.

2+ Increment ip again.

:.BRANCH(ip--ip+4) Display a word that has an inline branch address.

.WORD Print the name of the branch word.

DUP @ OVER -. Print the branching offset.

2+ Increment ip again.

:.QUOTE (ip--ip+4) Handle the special case of COMPILE xxx .

.WORD Print COMPILE.

.WORD Print name of xxx.

:.STRING (ip--ip') Display a word with inline string argument.

.WORD Print name.

COUNT 2DUP TYPE Type out the inline string.

SPACE

+ Add the string length to ip to skip over the inl ine string.
EVEN Align the cell boundary.

:DOES? (ip--ip'f) Incrementsimulated ip and return atrue flag if DODOES is called as the first

instruction in the parameter field.
DUP 3 + Skip over the CALL DODOES code.
SWAP @ Get the machine code.

DOES-OP = Is it a CALL instruction?
; Return the flag.

151

Association Tahle

Ezecutioti Tabkle

(LIT) AHLINE
TBEAMNCH BEANCH
BRANCH BEAMNCH
(LOOF; BEANCH
(+LO0OF BEANCH
(Do BEANCH
CONPILE QUOTE
o] BTRING
(ABORT™ BTRING
(;CODE) (;CODE}
URMEST JUHMHEST
(" STRING
(7D BRAMNCH
i USES) FINIZH
All others WORD
Figure20.1 Decoding different types of commands.
:.(;CODE)(ip--ip") Decompile a DOES> word.
.WORD Print name.
DOES? Is it a DOES> word?
IF." DOES>" Yes. Print DOES>.
ELSE DROP FALSE Otherwise, replace ip with a 0.

THEN

End of a colon definition.

:.UNNEST (ip--0)
" Print ; .

bI’?OP 0 Replace ip with 0.
:.FINISH (ip--0) Display current word and quit
.WORD

DROP 0

Replace ip with 0, indicating end of decomp

ilation.

152

20.4. Sorting and Execution Tables

The associative commands EXECUTION-CLASS collelittha special cases that must be
decompiled differently from normal Forth commaniéte DUP, + , etc. At runtime if the address
pointed to by IP matches the address of a comnratidd table, the corresponding index will be
returned. This index will be used to select arcatien address in the following case table and
the appropriate decompilation function will be iked. These two tables make up the basic
mechanism of this table driven decompiler.

14 ASSOCIATIVE: 14 classes of special compiler words are to be proc essed.
EXECUTION-CLASS
"(LIT), Each execution address must be compiled e xplicitly using , .

' ?BRANCH , ' BRANCH , ' (LOOP) , ' (+LOOP),
*(DO), 'COMPILE, ' ("), ' (ABORT"),
*(;CODE), 'UNNEST, ("), , (?DO),

"(USES),

15CASE:.EXECUTION-CLASS A giant case statement ha ndles the special case decompilation. Each entry
corresponds to an entry in the EXECUTION-CLASS asso ciative table. In case
of no match, .WORD will be executed, assuming a nor mal Forth word.

.INLINE .BRANCH .BRANCH .BRANCH .BRANCH .BRANCH
.QUOTE .STRING .STRING .(;CODE) .UNNEST .STRING
.BRANCH .FINISH .WORD

CASE: must end with a ; , because it uses the cavompiler to do the compiling.
20.5. Decompiling Different Command Classes

When the decompiler is given a command to decomipiteas to determine first which type this
command is. If the command is simple, like constarvariable, all the decompiler has to do is to
tell you its name. Decompilation is only neededtfe more complicated colon commands.
Therefore, we need another case and associatilegaio to handle different types of commands.

:.PFA (cfa--) Given the code field address of a colon word, decompile the list of execution
addresses in its parameter field.

>BODY Transform cfa into pfa.

BEGIN Scan the parameter field.

DUP @ Get an execution address.

EXECUTION-CLASS Identify which class the word bel ongs.
.EXECUTION-CLASS Decompile it.

DUP Dup the ip or the flag.

0=KEY? OR If it is O or a key was pressed, termi nate the loop.
UNTIL Otherwise continue decompiling.

DROP Last flag.

..IMMEDIATE (cfa--) Indicate whether the curren t word is immediate or not.
>NAME Get to the name field.

c@ The count byte at the beginning of the name fie Id.
64 AND Is the precedent bit set?

IF Yes.

" IMMEDIATE" Print that it is immediate.

THEN
:.CONSTANT (cfa--) Decompile a constant and pri nt its value.

DUP >BODY ? Print its value first.

153

" CONSTANT "
>NAME .ID

: VARIABLE (cfa--)
DUP >BODY .

" VARIABLE "

DUP >NAME .ID

" Value = " >BODY ?

c.o(cfa--)

DUP >NAME .ID
2 SPACES
PFA

: .DOES> (cfa --)
DUP >NAME .ID
."DOES>"
BODY>

.PFA

. .USER-VARIABLE

DUP >BODY ?

" USER VARIABLE "
DUP >NAME .ID
MValue=">IS .

. .DEFER (cfa--)
." DEFERRED "
DUP >NAME .ID
g

>IS @ (SEE)

. .USER-DEFER

" USER DEFERRED
DUP >NAME .ID
s

>IS @ (SEE)

:.OTHER (cfa--)
DUP >NAME .ID
DUP @

OVER >BODY =
IF

DROP

" is code"

EXIT

THEN

DUP DOES? IF
DROP

DOES> EXIT
THEN

2DROP

" is unknown"

20.6.

Print the type.
And the name.

Decompile a variable. Print its location and value.
Print its location.

Type.
Name.

Value.

Decompile a colon definition.
Print the almighty colon.
Name.

Decompile the parameter field.

Decompile a word defined by a CR EATE-DOES>d
Name.
Type.
Address of the high level runtime code or th
Decompile the interpreter.

(cfa--)
Decompile auser variable. Printits offset fromt
current value.
Offset.
Type.
Name.
Value.

Telltheuserthatthisisade ferredword and deco

Type.
Name.
Deferred.
Decompile the vectored word.

(cfa--)
Telltheuserthatitisauserdeferredwordandd
Type.
Name.
Deferred.
Decompile the current definition.

Decompile words whose type is n ot known.
Print the name first.

Contents of code field.

Is it pfa?
Yes. Must be a code definition.

Print type.
Quit because we have no disassembler.

Is it a 'does' word?

Decompile it as a DOES> word.

Tell the truth also.

Command Classification

efining word.

e interpreter.

he base of userareaand its

mpileits currentdefinition.

ecompileitscurrentdefinition.

Different classes of commands are characterizetidjnner interpreters which execute the
commands. Commands of the same class share tleeisiaen interpreter, whose address is stored

in the code field of these commands. Inner inetgrs are code routines in the Virtual Forth
154

Computer and generally they do not have names @mabt be referred to directly. However, we

can find the address of an inner interpreter bkilogp at the code field of any command in the
corresponding class.

6 ASSOCIATIVE: Categorize different classes of words that the deco mpilerwillhandle. For

DEFINITION-CLASS each class defined by the same defining word, the ¢ ode field is identical.
Thus standard classes can be recognized.

'QUIT @, Colon word.

'0@, Constant.

'SCR@, Variable.

'BASE @ , User variable.

'KEY @, Deferred word.

"EMIT @, User deferred word.

7 CASE: .DEFINITION-CLASS Defineatableofroutine stohandledecompilationofeachclassofdefiniti on.

. Colon word decompiler.

.CONSTANT

.VARIABLE

.USER-VARIABLE

.DEFER

.USER-DEFER

.OTHER Code and DOES> words

20.7. TheDecompiler SEE

. ((SEE)) (cfa--) Given an arbitrary code field address, decompile it based upon its definition
class. Upon completion, indicate whether or not th e word is immediate.

CR DUP DUP @ Get the contents of the code field.

DEFINITION-CLASS Determine the type of definition.

.DEFINITION-CLASS Decompile it.

.IMMEDIATE If it is an immediate word.

'((SEE)) IS (SEE) (SEE)isadeferredwordsothat .DEFERand.USER-DEFER canmake use ofitbefore
it is actually defined. Now patch it in.

FORTH DEFINITIONS All the above supporting word are defined in the HIDDEN vocabulary. Now switch
contextbacktoFORTHanddeclareitthecurrentvo cabularysothatthedecompiler
word SEE will be available to the user in the FORTH vocabulary.

: SEE (--) SEE <name> decompiles the word whose name follows SEE.

' Get the code field address of the word <name>.

(SEE) Decompile it

Association Tahle Execution Tahle
HEST o
DOCONSTANT LCONSTANT

DOCREATE NARTABLE
DOUSER-VARIARLE JJBER-VARIABLE
DODEFER DEFER
DOUSER-DEFEER. USER-DEFER
All others JOTHEER

155

Figure20.2 Decompiling different types of commands.

156

Chapter 21. Printing Utility

The code discussed in this chapter is in UTILITYKBIScreens 43 to 48.

The printing utility in F83 is designed for an EF$Qrinter.
in the EPSON printer, 6 screens can be squeezadsmgle 8.5" by 11" sheet of paper.

Using the compressed character size
You can

print 6 consecutive screens to a page, or 3 sceswurce code with 3 corresponding shadow

screens to a page, which is nice to show source@amanents side by side.
density printing formats, it requires that youmper can print 128 characters per line.

To use these high
If your

printer cannot handle 128 characters per linepttidaithful TRIAD should be used to print 3
screens to a page.

21.1.

: EPSON (--)

CONTROL O EMIT

DEFER INIT-PR
"NOOP IS INIT-PR
DEFER FOOTING

66 CONSTANT L/PAGE
0 CONSTANT LOGO

VARIABLE #PAGE
: PAGE (--)

DOES>

PERFORM
1 #PAGE +!
#LINE OFF
#0OUT OFF

PAGE

: FORM-FEED (--)
CONTROL L EMIT

1 (PAGE) (--)
L/PAGE

#LINE @

OVER MIN ?DO
CR

LOOP;

' (PAGE) IS PAGE

1 (SEMIT) (char --)
PRINTING @ IF
(PRINT)

ELSE (CONSOLE)
THEN ;

HIDDEN DEFINITIONS

Variables and Setup

Set up the EPSON MX-80 printer to pr
Send control O to printer, initiali

Printer initialization. Default is EP

Print message at the bottom of a page
Lines per page.

The screen number of the logo scree
displayed.

Current page number during printing.

Doaform-feedandstartanewpage.
line and column numbers.
Vectored word.
Do the form-feed in place of NOOP.
Increment page number.
Reset line number.
Reset column number.

Initialize itself.

EPSON form feed control character.

Print enough linefeeds to get to th
66 lines.
Current line number.
Use the lesser of the two.
Out put that many linefeeds.

Send a character to either pr
If printing flag is true,
Send to printer.
Otherwise, send to console.

HIDDEN is a vocabulary collectin

int 132 columns per line.
ze compressed mode.

SON printer.

nwhere copyright notice can be stored and

Italsoincrementsthepagenumberandresets

€ next page.

inter or the console, but not both.

g words for internal usage to avoid cluttering

up FORTH vocabulary with all kinds of junk words.

CREATE SCR#S 14 ALLOT An array to hold a screen cou

: PR-START (--)

Initialize all printing functions
157

nt and up to six screen numbers to be printed.

PRINTING ON Start the printer.

#LINE OFF Top of page.

[1(SEMIT) IS EMIT Re-vector EMIT to send charact ers to the printer.

SCR#S OFF Reset screen numbers.

1 #PAGE ! Page number starts from 1, not 0.

INIT-PR Initialize the printer.

:PR-STOP (--) Stop the printer as the character output device.

[1(EMIT) IS EMIT Vector EMIT to (EMIT) to send ¢ haracters to the CRT terminal.
PRINTING OFF Turn off printing flag.

Vectoring the output command EMIT allows us to awthe function of EMIT dynamically.

The power of vectored execution is quite vividlymmstrated here. The output character string
can be directed to any output device by definirtgviidiual device output commands and store
appropriate execution address in the parameter deEMIT. EMIT was defined as a deferred
command, which takes an address in the parametdraind executes it. PR-START and
PR-STOP simply change the address in the paraifirdteof EMIT and the output can be directed
at will.,

21.2. Print Two Screens Side By Side

: TEXT? (scr# --f) Givenascreennumber,return trueifthefirstcharacterinthescreenisprint able
and the screen is not blank.

BLOCK DUP C@ Get the first character in screen.

BL ASCII ~ BETWEEN Is this character printable?

IF Yes.

B/BUF -TRAILING Count of non-blank characters.

NIP Drop the buffer address.

0<> Return true if not a blank screen.

ELSE First character nonprintable.

FALSE Push the false flag.

THEN ;

PR (scr#--) AddascreentotheSCR#Sarrayan dalsoincrementthescreencountatthebeginning

of SCR#S.

DUP CAPACITY >= Is scr# out of range?

IF DROP LOGO THEN Yes. Substitute with logo scree n.

1 SCR#S +! Increment the screen count.

SCR#S DUP @ Fetch the screen count.

2% + 1 Store scr into the appropriate cell in the SCR#S array.
:2PR(scrlscr2line# Print the specified line from two screens given on the stack. First the line
-) in scrl, followed by the line in scr2.

CR DUP 2 .R SPACE Print the line number.

C/IL*>R Save the character number.

PAD 129 BLANK Clear the PAD buffer.

SWAP BLOCK Buffer address of scrl.

R@ + Address of first character in the specified | ine.

PAD C/L CMOVE Copy one line from scrl to PAD.

BLOCK R> + Address of the first character of the | ine in scr2.

PAD C/L + 1+ Second half of PAD buffer with an add itional space.

C/L CMOVE Copy the line from scr2.

PAD 129 -TRAILING Print the entire 129 characters.

TYPE

:2SCR(scrlscr2--) Print 2 screens across on a page. Call 2PR on a line by line basis.
CR CR 4 SPACE Space between screens.

OVER 4 .R Print header of scrl.

61 SPACES DUP 4 .R Header of scr2.

16 0 DO Scan down 16 lines.

1 2PR Print.

LOOP

158

2DROP Discard the screen numbers.

21.3. Print 6 Screenson a Page

To print 6 screens on one page, one has to mahageteens and also put headings and footings
on the page, making it look good and convenienééal.

: P-HEADING (--) Print a heading for each new pag e.

CR CR 5 SPACES Top blank.

" page#" #PAGE ? Print page number.

8 SPACES

FILE? CR Print the file name.

: P-FOOTING (--) Print the footing for each page and also do form feed.
CR CR 58 SPACES Some space.

." Forth 83 Model" Footing.

PAGE Form feed.

'P-FOOTING IS FOOTING

159

BCR#S

BCRHS

: PR-PAGE (--)
P-HEADING
SCR#S OFF
SCRH#S 2+
30DO
DUP @
OVER 6+ @
2SCR

2+

LOOP
DROP

Source Screen Printing Format

f # of Bcreens
1
: Bocreen 1 LBoreen 4
3 moreens to
4 be printed
5
é Acreen 2 ACreen 5
Acreen 3 Socreen f
Shadow Screen Printing Formmat
il # of Screens
1
Screen 1 Bocreen 15
15
2 mcreens to
18 be printed
3
17 Soreen 2 acreen 16
Screen 3 socreen 17

Figure21.1 Two printing formats.

Print a page worth of screens, 6 t

Print the heading.

Reset the screen count.

Address of first screen number to be prin
3 screens per column.

Screen number for 1st column.

Screen number for 2nd column.

Print two screens side by side.
Next cell in SCR#S array.

Discard the SCR#S pointer.
160

0 a page without shadows.

FOOTING Print footing.

: PR-S-PAGE (--) Printapageworthofscreenswi thshadows Sourcescreenontheleftandshadow
screens on the right.

P-HEADING

SCR#S OFF

SCR#S 2+

30DO

DUP @ Screen number of source.

OVER 2+ @ Screen number of shadow.

2SCR Print.

4+ Next pair of screens.

LOOP DROP

FOOTING
:PR-FLUSH (--f) Fillthe SCR#SarraywithLOGO screenifapageispartiallyfilled. Returntrue

flag if there is more to print.

SCR#S @ Screen number.

DUP IF Yes, more screens to print.

BEGIN

SCR#S @ Screen number again.

5< If screen number is less than 5, the SCR#S m ust be filled.
WHILE 0 PR Fill the array with 0's.

REPEAT

LOGO PR Put the LOGO screen as the last.

THEN

0<> Return the flag.

214, SHOW

There are two versions of SHOW defined in the B&3esn to print screen files. One version
prints consecutive screens and the other printse®as of source with their respective shadows.
The first version is defined in the FORTH vocabyland the second one in the SHADOW
vocabulary so that they are both accessible to you.

120 SHADOW SHOW Print source with shadows.
120 FORTH SHOW Print source without shadow.

FORTH DEFINITIONS Define the SHOW without shadow sc reens in the FORTH vocabulary.
:SHOW(firstlast--) Print 6 consecutive screen s on a page. Blank screens are not printed.
[HIDDEN] PR-START Call PR-START in the HIDDEN vo cabulary to turn on the printer.

1+ SWAP DO Run through the range of screens.

| TEXT? Is this screen printable?

IF 1 PR THEN Yes. Include it in the SCR#S array to be printed.

SCR#S @ Get the number of screens in SCR#S array.

6= Full?

IF PR-PAGE THEN Yes. Print one page.

LOOP

PR-FLUSH Fill the last page.

IF PR-PAGE THEN Print it if necessary.

PR-STOP Turn off the printer.
SHADOW DEFINITIONS Now get the SHADOW vocabulary to define the second version of SHOW with shadow

screens.

:SHOW(firstlast--) Print 3 source screens wit h their shadow screens.

[HIDDEN ALSO] Push HIDDEN into the resident voca bulary array so that other vocabulary can be

invoked while HIDDEN is still available for searchi ng.

PR-START Turn on printer.

1+ SWAP DO

| TEXT? A valid source screen?

IF Yes.

I PR Put it in SCR#S array.

[SHADOW] We need some words in the SHADOW voca bulary.

161

>SHADOW Get the number of shadow screen.

PR Put it in SCR#S also.
THEN
SCR#S @ 6 = End of SCR#S?
IF PR-S-PAGE THEN Yes. Print page with shadows.
LOOP
PR-FLUSH
IF PR-S-PAGE THEN
PR-STOP
ONLY FORTH ALSO Reset the vocabulary order and make FORTH a residen tvocabulary as well as the
DEFINITIONS context (transient) and current vocabulary.
:LISTING (--) Print the entire current file with shadow screens.
First source screen.
CAPACITY Last screen in current file.
2/1- Last source screen in file.
[SHADOW] We want the SHOW with shadow, which is in SHADOW vocabulary.
SHOW Print the entire file in the shadow screen fo rmat.

Source screens printed with their corresponding@lvascreens side by side serve very well as

program reference and documentation.

162

Part IV. 8086 Specific Utilities

Chapter 22. Debugger

The source code of the debugger is in CPU8086.Edfeen 18 to 20, and in UTILITY.BLK,
Screen 49 to 51.

The debugger in F83 is designed to let you siniglp grough the execution of a high level
command. To invoke the debugger, type

DEBUG xxx
where xxx is the name of the colon command you watrtace. DEBUG patches the NEXT
routine with a special routine DEBNEXT to displéetcontents of the data stack at every step
when DEBNEXT is encountered. The real single si&jn occurs only when the commanrgx
is executed. When xxx is executed, you will geirgle step trace showing the commandghin
xxx that is about to be executed, and the contartse data stack. At each step, you can use
the commands C (continue), F (Forth) , and Q (daitontrol the stepping process.

F allows you the execute any Forth command to o&eand, until you type
RESUME

to continue with the debugging.
condition.

Q stops the delmgpgrocess and restores xxx to its original

22.1. Low Level Supporting Commands

VOCABULARY BUG
BUG ALSO DEFINITIONS
VARIABLE 'DEBUG

The vocabulary holding all the debug
Declare BUG as the current voc
A variable holding the code field a
traced.

ger supporting words.
abulary to add new words to it.
ddress of the word to be

VARIABLE <IP
VARIABLE IP>
VARIABLE CNT
ASSEMBLER HEX

LABEL FNEXT

OAD # AL MOV

AL >NEXT #) MOV
D88B # AX MOV

AX >NEXT 1+ #) MOV
.RET

LABEL DNEXT
AX LODS

AX W MOV

0 [W] IMP

LABEL DEBNEXT

Lower limit of tracing range for IP, t
Upper limit of IP for tracing.
Count of tracing through debug NEXT.
Invoke the assembler to use the LABEL
vocabulary.

he interpretive pointer.

word in ASSEMBLER

A machine code subroutine restoring NEX T back to its original form.
AD is the machine code of indirect ju mp.
Put this jump code in >NEXT.
The address of the real NEXT code.

Put this address after the jump code. This is the original NEXT

Acopy of NEXT thatgets executed durin
Load IP into AX and increment IP by 2.
Copy IP into W register.

Indirect jump through W register.

gdebugginginplace ofthe regular NEXT.

The debugger's version of NEXT. If IP
the execution variable 'DEBUG are executed. The wor

163

is between <IP and IP>, the contents of
d pointed to by 'DEBUG must

<IP #) IP CMP U> IF
IP> #) IP CMP
U<=IF

CNT #) AL MOV
ALINC

AL CNT #) MOV

2 # AL CMP

0=1IF

AL AL SUB

AL CNT #) MOV
FNEXT #) CALL
IP PUSH

'DEBUG #) W MOV
0 [W] IMP

THEN

THEN

THEN
DNEXT #) JMP

CODE PNEXT (--)

OE9 # AL MOV
AL >NEXT #) MOV

DEBNEXT >NEXT 3 + -

AX MOV
AX >NEXT 1+ #) MOV

NEXT
END-CODE

FORTH DEFINITIONS

CODE UNBUG (--)
FNEXT #) CALL
NEXT

END-CODE

22.2. High Level Trace Commands

BUG ALSO DEFINITIONS

:L.ID (nfalen--)
SWAP DUP .ID
DUP NAME>

1- - + SPACES

VARIABLE SLOW
VARIABLE RES

: (DEBUG)

1CNT!
IP>1!
<IP!
PNEXT

. 'UNNEST

BEGIN
1+ DUP @
[1UNNEST
UNTIL

: TRACE (ip --)

dropthe IP pushed on data stack by DEBNEXT and mus

more tracing.
IP greater than <IP?

IP less than IP>? If both true, do the fol

Increment CNT.
AL=2?

Yes. Do the following every other time.

Clear CNT counter.

Restore the original NEXT.
Push current IP on data stack.
Copy the execution address in*
Indirect jump through W. The trace ro

None of the about cases are true. Exe

Patch the regular NEXT in FORTH
mode and allows for tracing single steps.
E9 is the machine code of JIMP.
Copy this code into >NEXT.

#

Copy the address of DEBNEXT to the cell nextto >NE

tbe terminated by PNEXT for

lowing:

DEBUG to W register.
utine is executed.

cute the regular NEXT.

to jump to DEBNEXT. This puts us in the debug

XT. >NEXT is now patched to

execute DEBUG by jumping to DEBNEXT.

Next instruction must be defined

Restore FORTH's NEXT to its orig
Call FNEXT to fix NEXT.

Put the following words in the

in FORTH vocabulary.

inal condition and disable tracing.

BUG vocabulary. Only the very last word TRACE

needs to be in the FORTH vocabulary for ease of acc essing.

Print the name of a word left justified in a field

Print the name.

Get the code field address.

Fill in spaces.

When true, step continuously. When fa
When true, resume debugging.

(low-addr hi-addr --)

Prepare to trace the words between the specified ra
Store 1 into CNT to run DEBNEXT every othe
Set the high limit of IP.

Set the low limit.

Patch NEXT to DEBNEXT.

(pfa--pfa’)

Fromthestartingaddressofaparameterfield,fin

by UNNEST

Get the execution address of the next wo

Is it UNNEST?

of at least ten characters.

Ise, single step.

nge for IP pointer.
r time through NEXT.

dtheendofthisfieldindicated

Exit if UNNEST is found and leave its addres s on stack.

Display the contents of the data
execute in the routine being debugged. It then wai
true.IfthekeyisC, F,orQ, specialactionist

stack and the name of the next word about to
ts for a key unless SLOW is
aken; otherwise, asingle step

>R

.S

R>

CR @ >NAME
10 L.ID
SLOW @ NOT
KEY? OR

IF

SLOW OFF
RES OFF
KEY

UpPC

ASCII C OVER = IF

SLOW @ NOT
SLOW ! THEN

ACSII FOVER = IF

DROP

BEGIN
QUERY RUN
RES @
UNTIL
THEN

ASCII Q OVER =

ABORT" Unbug"
DROP THEN
PNEXT

' TRACE 'DEBUG !

FORTH DEFINITIONS

: DEBUG (--)

2-

DUP [BUG] 'UNNEST
(DEBUG)

: RESUME (--0)

[BUG] RES ON
0
PNEXT

ONLY FORTH ALSO

DEFINITIONS

is performed.
Save ip.
Display the data stack.
Restore ip.
Get the name field of the word pointed
Print its name.
If SLOW is false,
or a key is received, do the following:

to by ip.

Reset SLOW flag.
Reset RESume flag also.
Print a prompting message.
Wait for a key here.
Change the key code to upper case always.
If the key is C,
complement SLOW.

If this key is F,
throw away the key code,
and entry a Forth interpreter loop.
Interpret any Forth command.
Continue if RES is false.

If the key is Q,
abort debugger.

Patch NEXT again to continue tracing the nex t word.

Vector 'DEBUG to execute TRACE. T his is the function of DEBNEXT.
Putthefinaldebuggercommandsi ntheregularFORTH vocabularysothattheuser
can invoke it conveniently. Other debugging words are hidden in the BUG
vocabulary.

Patch NEXT to DEBNEXT and set the r
Get the execution address of the next word follo
Convert cfa to pfa.
Find the IP range.
Set IP range and patch NEXT.

ange of IP to be debugged.
wing DEBUG.

Turn on RES to enable tracing to continue.
Set RES flag.
Leave a dummy stack item to replace the key code

Patch NEXT to continue debugging.

dropped.

Re-initialize the vocabulary searching order.

165

Chapter 23. Multitasker

The source code of the multitasker is in CPU808& Bicreen 22-23, and in UTILITY.BLK,
Screen 52-54.

23.1. Multitasking

Multitasking is the technique to use one compugeatd several things at the same time. Most of
the microcomputers run rather inefficiently in #iagle user, interactive mode, because the
computer wastes most of its time in waiting youyj@e in commands. This waiting time can be
utilized to perform useful work, like printing arlg file, keeping a timer clock, watching over the
heater or the air conditioner and other instrumegtts If properly scheduled, all these activities
can be handled by a single computer, allocating &sk sufficient time to do its work and still
satisfies your programming needs.

Most mainframe computers and minicomputer operagysgems have the multitasking function
and can support many users and tasks to run gathe time. They use rather complicated
hardware and software to schedule and run the,taskisto manage a host of peripheral devices
like disk drives, tape drives, printers, plotteats. Scheduling and resource allocation are big
headaches in these operating systems, contribatiag share to the complexity in the operating
system.

People generally conceive Forth as a toy languabesuitable for single user microcomputers.
This is probably due to the limited capability meted in the public domain figForth model, which
has become the most widely distributed Forth dtaletlowever, in many more expensive
commercial Forth implementations, especially thiseeloped by Charles Moore himself and later
marketed by Forth, Inc. under the trade name pathF-multitasking was a standard feature using
the very simple but effective round-robin schedyliechnique.

F83 also includes the elementary commatwgnplement multitasking. The basic system design
takes the task switching into consideration, st tdeks can be easily added to the system when
needed. Task switching is very fast because obtéeity of code involved. Here we will go
through the entire system to describe the mult@askgreat details.

23.2. User Variables and the User Area

Special commands managing multitasking or multiseth system are collected in a special

166

vocabulary USER. Some of them have the same nhuotelfferent functions as other regular
Forth commands. They have to be used with caréey allocate space for user variables in the
user area which is a unique memory area for eastly in the system.

VARIABLE #USER Count of the number of user variable s allocated in a user area.

VOCABULARY USER Declare the user vocabulary.

USER DEFINITIONS Put all subsequent words in the US ER vocabulary.

ALLOT (n--) Allocate space in the user area f or a task.

#USER +! Move the user area pointer forward for n bytes.

: CREATE (--) A special header builder for user variables.

CREATE Build a regular header.

#USER @ , Compile the current user area pointerin the parameter field, to be used as the
offset of the user variable from origin of the user area.

;USES Get the code field address of the new user v ariable.

DOUSER-VARIABLE , Patch the code field using DOUSE R-VARIABLE as the runtime interpreter for user
variables.

: VARIABLE (--) New defining word for user varia bles.

CREATE This is the newly defined CREATE.

2 ALLOT Allocate two bytes in the user area, not o n top of dictionary.

Allocate two bytes in the user

:DEFER (--) New defining word for deferred wor ds in the user area.
VARIABLE Create a new user variable.

JUSES Patch code field with

DOUSER-DEFER , address of the runtime routine DOUS ER-DEFER.

When tasks are switched, the environment of tHedagently under execution must be preserved
before the task is put to sleep, so that whenasle is woke up the next time around it will be able
to pick the execution sequence where was leftrodf @ntinue the task until finished or put to sleep
again. What defines the environment of a tasksstaf parameters stored in a set of 'user
variables' and an area where the data stack arrdttire stack used by the task are allocated. Each
task must have its own copy of these user variaidsstacks. As the essential information are
stored independently for each task, task switchbegpmes very easy because only a minimal
amount of information has to be preserved expyidtiring task switching.

Following is the list of user variables neededverg task:

Table23.1. User Variables

TOS Top of data stack.

ENTRY Entry point to be jumped to when the task is activated.
LINK Point to next task in the round- robin circle.

SPO Origin of the data stack.

RPO Origin of the return stack.

DP Top of dictionary.

#OUT Number of characters emitted.

#LINE Number of lines typed.

OFFSET Block offset from block 0 in the current fil e.

BASE Numeric base for I/O conversion.

HLD Point to the last character converted in the PA D buffer.
FILE Point to FCB (file control block) of currently opened file.
IN-FILE Roint to the FCB of the input file.

PRINTING A flag. True if printer is active.

EMIT Send a character to the output device currentl y active.

167

One should note that these user variables havertagies in the main dictionary while the
parameters are stored in the user area. Onlya@meaf the names needs to be defined. Every
user or task will have its own copy of the useraldes. The functions of these user variables will
become apparent in the following sections.

23.3. Pauseand Restart

PAUSE and RESTART are the two most crucial commandbe task switching process.

(PAUSE) stops the current task and passes corfttbedCPU to the next task in the round-robin
loop. It saves all necessary information in ther@sea so that the task can continue the next time
it gains the control of the CPU.

CODE (PAUSE) Stop executing the current task and pa ss control to the next task.

IP PUSH Save the Interpretive pointer on the data stack.

RP PUSH Save the return stack pointer.

UP #) BX MOV Fetch the user area pointer into BX r egister.

SP 0 [BX] MOV Save the data stack pointer in user variable TOS.

BX INC BX INC

BX INC BX INC Increment BX and point it at the u ser variable LINK.

0 [BX] BX ADD Calculate the address of the user ar ea from the offset in LINK.
BX INC BX INC Now point to the ENTRY user variabl e of the next task.

BX JMP Execute the next task.

END-CODE

CODE RESTART Thereverseof (PAUSE). Retrievethe

task left asleep during the last pass.

storedinformationandstartexecutingthe

-4 # AX MOV Store -4 in the AX register for later use.

BX POP Pop the LINK address of the next task to be waked up.

AX BX ADD Point BX to the TOS user variable.

BX UP #) MOV Copy this address into UP as the user pointer for the next task.

AX POP AX POP Discardtwoitemsfromthe stack. T

routine waking up this task.

heywere pushed onthe stack by theinterrupt

0 [BX] SP MOV

Restore the data stack pointer.

RP POP Restore the return stack pointer.

IP POP Restore the interpretive pointer.

NEXT IP contains the pointer pointing to the next word t 0 be executed in this task.
NEXT will continue the execution left off last time

END-CODE

CODE PAUSE A dummy word allowing multitasker to be switch on and off.

NEXT In the single user mode, PAUSE returns immedi ately without doing anything.

END-CODE However,itscodefieldwillbepatcheds othattheword. (PAUSE)willbeinvoked

in the multitasking mode of operation.

A few more commands are defined to manipulate stat@ed in the user area to control the tasks:

HEX 80 CONSTANT INT#

8086 software interrupt number

168

, used to wake up a task.

Round Fobin Task Switching Lindk

Intermupt Vector Tahle

INT &0

. LOCAL

UP @

: @LINK (-- addr)
LINK

DUP @ +

2+

S ILINK (‘addr --)

LINK -
2+
LINK!

: SLEEP (addr --)
E990

SWAP

ENTRY LOCAL
!

: WAKE (addr --)
80CD

SWAP
ENTRY LOCAL !

A0 TOS TOS “E03
' JWIP JIIF INT &0 JIP
TAREZ / TASES / TARES TABKL
Interrupt =l 1l =P0 SP0
Vectors EFO EFD RFO EFO
=P =P oF o
#OUT #OUT #OUT #OUT
HIMNES #H.IMNES #H.IMNES #H.IMNES
OFFSET OFFEET OFFSET OFFSET
BASE BASE BASE BASE
EESTART HLD HLD HLD HLD
"—_'—""._'__H
Tasld
Dictiohaty 1l aleep
Figure23.1 Theround-robin task scheduler.
(base addr -- addrl)
Get the address of a user variable in another task' S user area.

The origin of current user area.
Offset of current user variable from its origin.
Add offset to the origin of the other user area
of the same user variable in the other task.

(base), returning the address

Return a pointer to the entry
Address of LINK in this task.
Get the ENTRY in the next task.
LINK field in the next task.

point in the next task.

Setthe LINK field of the curr
next task.
The relative distance from LINK to the othe
Relative distance from this LINK to the other L
Store it in the current LINK.

enttask, giventhe origin of the user area of the

r task.
INK.

Make the addressed task pause indefinitely.
90 is NOP and E9 is JMP in 8086 machine instr
the next task whose address is in the LINK field ri
Get the task address to top.
Get the address of the ENTRY field in
Store the sleep code in its ENTRY field and forc
immediately to its next task.

uction. JMP (link) passes CPU to
ght after the ENTRY field.

the target task.
e that task to pass control

execute in its next turn.
istaskbyasoftwareinterruptwith

Wake up a task so that it will
MachineinstructionINT80Hwhichwakesupth
vector number 80H.
Get the task's user area address.
Store thatwake code inthe ENTRY fi

169

eld ofthe targettask and make itan active

member in the round-robin loop.

:STOP (--) Make the current task pause indefini tely.
UP @ Get the address of the current task.

SLEEP Put it to sleep.

PAUSE Stop right now.

234. TheMultitasker

The Forth multitasker is implemented using a roustaln scheduler and dispatcher technique.

All tasks are linked into a loop. A task must tise PAUSE command explicitly to relinquish
CPU control to the next task. If a task does m@tdithe CPU service, it will pass the CPU control
directly to the next task. When a task needs GRuM|I put a wakeup code in the ENTRY field in
its user area. Next time when the control of CPpdssed to it, it will be able to grab the CPU
and restart or continue on the execution leftadgt kime. Each task therefore must include
PAUSEs at suitable intervals to let other tasksehapiece of the action. Otherwise a task can
hold onto the CPU indefinitely and no other task aae the CPU. The cooperative nature of this
scheme thus requires that each task be desigrmmdise regularly. The advantage is that each
task can stop and restart at known points andahemandsto do the multitasking are simple and
fast.

CODE MULTI (--) Installthe multitasker's schedu le/dispatcherloop by patchingthe appropriate
interrupt vector and enabling PAUSE.

' (PAUSE) @ # BX MOV Copy the contents of code fi eld of (PAUSE) to BX register. Itis the starting
address of the (PAUSE) code routine.

BX ' PAUSE #) MOV Patch the code field of PAUSE wi th code of (PAUSE) so that the task will pause
at PAUSE.

'RESTART @ # BX MOV Get the RESTART code address.

DS AX MOV

AX PUSH Save DS register on data stack.

AX AX SUB Clear AX register.

AX DS MOV Clear DS register.

CS AX MOV Copy code segment into AX.

AX INT# 4 * 2+ #) MOV Store the code segmentinthe second cell ofthein terruptvectorforthistask.

BX INT# 4 * #) MOV Storethe RESTART addressinth efirstcell of the interrupt vector. Hereafter,
INT 80H will activate this task

AX POP

AX DS MOV Restore the data segment register.

NEXT

END-CODE

: SINGLE (--) Remove the multitasker's scheduler /dispatcher loop.

[1 PAUSE >BODY Gettheparameterfieldaddressof PAUSE, whichpointstoa simpleNEXTroutine.

[1PAUSE ! Restore the code field of PAUSE so tha t PAUSE will return immediately rather

than go through (PAUSE) for the multitasker.

23.5. Task Definition

A task must be first defined as a commandhe dictionary. At the same time, user area and
space for two stacks must also be allocated fertdsk. The new task must then be installed in
the round-robin loop. When functions must be pentd by this task, a command to be executed

by this task must be passed to it and the task baustaken. The tools to create and activate new
170

tasks are discussed in this section.

: TASK: ('size --)
CREATE
TOS

HERE
#USER @
CMOVE
@LINK

UP @ -ROT
HERE UP!
ILINK

DUP HERE +
DUP RPO'!
100 - SPO !
SWAP UP!

HEREENTRYLOCALILINK

HERE #USER @ +
HERE DP LOCAL !
HERE SLEEP
ALLOT

: SET-TASK

DUP SPO LOCAL @
2-

ROT OVER!!

2-

OVER RPO LOCAL @
OVER!

SWAP TOS LOCAL !

Create a new named task and in

itialize its user variables.
Build an header for the task.
Address of the user area for the current task.
The user area of the new task.
Size of the user area.
Copy the current user variables into the new
New user area.
Save the current user area pointer at th
Put new user area address in the user ar
Store address of current user area in the LI
Address of the space after the new user
Initialize the return stack pointer of t
Initialize the data stack pointer of t
Restore the user area pointer to the cur
Store the address of the new task in the LINK field
Starting address of the dictionary for the new task.
Initialize the dictionary pointer of the new task.
Put the new task to sleep first.
Allocatespaceforthenewtaskaccordingto
initially.

user area for the new task.

e bottom of the data stack.
ea pointer UP.
NK field of the new task.
area and dictionary space.
he new task.
he new task.
rent user area.
of the current task.

thesizeparametergivenonthestack

(ip task --)
Assign an existing task to execute the code pointed

Get the top of data stack of the t ask to be used.
Decrement stack pointer preparing a push.
Push ip on data stack.
Prepare another push.

Get the new tasks return stack po inter.
Push it on the data stack.

to by ip on stack.

he TOS field of the new task. These actions

Store the data stack pointer in t
simulate (PAUSE) in a way that when the new task is waken the code pointed to
by ip will be executed.

:ACTIVATE (task --) Assign the invoked task to execute the following co
it ready to execute these code.

R> Address of the next code to be executed.

OVER SET-TASK Assign this code to the task.

WAKE wake the task.

de, and wake the task making

23.6. Background Tasks

A background task is some functions the computesdo the background, while still allowing you

to use the computer interactively doing programnangxecute other programs. F83 allows you
to create many of such tasks to run concurrensipgithe task defining and control commands.
Here are some examples illustrating the commandeseg to create background tasks and activate
them.

: BACKGROUND: (--) Create anew task with 400 by

execute the following code.

tes of dictionary space. Initialize this task to

400 TASK: Define a new task with the name followin g.

HERE IP for code to be compiled so that it can be executed by the new task.
@LINK 2- Address of the new task.

SET-TASK Initialize the new task.

ICSP Compiler error checking initial- ization.

] Turn on the compiler to compile following code t 0 be executed by the new task.

BACKGROUND: SPOOLER (--) Create a new task named
1 First screen to be listed.
CAPACITY Last screen in the current file.
SHOW List the entire file.

spooler which will print the current file.

171

STOP Stop the task here. STOP is needed at the en d of a task.

Executing SPOOLER will print out the entire curréite on the printer while you can still use the
terminal for normal activities. Low level inputAput commandsn SHOW contain enough
PAUSE commands to alternate the spooling task tghterminal task to allow you seemingly full
control over the computer while it is also printiadpng file. SPOOLER can also be assigned a
different function by the following command:

: SPOOL-THIS (--) Assign new functions to an exi sting task.

SPOOLER ACTIVATE Force the task SPOOLER to execute the following code:

315

[SHADOW] SHOW Invokethespecial SHOWcommandi ntheSHADOW vocabularytoprintshadowscreens
along the source screens.

STOP Terminate the task.
Another example is to use the computer to keepuateo which keeps the number of circles the
multitasker running around the round-robin loop:

VARIABLE COUNTS

BACKGROUND: COUNTER Define a new background task.

BEGIN Beginning of an infinite loop.
PAUSE Allow other tasks to run once.
1 COUNTS +! Increment the counter.

AGAIN ;

The task COUNTER executes an infinite loop, so ST&#t required at the end of the command.
However, note that you must use PAUSE in the loomo other task will be executed. PAUSE is
built in all the input/output commands, so thaksawhich do 1/O like SPOOLER do not have to
use PAUSE explicitly.

172

Chapter 24. 8086 Assembler

The source code of the assembler is in CPU8086.Bldkeen 3 to 17, and KERNEL86.BLK,
screen 80.

The assembler in Forth allows you to define comrsantich will be executed at the raw machine
speed and make use of all the resource in thecbagputer hardware system. It is often used to
optimize a system or application program by recgdire critical or most often executed
commandsto improve the performance of the program. A Heglel commandcan be substituted
by a machine code commaiifithe interface to the system, most notably tlaelseffect is kept the
same.

The assembler is invoked by the defining comm&®@DE which creates a header in the dictionary
and makes the code field pointing to the paranfetlel. Machine instructions can then be
assembled into the parameter field by a set of maadode commandwith mnemonic names
similar to those used in regular assembler of tst processor. These machine code commands
are executed by the text interpreter and the iettas to add new machine instructions to the
parameter field so that when the new CODE commiarekecuted, these machine instructions are
executed in sequence. A CODE commandst be terminated by the inner interpreter NEXT or
its derivative to return control to the calling corand. The code command must be terminated
with a command like END-CODE or C;, which makes rile&v commandavailable for execution or
compilation.

24.1. Assembly Tools
A set of tool commands are needed to assemble hineacode commandh its most primitive

form. If you know the host processor well enowghy can hand code a routine and generate a
Forth CODE commanadvithout using the assembler.

VARIABLE AVOC A variable holding the old context vo cabulary during assembling.

:CODE (--) Thedefiningwordthatstartstheas semblingprocesstobuildamachinecodeword.
CREATE Createthenamefield,linkfield,andcode fieldforanewentryinthedictionary.
HIDE Smudge the header to hide the new word before it is completed.

HERE DUP 2-! Store the pfa into code field. This is required for indirectly threaded code.
CONTEXT @ AVOC'! Save the old context vocabulary.

ASSEMBLER Use the ASSEMBLER as the context vocabul ary to assemble machine code.
:LABEL (--) Mark the start of a subroutine. Ret urn its address when the label is invoked.
CREATE Create the header.

ASSEMBLER Select context vocabulary.

232 CONSTANT DOES-OP Op-code for CALL instruction u sed in DOES>.

3 CONSTANT DOES-SIZE A CALL instruction consumes 3 bytes.

173

:DOES?(ip--ip+3f) Return a true flag with the IP moved over the CALL instruction.

DUP DOES-SIZE + IP incremented by DOES-SIZE.

SWAP C@ Code at IP.

DOES-OP = True if the opcode is CALL.

ASSEMBLER DEFINITIONS All the assembler tool words are to be collected in this vocabulary.

: END-CODE (--) Terminate a code definition, mak e it available and also restore context
vocabulary.

AVOC @ CONTEXT ! Restore the old context vocabular y.

REVEAL Unsmudge the header, making the word availa ble to the text interpreter.

1Ci ()

END-CODE Synonym for END-CODE.

The following set of deferred commandse used in assembling machine instructions or
constructing structures in the code commands. &heylefined as deferred commarsisthat
they can be shared by the assembler and the mgideom

DEFER C, (byte --) Assemble a machine code byte to the dictionary.
FORTH'C, ASSEMBLER IS C, Vector it to the FORT HC,.

DEFER, (n--) Assemble a cell to the dictionary

FORTH', ASSEMBLER IS, Vector to the FORTH , (c omma).

C, and, are the primitive Forth assembler. Usnggn alone, you can generate code commands
without using an assembler. However, the machsgdtions and operands have to be hand
coded and stored into the dictionary by , and C, .

DEFER HERE (-- addr) Return a pointer to the top of dictionary, the address of the next code
to be assembled.

FORTH'HEREASSEMBLERISHERE

DEFER ?>MARK Set up forward branch with error check ing.
DEFER ?>RESOLVE Resolve a forward branch with error checking.
DEFER ?<MARK Set up a backward branch with error ch ecking.
DEFER ?<RESOLVE Resolve a backward branch with erro r checking.

24.2. 8086 Register Definitions

Registers are used as operands, which are ingettetthe register field in a machine instruction.
They are thus defined as constants. The registestants are defined in the following format to
facilitate the building of machine instructions whiuses the corresponding register, as shown in
Fig. 24.1. The lower byte may become a byte ig$imn or the second instruction byte to specify
addressing mode. The upper byte with the mode iselised only during assembly.

174

Addressing Mode Word

151413121110 92876543210
Reg‘RfM‘

‘xxxleodexxx

Fegister Modes and Mnemonics

Mode
Register 0 1 2 3 4
0 AL AX [BI+3I] ES # Immediate
1 CL 3 [BX+DI] o #) Indirect
2 DL DX [BP+2]] 3%) Intersegment
3 BL BX [BP+DI] DS
4 AH SP [5]
5 CH BP [DI]
& DH &I [BE]
7 BH DI [BX]

Figure24.1 Register addressing mode constant.

OCTAL 8086 codes are best represented in octal due to the 3 bit fields.

:REG (mode reg# --) Usethe addressing mode and the register number to generate the proper register
field to be defined as register constants.

11 * SWAP Fill both reg and r/m fields.

1000 * OR The addressing mode field.

CONSTANT Defined as a constant to be inserted into register accessing code.

:REGS (nmode --) Define a set of register word s which differ only in the register number.

SWAP 0 DO Scan through n registers.

DUP | REG Define each register as a constant.

LOOP

.DROP Discard mode

Using the powerful REGS, we can define all thestegs with all possible addressing modes as
distinct Forth commands. Thewturn the appropriate register constants to be bgenachine
code assembler commantts construct machine instructions.

10 0 REGS Define operands addressing only bytes in the registers.
AL CL DL BL AH CH DH BH

10 1 REGS Define operands addressing word registers
AX CX DX BX SP BP SI DI

10 2 REGS Define indexed addressing operands.
[BX+SI] [BX+DI] [BP+SI]
[BP+DI] [SI] [DI] [BP] [BX]

42 REGS Duplicated definitions.
[SI+BX] [DI+BX] [SI+BP]

175

[DI+BP]

4 3 REGS Segment register addressing operands.
ES CS SSDS

34 REGS Immediate addressing operands.

#) Stt)

Four registers are of special interests to thehFsystem because they are used as registers in the
Virtual Forth Computer. They are assigned gensaimes more appropriate in the manipulation
of the Forth machine:

BP CONSTANT RP The return stack pointer.
[BP] CONSTANT [RP] Indirect addressing mode.
SI CONSTANT IP The interpretive pointer.
[SI] CONSTANT [IP]

BX CONSTANT W The current word pointer.

[BX] CONSTANT [W]

The data stack pointer uses the SP register wiviehdy has the correct name; therefore, it does
not need a new name.

24.3. Addressing Mode Operators

: MD (mode --) Define words which will test vari ous addressing modes.
CREATE Make header.

1000 *, Compile a template of addressing mode.

DOES> (mode-field --)

.@ Get the template

.SWAP 7000 AND Mask over the mode field

=0<> Return true if the mode matches

0 MD R8? (operand -- f) Is it in byte register m ode?

1 MD R16? (operand -- f) Is it in word register mode?

2 MD MEM? (operand -- f) Is it in memory address ing mode?

3 MD SEG? (operand -- f) Is it in segment addres sing mode?

4 MD #? (operand --) Is it in immediate addres sing mode?

: REG? (operand -- f) Test for either byte or wo rd addressing mode.

7000 AND Mask the mode field.

2000 < Byte or cell.

<0<> Return the flag.

:BIG? (n--f) Test the size of address offset. Return true if n>255.
ABS Absolute offset.

-200 AND Examine upper byte.

0<> True if not zero.

:RLOW (nl--n2) Retain only the low r/m field.

7 AND ;

:RMID (nl1--n2) Retain only the middle registe r field.

70 AND ;
VARIABLE SIZE A flag. True for 16 bit and false fo r 8 bit number.
BYTE (--) Reset SIZE to indicate byte operatio ns.

SIZE OFF ;
: OP, (n opcode --) OR the operand and the opcod e and assemble the machine code.
ORC, ;
: W, (opcode operand --) Assembleopcodewiththe Wfieldsetifoperandindicatesawordregister.

176

R16? 1 AND Set W field according to word mode.

OP, Assemble.

: SIZE, (opcode --) Assemble the opcode with W f ield determined by SIZE.

SIZE @ 1 AND Set W field using SIZE.

OP, Assemble.

:,IC, (nf--) Assemble a cell if fis true. Ot herwise assemble a byte.
IF, fis true. Assemble a cell.

ELSE C, fis false. Assemble a byte.

THEN ;

:RR, (operandl oprand2 --) Assemble a register to register instruction.

RMID Operandl to r/m field.

SWAP RLOW Operand? to reg field.

OR Register to register operand.

300 Register to register mode.

OP, Assemble the reg-reg second instruction byte f or addressing.
VARIABLE LOGICAL True while assembling logical inst ructions.

:B/IL? (n--f) BIG? of LOGICAL.

BIG? LOGICAL @ OR

: MEM, (disp mr rmid --) Assemble a memory refere nce instruction. It takes a displacement, and
memory/ register, and a register a arguments and en code them into an
instruction.

OVER #) = Is it in immediate indirect mode?

IF Yes.

RMID 6 OP, Assemble immediate indirect instructio n.

DROP No need of mr now.

, Assemble disp, which is the immediate value.

ELSE Not immediate indirect.

RMID OVER RLOW OR OR together the registers.

-ROT Save it.

[BP] = mr=[BP]?

OVER 0= AND AND disp=07?

IF

SWAP Get the register field to top.
100 OP, Byte displacement mode instruction. Mode 1.
C, With the byte displacement.
ELSE
SWAP Examine disp.
OVER BIG? More than 8 bits?
IF Yes.
200 OP, Mode 2 instruction.
, With cell displacement.
ELSE
OVER 0= Is disp=0?
IF Yes.
C, Assemble byte instruction.
DROP No displacement.
ELSE All tests failed to reach here.
100 OP, Assemble mode 1 instruction anyway.
C, Append a byte displacement.
THEN

THEN

THEN

THEN ;

:WMEM, (disp memreg op --) Assemble a word memory reference instruction.

OVER W, Pack the word referencing bit into reg and assemble opcode.

MEM, Use MEM, to assemble the right mode instructi on.

‘RIM (mrreg--) Assembleeitheraregisterto registerorregistertomemoryinstruction.

OVER REG? Is it in a register mode?

IF RR, Yes. Assemble a register to register instr uction.

ELSE MEM, Else assemble a memory referencing instr uction.

THEN

177

:WR/SM (rmreg op --)

2 PICK
DUP REG?
IF

W,

RR,
ELSE
DROP
SIZE,
MEM,
THEN
SIZE ON

VARIABLE INTER

FAR ()
FARON ;

:?2FAR (nl1--n2)
INTER @

IF 10 OR THEN
INTER OFF

Assemble eitheraregiste rmodeinstructionwith size field, oramemory
mode instruction with size from SIZE.
Get the mode.
Is it register mode?
Yes.
Squeeze in the word bit.
Assemble a register-register instruction.
Not register mode.
Discard mode.
Use SIZE for word bit.
Assemble memory instruction.

Set default size to 16 bits.

True if doing inter-segment jump, ca Il, or return.

Set INTER true.

If INTER is true, set the far b
If INTER is true,
set bit 3 in the instruction.
Reset far flag.

it in the instruction.

178

1M1 | |

M1 | [et |

Ml | [|

4M1 | [] [

SMI | [+]

6MI | [+]

MI | e] []

8MI | [|
| -]

9MI | =] =
| []

10MI |]] []

1IMI | |)
| [|
| [] [=]

12MI | [= |
T = T]
| [] [=]

13M1 | [+] P |
| =] m
| LTl e | =]
| el | []
| T T

141 | |
[| Taw

MOV | [T
| -]
| ST i
| Gl = m |
| =] =] []
| =] =1 o
| 52 T T

Figure24.2 8086 instruction types.

179

24.4. Defining Commands To Generate Opcodes

8086 is a rather complicated microprocessor. # designed to be 8080 downward compatible so
that it must be able to execute all the 8080 imsibns. With lots of 16 bit machine instructions
and operators for the extra registers and diffemgrde of operation, the instruction set becomes
very big. Consequently, the assembler also becaomaplicated in order to take care of these
diverse types of instructions. There are 14 idiaie classes of instructions in 8086. A

defining commands used to generate opcodes for each class ofiatistns

: IMI (opcode --) Define one byte constant instr uctions.
CREATE C, Create header and compile the opcode.

DOES> ()

c@ Fetch opcode from the parameter field of the as sembler word.
C, Assemble it.

HEX

37 IMIAAA 3FIMIAAS 98 1MICBW F81MICL Cc
FCAIMICLD FA1IMICLI F51MICMC 99 1MICW D

27 1MI DAA 2F 1MI DAS F4 1MI HLT CE 1IMI'IN TO

CF IMIIRET 9F 1IMILAHF FO 1MILOCK 90 1MI NO P

9D 1IMI POPF 9C 1IMIPUSHF F21MIREP F2 1MIRE Pz

9E IMI SAHF F9 1IMISTC FD1IMISTD FB1MIST |
9B IMI WAIT D7 1MI XLAT

OCTAL

: 2MI (opcode --) Define ASCI!I instructions.
CREATE C, Header and parameter field.
DOES> ()

C@ C, Assemble the opcode.

12 C, Assemble the ASCII mode byte.

HEX D5 2MI AAD D4 2MI AAM OCTAL

: 3MI (opcode --) Define branch instructions wit h one byte offset.
CREATE C,

DOES> (addr --)

C@ C, Assemble opcode.

HERE - 1- Offset from current address.

C, Assemble the offset.

HEX

77 3MIJA 733MIJAE 72 3MIJB 76 3M1JB E
E3 3MIJCXZ 74 3MIJE 7F 3MI JG 7D 3MI JG E
7C 3MI JL 7E3MIJLE 753MIJNE 71 3MIJN O
79 3MIJNS 70 3MIJO 7TA3MIJPE 7B 3MIJP O

O

78 3MI JS E2 3MI LOOP E13MILOOPE EO 3MILO PNE
OCTAL

: 4MI (opcode --) Define LDS, LEA, LES instructio ns.
CREATE C,

DOES> (disp mr rmid --)

C@C, Assemble opcode.

MEM, Memory reference.

HEX C5 4MI LDS 8D 4MI LEA C4 4MI LES OCTAL

: 5MI (opcode --) Define string instructions.

CREATE C, Store opcode.
DOES> ()
C@ SIZE, Assemble opcode with size bit.

SIZE ON Enable word addressing.

180

HEX A6 5MI CMPS A4 5MI MOVS AE 5MI SCAS OCT AL

: 6MI (opcode --) Define string instructions wher ebyte/word modeisdetermined atassembly time.
CREATE C, Store opcode.

DOES> (mr--)

cC@ Opcode.

SWAP W, Use mr to decide the word bit and assemble accordingly.

HEX AD 6MI LODS AA 6MI STOS OCTAL

: 7MI (opcode --) Define multiply and divide ins tructions.
CREATE C, Store opcode.

DOES> (r/m--)

c@ The opcode will be put in the reg field of the second byte.
366 The real first byte opcode.

WR/SM, Assemble the whole mess.

HEX 30 7MI DIV 38 7MI IDIV 28 7MI IMUL 20 7 MI MUL
.10 7MI NOT OCTAL

: 8MI (opcode --) Define input/output instruction S.
CREATE C, Opcode.

DOES> (port--)

CcC@ Opcode.

OVER R167? Is the port# a 16 bit number?

1 AND OR OR the word bit to opcode.

OVER # = Is there an immediate operator?

IF Yes, a port# is given.

C, Assemble opcode.

C, Assemble port number.

ELSE Implied port.

10 OR Set the implied port bit in opcode.

C, Assemble one byte i/o instruction.

THEN

HEX E4 8MIIN E6 8MI OUT OCTAL

: 9MI (opcode --) Define increment/decrement ins tructions.
CREATE C, Store opcode.

DOES> (reg--)

cC@ Get opcode first.

OVER R167? Mode 1 operation?

IF Yes.

100 OR Opcode for one byte inc/dcr instruction.

SWAP RLOW Retain only r/m field.

OP, Assemble one byte instruction.

ELSE Other modes.

376 First byte opcode.

WR/SM, Use stored opcode as second byte instructi on.

THEN

HEX 08 9MI DEC 00 9MI INC OCTAL

: 10MI (opcode --) Define Shift/rotate instruction S.
CREATE C, Store opcode.

DOES> (reg--,orregCL--)

cC@ Stored opcode.

OVER CL = Top register is CL?

IF Multiple bit shift.

NIP Discard CL because it is implied.

322 Number of bits shifted in CL.

ELSE Single bit shift.

320

THEN

WR/SM, Assemble the two-byte instruction.

HEX 10 10MI RCL 18 10MI RCR 00 10MIROL 81 OMI ROR

.38 10MI SAR 20 10MI SHL 28 10MI SHR OCTAL

181

2 11MI (opcodel opcode? --) Define call/jump inst

CREATE Header.
C, Indirect call/imp opcode.
C, Direct call/jmp opcode.
DOES> (addr --)
OVER #) = Immediate address?
IF Yes.
NIP Discard #) mode operator.
c@ Get the opcode.
INTER @ IF If it is intersegment addressing,
1 AND and a jump?
IF 352 Yes. Jump opcode.
ELSE 232 THEN No. Call opcode.
C, Compile jmp/call opcode.
SWAP, , Compile offset and segment.
ELSE Not intersegment addressing.
SWAP Target address addr.
HERE - 2- Displacement.
SWAP (disp opcode --)
2DUP 1 AND Is it IMP?
SWAP BIG? NOT AND And disp<256?
IF If so, assemble short jump.
2 OP, Short jump opcode.
C, Byte displacement.
ELSE Long jump or call.
C, Opcode.
1- Offset for three-byte instruction.
, Long displacement.
THEN
THEN
ELSE Not immediate addressing.
DUP S#) = Is it intrasegment addressing?
IF DROP #) THEN Yes. Restore the immediate addre
377 C, Assemble opcode.
1+C@ Get the initial r/m mode code.
?FAR Add the intersegment far bit if necessary.
R/M Append it to the opcode.
THEN
HEX 10 EB 11MI CALL 20 E9 11MI JMP OCTAL
2 12MI (reg-op seg-op r/m-op --) Define push and
CREATE Header.
C,C,C, Store three different opcodes for push or
DOES> (reg--)
OVER REG? Register mode?
IF Yes.
c@ Register mode opcode.
SWAP RLOW OP, Assemble it.
ELSE
1+ Point to the second opcode.
OVER SEG? Segment register mode?
IF Yes.
Cc@ Get segment opcode.
RLOW Save only r/m field.
SWAP RMID Put in the reg field.
OP, Assemble.
ELSE
COUNT Get second opcode and point to the third o
SWAP C@ Get the third opcode.
C, Assemble the third opcode as the first byte o
MEM, Assemble the addressing mode, second byte o
THEN
THEN
HEX 8F 07 58 12MI POP FF 36 50 12MI PUSH OCTA L
:13MI (oplop2 --) Define arithmetic and logic instructions.
CREATE Make header.
C,C, Store opcodes.
DOES> (operandl operand2 --)
COUNT >R Fetch and store opcodel.
C@ LOGICAL'! Save opcode2 in LOGICAL.
DUP REG? Is operand?2 a register?

182

ss code.

ructions.

pop instructions.

pop.

pcode.

f instruction.
f instruction.

IF
OVER REG?
IF
R>
OVER W,
SWAP RR,
ELSE
OVER DUP MEM?
SWAP #) = OR
IF
R>2 OR
WMEM,
ELSE
NIP
DUP RLOW 0=
IF
R>4 OR
OVER W,
R16? ,/C,
ELSE
OVER BIL?
OVER R16?
2DUP AND
-ROT
1 AND
SWAP
NOT 2 AND
OR
200 OP,
SWAP RLOW
300 OR
R> OP,
JC,
THEN
THEN
THEN
ELSE
ROT DUP REG?
IF R> WMEM
ELSE
DROP
2 PICK
BIL?
DUP NOT 2 AND
200 OR SIZE,
-ROT
R> MEM
SIZE @
AND ,/C,
SIZE ON
THEN
THEN

Yes.
Is operandl also a register?
Yes. A reg-reg math/logic operation.
Get opcodel.
Assemble opcodel with w field.
Assemble addressing byte.
Operandl is not a register.
Memory referece?
Or memory indirect?
Yes.
Assemble opcodel with direction field.
Memory referece.
Not memory referencing.
Discard operand1l.
Is operand?2 the accumulator?
Yes.
One byte math instruction. Fill th
Fill in the w field.
Assemble the byte or word immediate
Operand? is not the accumulator.
Big and long?
Operand?2 a 16 bit register?
True for 16 bit logic instruction.
Save the flag.
W field.
16 bit-logic flag.
Sign extension field.
Combine s and w fields.
Assemble first byte opcode.
r/m field.
Mode 3.
Second byte mode instruction.
Third byte or word value.

e math field (bit 2).

value.

Operand2 is not a register.
Is operandl a register?
Yes. Assemble memory referencing mat
Not memory referencing. Must be immediate v
It is not a register. Discard it because it
Pick the displacement.
Larger than 255?
Fill in the s field.
Assemble first instruction with
Save the BIG? flag.
Assemble the mode byte.
Must be BIG and word size.
Assemble the immedate value.
Reinitialize SIZE to 16 bit.

h instruction.
alue.
is a memory code.

w field.

HEX 0 10 13MI ADC 000 13MI ADD 2 20 13MI AND
038 13MI CMP 208 13MI OR 0 18 13MI SBB
028 13MI SUB 2 30 13MI XOR OCTAL

S 14MI ()
CREATE C,
DOES>
c@

DUP ?FAR
C,

1 AND 0=
IF, THEN

Returns.
Compile the opcode.

Get opcode.
Add the intersegment bit if necessary.
Assembler opcode.
If it has immediate offset,
Assemble the address offset.

HEX C3 14MI RET C2 14MI +RET OCTAL

24.5.

A small number of instructions do not belong to ahyhe above types.

Special Opcodes

183

They are defined

individually as colon commands which have to docsgeassembly work to assemble their
respective machine instructions.

HEX
:ESC (' source opcode --)
Escape to external device.
RLOW Retain only the low register field.
0DB OP, Assemble the ESC opcode.
R/M, With the r/m code.
DINT(n--) Assemble an interrupt instruction.
0CD C, INT, interrupt instruction.
C, n, the interrupt vector number.
1 SEG (seg --) Assemble a segment instruction.
RMID Mask over the segment field.
26 OP, Opcode for segment instruction.
: XCHG (mrl mr2 --) Assemble register exchange in struction.
DUP REG? mr2 a register?
IF DUP AX = And the AX register?
IF mr2=AX.
DROP AX is implied.
RLOW 90 OP, Assemble opcode 90 with mr1.
ELSE m2 is not AX.
OVER AX = Is m1 AX?
IF mi1=AX.
NIP No need of m1 anymore.
RLOW 90 OP, Assemble XCHG with m2.
ELSE Neither is AX.
86 WR/SM, Assemble XCHG with a mode byte.
THEN
THEN
ELSE mr2 is not a register.
ROT 86 WR/SM, Assemble XCHG with mode byte.
THEN
:CS: CSSEG; Code segment override.
:DS: DS SEG : Data segment override.
:ES: ES SEG ; Extra segment override.
:SS: SSSEG; Stack segment override.
:MOV(sourcedest--) Assemble a MOV instruction, the most complicated in struction in 8086.
DUP SEG? Is dest a segment register?
IF 8E C, Assemble segment MOV,
R/M, and the mode byte with source.
ELSE DIP REG? Is dest a register?
IF Dest is a register.
OVER #) = Source is from memory?
OVER RLOW 0= AND And dest is AX?
IF AO SWAP W, Yes. Assemble mem to AX MOV,
DROP discard dest, and
, assemble memory address.
ELSE OVER SEG? Is source a segment register?
IF Yes.
SWAP 8C C, Assemble segment to r/m MOV,
RR, with the mode byte.
ELSE Source and dest are not segment register.
OVER # = Immediate source?
IF NIP Yes. Discard # code.
DUP
R167? Is dest 16 bit?
SWAP
RLOW reg field of dest.
OVER 8 AND OR Combine reg field and w field.
BO OP, Assemble immediate to reg MOV,
J/C, with the immediate value.
ELSE Not immediate source.

184

8AOVER W, Assemble segment to r/m MOV,
R/M, with a mode byte.
THEN
THEN
THEN
ELSE Dest is not a register. Treat it as memory r eference.
ROT DUP SEG? Is source a segment register?
IF 8C C, Yes. Assemble segment to memory MOV,
MEM, with memory reference mode byte.
ELSE DUP # = Immediate source?
IF DROP Yes. Discard immediate code.
C6 SIZE, Assemble immediate to reg/mem MOV,
0 MEM, with a mode byte having 0 reg field ,
SIZE @ ,/C, and the immediate value.

ELSE OVER #) =

s dest a memory reference?

OVER RLOW 0= AND And the source is AX?

DUP RLOW 300 OP,

Assemble immediate byte value

R167? ,/C, If 16 bit data, assemble high byte.
THEN
THEN
THEN
ELSE Destination is not a register.
ROT UP REG? Is source a register?
IF 204 WMEM, Yes. Assemble reg-mem TEST instruct ion.
ELSE Immediate value.
DROP 366 SIZE, Immediate data and reg/mem mo de.
0 MEM, Memory reference.
SIZE @ ,/C, If 2 bytes operand, assemble the sec ond byte.
SIZE ON Activate 16 word mode.
THEN

THEN

24.6. Sructuresin Code Commands

IF A2 SWAP W, Assemble AX to memory MOV.
DROP Memory code #).
, Memory address.
ELSE Non of above. Must be register to re/m M ov.
88 OVER W, Assemble reg-r/m MOV instruction,
R/M, with the mode byte.
THEN
THEN
THEN
THEN
THEN
SIZE ON Default size is 16 bit words.
:TEST ('source dest --)
Assemble TESTinstructionwhichANDsourcewithdes tandsetthestatusregister.
DUP REG? Is destination a register?
IF OVER REG? And is source also a register?
IF Both operands are registers.
204 OVER W, Assemble opcode.
SWAP RR, Assemble reg to reg mode byte.
ELSE Source is not a register.
OVER DUP MEM? Is source a memory reference
. SWAP #) =OR or an immediate address?
IF 204 WMEM, Assemble memory to register code an d mode byte.
ELSE Immediate data.
NIP DUP
RLOW 0= Is the source AL register?
IF 250 Yes. Code for AL reg and immediate data mode.
SWAP W, C, Assemble code and the immediate byte.
ELSE Memory-immediate data mode.
366 OVER W, Assemble code 366 with the word field.

Structures similar to those in the regular colomp@nds can also be assembled in code commands.
However, the structures in code commands are aantstt using the branching and looping
machine instructions. The test condition for brang is not a flag on top of the data stack but the

185

condition flags kept in the CPU status register.

Forward and backward branching are constructedyissime commandsimilar to the MARK and
RESOLVE in the colon compiler.

: A?>MARK (-- f addr) Set up a forward branch in code definition.

TRUE Leave a flag on stack for error checking.

HERE Address to branch from.

0C, A dummy byte later to be resolved to a branch ing offset.
: A?>RESOLVE (f addr --) Resolve a forward branc hing.

HERE OVER 1+ - Calculate the branching offset.

SWAP C! Store it after the branch instruction.

?CONDITION Abort if the flag is not true.

: A?<MARK (-- f addr) Set up a backward branch i n code definition.

TRUE Set the flag.

HERE Leave current address on stack.

: A?<RESOLVE (f addr --) Resolve a backward bran ch.

HERE 1+ - Backward branch offset.

C Assemble the offset. Complete the branching instruc tion.

2CONDITION Abort if flag is not true.

The branching instructions are vectored throughcilemands>MARK, >RESOLVE, <MARK,
and <RESOLVE. The execution routines vectorechiegé commandsan now be resolved by
pointing them to the above structure commands defined in the assembiler.

'A?>MARK ASSEMBLER IS ?>MARK
'A?>RESOLVE ASSEMBLER IS ?>RESOLVE
' A?<MARK ASSEMBLER IS ?<MARK
' A?<RESOLVE ASSEMBLER IS ?<RESOLVE

Conditionals in the assembler are machine codbs tissembled by the structure commands like IF,
UNTIL, and WHILE. The conditionals are definedamstants to be assembled:

HEX

75 CONSTANT 0= 74 CONSTANT 0<>
79 CONSTANT 0< 78 CONSTANT 0>=
7D CONSTANT < 7C CONSTANT >=

7F CONSTANT <= 7E CONSTANT >

73 CONSTANT U<72 CONSTANT U>=

77 CONSTANT U<= 78 CONSTANT U>

71 CONSTANT OV
DECIMAL
. IF (opcode -- f addr) Assemble a conditional b ranch instruction to start a forward branch.
, Assemble conditional opcode.
?>MARK Set up forward branch.
: THEN (f addr --) Close a conditional branch.
?>RESOLVE ;
:ELSE(fladdrl--f2addr2) ResolveforwardbranchforlFandsetupanother f orwardbranchto THEN.
0EB Unconditional branch opcode.
IF Assemble it here.

2SWAP THEN Resolve forward branch from IF.

186

:BEGIN (--faddr) Set up a backward branch.

?<MARK

- UNTIL (f addr opcode --) Resolve the backward branch to BEGIN.

OEB Unconditional branch.

UNTIL Let UNTIL do the resolving and assembling.

C, Assemble the conditional opcode.

?<RESOLVE Resolve the branch offset.

: AGAIN (faddr opcode --) Resolve the backward branch with an unconditional branch instruction.
: WHILE (-- f addr) Forward branch.

IF ;

‘REPEAT(fladdr1f2addr2--) Branch back unconditionally.

2SWAP Get the BEGIN location.

AGAIN Assemble unconditional branch to BEGIN.

THEN Resolve WHILE clause.

:DO (n--addr) Set up an assembler do-loop.

CX MOV Assemble an instruction setting up the lo op counter.
HERE Leave address for branch instructions.

NEXT (--) The inner interpreter.

>SNEXT #) IMP Assemble an indirect jump.

DECIMAL

187

Chapter 25. Metacompiler

The source code discussed in this chapter is ifilEhMIETA86.BLK and KERNEL86.BLK,
Screen 1 to 10.

Metacompilation is a special feature of Forth togyate a new Forth system by an existing Forth
system. It is impossible in other operating systamd languages because of the complexity in
the conventional operating systems and languageitenst. The most you can do in those
environment is to do a 'sysgen’, which allows a ts€eelete unnecessary or unused features in the
full system and build a simpler system tailoregdar application. The simplicity and
conciseness of a Forth system give you much meesléim in selecting and eliminating features to
suit your application. Metacompilation enables yogreate a new system precisely customized
to your needs, and the new system can be targetedifferent computer even with different

CPUr's.

25.1. Concept of M etacompilation

The theory behind Forth metacompilation is rathexightforward. Commands the Forth
dictionary can be compiled or assembled accorairtbe specifications of the target machine. A
new dictionary can be created for the target machontaining all the commands which are
necessary for execution on the target machine. s fiév dictionary can then be transferred to the
target machine and executed on the target machiflee new dictionary will, of course, contain
the required nucleus to operate on the new host WiUnecessary interpreter, compiler, and
applications. A special initialization routine ma¢so be included to power up the new target
system. The metacompilation is the process torgéméhe new dictionary for the target
computer.

Currently F83 has been implemented on 8080, 803&4&8 68000 microprocessors running under
CP/M and MS-DOS operating systems. Metacompilatias used extensively to transport the
F83 model to different CPU's and to different opiagasystems. The metacompiler used to create
a F83 system is included in the F83 system soythiatan use it to rebuild the system or to
generate new systems suitable for your applicatioi$ie authors of F83 intended that you will
modify their F83 systems to explore new uses offand to develop commercial products for
public utilization

Metacompilation is considered to be the highestlle¥ extensibility in Forth. The first level of
extensibility is to use predefined defining commatike : and CODE to add new commartdsthe

188

existing system. The second level of extensibifitio create new defining commanuasich can
be used to compile new classes of commands oisttatzures to the dictionary, and to interpret
them according to your specifications. The thedel of extensibility, metacompilation, is to
regenerate the entire Forth system with whatevieemsions you might attach to it. This activity
has been the privilege of large corporations argeléeams or systems programmers at the
expenses of billions of dollars, to build compuiperating systems. In Forth, this privilege is
accorded to us ordinary souls in the form of a c@tailer.

The most fundamental issue in metacompilationas tiine target Forth system occupies an
addressing space entirely different from the reguleamory space the host Forth system addresses.
The virtual address space of the target Forth systeist be mapped to the real memory in the host
Forth system. The metacompiler must be able til bl new system in the virtual memory

space and resolve all the addresses and linkagedaegly. For one thing, the commandsthe

new system cannot be executed, and the new dicti@aanot be searched like normal Forth
dictionary. Searching must be done through ormaare symbol tables, and compiler directives
must be defined in special vocabulary to help bgdtructures in the command®longing to the
target system. These are non-trivial tasks.

25.2. Vocabulariesfor M etacompilation

The main purpose of metacompilation is to build m®@mmands in the new target system using
source code in the existing Forth system. Itusthecessary that a Forth commasiwbuld

execute differently depending upon when and whagseinvoked. Multiple commands of the
same name is a bad practice in normal Forth proguam but it is absolutely necessary in
metacompilation. It is accomplished by using mangabularies to house different commands of
the same names. Any of these commands can bedadJmnkselecting a specific vocabulary
searching order.

189

Ciptimizing
Forth

Building -
Systerns

Understanding
Forth

Iletac ornpiler

Starting
Assetnbler Forth

Interpreter

ONLY FORTH ALSO
VOCABULARY META

META ALSO
META DEFINITIONS

: [FORTH]
FORTH
: IMMEDIATE

- [META]
META ; IMMEDIATE

: SWITCH (-)

NOOP NOOP
DOES>

DUP @

CONTEXT @
SWAP CONTEXT !
OVER!

2+

DUP @
CURRENT @
SWAP CURRENT !
SWAP !

VOCABULARY TARGET
VOCABULARY TRANSITION A vocabulary holding special
VOCABULARY FORWARD

VOCABULARY USER
ONLY DEFINITIONS

FORTH ALSO META ALSO

Progratrming L earsing
Forth & Forth
Figure25.1 The chicken-egg cycle of meta-Forth

Start with the normal FORTH and ROO

DefineMETAvocabularywhichwillcontainallthew

Many of them are re-definitions.

META vocabulary will be searched before F
LetMETAalsobethe currentvocab

T vocabularies.
ordstoeffectmetacompilation.

ORTH vocabulary and ONLY vocabulary.
ulary sothatnew words willbe addedto META.

An immediate version of FORTH.

Declare [FORTH] as immediate so that i t will be executed during compiling.

An immediate version of META.

Exchangethesavedvaluesof CONTE
beusedinpairtosaveandrestoretheCONTEXTand
the pair one can change vocabulary and select new v
Two cells to save the current CONTEXT an
(-)
Contents of the first cell of NOOP
Context vocabulary.
Copy save context to CONTEXT.
Save CONTEXT to NOOP cell.
Address of second NOOP cell.
Fetch saved current vocabulary.
Current CURRENT vocabulary.
Save it in second NOOP cell.
Restore CURRENT.

XTandCURRENTwiththemselves.ltshouldalways
CURRENTvocabularies. Between
ocabulary definitions.
d CURRENT vocabularies.

Avocabulary to hold the symbol t able for all definitions in the target system.
case compiling words like ." and [.
A vocabulary holding all forward references as deferred words.
A vocabulary holding the USER versi on of defining words.
Add all the vocabulary names to th e ONLY vocabulary so that they are always
accessible and that all words in every vocabulary a re accessible.

Collect vocabulary names from both FORTH and META vocabularies.

190

:META META ;
: TARGET TARGET ;

: TRANSITION TRANSITION ;

: ASSEMBLER ASSEMBLER
: FORWARD FORWARD ;
:USER USER ;

bNLY FORTH ALSO META ALSO

DEFINITIONS

META in ONLY calls META in FORTH.

And so forth.

Restore the search order as META, FORTH and ONLY.

Target Forth System

HATIASET

TFLAN
LHOEVL

MOILISHYHL

THFAEOA

Host Forth System

Figure 25.2

Supporting vocabulariesfor metacompilation

A few useful commands are defined to re-order theatularies in the searching sequence to locate
specific commands in a specific vocabulary.

:IN-TARGET
ONLY TARGET DEFINITIONS

: IN-TRANSITION

ONLY FORWARD ALSO
TARGET DEFINITIONS ALSO
TRANSITION

. IN-META
ONLY FORTH ALSO
META DEFINITIONS ALSO

: IN-FORWARD
FORWARD DEFINITIONS

Search only the symbol table.

Search TRANSITION, TARGET, and FORW

The normal environment in doing metacompi

Used when a word is undefined and must

25.3. Accessing Memory In The Target System

191

ARD in that order.

lation.

be compiled on the fly.

During metacompilation, the dictionary of the tdrggstem is in a virtual memory space to which
new commands can be added but are not accessildéhér purposes. These new commands can
never be executed because the target system Wilberuseful in the target computer which may
be a totally different machine from the host conepyterforming the metacompilation. The target
virtual memory is mapped onto the host memory spgce constant offset and a variable

dictionary pointer:

0 CONSTANT TARGET-ORIGIN Theoffsetaddressinthehostmemorywherethetar getdictionarybegins.
The value of TARGET-ORIGIN Must be assigned before metacompiling.
VARIABLE DP-T The dictionary pointer for the target system during metacompilation.

All memory accessing commands in Forth must befireeld for meta- compilation to access the
memory of the target system.

: THERE (taddr -- addr) Map a target address to a host address.
TARGET-ORIGIN + Add offset.

: C@-T (taddr -- char) Fetch a byte from given t arget address.
THERE C@ ;

:@-T (taddr--n) Fetch a word from given targe t address.
THERE @ ;

: CI-T (char taddr --) Store a byte at the target address.
THERE C! ;

2 1-T (ntaddr --) Store a word at the target ad dress.
THERE ! ;

: HERE-T (-- taddr) Return target address of the next available dictionary byte.
DP-T @ ;

ALLOT-T (n--) Allocate more space in the targ et dictionary.
DP-T +! :

:C,-T (char--) Add a byte to the target dictio nary.
HERE-T CI-T Compile one byte.

1 ALLOT-T Move target dictionary pointer.

,-T(n--) Add a word to the target dictionary

HERE-T I-T Store one word.

2 ALLOT-T Move pointer.

:S,-T (addrn--) Add a string to the target di ctionary.
0?DO Scan the length of string.

DUP C@ Fetch one character.

C,-T Compile one byte.

1+ Increment addr.

LOOP

DROP Discard addr still on stack.

25.4. Branching Constructs

Two sets of commands setting up and resolving Iesmare needed in the metacompiler: one for
colon commands and one for code commands.

192

: ?2>MARK (-- f addr)
TRUE

HERE-T

0,T

: 2>RESOLVE (f addr --)
HERE-T

SWAP !

?CONDITION

: 2<MARK (-- f addr)
TRUE
HERE-T

: 2<RESOLVE (f addr -)
T
2CONDITION

Set up a forward branch in colon definition.
Flag.
Address for the forward branch.

Reserved for forward branch address.

Resolve a forward branch
Address to branch to.
Store at the from address.
Error checking.

Set up a backward branch.
Put the flag on the stack,
with the current dictionary address.

Resolve a backward branc h.
Store the address to be branched to.
Error checking.

The following branching commands are to be usderassembler to set up branches in code

commands.

: M?>MARK (f addr --)
TRUE

HERE-T

0C,T

: M?>RESOLVE (f addr --)

HERE-T
OVER 1+ -
SWAP CI-T
?CONDITION

: M?<MARK (-- f addr)
TRUE
HERE-T

: M?<RESOLVE (f -- addr)

HERE-T 1+ -
C,-T
?CONDITION

Set up a forward branch in code definition.
Leave current address.
Reserve one byte for branching offset.

Resolve a forward branc h in code definition.
Current address.

Offset to the mark.

Store into the reserved space.

Error checking.

Set up a backward branch i
Push flag on the stack,
with the dictionary address.

Resolve a backward bran ch in code definition.
Offset from addr.
Assemble offset after the branching instructi

Error checking.

n code definition.

on.

These assembler branching commands are to beabeidd code commands in the target system.
The regular Forth assembler can be used for tangeicompilation if the branching commands are
smart enough to assemble structures in the vingahory space of the target system. They are
made smart by patching the executing addressé® @ltove commands into the corresponding
deferred commands in the regular assembler:

'C,-T

ASSEMBLER IS C,
LT

ASSEMBLER IS,

'HERE-T ASSEMBLER IS HERE

'M?>MARK ASSEMBLER IS ?>MARK

' M?>RESOLVE ASSEMBLER IS ?>RESOLVE
' M?<MARK ASSEMBLER IS ?<MARK

' M?<RESOLVE ASSEMBLER IS ?<RESOLVE

193

All the tools provided in the assembler are nowilabée for the metacompiler to build the nucleus
portion of the target system.

25.5. Forward Reference

Forth normally does not allow forward referencingcbmmands that is not yet defined in its
dictionary. This is a good practice to ensure #mt defined command is immediately available
for execution, testing and compiling. Howevepngsents a problem in metacompilation because
we have to have defining commands to compile nawngands into the target system, while these
defining commands can only be defined much latéhénmetacompiling process. The defining
commands must be made available at the very begraficompiling the target system. F83
allows forward referencing to commands not yetradiby creating deferred commands which
will be resolved and made executable at a latgestéhen the tools are available. The deferred
commands will be linked together in a list stonredhe FORWARD vocabulary. At the end of
metacompilation, the list of forward referenced wé examined and vectored to executable
commands.

: MAKE-CODE (pfa --) Takethecodefieldaddress pointedtobypfaandcompileitinthetarget
system.

@ Fetch cfa from pfa.

T Compile to target dictionary.

: LINK-BACKWARDS (pfa --) Extend the linked list of unresolved forward references.

HERE-T Current dictionary address.

OVER @ ,-T Store the address pointed to by pfa int o current dictionary.

SWAP ! Storecurrentdictionaryaddressintopfa, thusextendingthelinkedlist.

: RESOLVED? (pfa--f) Returnatrueflagifthe wordwhosepfaisonthestackisalreadyresolve.

2+ Flag indicating that the word is resolved.

cC@ Get it on stack as the flag.

: FORWARD-CODE (pfa --) Ifaforwardreferencei sresolved, compilethe code. Otherwiselinkit
to the forward reference list.

DUP RESOLVED? A resolved forward reference?

IF MAKE-CODE If so, compile.

ELSE LINK-FORWARD Else link.

THEN

: FORWARD: (--) Define a forward reference word and initialize it to be unresolved.

SWITCH Save the current vocabularies.

FORWARD DEFINITIONS Make FORWARD the current an d context vocabulary to build the forward
reference word.

CREATE Make the header.

SWITCH Revert back to the original environment.

0, Dummy execution address.

0C, Unresolved flag.

DOES> (--

FORWARD-CODE Whenaforwardreferencewordisexec uted,eithercompileittodictionary

or link to the list of unresolved references.

194

25.6. Compiling New Commandsto Target System

VARIABLE WIDTH
31 WIDTH !
VARIABLE LAST-T

VARIABLE CONTEXT-T
VARIABLE CURRENT-T

: HASH

SWAP 1+ C@
3 AND
2r+

: HEADER (--)

BL WORD

C@ 1+ WIDTH @ MIN
?DUP IF

ALIGN

BLK @

4096 +

T

HERE CURRENT-T @ HASH

DUP @-T ,-T

HERE-T 2-

SWAP I-T

HERE-T

HERE ROT S,-T

ALIGN

DUP LAST-T!

128 SWAP THERE CSET

128 HERE-T 1- THERE CST

THEN

: TARGET-CREATE (--)

>IN @

HEADER

>IN !

IN-TARGET CREATE
IN-META

HERE-T,

1C,
DOES>

MAKE-CODE

: RECREATE (--)

>IN @
TARGET-CREATE
>IN !

: CODE (--)
TARGET-CREATE
HERE-T 2+

T
ASSEMBLER !CSP

: LABEL (--)

The maximum length of the names in t
It is initialized to allow 31 characters
Avariable pointing to the namefie

in target.

Pointertothe array of context

Pointer to the vocabulary where

arget definitions.
in names.
Id ofthe mostrecently definedword

andresidentvocabulariesinthetarget.
new definitions are to be linked.

(str-addr voc-addr -- thread)
Fromthe name of a definition and the address of th ecurrentvocabulary,
return the thread address to link the new definitio n.
Get the first character in the name.

Only four threads are implemented.

Return the address of the thread in the body of the vocabulary.

Create a header in the target dict ionary. It makes a header out of the
nextword in the input stream and fixes up all the appropriate pointers
to link it into the target dictionary.
Get the name.

The length of the name field.
If length is not zero, make the header.
Align new header to word boundary.
Current block number.
The view field with the block number and t
1.
Compile the view field.
Find the thread to link th
Compile the link field.
The link field address of the new word
Update the top of linking thread in the
Save a copy of the name field address.
Move the name from host to target.
Make sure the code field fall on even word
Update the LAST-T with new name fiel
Set the delimiting bit in th
Set the delimiting bit i

he file number, assumed to be

e new word.

in the target dictionary.
current vocabulary.

boundary.
d address.
e first (count) byte of the name field.
n the last byte of name field.

No header will be created if WIDTH is set to zero.

Createaheaderintargeta ndanentryinthe symboltable. The newword
isinitializedasresolved sothatitwillbe compi ledtothetargetwhen
invoked.

Save the input stream pointer.
Create the target header.
Restore the input pointer to reuse the name
Create an entry in the symbol tab
Return to metacompiler.
Compiletheexecutionaddressofthe new
table entry.
Compile the resolved flag.
(--)Whentheentryinthesymboltableis
of the target word will be compiled to the target d
Compile the contents of the pfa to targe

of the new definition.
le, TARGET vocabulary.

targetwordto pfaofthesymbol

executed,theexecutionaddress
ictionary.
t dictionary.

SameasTARGET-CREATE,butdon't
the name of word can be used again.
Save the input stream pointer.
Create headers in target and symbol table.
Restore input stream pointer.

advancetheinputstreampointersothat

Set up to assemble a new code defini
target cfa is set to target pfa.
Make the headers.
Parameter field address of the new code word.
Compile code field in the target code word.
Set trap for error checking.

tion to the target dictionary. The

Remember the current target diction ary address and assign it a name so
that a subroutine can be called from a code definit ion.

195

ASSEMBLER DEFINITIONS

HERE-T CONSTANT Assign a name to the target addres S.

ASSEMBLER DEFINITIONS Go back to the Forth assemble r.

: END-CODE Redefine the code word terminator for t he target compiler.

IN-META Specify metacompiling environment.

?CSP Do error checking by comparing stack depth at the beginning and end of
a code definition.

META Return to metacompiler.

IN-META And reorder the vocabularies as needed by t he metacompilation.

25.7. Transition Compiler Directives

Compiler directives, which build structures in taeget commands or performing special actions
other than compiling execution addresses, cannekbeuted immediately within the target
compilation environment. The compiler directiveghe normal Forth cannot be used either,
because structures and special conditions mudtiitierbthe target system. These metacompiler
directives are all put in the TRANSITION vocabulanyd are executed from there. When these
compiler commands are encountered, nwg commandarpiled into the target dictionary. The
corresponding commands in the TRANSITION vocabubae/executed so that the special
condition in the target command can be dealt witmediately.

:'T (--cfa) Look upthe nextwordintheinput streamonly inthe targetvocabulary.
Preserve original context.

CONTEXT @ Save context vocabulary.

TARGET DEFINED Look up next word in the TARGET voc abulary. (context cfaf--)

ROT CONTEXT ! Restore context.

0= ?MISSING Abort if the word cannot be found.

C[TARGET] (--) Forcethe compilationofaTARGE Twordregardlessofthe current CONTEXT
vocabulary.

T Find the word in TARGET vocabulary.

Compile its execution address.

'F(--cfa) Lookupthenextwordintheinput streamonlyinthe FORWARDvocabulary.
Preserve current context.

CONTEXT @ Save context on stack.

FORWARD DEFINED Search FORWARD vocabulary for the next input word.

ROT CONTEXT ! Restore context.

0= ?MISSING Abort if word cannot be found in the F ORWARD vocabulary.

(T () Define a new compiler directive word i n the TRANSITION vocabulary. It
is otherwise the same as : .

SWITCH Save the current CONTEXT and CURRENT vocabu laries.

TRANSITION DEFINITIONS Make TRANSITION the curren t vocabulary.

CREATE Define the following word in the TRANSITION vocabulary.

SWITCH Restore original context.
Compile the body of the new word.

DOES> This is how the new word defined by T: shoul d be executed:

>R Pushthe parameter address ofthe newword onther eturnstack. Thelist
of execution addresses compiled in the parameterfi eldwill be executed

in sequence. Similar to what NEST might have done.

:T; (- Terminate a word defined by T:.

SWITCH Save context.

TRANSITION DEFINITIONS Change context to TRANSITI ON.
[COMPILE] ; Compile end of word definition.

SWITCH Restore context.

196

; IMMEDIATE

Following are the string commands for inline comtseand documentation:

T:((-)
[COMPILE] (
T,

T:(S(-)
[COMPILE] (S
T,

TA(-)
[COMPILE]\
T,

Inherit (from host to TRANSITION.

Inherit (S from host.

Inherit \ from host.

Special commands are needed to compile strin@lgénto the target dictionary:

. STRING,-T (--)

ASCII " PARSE
DUP C@ 1+
S,-T

ALIGN

FORWARD: <(.")>

T
[FORWARD] <(.")>
STRING,-T

FORWARD: <(")>

T
[FORWARD] <(*)>
STRING,-T

FORWARD: <(ABORT")>

T: ABORT"

Scantheinputstreamfora"a

sthe stringdelimiterand compilethestringinto
target dictionary.
Parse input text to ".
Length of string just parsed.
Move the string and compile into the target d
Align to cell boundary.

ictionary.

Runtime forward reference for the c ode compiled by ." .
Compile the runtime code <(.")>and a string
Compile the forward reference.

Compile the string literal.

literal in the target dictionary.

Runtime forward reference for the co de compiled by " .
Compile the unknown runtime code <(")> with a

Compile the forward reference word <(")>.
Compile string literal from input stream

string literal.

Runtime forward reference for A BORT".

Compile the unknown runtime code for abor t, followed by a string.

[FORWARD] <(ABORT")> Compile the abort code.

STRING,-T

FORWARD: <(;USES)>
FORTH VARIABLE STATE-T

T:;USES (--)
[FORWARD] <(;USES)>
IN-META

ASSEMBLER

ICSP

STATE-T OFF

T,

T: [COMPILE] ()
T
EXECUTE

FORWARD: <(IS)>

TS ()
[FORWARD] <(IS)>

Compileacodefieldwhoseruntime

Compile a TARGET word rather t

With the string literal.

Forward reference for code routi
Trueifinthecompilingsta
or in the interpreting state.

ne compiled by ;USES.
teinsideacolondefinition. Falseifoutside

routinealreadyexists. Itissimilarto;CODE
otherwise.
Compile the code field using the address of <(;USES)>.

Force the context of metacompiler.

Invoke assembler to start assembling cod e routine.
Install error checking.
Assembler words are interpreted, not ¢ ompiled.

han execute its TRANSITION counterpart.

Find the next word and return its execution add ress.
Executethewordinthesymboltablevocab
the word into the target dictionary.

Forward reference to the runtime ro utine of IS.

Compile the unknown address of <(IS)>

T,

197

ularyTARGET. Theeffectistocompile

(IS (cfa--)

T
>BODY @
>BODY I-T

T: ALIGN
T,

T:EVEN (n--n")
T

25.8.

FORWARD: <VARIABLE>

: CREATE

RECREATE

[FORWARD] <VARIABLE>

HERE-T CONSTANT

: VARIABLE
CREATE
0, T

" FORWARD: <DEFER>

: DEFER
TARGET-CREATE
[FORWARD] <DEFER>
0,T

:DIGIT? (char --f)
BASE @ DIGIT
NIP

:PUNCT? (char --f)

ASCII . OVER = SWAP
ASCII - OVER = SWAP
ASCIlI / OVER = SWAP
DROP OR OR

‘NUMERIC?(addrlen--

DROP

C@ DIGIT?
EXIT

THEN

1-ROT

0 ?DO

DUP C@
DUP DIGIT?
SWAP PUNCT?
OR ROT AND
SWAP 1+
LOOP

DROP

ThisistheversionofISinthem

etacompilerwhich actually patchesthe forward
reference.

Find the cfa of the next word to be patched.
The execution address pointing to executio

Patch in with the cfa on stack. Thus res

n routine.
olve the forward reference.

Align the dictionary pointer to word bound ary.

This is not needed in 8086, which is a true byt e machine.

Make the number n even.

Noop in 8086 or 8080.

Defining Words In M etacompiler

Forward reference for runtime r outine of CREATE and VARIABLE.

Create a target word using the runtime rou tine for VARIABLE and a host word to
return the HERE address in target.
Createtargetwordandanentryinthe sy
pointer is not advanced.

Compile code field in target.

Define the pfa as a constant in th

mboltable vocabulary TARGET Theinput

e host.

Define a variable in the target.
Use the above CREATE.
nitialize the parameter field.
Forward reference for the runtime routine of DEFER.
Define a deferred word or an execution vect
Create a target word and a symbol ta

Compile code field.
Compile a dummy parameter to hold execution

or in the target.
ble entry.

address.

Return true if the character is a digit in current base.
Convert the char using current BASE.

Only the flag is needed. Discard the result o f conversion.

Return true if the character is a valid punctuation character for numbers such
as leading - or decimal point.

A period?

Or a minus sign?

Oral?

Return the flag.

Return true if the string is a valid number in the current base. At least one
valid digit should be present in the string.
Only one character?
Yes.
Discard len .
Is it a valid digit?
No other action needed.

Initial flag.
Scan the length of the string.
Get one character.
Is it a digit?
Or a punctuation?
AND the test results to flag.
Increment addr.

Discard addr.

198

25.9. User Variables

User variables are collected in a table called assa for multitasking context switching. All the
variables pertinent to the independent operaticmtakk have to be preserved for each user or task
when it relinquishes control of CPU to other tasksthat when it regains the control of CPU the
task can continue from where was left off. The atang of the user area requires redefining
many dictionary accessing commands. These retefisiare collected in a separated vocabulary
USER. The target compiler must have its own vessif these commands to compile user
variables in the target system.

FORTH VARIABLE #USER-T Avariablein FORTH to count the number of user variables definedinthe
target system.

META ALSO Revert to metacompiler.

USER DEFINITIONS Following words are added to the U SER vocabulary.

ALLOT (n--) Allocate space in the user area.

#USER-T +! Add n to the user area counter.

FORWARD: <USER-VARIABLE> Forward reference for the runtime routinE of USER-VARIABLE.

: VARIABLE (--) Create a user variable in the us er area.

SWITCH Save context.

RECREATE Create headers in target and symbol table .

[FORWARD] <USER-VARIABLE> Compile code field point ing to <USER-VARIABLE>.

#USER-T @ Current user area pointer.

DUP ,-T Compile the pointer in parameter field.

2 ALLOT Move user area pointer.

META DEFINITIONS Change current vocabulary to META .

CONSTANT Create a constant in META holding the use r area pointer.

SWITCH Restore context.

FORWARD: <USER-DEFER> Forward reference for runtime routine of user deferred words.

: DEFER (--) Create a user deferred word or a ta sk local execution vector.

SWITCH Save context.

TARGET-CREATE Create target and symbol table entri es.

[FORWARD] <USER-DEFER> Compile code field pointin g to <USER-DEFER>.

SWITCH Restore context.

#USER-T @ ,-T Compile the user area pointer.

2 ALLOT Move user area pointer.

ONLY FORTH ALSO META ALSO Restore the metacompiling environment.

DEFINITIONS

25.10. Vocabulary

The defining command VOCABULARY creates new vocaligls when the target system is
brought up and running. In the parameter fielthefvocabulary command, four cells are used to
store the addresses of the ends of four dictiothagads for the hashing algorithm. The last cell
stores the VOC-LINK address, which points to theallary defined immediately before the
currently defined vocabulary. This way, all theeabularies defined in the running system are
linked together themselves. This vocabulary lirkegnecessary when vocabularies have to be
trimmed by FORGET.

199

FORTH VARIABLE VOC-LINK-T

FORWARD: <VOCABULARY>

: VOCABULARY (--)
RECREATE

[FORWARD] <VOCABULARY>

HERE-T

#THREADS 0 DO 0 ,-T LOOP
HERE-T VOC-LINK-T @ ,-T

A variable linking all de fined vocabularies together.

The forward reference for the runtime routine of VOCABULARY.
Create a vocabulary in the tar
Create headers.
Compile code field.
Save the parameter field address of the def
Initialize four threads in the vocabulary.
Store previous vocabulary pfa after the thread field.

get system.

ined vocabulary.

VOC-LINK-T ! Store pfa of this vocabulary into VOC -LINK-T and extend the vocabulary
linkage.

CONSTANT Define a constant in the host.

DOES> (--)

@ Fetch the starting address of the thread field in t he vocabulary.

CONTEXT-T! Store it in the context variable to ma ke it the context vocabulary.

: IMMEDIATE (--)

If heads are compiled in target
the name field.

, set the precedent or immediate bit in

WIDTH @ IF If heads are compiled,

64 Precedent bit.

LAST-T @ THERE Address of the name field.
CTOGGLE Flip the precedent bit.
THEN ;

25.11. Resolving Forward References

:FIND-UNRESOLVED (--cfaf)

Search for a word in the FORWARD vocabulary and ret urn the status.

'F Find the next word in the input stream in the FORWA RD vocabulary.
DUP >BODY Get the parameter field address.
RESOLVED? Return the a true flag if the word is re solved.

: RESOLVE (taddr cfa --)

>BODY
2DUP
TRUE OVER 2+ C!

Runthroughthelinked listofforwardreferenceandresolveeachofthem
with the given address.

The parameter field address from cfa.

Storethe'resolved'flaginthet
in FORWARD.

hirdbyte oftheforwardreferenceword

@ Address of the last member in the linked list of un resolved reference.
BEGIN Run down the list.
DUP If address is not 0, go do the resolving.
WHILE
2DUP @-T Get the next unresolved reference.
-ROT Replace the old one.
SWAP I-T Resolve the old reference.
REPEAT
Clear stack.

2DROP

: RESOLVES (taddr --)
FIND-RESOLVED

IF

>NAME .ID

" Already resolved."
DROP

The command used by user t o resolve forward reference.
Search the next word in the FORWARD vocabulary and determine if it is
resolved.
Yes. Resolved.
Print its name.
And a message.
No need of taddr.

ELSE Not resolved.
RESOLVE Then resolve the references.

THEN

At the end of metacompilation, all the forward refeces must be resolved before the target system

is saved. Otherwise, the target system will sucedygh when it is executed. There is a long list
200

of reference to be resolved. Following is a shsttof examples for illustration. You should
consult the source listing for the complete list.

' (") RESOLVES <(.")>
' (") RESOLVES <(")>

' (;CODE) RESOLVES <(;CODE)>

' (;USES) RESOLVES <(;USES)>

[FORTH] ASSEMBLER DOCREATE META RESOLVES <VARI ABLE>
[FORTH] ASSEMBLER DOUSER-DEFER META RESOLVES < USER-DEFER>
etc., etc.

Deferred commands and many system variables nsedalinitialized:

' (LOAD) IS LOAD

'CRLF IS CR

" (KEY?) IS KEY?

etc., etc.

' FORTH >BODY CURRENT I-T
FORTH>BODY CONTEXT !-T

HERE-T DP UP @-T + I-T

etc., etc.

25.12. Redefining Host Commands

Many important commands in the host or Forth votatyiare redefined to be used in
metacompilation. To use the host versions of te&plicitly, they are redefined as host
commands prefixed with an 'H' character befora¢igellar name.

: H: [COMPILE] : ;
H:' 'T>BODY @ ;
H:, -T;
H:C,C,-T;

H: HERE HERE-T ;
H: ALLOT ALLOT-T ;
H: DEFINITIONS

DEFINITIONS
CONTEXT-T @ CURRENT-T!

171 Alias of], which will be used by the target compiler.

:[[[COMPILE] [

i:ORTH IMMEDIATE META 1] has to be stopped by the FO RTH [, which takes an alias of [[.

FORWARD: DEFINITIONS Making both [and DEFINITIONS forward references so that the target compiler
can assign compiler functions to them.

FORWARD: [

25.13. Running The Metacompiler

Metacompilation is a complicated process and shbeldsed only when you have to tailor the

201

Forth system to very specific application. Sin88 Bystems were generated using
metacompilation and the authors were kind enougirduide us with the complete source of the
metacompiler and the actual loading commands tergés the F83 system, we have an excellent
guide and example to follow. It is worthwhile ®vrew the loading sequence in generating the
F83 system. When you do metacompiling of your eystem, you probably should follow this
sequence as close as possible, making minimal eBaargd modifications in the kernel and adding
your applications on top of the kernel. After ymave gone through this process several times and
obtain working systems, then you can start re-wiekkernel.

To fire up the metacompiler, you must first prepaisk with F83.COM, META86.BLK, and

KERNEL86.BLK files onit. Type

F83 META86.BLK
and 1 LOAD

to bring up the F83 system, which in turn will lcde first screen in the META86.BLK, the load

screen of the metacompiler. The loading commarstieen 1:
321 THRU

loads the metacompiler, containing all the commatsisussed in this chapter. After the
metacompiler is loaded, we are ready to generat&amel Forth or the minimal Forth operating
system. The following command in screen 1 of MEGAR_K open the KERNEL86.BLK file

and compile the kernel Forth:

ONLY FORTH DEFINITIONS ALSO
FROM KERNEL86.BLK 1 LOAD

Since it will need the KERNEL86.BLK file, this fileust also be on the disk. If your disk is not
big enough to hold all these files, you should teetee FROM ... line from the screen 1 in
META86.BLK. After the metacompiler is loaded, yoan change disk and type it in on the
keyboard to load the kernel.

Screen 1 of the KERNELS86.BLK file is the loadingesen of the kernel. The commands:

ONLY FORTH META ALSO FORTH
include the META vocabulary in the search order aedare ready to compile the kernel.
However, we have to first allocate memory spac&dce the target kernel Forth system. This is
done by:

256 DP-T! Initialize the dictionary pointer and le ave 256 bytes atthe bottom of the
dictionary for interrupt vectors.

HERE 12000 + The physical address of the target dic tionary.

' TARGET-ORIGIN >BODY ! Store it in the constant, t he address offset into the target dictionary.

IN-META Establish the metacompiling environment.

292 THRU Load the entire kernel FORTH system.

We should pay special attention to the last screetite KERNEL86.BLK file, where all the
forward references are resolved, all the defermednoands are vectored to proper executable
commands, and all the system variables are irzgdli To make a target system run properly,

these things have to be done correctly.
202

After the kernel Forth is metacompiled, it mustsh®ed on the disk as an executable object file.
It is saved and given the name KERNEL.COM:

META 256 THERE The physical address where the targe t dictionary starts.

HERE-T The logical address of the end of the target dictionary, which is the length
of the target dictionary in bytes.

ONLY FORTH ALSO DOS Switch to DOS vocabulary to acc ess the SAVE command.

SAVE A:KERNEL.COM Copy the target dictionary into K ERNEL.COM, which is executable.

FORTH

At this point, we have generated a minimal Fortbtesyn and put it in an object file KERNEL.COM.
This is a usable Forth system containing the teetrpreter and colon compiler. However, its
function is limited and not quite usable as a sysie do programming and development work. If
you wanted to develop a Forth application, thisikéserves well as the foundation to support your
application. You can load the application progi@mtop of the kernel and it will become a
product you can sell. As a product, F83 systenidtasof bells and whistles to add to the kernel.
The sequence to add applications to the kernehk®@s following.

BYE Exit F83 and return to the DOS environment.
Copy the KERNEL.COM file to a disk which contain§ila with all the application programs. In
this file, screen 1 must be a load screen whichl@ad all the application programs. In the case
of F83 system, this file is EXTEND86.BLK. Moreoy&XTEND86.BLK will load programs in
UTILITY.BLK and CPU8086.BLK. Therefore, you willdve to copy these two files to the disk.
If your disk does not have enough room for all éhiéles, you can delete the loading commands in
screen 1 of the EXTENDS86.BLK file and type themtba keyboard after switching disks.

To load the application on top of the kernel, type:

KERNEL EXTENDS86.BLK
and 1 LOAD

The object file KERNEL will be loaded into the mermp@nd the kernel Forth will be booted. It
then loads the first screen in EXTEND86.BLK whidadls in all the utility making up the entire
F83 system. In this screen you will find the fallag loading commands:

3 LOAD Load basic utility words and the ONLY-ALSO v ocabulary mechanism.

6 LOAD Load DOS file management words.

FROM CPU8086.BLK 1 LOAD Load the 8086 assembl er, and some CPU specific words to support 1/O,
debugger, and multitasker.

FROM UTILITY.BLK 1 LOAD Load all the utility we discussed in Part IIl.

The F83 system is now complete and it is also sandtie disk in a file named F83.COM
SAVE A:F83.COM

This process is what was needed to build the F8&8y You have to follow it closely in
building your own Forth system.

203

| ndex

* 103
ILINK 169

30,86
#BUFFERS 63
#REMAINING 124
#USER 167
(IFCB) 116

() 86

(+LOOP) 49
(BLOCK) 70
(CONSOLE) 56
(DARK) 123
(EMIT) 57
(KEY?) 56
(LOOP) 49
(PAUSE) 168
(SOURCE) 89
(WHERE) 124
T 192

(92

ALL 132
.DEFER 154
FILE 119
JINLINE 151
OTHER 154
.SCR 142
.UNNEST 152
WORD 151
:USES 197

?<RESOLVE 112,174,193

?CHAR 121
?DO 113
?LINE 140
?TEXT 125

[101,201
[FORTH] 190
]] 201

+THRU 26
<(;USES)> 197
<IP 163
<USER-VARIABLE>
>BUFFERS 63
>NEXT 31, 43
>UPDATE 69
12MI 182
1PUSH 32,43
2SCR 155
6MI 181

A 16,23
A?>MARK 186
ABSENT? 69
ALLOT 102,166,199
ASCIl 106
AUTO 133
B/FCB 63

199

BACKGROUND: 34,171

BDOS 56
BLOCK 70
BRING 128
BUG 10,163
CI-T 192

C; 174
CAPS-COMP 60
CHANGED 125,133
CLR-FCB 65
COLD 94
Compiler 98
CONVERT 84
COUNTER 34
CR-IN 58,58

'CHA 127
I-T 192
#) 30
#END 124
#S 86
#USE-T 199
(") 47,107
(?DO) 49
(ABORT") 109
(BLOT) 123
(CONVEY) 145
(DEBUG) 164
(FIND) 76
(LEAVE) 50
(NUMBER) 85
(PRINT) 57
(TILL) 120
, 102,174
VIEW 136
.(;CODE) 152
.BRANCH 151

.DEFINITION-CLASS 155

FINISH 152
LINE 131
PFA 153
SCREEN 123
USER-DEFER 153
ISTRING 90
2.A 148
?2>MARK 112,174,193
2CONDITION 112
?ERROR 108
?2MISSING 103,126
@LINK 169
[201
[META] 190
+LOAD 26
<# 85
<(ABORT")> 197
<MARK 112
<VARIABLE> 198
>END 63
>RESOLVE 112
SVIEW 136
13MI 182
2MI 180
3MI 180
7MI 181
A: 120
A?>RESOLVE 186
ACTIVATE 171
ALLOT-T 192
ASSEMBLER 173
AVOC 173
BIL? 177
BACKSPACES 57
BEGIN 113,187
BLOT 24,123
BS-IN 58
BYE 35
C, 102,174
C@-T 192
CASE: 150
CHANGED? 132
CNT 163
COMP 60
CONTEXT 73

CONVEY 23,145,147

COUNTS 34
CURRENT 73

IFCB 116

" 108,197

#> 85
#OUT 167
#THREAD 78
#VOC 73

((SEE)) 155

(?ERROR) 109

IFILES 119
"CREATE 74
#AFTER 124
#PAGE 157
#TIB 88
(92

(" 47,107

(?LEAVE) 47

204

(ABORT) 94 (AT) 123
(BUFFER) 70 (CHAR) 58
(COPY) 144 (D.) 87
(DEL-IN) 58 (DO) 49
(h 127 (KEY) 56
(LIT) 47 (LOAD) 120
(NUMBER?) 84 (PAGE) 157
(SEE) 151 (SEMIT) 157
(U.) 86 (UD.) 86
;' 108 JC, 177
. 86 108,197
. 154 2 147
.BUFS 126 .CONSTANT 153
.DOES> 154 .EXE CUTION-CLASS 152
.FRAMED 126 .IMMEDIATE 15 3
.LINEO 142 .NAME 118
.QUOTE 151 .R 86
.STRING 151 .TO 145
.USER-VARIABLE 154 VARIABLE 154
: 99 ; 100
?.N 148 ?<MARK 112,174,193
?>RESOLV E 112,174,195 ?BRANCH 48
?CR 140 ?DEFINE 119
?FAR 189 ?LEAVE 113
?STACK 96 ?STAMP 133
@-T 192 @VIEW 138
[1 106 [COMPILE] 103,197
[TARGET] 196] 100
+LOOP 113 +T 127
<(")> 197 <(."> 197
<(1S)> 197 <DEFER> 198
<RESOLVE 112 <USER-DEFER> 199
<VOCABULARY> 200 -> 26
>IN 88 >MARK 112
>SIZE 63 >TYPE 92
10MI 181 11MI 182
14MI 183 1M1 180
2PR 158 2PUSH 32,43
4MI 180 5MI 180
8MI 182 9MI 182
A?<MARK 186 A?<RESOLVE 186
ABORT 94 ABORT" 109
AGAIN 113,187 ALIGN 198
ALSO 12 APUSH 43
ASSOCIATIVE: 150 AT 23, 123
B 23 B/BUF 63
B/REC 63 B: 120
BACK-UP 58 BASE 82
BIG? 176 BLK 89
BOOT 94 BRANCH 48
BUFFER 70 BUFFER# 63
BYTE 176 C 19,124
C,-T 192 C/PAD 125
CAPACITY 16,65 CAPS 121
CC 59 CC-FORTH 59
CHAR 59 CLOSE 115
CODE 30,52,173,195 COL# 124
COMPARE 60,122 COMPILE 102
CONTEXT-T 195 CONTROL 10 6
CONVEY-COPY 144 COP Y 23,144,146
CREATE 167,198 CREATE-FILE 22,118
CURRENT-T 195 CURSOR 124

'CURSOR 124
D.R 87

DEBUG 18
Debugger 163
DEFER 199
DEFINITIONS 74
DEL-IN 59
DISCARD 69
DLITERAL 103
DOCONSTANT 45
DOES? 151
DONE 25

DOS 115
DOUSER-VARIABLE 45
DPUSH 43
DUMP 147

E 129

EDIT 124
EDITOR 123
EMPTY-BUFFERS 72
END-CODE 196
EPSON 157
EVEN 198
EXPECT 59

F83 1,35

FCB1 65,115
FILE? 119
FILE-WRITE 66
FIND-UNRESOLVED 200
FOOTING 157
FORWARD-CODE 194
GET-ID 132
HERE 102,174
HOLD 85

IBM 134
IBM--LINE 134
IMMEDIATE 102,200
IN-FILE 70
IN-META 191
INSTAL 133
INTER 178

IP> 163

JUST 129

KEY 57

L.ID 164

LAST-T 195
LIMIT 63

LINK 167
LITERAL 103
LOGO 157
M?<MARK 193
MAKE-CODE 194
MEM, 177
Modularity 99
MULTI 170
NEXT 31,43,187
O 127

OP, 176

OUT 149
PARSE-WORD 91
P-IN 58
PR-FLUSH 160
PR-START 157
QUERY 59

R/M 177
RECORD# 65
REDISPLAY 131
REPEAT 113,187
RES-IN 58
RESTART 168
RMID 176

RR, 177

S,-T 192

SCAN 90

SEE 14,155
SET-IO 66

D 23,129
DARK 24
DEBUG 28
Decompiler 149
DEFINE 120
DEFINITIONS 201
DIGIT 82
DISK-ERROR 63
DLN 148
DOCREATE 44
DOES? 174
DONE 133
DOS-ERR? 117
DP 73
DU 26
DUMP 148
ED 24
EDIT-AT 124
ELSE 113
END-CODE 30
ENTRY 166
ESC 184
EXECUTE 43
F 19,23,129
FAIL 82
FCB2 115
FILE-IO 67
FIND 78
FIRST 63
FORM-FEED 157
FOUND 123
H: 201
HERE-T 192
HOP 22,145
IBM-AT 134
ID 125
IN-BLOCK 71
IN-FORWARD 191
IN-RANGE 65
INT 184
INTERPRET 95
IS 19,198
K 127
KEY? 57
L/PAGE 157
LATEST? 68
'LINE 124

LINK-BACKWARDS 194

LMARGIN 140
Long string 61

M?<RESOLVE 193

MAKE-FILE 116
META 190

MORE 22,117

N 23
NUMBER 85
OFFSET 167
OPEN 16,120
P 23,127
PAUSE 168
PLACE 90
PRINTING 167
PR-STOP 158
QUIT 94
READ 116
REC-READ 66
REG 175
REPLACE 122
RESOLVE 200
RESUME 165
ROOT 10
RUN 95
SAVE 118
SCR#S 157
SEG 184
SET-TASK 111

D. 87 D.2 147
DARK 123 DEBNEXT 163
DEBUG 165 'DEBUG 163
DEFAULT 117 DEFER 1 67
DEFINED 78 DEFINITION-CLASS
DELETE 115 DELETE 122
DIGIT? 198 DIR 118
DL 26 DL 148
DO 113 DO 187
DODEFER 46 DODOES 46
DOES-OP 174 DOES-SIZE 174
DONE? 96 DOS 10
DOS-FCB 118 DOUBLE? 84
DPL 82 DP-T 192
DU 148 DUMP 25
DX 131 DY 131
ED 133 EDIT 24
EDITING? 133 EDITOR 10
ELSE 186 EMIT. 147
END-CODE 52 END-COD E 174
EOS 125 EPSON 17
ESC 193 ESTABLISH 144
EXECUTION-CLASS 152 EXIT 44
'F 196 'F+ 127
FAR 178 FCB 65
FILE 70 FILE: 119
FILE-READ 66 FILE-SIZE 117
'FIND 126 FIND? 128
FLUSH 23,72 FNEXT 164
FORWARD 190 FORWARD: 194
FROM 22,120 G 128
HASH 76,195 HEADER 118,195
HIDDEN 10 HLD 82
HOPPED 145 I 23,50,127
IBM-BLOT 134 IBM-DARK 134
ID-LEN 125 IF 113,186
IND 143 INDEX 17, 143
INITIAL 120 INIT-PR 1 7,157
INSERT 122 'INSERT 125
INT# 168 IN-TARGET 191
IN-TRANSITION 191 IP 30
J 23,50 JOIN 128
KEEP 127 KERNEL 35
KT 129 L 17,23
LABEL 31,195 LARGEST 140
LEAVE 113 LENGTH 60
-LINE 24,123 LINE# 124
LIST 13,23,142 LISTI NG 162
LOAD 23,120 LOCAL 169
LOOP 113 M 128
M?>MARK 195 M?>RESOLV E 193
MAXREC# 65 MD 176
MISSING 70 MODIFIED 125
MOV 184 MOVE 60
NEST 44 NEW 23,132
NUMBER? 84 NUMERIC? 19 8
OK 120 ONLY 12
OPEN-FILE 117 ORDER 13
PAGE 157 PARSE 91
P-FOOTING 159 P-HEADING 159
PNEXT 164 PR 158
PR-PAGE 160 PR-S-PAGE 160
PUNCT? 198 Q 19
R 129 R# 124
READ-BLOCK 66 REC/BLK 63
RECREATE 195 REC-WRITE 6 6
REG? 176 REGS 175
RES 164 RESET 115
RESOLVED? 194 RESOLVES 20 0
RLOW 176 RMARGIN 140
RP 30 RPO 167
S 129 S#) 30
SAVE-BUFFERS 23,71 SAVE-SYSTEM 34,118
SEARCH 115,122 SEARCHO 115
SELECT 116 SET-DMA 65
SHADOW 10,18 SHOW 18,161

205

155

SIGN 85

SKIP 89
SOURCE 89
SPACES 57
STAMP 133
SWITCH 119,190
T; 196

TASK: 171
THERE 192
TILL 23,129
TRACE 164

U 23,128

uD. 87
'UNNEST 164
UPDATE 23,69
'VIDEO 126
VIEW> 137
VOC-LINK 73
W, 176
WIDTH 195
‘WORD 92
WRITE-BLOCK 66

SINGLE 170
SLEEP 34,169
SP 30
SPLIT 128
'START 124
T 22,124
TARGET 190
TEST 185
THRU 26
TO 145
TRANSITION 190
U. 86
UD.R 87
UNTIL 113,187
UPPER 32,60
VIEW 13,138
VIEW-FILES 137
VOC-LINK-T 200
WAKE 34,169
WIPE 128
WORDS 9,141
X 23,97,128

SIZE 176
SLOW 164
SPO 169
SPOOLER 34
STOP 170
T 196
TARGET-CREATE 195
TEXT? 158
TIB 59,88
TOP 124
TRIAD 142
U.R 86
UNBUG 164
UP 45
USER 10,167,190
View field 136
VIEWS 137
VOCS 10
WHERE 24,109
WMEM, 177
WR/SM 178
XCHG 184

206

SIZE, 177
SMART 134
SPACE 57
SPOOL-THIS 34
STRING,-T 197
T: 196
TARGET-ORIGI N 192
THEN 113,186
‘TIB 88
TOS 169
TYPE 57
U/D 144
UNNEST 44
UPC 60,121
VARIABL
VIEW# 65,136
VOCABULARY 7 3,199
W 30,127
WHILE 113,187
WORD 92
WRITE 116

E 167,198,199

	Inside F83
	Contents
	Figures
	Tables
	Part I. Introduction to F83 System
	1. The Heritage of F83
	1.1. The Root of F83
	1.2. Advancements in Forth-83 Standards
	1.3. Creators of the F83 Systems
	1.4. Features of F83 System

	2. Browsing F83 System
	2.1. Listing the Command Names
	2.2. Vocabualry
	2.3. Viewing Source Code of Command Definitions
	2.4. Shadow Screen Documentation
	2.5. Files in F83
	2.6. Printing Utility
	2.7. Debugger

	3. Using the F83 System
	3.1. Create Your Own File
	3.2. The Editor
	3.3. Loading and Testing Program
	3.4. Memory Dump
	3.5. Debugging Your Program
	3.6. The 8086 Assembler
	3.7. Multitasker
	3.8. Save A System Image
	3.9. The Metacompiler

	Part II. The Forth Kernel
	4. Interface to the Host Computer
	4.1. Virtual Forth Computer
	4.2. Forth Computer Hosted on 8086
	4.3. Inner Interpreters
	4.4. Interpreters for In-Line Data and Strings
	4.5. Interpreters for Control Structures

	5. The Forth Nucleus
	5.1. 8086 Assembly Language in Forth
	5.2. Code Definitions in Forth Nucleus
	5.3. Examples of Code Definitions

	6. Terminal Input and Output
	6.1. The BIOS I/O Calls to the Operating System
	6.2. Terminal Output Commands
	6.3. Interpreting Control Characters
	6.4. More Sophisticated Input Commands
	6.5. String Commands

	7. The Virtual Memory
	7.1. Mass Storage and Virtual Memory
	7.2. Disk Buffers
	7.3. The File Control Block (FCB)
	7.4. Read and Write Disk Files
	7.5. Disk Buffer Management
	7.6. Saving Disk Buffers to Disk Files

	8. Dictionary and Vocabulary
	8.1. Threading of the Dictionary
	8.2. Hashing and Searching the Dictionary

	9. Number Input and Output
	9.1. Representation of Numeric Data
	9.2. Input Number Conversion
	9.3. Output Number Conversion
	9.4. Double Integer Output

	10. Word Parsing
	10.1. Text Processing
	10.2. Input Stream and Input Buffers
	10.3. Low Level Parsing Commands
	10.4. High Level Parsing Commands
	10.5. String Commands Defined Using PARSE
	10.6. End of Buffer Condition

	11. Text Interpreter
	11.1. The Operating System of Forth
	11.2. Entering the Text Interpreter
	11.3. INTERPRET
	11.4. DONE? and X

	12. Compiler
	12.1. The Colon Definitions
	12.2. Colon and Semicolon
	12.3. The Compiler Loop
	12.4. Low Level Supporting Commands
	12.5. Immediate Commands

	13. Structures in Colon Definitions
	13.1. Compiler Directives
	13.2. Compiling Numeric Data Structures
	13.3. Compiling String Literals
	13.4. Compiling Control Structures
	13.5. Address Calculation for Control Structures
	13.6. Control Structure Compiler Directives

	Part III. Utilities in F83 System
	14. The MS-DOS Files
	14.1. CP/M-DOS File Primitive Commands
	14.2. The File Control Block
	14.3. High Level File Commands
	14.4. Save Core Image to a File
	14.5. Directory Accessing
	14.6. System Level File Commands

	15. Text Editor
	15.1. String Utility
	15.2. Terminal Dependent Deferred Commands
	15.3. The Cursor Commands
	15.4. Editing Buffers
	15.5. Line Editing Commands
	15.6. String Editor Commands
	15.7. Screen Editor
	15.8. The Screen Display Commands
	15.9. The Screen Editor Commands
	15.10. Configuring The Terminal

	16. Viewing Source Screens
	16.1. The View Field
	16.2. The View Files
	16.3. The Viewing Command

	17. WORDS
	17.1. Output Formatting Commands
	17.2. WORDS

	18. Disk File Utility
	18.1. Displaying Screens In a File
	18.2. Disk Buffers
	18.3. Single Block Copying
	18.4. Multiple Block Copying
	18.5. Multiple File Block Copying

	19. Memory Dump
	19.1. The Dumb DUMP
	19.2. The Smart DUMP

	20. Decompiler
	20.1. Positional Case Defining Command
	20.2. Associative Defining Command
	20.3. Decoding Different Classes Of Commands
	20.4. Sorting and Execution Tables
	20.5. Decompiling Different Command Classes
	20.6. Command Classification
	20.7. The Decompiler SEE

	21. Printing Utility
	21.1. Variables and Setup
	21.2. Print Two Screens Side By Side
	21.3. Print 6 Screens on a Page
	21.4. SHOW

	Part IV. 8086 Specific Utilities
	22. Debugger
	22.1. Low Level Supporting Commands
	22.2. High Level Trace Commands

	23. Multitasker
	23.1. Multitasking
	23.2. User Variables and the User Area
	23.3. Pause and Restart
	23.4. The Multitasker
	23.5. Task Definition
	23.6. Background Tasks

	24. 8086 Assembler
	24.1. Assembly Tools
	24.2. 8086 Register Definitions
	24.3. Addressing Mode Operators
	24.4. Defining Commands To Generate Opcodes
	24.5. Special Opcodes
	24.6. Structures in Code Commands

	25. Metacompiler
	25.1. Concept of Metacompilation
	25.2. Vocabularies for Metacompilation
	25.3. Accessing Memory In The Target System
	25.4. Branching Constructs
	25.5. Forward Reference
	25.6. Compiling New Commands to Target System
	25.7. Transition Compiler Directives
	25.8. Defining Words In Metacompiler
	25.9. User Variables
	25.10. Vocabulary
	25.11. Resolving Forward References
	25.12. Redefining Host Commands
	25.13. Running The Metacompiler

	Index

