
a 0 T prcar s. ; appra h a a ri a .. •r d a I a

jr duotivitv tool iiainly cue to its interactiveness and extensr

b i Hwt th adet fnat ecd corn 3r orteothe

language tas resulted in quite unfavourabie FORTH runtrne bench

r a a a is n Tb lhraded Pighlevel Itera tive n n ompiler

TirC) sstern nas ceen implemented as an attempt to alleviate this

sto t rnipc wtr’e maintaining a11 th productive features of FORTH

I get a p oars or t ‘olve computing tasks t[e gap between the

tstract description of that task and the processor hardware must

cc bridged” by a programming language and its compiler. The

easier the use o the language and the better it utilises the

p’ocessors hardware, the more efficient the processor will solve

te giver computing task

It OPT anguage has made two significant contributions [1) to

‘te ease of programming: Interactiveness allows the user to imme’

d at I see ard heck the results of the programmed command se-’

quences, Extensibility allows the user unlimited extending of the

waiiable language thus expanding it UP to match the programming

ask rather than deviding the problem DOWN to the level of the key

words, It i obvious that this approach will inherently lead to a

r h r laguage mor eusabl code ad hig e produ ti ity

H iman coim inicatlon would be very inefficient f iimted to less

ar I H k y ords

At € h rdwere a d of t is ridg& compilers rec ntly available

for other languages &ascal, C, eta,) generate cuite fast and corn

pdct nact inc code FORTH however has traditionally generated a

pseujocode in the form of indirect threaded code (ITCY ie

‘ists of addresses indirectly referencing the machine”code to

a cc 4’ be required function 2 At rur ime these address

jist are tnen executed by a software “inner interpreter” (31

H il h s al ows any function to be called with a mere 2 bytes

or a 8 ‘bit processors it does result in a substantial degradation

of run time speed

To improve FORTWs run’tjme speed it has been suggested to replace

ITO with “direct threaded code (DTC (4] Some FORTH vendors have

rmplernented “subroutine threaded code (STC)” [5] which generates

lasts of subroutine calls thus replacing the software inner inter

95



0

C

a

:1

pe 1 d nc d ti
ecod f ‘ t a °wj

Ic rvocati f Pewo o i pil “oreinl e
d subroutin call de t possibly ef fec i ig a

F ange of the ompile o ly be aye e conais s o
multitude £ t[ese nan Coep era i t °ac handle U e ode
gereration or r ad OR H w Ii rue FORIH sty)
this allows the ul power of 1 gu ige be used o ‘ode
gereratior whil st I nair n ug a e mplicity o

e the us uide TM d t i U api

F tru us a p o
ie ewrd a ed d ess idcper

r Its allo furtter a p er e adde t te la
g elk RIH o r d d ed

a r e a tie ls
e e

a a
ptms a e

g r

£ e e 0 pg
c cit dfc pi

e a or

i HI C syste is based o t ack ach n
eachata controlingoe ft i doai ofapro
cessor da a ard instru ions a er - g o te Fat
about the same time as efforts we e tade to put the first real
two-stack threebus processor into sil or t is concept a faced
during work on very early versions f THInG [2] £ p a ible
he top values of both stacks are held in p ocessor egisters

T is esults i gniican sp d i pr are s

St b Sy psur



J

- w
p r t)1 cii1diJ. cd

- c;’ - C --neit tde ke’w.ro is ued
- c x&rrle oanc;

a’su a eta
-eni I AD SP
op eco

eta ted and ting

ie arc tof cr detects t the top va is a litera is.
1 + it cuulo compile ‘1 23+ Acc ADI” to :mmediately add 1 234

tc the Accumulator. However if this literal was found to be “1”
t rnaht be more efficient to compile’ “4cc INC’9 If the literal
was 0. which could happen f it is hidden in a constant changed
maibe f Dr differant software versions, no code would be generated
at all. Smlarly, a multiplication by I would produce no code,
vi- “2 “ woul ompile “4cc SHL”, This “strength reduction”

s the THI f’ rogrammer of having to eplace “2 * with
optim se execution speed Even if the ‘2’ were hidden i

t t, HIrO w uld optimise just the same

I parameters of the addition were literals, the sum would be
puted at compile—time with no code generated at all. This “con-

start folding” relieves the THInC programmer of tricks like “.

constantl 6 * constant2 I I LITERAL ,.“ to prevent these cal
culations from beang done at run-time.

These and other optimisation techniques reduce the code overhead
to less than 20% over hand—assembled unstructured code and achieve
a fr-ar— s six—fcld speed increase over indirect threaded FORTH.

a wt itt HInC so t Ithougi- r ompu tat o a as
com ‘he c spe d o degrade

ature C

it inc with THIr philosophy giving the ser as much pro
gra-vnirg assistance as possible numerous error detection facli—
tier ae pro ‘ided’

As n FORT-H, mismatched or incomplete conditional structures are
rep-rted.

T e airing of ‘ R and “R>” keywords is also checked to prevent
crashes d ie to imbalance of the return stack.

ac de f def nition is matched against its stack comment to
etect any da a stack inconsistancies, a common programming error

he user can control the system’s reaction to detected compiling
errors by setting the error-mode to either “abort”, “warn” or
“ignore”,

First Australian Foh Symposum 97



F,

bec e a
as urces lhis pr i s h
ie processor without iavir

s’ii C applica ions iave c
me of assembly code. F
rriecr ti’al and diffi 1

t°r auesi Id
splayig aa a

84 a 8
d p

5

JQ a a ces a
o ar er t £ I rtro o

vert o assembly language
i w i tar witi us me use o a sing

a pplied to t notoriously
d b i te’ t outines

a odeard aasac
It anpea t F’IrC

t a ava lable for ttis p casso il
o a ual 8749 based medical a diac 1 t

ewr tt r n record time while provid i

exceptior al ease of ode raintenar e

a 5fJC

k

as epa
u ter

F e r uage
a 1 wad the software

g p oduct to be
sar rci sand

I ie THInC (Threaded HigF - ‘el I te a.. i a rat c-Comp e system is
based on the same successful interactmse and extens ble ser inter
face as FORTH, This eliminates p ‘og ammer etraining and allows well
ehaved prograrrs o be po ad w th t r od f atior a

a

n’at

1 r

a a
F £ em

0

r

a irs Aus alan ort Syrrpos



a a r a , P
r.p

‘re çencratln syster 5as eer presentea that combines the

‘ inFO H o- in g pr oh it th gereatin IghI

ptiise ca in od I so Ibiati c Id d Ip ye

ce ter brIdge” between tha computna task ana tue prc’essor hara

c’cce Fhn asult’no in righer programmer and system productivity,

t th ka at in fi ent od gearaton d in ala

nllit of 1u11 prcessor control through processor-specific functions

nay enCer it superfluous and nefficent to revert to the use of

s r ly ar age wt p ogramming ir THI C

n cntrast to traditional compilers ThinC is user extensible in

true FORTH style. THInG was not only developed to provide faster

OR rur-time execution but also to allow the user to understand

is air and modify a compiler

Just as FORTH brought interactivity, modularity and extensibility

o programming language design THInG may bring these features to

at c-c e comp 1cr design

ate inc

j cmes 1 5,. What in FllTH A utcinal rntroducton BYTE

Aucust 88 ‘. 188-184.

w R d a r o ir C e H

8 p 3 4

U’ itt T Wa kin 0, var tics P’ rhrc dod Code to’ Larguage

p a U’ I Frb I , 28

[4) rag r 3 Dll versus ITO for FOPTH on the PDP ‘U FORTH

Dime sic V 1 (1979. p 2529

Delta Pcsarch. IFORTI User Hanua , Pa o Alto, A 9 386 USA

En Hotalygo V. 0 “PS a FORTH-’ike Threaded Language”, BYTE

r 8 p46 46;Nvembe 98 p 480488

U’] Dowling Th “Automatic Code Generator for FORTH”4 EORHL Pro

ceedings 1981 p 289-292,

3 angowsk 3,, liii ne ode for MacFort i MacTutor ugust

1985, p 59-63.

S U I sip u 9°



a ilbasbe i U n 98 ardwa
oftware sy tems e designs ‘Ia r project ave beer a medica
nbulatory non ring s a m ly £ - dia mon oring
quipment and ar ndustria dat qu a tion and display systeir

Designing tot cquiprrent tactu er ras r suited i tocus 0
rogramming productivity a d ode ef I iency

He heads the Biomedical Researct and vU prre de a tnent a th
I orpo’a Sy

A s o SyrpoE I



USING EXECUTION ARRAYS

&

TIME BASED OPERATIONS

IN FORTH

A Paper to the First Australian FORTH Symposium

ft C. Edwards B. Eng. (Hans), M.LE.Aust.

Director of Engineering

JARRAH Computers Pty. Ltd.

March 1988

Rrst ALstraiian Forth Symposium 101



a U

te t r
87 r s

a oi s s acE.
t F

O Ha i j 0

appliatnsa [a e a iop svit st
waeenvrar i rt 0 v er I CO tw I

de rtaken

Tie benefits t ar erqine r ig company o us ‘g R ir t s way are
unerous We have found t a soft va e rout e° developed whe writing code

one of the hardware systeri can be used i many other places on difterent
iachines This has meant that all -ontract work custon’ develop ‘nents and

house developments have added to t[e Jarrat omp er oool o softwar
ilities If dunng the de e a iei a a ogra v c ptn se 0

o ase ecodeoaJ m a
ba o V I

snarc ad n
OFT io 6 s d x

o °0

C

p e [p d eas
ci t oy p

cssi in’ o N

tie saar rsmpsi



R U IVI

t a ‘ I US i ct

cr r r3

‘cc Is u’, taig + 010 ofiHc nhI ecxL

s ef o itciT o cot hg e a uac iou i

t o to or the amount f 0009 comoiled tu the number of language wonds

o prosce that code

r0 examp’ Ia iguages sud as BASIC, C ard P sca pro ide compiling

ao:lt:es wnich allow the programmer to pass multiple arguments within comp!ex
x ssi ns def e field tvoes define sets (with automatic checking included) and

a es fac ifes are designed to produoe greater programmer

productiiity and FORTH is often criticised in this respect that functions normaliy

‘xot of the compi1ers o’ other languages are not provided in FORTH.

riosveve, FORTH has a facility that allows it to overcome the apparent

b-rrtations of the simplicity of its own compiler the Compiling and Defining

or s Itese wo ds allow the programmer to create entirely new compiling

o es id iew high level syntaxes.

The compiling facilities of FORTH can be even more powerful than those

h g[ ievel languages because they can be tailored to the task at hand. In

$RTH, one uses the idea that a few compiling words are as much a part of the

aoicaton as the actual compiled code. The irony of the promise of high level

ang age is that one ends up fitting the desired compiling facilities into those

o ed th languagc he ‘power features can often be a hindrance and ar

retmes irrelevant to the task.

V a i b qu u fs wa’ pduuiviy i s irTponarV 0

r ribcrtha the busine s o creating software literally ieais writing

cfrware. Software is a form of literature and much of the work is similar to the work

w ter of [terature sittirg at a desk (or word processing terminal), thinking and

d p odu vity ssuc get dcwn to the faster the oftware can be
rn the more productive the system. This means that not only must the

rogram des’gn and the management be efficient, but equally important the

ysi al ct
r a’ ing t down rust lot be too cumbersom

Th ough the Compiling and further through the Defining words the writer is

o ed wit n unparalleled opportunity to control what actually needs to be

whtten. If you write a compiling utility which allows you, for the rest of the

application, to describe things in a few words rather than a few paragraphs, there

ar enormous increase in productivity Not only are the editing sessions easier,

a I aspects of the writing process are simpler the document is smaller, printouts

are easier to scan etc.

5’ xr crtiSpu ir



3 p 1

F- r td)Oi (r
Z,1 iuJ D- :s

Xj ercessmelt Vu n qen iiRTH s n un a&Ct e a olooine
r-=’. chere e -ois c + +- €, e- e ne

-

- be 5r t tre r bage

an V ca ar
ag ov s ott ed r11

RTH et of p es w °Vorr e iL ig, m nera
aery bandLng etc would have to be developed. An £ enenced F )RTH
orogrammer, who had developed these tools, would be n a similar. if not better,
position than the package user. because they not only nave the functions needed,

but those functions can be easily a’1ored to the specific job FORTH is like a
-inancial investment it may require a large ontnbution of t’me and effort at the

ginnh tthe dvd°nds wi inue t ‘ne tm’

\4 ppoac[ v rig ft s er nt
ogramr ing where he desired syntax (the what you-want to-wnte ater” ) i u d

as the basis of the design and implementatior of the software, and I have fou id
it to be effective. Syntax driven programming has manifold benefits both
in technical execution and in project management.

Technically, it forces the words to nave a consistent use, long before they are
ritten. Various different applications of sets of the words can be tried to see if the

planned syntax is correct and that words work in different contexts. Through

nd the implementation schedule al n one om a pr jec” management point of
view, each member of the develop nent tearr 5 aware of the overall system (as
there are always only a few words at the bea of a system)’ and benefits flow from
their tnterchanges.

The approach also leads o a ary good programming babis, principai’y
od nan- ng and nfo matior g. Ar riple o g d nam g s ntax is vt
exoenenceoffrdr ana wo [ c o e rre tfeo a
de t JO

My frst response to the name was “SET CURREN FILE-TO - which It en
shortened to “SET-CURRENT-FILE” and men to “SET-FILE”. Only when i
discovered the preferred name, which is USING. did I realise why it was better -

l’s better in the overall syntax. In fact, it CREATES a syntax. To demonstrate the
advantages of USING, the problem with SET FILE is that it is ambiguous as it

uld work ir two different contexts either

(handle-parameters on stack) SE Fl E

or SET-FILE MY? ILE

whereas JSING MYFILE
‘0-4 Frst Australian Form Symposium



ao u a ae’e:p cU of syna J iei
S S

n- ate a have aken an example of ie oeneflt of ths formatr

g rr w oh ba o decae w[ether 0 o ii Tie

y u r OUTSlDEOF he RANGE i tempertures wh h s alowed at e

a t, tie MDVVENT. he argument plan vas

I s DE O would test these against the currert ‘emperature and set a flag for

Jause !f iovement was required.

MO E T THE. N conditaonally performs the actaon

Aft r iiplementation it turned out that all RANGE did was C@ twice to

a the upper and lower imats. I almost dropped at as a definition at this point.

a er, transpired that the algonthm needed further sophistication and

NGE turned out to be the word which could provide the necessary extension.

RANGE was then developed as a word to fetch two numbers from a complex

i ho. a ray, using a very complex calculation to even work out the index into

a array, During the development of this word, no integration difficulties were

x r n d because du ang and after the changes RANGE always returned

io njmbero on the stack. Al! of the words which expected RANGEs output

ad after the change as before

T s ate (and very complex) change would not have been so easy if I had

d e a ia dcfna o o RANGE f had ot Thadden he i”for ata n

m tha sem behind the def’nit’on.

h so’fware I w I outhie it as paper as al beer developed using th a

dnjeq approach. From the beginning of my experience of writing menu

a f ndufraI controllers knew I wanted to write s’metbing like

THIS.MENU DOES (unrestricted FORTH )

(and its; KEYS (unrestricted FORTH )
es nbc the operation of each menu. And I didn’t want to have to remember

‘a r ‘abers associated with each menu, or set up execution arrays. That syntax

t’as ALL I wanted to write! Nine FORTH screens later, I had the syntax at my

isposaL Similarly in the timing system, the impetus was to declare time periods as

r ist Astrafan Forth SyrnQosium



c e
C

ave ound F word @EXEG e
c the index nt the ar ay and the

x utes that element of the iaried ar ay

@EXEG

r gectrs
aba addrs o t

A

ay t
sac ard

SWAP2*+@EXEGU E

ie address sto ed in the PR ABLE o a ay
ODE the wn time colon code) ORT v rd
ays requires the programmer t x i itly f nd 0

hicF are to be nserted nto he a y an
e array

[is car r t

poirts o the begi wing of th
T reate and use execuLior

F c addresses of the words
to hcore ocati ns

For e Jarra syster s
taxes which automatically

dd csses of the executable
volvest steps

logg ga
perform he

do defir

e u ge £ atio
vo k wolved

s heara

ave devel p
s uffing he

The syntax

Na ng the loggers/me i s

2. Defining the operation of each logger ne u

Both the menu system and the ogg ng system have two fu ictions each
he menus have a display action and a keyboard response action, and the logging

WE ROTN d FR ME

ae usc cad y

6 rs’ Aus ranar F rin Sympos i



dc. dcd o r a he system presuming that the TYPE-OF LOGGER word
inply ous a number This means that the word LOG must be the point of

e ed execution jusing the lOGS array> - it uses the number pushed onto the
k by ie rame and does the specific logging action for that name. As the log

w I itse f be logged (so SHOW knows how to display the logged data), LOG
ometh ng Uke

conmo logging)
specific part of loggirg

mrror work alter loggina

g g t e xarr pIe log the time date etc aid th
tE. ggn adj s io pointer testing fo wrap aro id etc

ot e br e t f e xecutior ar ay that any generic code ec.
s ords sett ‘ig up a e u or performing the key handler o the
owiig oart f a logger ar be included in the definitions of the

o d ecti words)
te h,.w SHOV rnst wok t has ar address %,n the stack when

ust fetch the type byte out of the log and use it to execute the display
a particular logger So it again must be the point of vectored

( ng the SHOW array), and must be something like,

(common showing)
(specific part of showing)



a, io lar,,iflr

A’e Rl4. dto xtloci
£ NT

e—o I If yr
ggng RS’p o nto bka

ane creati vord TNi, th - nan- ce oo. - f al for

LOGGERS.

LCG AVETEMP flG CONTPOLbTATVS OC SENSORS

LOGGERS

ne was e e iog a how for -

gg esp ofed ft ddr0 es se e toW Lrie

rays A a odes y xwa e igflk

ME LOGS. (stander FORTH)
SHOW: (standard FORTH)

Having proceeded this far wrth the syntax, I could deduce what LOGS: and
SHOW: as words must do. LOGS: must

1. Fetch HERE and store it into the currert idex in the ‘LOGS array
Oompile the run-time o ode.
Setthe R Hma h heco

mu

Compiie inc run-time se ti coion coae end tne LO aefintion)
2. Fetch HERE and store it rto the current tndex n the ‘SHOW array.
3. Oompiie the run-time colon code.

These words are now well enough spect:ed c be wnten. Note that ‘heir
spec’fcation has been arnved at by following ‘he course of what they MUST oo to
make the SYNTAX work. Note also that using su i a system, no headers except
t ose sedforthe a esofthe ii are ger at

1 08 rrst Australian Forth Symoosium



acT,,
ci 2Q’L hj

E f 3 r 43

CCC@ CASE
90 con roi MonitoC ENDOF
a OF “Heat Monitor” ENDOF

5O ‘HeaterON ENDOF

6 OF “Heater OFF” ENDOF

8 OF VENT. ing “SJARTED ENDOF

10 O’ WENT “‘ation “CYOL ENDOF

Oi.SEND
flGC@ £RRORTEMP:)

And f’ rally, o perform the logging, a’i that is needed s

CONTROLSTATUS LOG AVETEMP LOG etc

T ie menu syste i followed a similar development, although it was much

riore complicated as number handling was included as a part of the automatic

processing, and here s an example of it in its final form.

MENUS
MENU MAIN MENU: PROGRAM MENU: CONTROL

MENU MANUAL MENU EDIT CYCLE MENU SETTIME

MENUS

F F OGRM MENU
DOES c,LS LNI DATE TIME

LN2 r Is Time 2> Cycle 3> Control”

KEYS C/SE “ “OFSETTIME ENDOF

“2” OF EDITCYCLE ENDOF

“3” OF CONTROL ENDOF

“P”OF MAIN ENDOF

CASEND >MENU;

I s concludes the expIanaton of the syntaxes whch Jarrah Computers has

deve’oped to faciFtae the use of execution arrays. I think this compiling utility is a

C Cd exanple of the FORTHas9nvestment idea which I mentioned before. It

150K cons derabie work to aevelop tne system, so the “pr ouctivity” was low

dunng th phase

Now that it has been developed, however Jarrah Computers can write a

menu structure within hours of the design being completed in fact the system

has been evolved so that programmers can sit down with the menu designs in

front of them and key the menu code in straight from the specification The

bor ng (and therefore error prone) editing sessions and index tables needed to

r AuO altar Fo1h Symposium 109



E

b eque tiedii i r
efine whict xpects Tirre

alue h s word has obvious appl
ystem as t provides a leve’ of rfo
ample,’ The w appV i

@ or @RTC respectively

tsGs
@MIN

[RE

£ re
vale e

d ag
NEVs[ e

pares two differe
‘ ep sonts nfo

a
t di at

Cs
t value
a r a

Note t[at NEW can be run ortinuously and
irst time it detects a new value of the TV As NEW

be followed with a conditional branch in sy itaxes such as

dt e
@SEGS

SEES NEW IF E 1SF

f r
£

ack T
AE

ta v ea yew
Ta g€ I e a

ts n

10

ave fou d t us

a ae

1
cu

0TH
R EV

e aiablcs w I £ I 0 IM
a iab £ £ he lack I eturis its cur en

t o rd a so ai t[ e t sportabihty o the
matio hiding I i sually a smal stub o

Q ‘IS tasdef ed

‘ie 5

V

a

a
cc T

d
[ e

a I € cad d e
C

lag
ag

will nly retu n a true f ag tha
eturns a flag it is designed to

V ri

t 5

W

aa on yrpo u



AL ‘teLE N rt;tk rdv[i ses i

I u nil drab earo sssvitgt er nec ie

n ;ys’cm used s a FORTH conventton (it nut standard), and tte orn

c i Vt e y ed r ieTmigNico isPAUSE whih sop zr

1 5 pceds ojb e urro at r skar try

n to me task IP which the PAUSE was (coated Some understanding at

-ulvt ski g vork V necessary to understanding the apphcation (if not

1 a g f £ 1

Thu rme Variables @TIME and NEW are enough to implement time

b d g r on Th isance i he outer to p f taskwhere t s

2, to osriorm an action every second (catted EACHSEC), the invocatton is

S SL U ASVNAME C PTL
@SECS

BEGIN SECS NEW IF EACHSEC THEN PAUSE AGAIN;

Note that the current (or last) value of seconds is always on the stack of

*s partiou’ar task. This is a deliberate feature of the design, so that temporary

V tAB E and pario VARIABLESs are not needed.

cn:!iarty. tasks can be set up to execute EACHMlN and EACHMR routines.

a’ c s a ia dL ierr at

TtNG5ETUP
TIMINO ACrtV TE

@HR @MINS @SECS
BEGIN SECS NEW IF EACRSEC THEN PAUSE
SWAP MhS NEW IF EACHMIN THEN PAUSE
RO HS NEWtFEAHHR THEN PAUSE

SWAP ROT AGAiN;

uuer pvVd NW °oug spea ‘cv t

spebty a t:me period, we stmp;y need to add a count to the events. hts is
,1revcd in me syntax

n TV

e 3 SECS 4MINS 2HRS etc

The next word in the lexicon is ELAPSED, which is similar to NEW in that it

et ns a flag if the specified period of time has elapsed Its detailed processing is

complex so I will just say that it uses @TIME to calculate the net elapsed time

since its last invocation) and this is subtracted from the count to produce the flag

ra’an rttSyrposurr 11



JE

4!

ftc svs’oni h +jf 4 fJfl1_ )r i j

a prog e1iers 5er r5 ‘re r’n ar r ,5Hn

s city, are ibr’’5 inca

W spe d per
W p°o d
We npe pe d ow “0 itc

sjC”CU

4 Perfonr function until T,n”'e ofDa Spe’u ‘ice ine

5 Perform tuncton periodically, for X t,mec
5 Perform function per’ooicaiiy, terrninated by

Time Day pecif ‘me
et

‘ter cor derable analyst It ansp d that a of the unctio ould b

expressed ;n three ma’n byntaxes:

(PEROD) FOR CONDITION MONITOR

ERIO FOR COND T ON D ECTE
IF F SE lIEN

\PERIOD) FOR CON DrON TIMED
IF ELSE THEN

Il of these constr cts use sam itial sy x (a pe od is spe ‘ified and
her e word FOR is state b y us icr rmi wo ds
0 uR, DrEuED iMtu is t ne in at ,i a

n a o p and erminate when sit r the occified nod ic ied o r the
condition clause has left a true flag. The cierence between 5em ‘s what s left or.
the stack at the eno of the process

MDNITCR leaves rotning on the stac

FOE av s. e-nt sa
alse o loop d ou

TIMED leaves the same flag as DETECTED, and the time it took
for the condition to occur wtil be eft under a true flag.

FOR, MONITOR, DETECT aid TIMED are co i ing words and they all

compile various words around and nside a BEGIN UNTIL loop. FOR
compiles BEGIN PAUSE and EIPSED and the erminating words compile
OR and UNTIL and vanous stack manipulators to provide the final stack values.

12 First Australian Forth Symoosium



D y ow e co idit o ad . a so p o des a m
lapse be o a it occu red

whe de eloping time based algorithms hat he colt o
a develope frau a simple “getit mnning solution into a more

a aptive program by utilising these different control structures
development Far example this heating algorithm

CLOSE HOUSING
PHASE# 2>

1 0 ECS FOR HEATED COLDER OR MONITOR THEN
HEATED NOT

P P ON D heating pr aces

ad t[oL . be Tade smar’er to break if either the envronmen,.
h d up (in which case no active heating would be required> or it had

e a colder (in which case it should stop waiting and start the heater
nediatelj The FOR MONITOR construct followed by the HEATED NOT test

ovides all of these functions in the most efficient manner FOR DETECTED
LId be used but more (redundant) flag checking would have to be done

T e next example using the DETECTED syntax, provides a demonstration
sirg the Timing words inside a standard FORTH DO LOOP construct



/ VP

V V F
[RE SS

‘1’ :A ft’

a V ti d o of ‘o V wit of firs

or go cv a TV £ A V. v t o
‘- LrteL tne nic!n o tin adeft ortne step. pomte to firr and .ast valves ard

on on The above version uses NO variaVus, uses one phrase of the Timing

max and a snge CORTH DO LOOP And tt does tue nnVo1 process betteH

EF o i ip ep g vi R

[ETEC ED loop so a FOR , DETECTED lwp ca often be improved by

‘ep acing a with a FOR , TIMED loop For example, in an a controi application

here a motor iS moving a physioa devce, the cb often reduces to

P atelto

Wait4oaSensing SwitcVC!osure (or Ooenngi.

fl Tot M

T i5 is a classi appacatior for FOR DETECTED:

MOTOR ON
1 SC° OR VIT id SED TE T

MOT OF
‘F MOTOR FRROP flG

THEN

b NO anb us cc the nt o ar %ite
T CL ED TDETEC Do o Os o at a sac

a owed after DETEC FED and befrn the IF , :LSE HEN clause tn the above
example it is important to jurn the motor off immediately That the ioop terminates.

icr cue to t the nt c dri asur eaiour f

e £0 ditlo too c r aft a s, d b i up averages of these
‘ombers. Through this method J data colleJ on, t[ e oonroller can develop an
dea of the typical periormanoe V the phystoal system to which it is connected An
evample

MOTOR ON
10 SECS FOR SWTCH.CLOSED TIMED

MOTOR OFF
IF Use Number to update AVERAGE

ELSE MOTOR ERROR LOG
THEN

14 Er Austral!an Porth Svmposrum



a a
r -r

t C

R yr ° £3

a e rflç iocme 5 Numoer 5 -he ‘Sea a

a u p cs nuaoer, eatesenting the cur-ant Miruir
s [ 4 V scab
3 aOt! a t &wn erston of his system, the Miru;e-c Daq w r[

a hs n- -os- appropriate a system based on a reahtne

I

Tne advantage of conerting the Hour Number and the Minute Number iCto
a o u e n e aok s at a an t ne an caculatng

S se cesbewecn tines etc ca a beeasiyprfome usig ORH

&ardard arithmetic operatora (, + <.& >)

hc wods use are

>MoD ‘#HRS #MiNS MoD
SA6

@MoD ( -Current MoD’

@ 9RS @MINS >MoD

PAST and BEFORE both expect a Time-of-Day as two numbers on the

ck M ns on top) and compare ths time with the current Time-of-Day PAST
rcurns a true flag if the current Time-of-Day is greater than or equal to the stated

tmle, and BEFORE returns a true flag if the current Time-of-Day is less than or

ua othesatedtime.

PAST (#HRS #MINS -- flag )
>MoD@MoD NOT

BEFORE (#HRS #MINS -- flag )
>MoD@MoD NOT

aETWEEN expects two Time-of-Day s on the stack ano returns a true flag ‘

-reflt Time-o4-Day is between the two input times

BEIWEEN
>MoD >R >MoD R> 2DUP > @MoD SWAP

IF SWAP VER < NOT SWAP> NOT OR
ELSE WITHIN
THEN;

T ese words allow statements like

BEGIN PAUSE 1830 PAST UNTIL

which will remain in the loop until 6:30 RM, and

Thr A tie ian Fort[ Syrrposurl 15



E I
-

9rvy]’ it

‘- cLSb THE’

:t r dnv the tRj MU’ o

EU E IC’ iL e M d3

I gg jcyr °sd rhed ‘e dtIe mu nO war ert
we: tcgethwr. Lagging m aftw eac a T:me wtb the hggm recubemet nfter
crencaUy etated as

Ia IS y cia N 0

br U io 0 ng

era so on. i h’s can ne easy a:compshed by using AFTER and LOG ‘1 a DO.

‘flOP corstruct For example, jo iog the tire pressure every 30 minutes for 50
adings

50 Of R UR G N OP at

To ‘og something every so often until a specified time-of-day rather than far a

specified number of readings, we use AFTER and LOG inside a BEGIN UNTIL

i cia for example to log the ate age te nperatu e eve 2 minutes until 600 P M.

BEGIN 2 MINS AFTER 4. ETEMP LOG 1800 PAST UNTIL

These timing words are no! restncted to the above syntaxes and can be
used in free-standing FORTH expressions For example, the time-variables
s ecify tre time scale which a proces use If for stance MINS s specified,

a tho next hangeof ue a a e swib te rinate f starts at [e 58t
s aid a mirute, the otal iod ted 2 se ids, be a to ep ify a
m;nute as 60 SEGS, or an hour as 60 MtNS, deve’oped me words HOURS and
MINUTES defined as

HOURS 60 x MNS

NU oE

used as 3 HOURS FOR,

nd 15MINUTES FOR. cc

I e nar g idea here was that w it g ie ia e a higher resolution
(-IOURS nstead of HRS & MINUTES nstead f M NS;, gene ates a timing oop
of consequently higher resolution )

As another example, I have found it useful in some cases to add a guard
clause to the beginning of a FOR DETECTED loop to prevent t breaking out of

he ioop for a certair mn mum t me T ie word GUARDED suggested itself, used
as

1 16 Fret Australian Fohh SymposUm



cc bu r thr 0’

ol £ 1 16

p do cC nod dyfr RHr a)o
r

EaiC i 3D v 2DSECSFOR

an fne

CL ED
ROT OVER ROT ROT OVER AR ER,

As a tinai example, the word TILL can be easily defined, to allow Time

spe-ification of the end of a FOR loop, used as

o OR tc

on defined as

>MoD @MoD DUP 0< IF 1440 + THEN MINS
[OOMPILE] FOK

To o iclude this section he Timing words outlined in this paper:

SECS MINS HRS DAYS

@T1ME NEW ELAPSED

M NIOF- ETE ED IMED

°AS B ORE 3E EN

alcw description of all of the “desired” process control functions listed above,
rn they cover the many different ways of talking about time in terms of elapsed
pc s in rms of T meof Day, in te m’ of “w n cond tion occurs” etc. They

co S nt 1d £ u able lexicor

The t ‘i ng system is less of an exa iple of using FORTH for productivity
gasns. Can an example of how the total lexical freedom possible in FORTH allows
the programmer to describe the problem exactly as desired, unfettered by any a
orion highievel “rules” or power! utilities. This is a language of time within
FORTH, wrich can express time logic, manipulate time periods and execute time-
ased actions,

I will conclude this paper with a discussion of the implication and
app!ications of the NOVIX chip as I see them.

‘rst Austraian Forth Symposium 117



•1

Mr R1-A )1 AFPtATi;’N

c o u 11 1 i o c d £

Jrac rary apolca ‘, T” ma ‘:n s already oc. ing ot niy a ‘icy tas

Aior(ng environnent but aso a genera: focus for those interested a FORTH “

g’ an no lot ortoFdt a ua°ad’ coin too

I thir he NOVIX wW attract aN people in’ereszea a last processors, a

tc ar the writers of assembers and comr ters means that a tot of

r p1 out d OR 1 00 ity i gett kr w iguag

FurtherrnoeJ believe that there is a good ciance some o’ these people wtIl

be converted to FORTH by the NOv”X and so the genera! FORTH

yr lit wi gro

As well as the sheer execution speed of the processor, the NOViX nas other

attractive features the square root function very fast muiftasking, and the

pt mis ng compNe to name but a tow

The optirnising compiler means that FORTH text is compiled into very fast,

c.ompressed code and according to all accounts t generates truly optimal code

This s why, when Daniel L Miller came to write an implementation of the C

language for the NOVIX (see BYTE April 1987 p 177), he did not write a C

compiler which directly generated naive NOViX opcodes, but chose o write a

p ogram whcb converted C text t ORTH tex IT res Iting FORTH tex V e

i5 then fed into the optimtsing FJOVIX compiler his turned out to be the most

nfficient way of generating the target code.

s e p mt out ot ity oe his cod ru veyq ck or heNO IX,

but a new level of transportability has been added to the C code at the FORTH

text level the code can be fed rto ANY machne that tn4erprets and runs FORTH

s eatu e wil agair aUral a y pe ol rt e COPTH nvi o me Wa 1’ ay

not have been previously ,nterested, and he transportanility a the interstItIal

text files s a benefit in itself.

PPL1CATIONS

1 HardwareinSoftware

The potential areas of apphcatvon of the NOVX range of chips are

numerous. The first area of exploration must be the concept of executing

hardware systems in software The application of the NOViX ay be similar to

the Transputer in this respect it has found much work n the softwaredoingthe

jobofhardware driver area. (Graphics engines and Disk controllers).

C st4 stala Fort Sy p0 yr



es rg s ses
j ad bee og p ocess ng fo s

I vi o release r nc t 32 0
I dgtal

we etai ed speetlor &tho gi the 0 cou d do an
c umula i g multiply ir 200 nS it had drawbacks which rendered

s r usable for the applications I was envisaging These
awback ncluded such things as fre Harvard architecture whici
ak miiediate loads impossible

Wher looked at trying to design a full system on a 320, the tasks
iandling (even minimal) keyboard inputs, scanning (even minimal)
timers or interrupts and so on would take so much time that the
processing power of the device was lost. The 320 is not that good at
anything BUT accumulating multipUes in 200 nS,

e NOVIX ‘iowever is he reverse case. It takes about 2 MICRO
e a d to do an a cumulating multiply but everything else in the

£ -s a be a dIed qu cke The speed of the machine
abil ty wnte keyboard scanners, hardware polhn

u I w a distu b ie t minq fte the ‘era

r £ a a Mu Tasling sys err nnng fas enough
n o a dware e re dously exciting In a disk drive irtenface I

t ne [ardwa e c Id be mplemented as a TASK, with arothe
sk tt ic u at ia task otior n wat afar ie

‘letwork ortroIIers and protocol converters are another are,
or application of the same basic idea Again the ability of the NOVIX to
et up an analog of a hardware system (in digital!), and the ability to
vitch between different flavours of hardware simulation with the

speed of setting a new execution vector, or a different vocabulary, is the
key feature of the NOVIXs in this application. A device which can
interface and convert between different machine protocols and which
-an be changed with the ease of a re-edit (rather than a re-build) mus
be attractive commercial property

rL SympOslU ii



cc aiy dd a
sit t o man, ahi oky c ttefr s or so a £Cit

7 s vy ‘wa a acte0 ana s e 6302 ncst sercPc

3 ‘ 4 c!ec some take 2 to Whn was askea to cove

V1 00CC O’ta OthOr processor ou’d £ a that ‘me whoh oud erd

.
p ng it ywhe ear ae st inc ig the 80 680 nd 6$ ) Whe

e lo e t r t 86 a e 8 d co
et to 0 ru i ak cye Th via in

rna1 ogram board he pa of the 02 is a sub utine ing a
Couple of dozefl opcodes will ru, fase Tt’an a f Instructions or other

processors

The NOV X is, qu te frank’y the answer to t[ proble The firs few iayers
of e nit ons I a NOVIX applicatto (for cxc ‘nple OVER R DUP SWA
re ‘ffectiveIy new opcodes T ese definitto S take the p a e t ‘ida
MicroCode. These words take only a few dock cyc cc to rur 5 n the aoove
example) and so hand tatlored aocodes can be wntten,

As an example of this idea at switching between different types of
operation with the flick of a vector I have considered the idea of writing NOVIX
programs so that the machine would execute the native opcodes of various
processors. We could have VOGABULARYs named 8088, 68000, 6502 etc Gwen
the clock cycle consumption of these chips mentioned above, this idea should
be entirely possible and it would be interesting to see how fast the stmulations
run, This general idea suggest applications of the NOVIX in processor research,
development and simulation.

3. idustrlal Controllers

Moderr dustria coitrol a vo Ic of p scar a cc teid
processors and Control processor. The fed devtccs hand.e subsecttons of
the ptant and/or perform specialisea analyss OT a specific process, and ene
Control processors handle operator interfaces, aiarm Drocesstflg, trending and
compix mathematical control process modePing to determine optimal ioop tur ng.

a end d stial ‘t o e to rdsn’o p c s a
oowc at lower levels in the syste T (as n ost a eas of th s ndustry) and more
expe judgments are being expected of at only the main ontrot processor. out
also of the Field controllers.

The NOVIX presents itself as a candidate in both of these areas ts speed
of multitasking makes it an ideal field instrument, and its sheer computing power
makes it at least considerable as a solution to the Control computer job Future
application software developments will determine how far the chip makes it into this
area,

F!rst Austraan Forth Symposurn



3 3
iia tvJui3Sim U 5i3 )

r t t ii ) e ‘Q re Aghiyci Sb ieauis oft

c r . s g r ii 0 a

‘essc :creacc, the hardware and the support crcu:ty jo v

crnac ors e; can expand beyond feasioflity This think’ng under’ejc

£ 0 r or eo chs e obaded tk

i ctc qe e ri nrj ur co plcew ito rbdire io as a

fli 50 05.

VI n n t, apesireroc a eP i

:nare functions and support. Ths is the bas’s of ts processing power but it

a4 : more dfficult to mp1emem as a subunt. It has no interrupt priority

e i ‘o atiun ‘ar cis c as p u it ak Up Ths

a v- a beards tncorporati g a OVIX m st ave quit a vge amount

nu eircutny.

nec g corpa th NOVIXtoth 65k 1 tkr esper [ s

sc on the 6502, ar old processor, but what made it attractive from a hardware

ooment point of view is its onchip features (FORTH kernel, serial channel 8

r rupt ha idle etc) and a minimum hookup of five external chips ha e

‘i der d quite a few different designs for multiprocessing using the Fl I and

i are feasible due to these minimal support hardware requirements.

idea vhich keeps going through my mind in this respect is to get the

m cnchp. This would be a major leap forward in terms of using the NOVIX

mu Itiprocessing environment,

T at uc said mu iproeessng certainly po sible or the NO IX. Th
c eouid be used to great advantage, especially to implement banks of

r ory These could be a useful expansion for the NOVIX in any case and they

ye u afu aoo y o the NOVIX t r tip oces ng Multiple ma ‘r

mno mutple memory banks. with some common banks fo

mu. mation and data passing, is, I feel, the most viable approach to a

v’ a itc ur or ult cc ssi w th NOVIX

mm a soitware nomt of view, the NOVIX is a very interesting cand1date
r; vhich to deveiop a multiprocessing operating system Each processor cou’d

a il n ke re (say the 8 K system now) and so could rake aIls o

e vs kernels very easily (via a twobyte address packet!).

a n w eve high speed multitasking is critical to this implementat on

itt ut i , it ould be very cumbersome to even build an architecture. Each

muttitasking processor could have one task dedicated to communicating to the
other processors and through this connection the various processors can co

rd ate to become a single bigger machine In this respect I think the NOVIX s

r a better position than the Transputer which is ltmited to a certain extent by ustng

‘ardware to perform the communications.
i- rrurtUsyflpusun



tic, co r d
ga isa r’ ti’s st e r.t’ .a”ar ‘OR H synpos i a dal’ £

£QStbS wro nave atteri.eu - top. we ca’ use Jus oapwturiity ‘a get to kqov
“a a”o0v dtd deveoo e c,asis ‘ce a Ct12 +eraetI ‘end opefu”y fl!9flt;

O® e) tra F-C Th imu

nally. wou G s-not.elj hke to t ank C arias Moors rstly for te’idiro ou
cynposeum a-’d prov’ding us with the Denefr of hs exper,ence aid u’9que
‘r&ghts, and also for !nvert.rg FORTh

22 First Austrailan i-orth Symposium



Forth Engines vs Assembly

I
(Forth Applications in industrial control)

I by RayGardiner

I Ardmona Fruit Products Doop Co Ltd.
P0 Box 196, Mooroopna 3629
Victoria, Australia.

ABSTRACT

roc, urn,caI ic ntr s rr n rdllo U ntactad elprner
4 1 tera tivc deb ggi g of ardware itcr acc c paper cx lorc the issucs o

icvciopment techniques, snftware maintenance, execution time speed and comp1exty

First Austrahan Fonh Symposum 123



t tj

urge edo fjtF au’r ‘ajl 1 ax pp ci 2 r

4 rues grr5 rtna” rv rrr flT hjrr aV Lau’n

0 ore ‘s Ow rva$abe ui ax p E: pLneri enedorarnax f n4 ut-h bca

mti drese lud any tat ar’d rib u can & las PcI

at ar s a a
it row ncr net e or ving pro

Psewadtronaitradesoffsu woiv4onenoiparirarcenb wrthnrgL0esoiang a&SeVu

ount omp ly w the a bili 16 and n r2 Fort glue

- gmr 1d½ g in musL ort ,sta rib o an ?55 an

-vth other avariabie techniques

ae cc t g ua crc’ l c

I INTERACTIVE DEVELOPMENT AND DEBUGGiNG,
(the development cycle)

th4AINTAINAB ITY

3 DOES JETS LANGU! GE HELP TO DEflNE THE S LUTE N

No I havenh forgotten execution dine speed worth engines have rendered this subject obsolete!

iesake feompete the a ‘U no! pt so mu ion
ution tic e speed

The abzltv to mix Forth and assembler to ashiee desired performance
levels is essential where conventional processors are used

RayGardbe nI 1988

24 First AustraAan Forth Syrnposjm



- jfl r

DEFOJE TF{E S quoc rio’nal cr. L tIr ici

‘1RiBIEMI)LL
itheir t t thepocin iy

SOLVED
e soc iv ig inc & its of nthc

p b r

V9atdoesyourprornhavetohtoc

flf-b1NF FHL ii cuaupeicaci v9 U

totheoperator
INTERFACES What are the IjO des inca Cods/Seesors

What are the timing contrain
(how fast? and how often?)

What analog IJO is involved.
What resolution? Are results required in

I engireering units?

[ This involves connecting to the actual systerr

PROTTYPE and establishing a development environment.
- — Checking voltages and currents to ensure that

PHE INTERFACES I/O devices are correctly connected and
working is made easier by writing short
test words.

— — C e ac AIONa neaningfrlname I

I NAME THE hclps ,f each name is readily understood b

aI r&rrnun U A
others who are involved with the system.

US Warning” dontg tcarnd away wi lid i

WORDS the underlying hardware!. Keep it simpie

J ju t h ding addressess is suliy enough

- —-- ——- ———— Uhis ; the creauve bit You can inst anything

LXI LORL EIFIL msarly ardsu nmedaLcresuhs T e
the limits of the system Always aim for siinp!icity

PROBLEM I (Lateral thinking ability also helps in this phase!)
Don t regard the hardware as fixed. Try to eplac
hardware with software wherever you can.

F 1 This sthehardbiqberuthlessinthesear hfor

T
simplicity. Be prepared to back-track as far as

‘-‘-—i iS IT SIMPLE needed. (Caution; most people will not appreinate
having the problem itself re-defined’)

Ray Carding’ april 1988

Fts. Asral,ar Forth Symposium 125



I -s I Ipi Ii

DCC UMEN I
L F flING

irocess Ta facr

ncpendanr sectons Tb high-n b1e’s
of ax P’ so di one gWy
ia cx so arm I U

°rt’ anal anmtrr’.arnIcn-c

Burn epronis nstaii harSware onn alt cabic.
arc roe thirgc which base changed since
hr ro y S it cc ji ov t

ox xc it r’c actocd h vs

this stage involves \.snr-g cxriaust’cely all
f esy tea rgir an fpo-sible oTlrS

changes off hi , pmduc on ax do apprecia
having to work in a starr/stop environment

This fmal stage of the developmen cycle
should only involve things like changing
timing, small details of operator interface,
and optimizing small sections of code
Resist the temptatior to engage 1n as
reav ntes. (that can be do e Ia r!)

unfortunately, most systems evolve ann
change over time. rarely wli you es cr be
abl o if I llfdsh

usuaiiy n happens about a year or to !aar
that some unforseen change :s marred

h wtiur v if
a dghrl.

: IMPLEMENT
1YU SLT N
_

FINE TUNING

u

Which leads us neatly into the near top c . ratnt&nabdaty

RayGardLnc aprd 1988

Fi st A str ar o I Symposiu



cr t Cc
j 5, r‘95adflh dr).ar; gras ri fne rasuentuua

5: e LOiS o
ii’- a air ci no Lu al app as is

r g u t at is

w’th

iUriai tanires, and capabiiities. Tncse are usually things that werei: required ci) at the
nc the cngcd! program nas dewgneri and written.

oval want apab a Tin iaybe ‘Wofa etting ritegy som as
a or quired ak in’ fo batur

EL f xe e our ptiorou natures iced to be purges

I Tlrrthvare charges, often an application may be moved to a different hardware environment.

5 1 deszgr the ap I’ adon hanges to cope w LI changes in plant ayout. equipment hanges

an rag avironmen the application may have to cope with croduct hange n w
uris r ‘y reed o be added to the applications capability

Steps to wnting maintainable software,
1 Hide the hardware interfaces, (donut go overboard here, just hide enough to ease readablilty
md maintenance)

Use names to describe addresses.
Factor the hardware interface carefully so that changes can be confined,
Purge “magic” numbers from the system.

eAst
IV to ripe urat var loactior

0 sr&r I )FFIC
CONSTANT AMBIEN r

2 CONSTANT PROCESS

Rf ND-ND (anannel number Wdvai e)
ARC BANNER

I AR ‘ON\%RSION
RUIN OMPLETE. 11

FRAU:

TRMPEIIATLTRE (channel-number — temperature)
READ-A,V

flNVEPtTOS EflREE (

Vs a us as ollow

PROCESS TEMPERATURE.

We ha’r factored out the parts which will change if (when) the hardware is changed.

-

E:rst AuszraUan Forth Sympostum 127



r
omereapplicafions

A peach pitting mactune which detects split stones and selectively activates pneumatic cylinder
to use one of two pitting methods. (networked data collection, macintosh display)

A high speed cherry dispensing system that measures each cherry to correct the count per can
or small fragments and ensure ace ‘rat count per can (240 eanWmm)

Sawmill control systems with automatic gagmg for ruttipIc saw .ades,

Plant transplanter control systems which detect when the maciune ama and autemacc.al’v
jam tnultipl cpu’s etworked f synci onization)

mon p ietise wntr systr so ruit pa se on vie msp of r m

Boiler control systems oxygen sensing probe aM automaut fuel a4 arm trim.

gao cents sys

P toma d fou dary ipm , gas genera a fo oul a mg yster

Peach pit detection and sorting systems.

o repcaer o trols’ err ac ad’ sea’ rob e lsy us

Research /Laboratory applications.
Underwater data logging system.
Laser pulse control,
Geological microscope data logging

“invent projects; Automated welding momtor Profile cutt°r, Peach imaging s stem,
Programmable data logger, Geological survey equipment. LPG gas dispensing system,

J88

f I cc ft “ u r

“ di ‘ ragt&pob: bcp r&’ irtcraacdi ma’’’ ncf wai

eans to reate ‘adcmtandirg or he nrb ‘n

a Ilse or ar din th p par rca ‘sic “ott robi
gI wa

SiMPLICITY
A correct solution to a probtem IS ALWA\ S the sLmpleta Pus search for simpiic’ty seems to tic

e eouraged by Ford’ itself. Usually with startling results Forth iaelf is a simp’e solution to a

p1 robl

VAenstartingouton ewpojeet susualtog aisle by dcci irdc’ pie oft)’
issues to be absorbed. it takes practice and patience to strive for that spec!a view ci a problem
which leads to a deeper insight and understanding.

“or eradig his cc rn’glyr run Let od’ Thi rgF r’

28 st Mustra an Form Sympostum



I G’’C LcioIC j
xl; us (iLl ‘tic cpa p[ouswci erur i so

c .xcct cul ‘sc x LTd 4flC5 uroLem on the upstearr !nO head sock flule

for ‘n’crcst this is a subset of the real’ application. In the real appl thou we also v ant o

identif which head is underfilling As well as logging the data onto a PC disk for later analysis

The flavour of the application (sic) is not diluted by leaving these finer points out of discussion

ua botil at this instance is sometimes known as a stubbie’)

arc o’. cajs th reideb - g act-sr s.

fl ± X bOleS in uccesson were Ufldeitlll(td

a <at w ur riled the tIXXL

flbr optic pho oc lls

I Low level
3 Bottle synchronizatior

flu
fin

A strar torL SympSiur1 129



Bisp adds for
BOFFLE ag)
UNDER ( or

?RESTART ( flag)
STOPLINE PB @
STARTJJNE PB @
WAIT FOR RLSTAR

d ii 1(/
urn ndc ed i rca

its rut cc)

‘BC IND
PBl 2ND,
PB@ 4AND,
SOR PB!;
84 XOR ANDPEG;

BEGIN ‘RESTART UNTIL S ART’ INN;

DA ifiSTORY -)
BOTTLE4DOUNT @ BOTIUTDA A +.

BOflLIisCOUNT @ 1+ 1000 MOD BOTILILCOUNT!

LOOK I
t—- I

BEGIN ThOL LB UNTIL
UNDEW DUP IN 4 0 UD E-HJSORY

UNDERFILLED? (f)
INAROW @ UNDERFILLED4 IMIT @ >

NDE INL4ST4O0O (
OLLFJTAT DPW W 0 ‘LO

LAST4JOO? ( I)
UNDER4NLAST$O00 PER 1000 LIMIT @>;

DECIDE optionally snps the dee
LOOK
UNDERFfl1ED LAST VAT? OR

IF STOPIJNE W T FOR RESTART THEN,

TNT SALINE ( set up variables
0 UNDER! 0 LN-AROW! BOTTLE DATA 10000 FLL
25 PER-I000tIMIT! 5 LJNDERFILLEINLIMIT!

BOTTLER (this runs the application)
TTIALIZE START LINE

BEGIN DECIDE AGAIN,

Op
we w we we

:$jABLE B02TLE4iseO
SRIABEBOTTLESAL i

RI! R
4RLAPLIT RO

“ARIABLE UNDERFILLED L3UT
VARIABLE PER I(ATLIMIT

pI
we we we w we we

‘41 T

(energize true ictedock elay

OW TA ) ‘ impd tatote kialfo diagr is)
RBTT RIU 7 A Dli L

30 Rrst Australian Foh Symposium



I i FOlD ad tar p Me a cast ofa

arneaaas and Srapha Module, a Data Acquisition Modui

a Data Anlys: Module and a General Purpose Interface Bus

P1 ) od e I de a e f he en fu ct en an tie

eya t o ogart ng a ph t atl ur My

signa processIng algorithms to be produced in relatavely

short time.

i pa er di cu se tt e IS iga al signa

processing appications and descrabes one example in the

area of speech processing.

The applications of Digital Signal Processing (DSP)

‘cIriques are becoming increasingly diverse and

phisticat d Researchers in various fields require DSP

algorithms to analyse data, while researchers in DSP

applications require a system which makes the use of

standard DSP algorithms and graphics easy and simple, Asyst

a such a system, It allows DSP algorithms to become a tool

for researchers, engineers and educators.

OVERVIEW OF ASYST

Some of the features of ASYST which make it particularly

useful for nonrealtime Digital Signal Processing (DSP) are

dsc ssed below Ea h of the four Modules are addressed

t ew cxc p es lustrate the way i which programs

‘an .e wra ten, and to show the ease with whsc the system

be used

e as odu e 1) oitairs e FORTH Mci ci It can be

used in interpretive mode or can be used to define or

compile new programs or words. Programs can call

prevcusiy defined words or inherent words, so it is easy to

write p ograins in modular form. This flexibility is useful

when developing DSP algorithms which call functions

regularly. Stack based (Reverse Polish) arithmetic is used

* Senior Tutor, Head of School and Tutor respectively in the

School of Electrical and Electronic Systems Engineering

Queensland Institute of Technology, Brisbane.

US raa F’’ Symposium



0 a f

a
r P o 1

nit; x it ces OY sit r2ic, i cay B
.ni :‘Z ‘.

‘n-o e g hcni s a e iD” ‘0e Th
cord Y,IJTO PLOT lct ,. air y nil ce X Id 2res

t mar nd s

2 ul Da ily

The Data Analysis Module f2 nluces operation on
polynomials vectors, matrIces, e:genvalues, eigenvectors
and graphs. Features that are of tnterest to DSP
applications include polynomial integratIon and
dif erenti ton, r ot ract o det minai s so’ tion 0

s ana s equa s it. s q are coly ozital fits data
sr ing peak te r ol i rrg Fas
Fou i°r Traiform and ittou plot Th use of some
these features wifl be discussec further in later Setions

23 Module 3: Data Acquisition

The 0ata Acquisitinn Moi is [31 llowc T/O board independent
code to be written whi-h addresses a range of 110 boards to
be controlled by softwar Once configured Analogue to
Digital (AID), Digital to Analogue (D/A) and Digital I/O are
easily implemented. The 110 can operate in the foreground
background or via Direct Memory Access (DMA) control,

24 Module 4’ General Purpose Interface Bus (GPIB)

Th PIB F! dule 4 cor sins r vers fo in •aciro (via
GPIB board) he Bo t or u o ‘is u is equipmer
fi edwil aGPB I a osdaa to apuedad

pro essed s ng the full over SYS

DIGITAL SIGNAL PROCESSING WITH ASYST

Dg Siga ccss 115 is c ir ;vc o ‘it

processing of dis rete data s g a !‘euatical techniques

The discrete data are most con only aptured time samples

for example, during a test on a vibration system; however
they may take many other forms, such as a snapshot of
complex voltages on the elements of an antenna array (the
independent variable is spatial), or may be two dimensional,

such as pixels on an image taken from a photographS

Many transformations of data are used in DSP to provide
estimates of various parameters The most common of these
is the Fourier Transform, which is an estimate of the

132 First Australian Forth Symposium.



I ci e waveform
ma emat cs supplieth
e ray be defined by
a ues and ‘onverting

ay produ d by using
For example 1 0 points

firs producing a scaled
to a sinewave l00 ramp

p cx avcfo ms such as Pseudo Random Binary Sequences
RRS) ay be generated from their generating polynomials

rc. tly by simply dividing a residue polynomial into
y Such sequences are used in spread spectrum
ni ions data encryption, error correction circuit

y syst it den ification and radar

2 Wa e it ispctior

a ap
e ssa y t

t s
055

cd OT

ay th

d by e Data Acquisit on Module it

k at tI data graphically to select
SCROLL function a lows an array t

s eer z omed or nt a ed and
as rents e a of he a ay
ro ssed a re h way

ur e ra sior s ar ificient algo kim for
a a i g t’ie ape tral (periodic properties of a sample

a po nts In order to optimize the efficiency of the
I r ii the number of points is constrained to be a power
f tw ie 16,32,64 etc,) The result of the
ansfor ation is the spectrum, or the magnitude and phase

f the undamental and harmonic components of a waveform
assumed to be a repetitive version of the data points within
Ic obser ation window The word FFT’ will produce the



neru are a vera rays . r-. cS ( compu -

.-‘O 1i

oi t’at 0 -ao’un n or’ ce-as ‘q iva’er O

aul ii a i r b o . r o x p c a i p r a

froquency donain an be cc.:ornd by eire mutipicaicn

b trarfr frtor n t ra rv ri o b3

cn flution itN a i puise resporsc i tte ti e 8 rae

Correlatton 15 simiar o corsolutirr1 except rot a re;ersal

re o a to t o t o -ai en rly

used to determ:ne the degret o irlar ty of .w sets of

points

Convolation and correlation may o perothc or apenodic,

d°pending on the w y in whici i s calcul ted Aperiodic

convolutio3 nay be orputed by h o d C N .IPE h a a

periodic result may be calculated most efficiently by the

a g r thm ARRAY A FFT RRAYB FF IFFY, i tbe result

15 the inverse Fourier Trarsfort of tue product of t’ee

Fourier Transforms.

Periodic correlation is performed by conjugating one of the

Transforms before multiplication, i.e. ‘ARRAY.A FFm ARRAYfi

FFT CONS * 1FF?’ whilo aperiodir ..orrelat’n may be

performed in the same way using arrays padded with zeros.

3.1 5 Homomorphic Pro essiag

H momorpn processing s
excatation functions from the

Two common examples of its use

analysis for pitch frequen’y

Blind deconvolution can also be

the effects, for examole, of

signs s. In all f these ass.

convolution of a pulse train

epochs) w th a response o

response, original signal)
convolved in the time domain.

he reqree-y domain f

ommorly ed o separa e

response to those functions.

is in echo removal and speech

a d vocal ract esponse,

performed ifl order to remove

room acoustics from recorded

he osultart segnal i the

(vocal cord vibration, echo

these pulse (vocal tract

Since the waveforms are

they are therefore multiplied

ha ogar tim of t e s ecrum

is taken, this product becomes the sum f two ogarithmic

functions, which can be separated by ordinary linear

filtering An inverse transformation can be performed on

either of the separated signals to produce either the train

of impulses or the response. An intermediate result in this

type of processing is called the CEPSTRUM (SPECTRUM

reversed). It is computed by the following: FFT LN 1FF?’,

i.e. the inverse Fourier Transform of the Logarithm of the

Fourier Transform of the original signal. The CEPSTRUM is a

time domain signal.

134 Ftrst Austrahan Forth Symposium



r c
.jio r tc’ y uoaar

atray o orrplex fil
s i Ef cOEFP IFFT ‘-ar ou

cci: valo u Cuiva ec’ Cc

P TYPICAL SP APPLICATION

;StST i a useful tco since a turnkey system can be
‘nea-ed which may be anvoked by single words. In order to
lace sate this an algorithm has een wrItten wh t
ceip a speech sig allows sea on of part of h

r further e sing via th SCROLL and C RS R
£ calcula es tne CEPSTRuh an plots sp c r

I tra spot , excitation unction and
trog a This ype of system has been used is

r lys f ape recordings for edit detectior
adert fi on Since ASYST generates resident

esults a e omp ted rap dly and at sir gle key
desired.

Somc typical results (siseen dumps) are displayed below
Reprod ction tn black and white has disguised some of the
effects evident in colour. Figure 1 is the captured time
signal of speech using a data acquisition board. Figure 2 is
the spectrum of this signal, note that there are several
frequeccy spikes which make up the fundamental pitch
frequency and the spectrum of the vocal tract response.
Figure 3 is the logarithm of the spectrum. The inverse FFT
is the cepstrum, Figure 4. By modifying the cepstrum,
(Figure 5). the smoothed log spectrum results (Figure 6).
Sxpoae:tiaton gives the cepstrally smoothed spectrum
eho i learly the f rmant frequencies (Figure 7). The

respon g re 8, results from the i nr

F sform, T d iference etwee Figure ar
the ew og spe rur Figure s

(F g es he cxc tati n
g

ON

ASY useful too esearch, de el pment and ge e
signa ralyss tasks ts large suite f commands, its 0
nnpebity and computation speed allow complex algorithms to
he writen quickly and efficiently.

It has neen found to be very useful in the teaching
environment, since the powerful automatic plotting routines
allow results to be reviewed as they are produced. The I/O
interface allows students to process real signals. Other

flrst Aust r i Symposiurr 35



5.

I

is 00

vIYA
9 2 0 50 50
P V XV

0

500

4

0

—
is 0

H
0

‘6 zy QSILf



sac

-as
a —

N

4S

+
-a a4-

a ass

qurc

CS TRaCT Rt5

39
TINS (Nt)

gure

sa 2 59 2 59 455
FNECGENCV Nr2

seas a Z5Q 35 4.5as
FRCQUCNCY 5KHZ)

a
N SUINC

a,

24.
sass

7
T

5,,

S as
p

4-
59 5

429 54 8

I-

a

cS —

a

Tea

ITRTIO S

F5cst Australian Fortt- Symposium

Figure 10-

137



‘1 Ut

DSP software packagea are aasc a,itab1° such as s:b ant!

LS “iowevr, ‘he flexbaUcy c.r 4SYfl Claws greater
0S a t ) ‘ ‘ w S

to tn o te at ce ..e t a se to D P pp ca zor

.. snanqzs

1 ASYST lcd le ys m, Gr tics ‘6 St ta ‘

Macmillan, :nc., 1985, Nn York.

2 ASYTo a • L

3 ‘ASYST Module 3. Acquisition.” ibia.

4 ASYSTodle . I “

5 Rabtner L.R. an’ Gold B., Theory and Applicatior

of Digital Signal °‘-ccrssing Prantce—Rall. USA,

15

6 Oppenheim A V. rid Schafer tW. ‘Dt4ItaI zagnal
Processing Prennce-a3’, USA, 1975

st imt aba F ft ymposlu



Forth and Prolog on the Forth Machines

L. L. Odette
Applied Experl Systems, inc.

One Cambridge Center
Cambridge, Massachusetts 02142

USA

W. Wikinson
1269 Commonwealth Aye, #11
Boston, Massachusetts 02134

USA

Abstract

Our research focus is the problem of engineering expert system technology into
systems with severe resource bounds, difficult performance constraints, and
nonstandard hardware. Good examples are embedded systems for intelligent
realtime data acquisition and control. We argue that Forth can profitably be
viewed as a platform language for both the realtime and knowledgebase
portions of such systems. This paper describes our development work on a
Prolog compiler that emits code for an abstract Prolog machine, The Prolog
rachne s mlerentea v’ Fcrtn versions iave beet’ bU!it for the Novx Forth

engine and a version is in development for the Harris RlSCbased reaitirne

139



0

r’ d do er flnn se t e in rrnpn

o* ge e yst eeoc ut frr ge d p ppati (PCi

kawkinsor et aL 1985: 02, Wolfe, 1957;, rrcwieagbaed bysnns o ;ntermea:21e

e, on gi- eth bas oh big tre i oi en are fKL o no e

c bij en nac ice ce eve ed iere re en ver we oa to ial

Knowledgebased systems. which need to be engineered into n”oduc’s and then

we d ii quart

One of tI-c most dif cult tasks engi een g inte ger £ ‘nt ea re pplic ion S

balancing the requirements for pedormance, functionality, and integration. For example.

good approach to achieving ugh p°rformance an a high deg cc o tegratio is to

use a single special purpose progra liming language or both real tme processing and

representation and reasoning, running on a single high speed processor (eg. Wright et

1986). However these choice ‘nay onf ict with achieving the necessary

functionality (if the representation and reasonrg language s too primitive), delivcnng o

time/budget (if the programming tools are hmited or ‘ the special processor or its memory

00 expens ye deploy ng or rrult’ a e a inc f e si ‘i s ec’a

ogramming language s not poaole).

The risk avee will usually trade off tunctionaity and peornance for the abity to

g t pplati it r or g r c a ass

will saorf’ce meg ation for functicnlit a d oerhrmar e beoaue J may enable a

solution unaffainable otherwise. We believe the pioeper’ormanoe gult between the two

o e anbebdgd yTh c 010

40 rstF stra an I- lfl S nposum



k

I

a t ategy s LO ‘nThain a onven’1onal approach to rea time sstemo where

a e ° of 0 e i s ur aa a a

ap ormarce of the reoresentaton and reasoning component of the system. To achieve

The °cessary f ncto ality vith a high oegree of integrator’, we use a reattime

rj go un s att h o peH e t a s’andard A nguage Pto

By choosing the right platform language we are able to maintain high performance.

raded I’ guages liKe Forth meet maiy of our design criteria for performance and

ye to Of o rtic tar significarce fo the i iiplemention of high level anguages is t e

oftmade obseNation that Forth is well suited to simulating abstract machines. This

-cc ility rovides portability since Forth implementations exist for so many machines,

and duces the peni’ormanoe impact at implementing one high level language in

another.

e fa t that hardware support for subroutine threading is found in several new

cad nes om be RISO school of machine architecture means that the upper bound on

tformance is very high; ultimately performance of languages like Lisp and Prolog on

ie no Fo m hino na be c npetitive r even supe or to mplementations

i’ a b’e i hig powered a d high pnc.ed workstations

Cur strategy for achieving the functionality of the representation and reasoning

r no h’ re ire build knowledgo based systeas s to mplement tanda d

J anguages (Lisp, Prolog, OPSa) usirg the threaded code technique and then build the

expert system aopiication in that language. The deciding factors in choosing an Al

e pr Ia guage are that the language be well known and that there is available

a bocy of cerature describing solutions to common programming problems in Al. The

:anguages Usp, OPS5 and Prolog meet these criteria. OPS5 and Prolog also have

cal kennels s t is elatively easy to implement a complete version of either language,

F A at Pot SyTuosut. 14



C a

U Oct Uk r oc s op;ra Fr log t; crt r he cg r:p amer a’c

gu is A eb urt o e ig I- a a s a r (a

t%ere exits an extensive body !iterature on Forth solutions) and provides portability and

p orwance Cu preVous work has sh wn th I such an mplementa ion strateg can

f duwco’atho cc maur rid f e at ie ía a a Co iii

aomponent is tighty integrated with the reahtime component because they share tne

me n-tine mrhanisms.

Real-Time Prolog

A multi-pass Prolog compiler has bee implemented which ultimately compiles to the

Forth language. Early versions of the compiler (Odette. 1987) produced code for a

log Virtual Machine (PVM) based on The machine descnbed by Bowen e al 1983

This PVM is a stack machine (0-address) and while not as sophisticated as the Warner

Prolog machine, it is a good fit with Forth (a stack machine), and very portable

T e Prolog compile descnbed abov a- een rted to a otot e e sir f

Mavix Forth engine and .imed at 6.000 LIPS (Logica’ Infere ices Per Second - a

measure of function calling speed determined with a standard program called naive

ee wt[ aclock ateof4MH Odd ai Wiknso 986

A compiler based on the Warren Abstract Machine (WAM; Warre,,, 1983) has aiso

been developed; this version runs twice as fast (I2KLlPS at 4MHz). Improvements on

No ix design by Harris Semiconductor have ed t a Forth engine designed to rur at

to MHz. (Jones et al, 1987), suggesting that this hardware could support a Prolog at

50,000 LIPS This is much faster than C language implementations of the Warren

machine on the VAX (Gabriel at al, 1985) almost twice as fast as the best Prolog

42 rst F straF n F r’h Sympos um



CC) C/

rrc o it n ‘ c cv op n t cc 0: P Jo y etr to se [

•I2J OPCE chp ce The Poiog compiier s written m Prolog and coripes the

u c c cc t[ ir’ ruc ons for he U C Berkele Programmed Logic Machine (PLM,

ad Dowry. I 985 he PLM is a var,ation on the WAM

‘e P o:o compr rn ri a IBM PC an ems PLM nstructns into an ASCi

tcx fi e. he LM code s ther used as input to the FCornpiler (Silicon Gompose,

88 a rosscornpiier that will compile a subset of Faith for the Harris Force chip set

( on Op imi ed F so £orrputing Engine). The result of the crosscompilation is an

mage tHe tnat can be uploaded from the PC into a plugin Force coprocessor board.

9 veiopnent system architecture for the Prolog language is illustrated in figure 2

An example of an application that is a good candidate for this approach is the

ro iaut nterface designed for a series of spacelab experiments (Paloski et aL, 1986,

198?) This application is currently based on a full Clocksin and Mellish (1981) Prolog

t I ieiertedi Foli OdetteandPalosk’, 987 and running onan IBM PC

one wirn interfaces to special purpose hardware for data acquisition, communications

d n I Tb ro g ter etc p vide r in na f executing Forth progrars

cm Proiog. in contrast wath the development envaronment of figure 2, the interpreter

pr c nc ns at bot kn wl°dge as ar rea1ti e c mc ne ts re teractiv

e Forth and Prolog code comprise a real time knowledge based system designed

o ore v rr n’b is i p rtornin as rae of xpe irnnis aboard the First Inte nationa

k crogravity Laboratoy (IMLI) Spaceab missaon. The series of experiments are known

tively a the Microgravity Vastibular Investigation and are designed to study the

role o the nr er ear in Space Motion Sickness. The astronaut interface helps an

a5tronaut to pcperiy configure the onboard physiological data acquisition and control

syston. he knowledge based component of the system as designed to reduce the

Au ‘r& an or Syipo ur 43



as ciue - o g or “. qaij data c e:tr

a nt-dc Krowage ba ‘o formation bou tt rssHr cbJeoti!es

ad str gies fo leeti °m r be ab o help duce ir aRes ir 1e ver ly

r et e e s a is ( th

desg d to ir ase to ide ing of race sic csj.

The iML1 mission was origtnally scueduled to fly in May 1987, but due the Space

Shuttle ChaHenger accident IML1 has been postponed until Apr’i, 1991. The astronaut

rterfacr o the IML 1 appl ation i oxpected o fly at th time achi e ts mis on

jec v real tire data acquisit and w t sir bed ed kio ledge a

all of this n Forth, residing n 64K byes.

The impact on performance of a Prolog compiler and special Forth hardware would

be significant. The knowledge base component (in Prolog) would execute 200-500

nes faster and the Forth code itself would speed up by a factor of 30 to 100. These

Rinds of performance improvements would enable far more sophisticated applications

than are currently possible.

144 First Austrahan Forth Symposium



P wi M B,rd aa Vv F Clocksin, 1983. A Poabie Prolog Compe I ca’c
‘rorammng Workshop, Unversdade Nova de Llsboa, pp 7483.
ks’n ard C S. Mellisn, 1981, Programm’ng in Prolog Spr,ngerVeriaq New

rg . a F P Dobry, 1985 F e Berkeley PLM lnsr tion Set: An lnstruc’o Set fo,
Technical Repo Ui ersity of Gallfern a at Beikely.

“Rete: Algorithm for the Ma astOrn/Many (i,,

ob em, Artificial Ii elligence, pp 7-31
idhoim, E L usk and R A Overbeek, 985 A Tutora or the Wa c

a Machire f r mputational Logic Technica Note ANL 84 84 Argo e
& aboratory

L. B vk son M E. Levln C Knickerbocker and R L Moore, 1985. A Paradigrr
3 a me Inference” Conference Proceedings, Artificial Intelligence and
/d,anced Computer Technology. pp. 51 -56.

1, Jones, C, Malinowski, and S. Zepp, 1987. “Standard-Cell CPU Toolkit Crafts Potent
Processors,” Electronic Design, May pp. 93-100.

L L Odette. 1987. “Compiling Prolog to Forth,” Journal of Forth Application and
Research, pp. 487-534

1: Odette and W. Wilkinson, 1986. “Prolog at 20,000 LIPS on a Novix?.” Proc FORML
Conference, pp. 112-118

L Daette and W.H. Paloski, 1987. “Use of a Forth Based Prolog for Real-Time Expert
Systems Ii. A Full Prolog interpreter Embedded in Forth” Journal of Forth
Aop ‘cation and Research op 477-486

JI Pa Odette, and A Krave 986. “Use of a Fo’th Based Prolog to e F me
e Systems,” Pro ecding Rochester Forth Conference.

W H L Odette A Kreve and A K West 87 “Use of a B
g o Real-F m Expert Systems Spacelab to Sciences E pe

t 01 ournal Forth Application and Researcl” pp 487-534
u. V or 983. “Ar Abstra t Prolog Instructior Set Technical No e 3

to cience ard ech o ogy Divisior
Wa 87 An Easier Wa Build a ReaLT r e Expel System,” El ii s

Ma I” 1987. pp. 71-73
I Woght M.W. Green, S. Fiegi. P Cross. 1986. “An Expert System for Real-Time

Coo’roi,” IEEE Software (March) 16-24

0 Syrnposiur



c
e
rp

re
te

L
nG

od
ln

g
Im

p
le

m
e
n
ta

ti
o
n

L
an

g
u
ag

e
M

et
h
o
d

-
L

an
g

u
ag

e
H

a
rd

w
a
re

(M
K

z)

S
m

af
lt

al
k

by
te

.o
de

ni
ro

c
o
d
e

D
or

ad
o

2
0

S
m

af
lt

al
k

by
tE

L
de

6
8

0
0

0

S
ch

em
e

by
te

od
e

re
ro

c
o

d
e

6
8
0
0
0

P
ro

lo
g

th
re

ad
ed

oc
i

F
or

th
N

C
40

00

P
ro

lo
g

th
re

ad
ed

co
de

m
ac

ro
co

d
e

6
8
0
0
0

P
ro

lo
g

th
re

ad
ed

co
de

F
or

th
N

C
40

00
i3

2
O

O
O

P
ro

lo
g

th
re

ad
ed

co
de

V
A

X
11

/7
80

G
ab

ri
&

e,

Fi
gu

re
1:

C
om

pa
ri

so
n

of
im

pl
em

en
ta

tio
n

te
ch

ni
qu

es
fo

r
A

l
la

ng
ua

ge
s.

E
ac

h
ia

ng
ua

ge
ha

s
an

ab
st

ra
ct

vi
rt

ua
l

m
ac

hi
ne

th
at

is
si

m
ul

at
ed

in
so

ft
w

ar
e.

O
ne

us
ef

ul
m

ea
su

re
of

pe
rf

or
m

an
ce

is
th

e
ra

te
of

ex
ec

ut
io

n
of

th
e

vi
rt

ua
l

m
ac

hi
ne

in
st

ru
ct

io
ns

.
T

he
vi

rt
ua

l
m

ac
hi

ne
of

th
e

fir
st

Pr
ol

og
lis

te
d

is
ba

se
d

on
B

ow
en

et
al

(1
98

3)
an

d
ru

ns
at

6,
00

0
L

IP
S

on
th

e
N

C
40

00
Fo

rt
h

en
gi

ne
.

T
he

ot
he

r
P

ro
lo

gs
ar

e
ba

se
d

on
th

e
W

ar
re

n
A

bs
tr

ac
t

M
ac

hi
ne

(W
ar

re
n,

19
83

).
T

he
W

ar
re

n
m

ac
ni

ne
ve

rs
io

n
ru

ns
at

12
,0

00
L

lP
on

th
e

N
C

40
00



le

ià soaw:

Prolog
Compile

Forth

irnage

File



A
u
st

ra
li

a
n

F
o

rt
h

S
y

m
p
o
si

u
m

F
o
rt

h
W

o
rk

sh
o
p
s

2
0
th

M
ay

1
9

8
8

E
A

S
,
i

B
S

tr
e
a
r
n

m Cl
) cn D
)

D C) cc 3 V 0 Cl
) a

P
o
st

sc
ip

t
P

ro
gr

am
m

in
g

S
ue

H
og

g
R

m
12

37

L
un

ch

P
ro

gr
am

m
in

g
R

oy
Hi

ll
th

e
N

O
V

iX
R

m
26

15
A

n
In

tr
od

uc
ti

on
Pa

ul
W

al
ke

r
to

F
or

th
R

m
26

14
—

—
-

. .
.
.

.J
lo

rn
in

g
T

ea

A
dv

an
ce

d
F

or
th

C
ha

rl
es

M
oo

re
G

re
at

Ha
H

;
=

=
=

=
=

=
=

=
—

=
=

=
.
.
.
.
=

=
=

=
=

=

I 0
.3

O
i0

45

I0
4
5
1
i5

2
O

O
3
4
5

3A
5-

40
O

4O
O

5O
O

—
-
—

—
—

—
—

—
-
—

—
—

-
-
—

—
—

.
—

P
ro

je
ct

M
an

ag
em

en
t

&
F

or
th

F
or

th
on

th
e

M
A

C
A

SY
ST

P
ro

g
ra

m
m

in
g

Ph
il

M
af

lo
n

A
m

26
14

la
n

W
al

sh
A

m
12

37
M

ik
e

Sm
ar

t
A

m
15

K
la

us
V

ei
l

N
ig

el
Lo

ve
li

S
te

ve
n

L
ea

sk
G

eo
rg

e
Jo

ne
s

A
ft

er
n

o
o

n
T

ea

P
le

n
ar

y
S

es
si

o
n


