is a purely compile‑time determination. Any kind of com​

pile‑time calculation goes against the spirit of object‑oriented

programming. The author expects that S I ZE ‑ OF will never

be used. If any reader can think of a use for it, he should tell

the author.

Figure Two contains a few more classes. PERSON is a fairly simple class which contains some information describing a person. The only new concept here is that we have an earlybound member function. This is FULL ‑ NAME. An early‑bound member function, similar to a late‑bound member function,

takes an object address parameter. Also similarly, we don't list this object address in the stack picture comment since we are going to be accessing it with SELF rather than keeping it on the stack. A difference from virtual functions, however, is that in an early‑bound function we need to explicitly bind this object address to SELF. We do this with <BIND at the very beginning. We also need to unbind it at the end of the function with BIND>. We need a BIND> prior to the semicolon and also prior to any EXIT words that we may have within the function, Don't forget BIND>! This is an easy mistake to make and

Figure Two.

APPEND \ ptr ^string ‑‑ past_ptr

COUNT 0 DO
\ destination_ptr source_ptr ‑‑

2DUP C@ SWAP C!

SWAP 1+ SWAP 1+ LOOP DROP ;

STRCAT
\ ^left ‑ string, ^right_string ‑‑ ^full ‑ string

OVER C@
OVER C@
+ >R
\ return: count of full string

R@ 1+ MALLOC DUP >R

\ return: ^full string

1+

^left ^right first‑char_adr

ROT APPEND SWAP APPEND DROP
\ ‑‑

R>
R>
OVER C! ;
1

CLASS PERSON NOTHING

40 STRING
NAME

llst line of mailing address

40 STRING
STREET

2'nd line of mailing address

40 STRING
CITY ‑ STATE‑ZIP

3'rd line of mailing address

INTEGER
SSN

social security number

1 FIELD
SEX

\
'M' or 'F'

VIRTUAL
TITLE

FULL_NAME

<BIND
^string \ use FREE to deallocate it

.TITLE

NAME STRCAT

BIND>

<TITLE>

^string

SELF
SEX C@
ASCII M
= IF " Mr."
ELSE
" Ms."
THEN ;

<PERSON>

['] <TITLE>
SELF VIRTUAL_ADR TITLE

<PERSON> ' NADA END_CLASS PERSON

CLASS EMPLOYEE BNODE
sorted by SSN

POINTER

PERSONAL
to a PERSON object

INTEGER

WAGE
hourly

1 FIELD

LANGUAGE
E=English, S=Spanish, B=Both

COMPARE# \ a b ‑‑ ~11011

2DUP

= IF

2DROP 0

0 for a=b

ELSE U< IF
‑1
ELSE
1
THEN
\ ‑1 for a<b
or
1 for a>b

THEN ;

<COMPARE>
\ ^root node ‑‑ ‑11011

SELF PERSONAL @ SSN @
SWAP
PERSONAL @
SSN @

64
Forth Dimensions XX11,2

one that will crash the computer. If you have unexplained crashes, try doing a text search on <BIND and visually check​ing to make sure that each one has a corresponding BIND>.

The author doesn't like early‑bound functions. Originally, OOOP wasn't going to have them at all. The programmer can rarely foresee what functions may need to be redefined in derived classes. Early‑bound functions prevent such redefini​tion, but late‑bound functions leave the door open for such later redefinitions. On the other hand, early‑bound functions are a little faster and use no memory within the object. This can be needed for classes that have a lot of objects defined by them. As a rule, the programmer should make all member functions late‑bound and only convert them to early‑bind​ing as a part of the optimization phase at the very end of the program development.

Our next class is EMPLOYEE. We have several new con​cepts introduced here. For one thing, we have a base class of BNODE rather than Of NOTHING. This means that we have all Of BNODE'S fields. We have a POINTER field called.PERSONAL which contains a pointer to an object of class PERSON. In our constructor, we create this object by calling our class‑defin​ing word PERSON. We store the resulting object address in . PERSONAL. This is done using DELEGATE rather than ! (more will be said about DELEGATE later). We also override the . TITLE virtual member function of our PERSON object with our own version. We define a word <COMPARE> whose ad​dress is stored in the COMPARE field by the EMPLOYEE con​structor. Our COMPARE function, <COMPARE>, is accessing a field in the PERSONAL object (the . SSN field). We have a destructor that calls DESTRUCT for the object address stored

in PERSONAL.

We have another class called EMPLOYEE BY I D which has EMPLOYEE as its base class. This class intriduces a new field called . I D and we redefine , COMPARE to use this rather than the social security number. This kind of upgrade could hap​pen if a company used SSNs to identify their employees and later decided to use an internal employee identification num​ber. The order that the constructors are called is important in regard to the . COMPARE field. First is BNODE's constructor which sets COMPARE to ABSTRACT. Secondly is EMPLOYEE'S constructor which sets COMPARE to code dealing with the , SSN field. Thirdly is EMPLOYEE_BY_ID'S constructor which sets COMPARE to code dealing with the . I D field. Since this is the last constructor called, this is the code that . COMPARE refers to in EMPLOYEE_BY_ID objects.

Multiple Inheritance ‑ we use true delegation instead

Neither Oberon or OOOP has multiple‑inheritance. Given the current design of OOOP, it would be pretty much impos​sible to implement. All of the member functions for any base class would expect their fields to start at index zero. Multiple base classes can't all start at index zero. Multiple‑inheritance would be nice, though. In our example, our EMPLOYEE class currently has BNODE as its base class and has a pointer (. PER​SONAL) to an object of class PERSON as one of its fields. This pointer gets initialized by the constructor, which calls the constructor for PERSON to create a PERSON object and then stores the object address of this object in . PERSONAL. With multiple‑inheritance, EMPLOYEE would have two base classes: BNODE and PERSON. This would simplify things since we would

COMPARE#

<TITLE>
\
^string

KRYSHA
LANGUAGE
C@
ASCII S = IF

SELF SEX C@ ASCII M = IF " Sr." ELSE " Sra." THEN

ELSE

<TITLE>
THEN
this is the <TITLE> defined in PERSON

<EMPLOYEE>

1 PERSON DUP
SELF
PERSONAL
DELEGATE

[11
<TITLE>
OVER VIRTUAL_ADR TITLE

DROP

<COMPARE>
SELF VIRTUAL_ADRCOMPARE

<‑EMPLOYEE>

SELF
PERSONAL @
DESTRUCT

<EMPLOYEE>
<‑EMPLOYEE>
END_CLASS EMPLOYEE

CLASS EMPLOYEE_BY_ID EMPLOYEE
sorted by ID

INTEGER
ID
\ internal identification number

<COMPARE>
\ ^root node ‑‑ ‑11011

SELF
ID @
SWAP
ID @

COMPARE# ;

<EMPLOYEE BY ID>

['] <COMPARE>
SELF VIRTUAL_ADR COMPARE

<EMPLOYEE_BY_ID>
1 NADA
END_CLASS EMPLOYEE_BY_ID

Forth Dimensions XX11,2
65

Stroustrup is hamstrung by his use of a VMT. He can't

change the virtual function vectors for an object delegated to

because they are in the VMT and every other object of that

class would be affected, We can change these vectors. In the

constructor for EMPLOYEE we use VIRTUAL ‑ ADR to plug a new

value into the vector for TITLE which is a field in the PER​

SON class object pointed to by . PERSONAL. By doing this, we

solve Stroustrup's #1 problem in that a function in EMPLOYEE

is overriding a function in PERSON. Our new function "gets

back" to the delegating object (of class EMPLOYEE) when it ac​

cesses the LANGUAGE field there. This solves Stroustrup's #2

problem. The functions in the object being delegated (. T I TLE

in the object pointed to by . PERSONAL) needs to know the

object address of the object that is doing the delegating (the

EMPLOYEE object). This is what the . KRYSHA field is for. Every

object has a . KRYSHA field. The PERSON object pointed to by

the . PERSONAL pointer in the EMPLOYEE object has the object

address of that EMPLOYEE object in its . KRYSHA field. When

66

x? The function delegated to [a member function of PERSON] cannot use functions from the delegating class [EMPLOYEE] or in other ways "get back" to the delegating object.

Naturally, the two problems are related. ... In retrospect, I think the problems are fundamental. Solving the problem #1 would require the virtual function table [VMT1 of the object delegated to be changed when it is bound to a delegating object. This seems out of line with the rest of the language and very difficult to define sensibly. We also found examples where we wanted to have two objects delegate to the same "shared" object. Similarly, we found examples where we needed to delegate through a [pointer to a base class object] to an object of a derived class [of that base class].

Unfortunately, every user of this delegation mechanism suffered serious bugs and confusion. Because of this, the delegation was removed from the design and from the Cfront that was shipped as Release 2.0. Two problems appeared to be the cause of bugs and confusion:

#1 Functions in the delegating class [EMPLOYEE] do not override functions of the class delegated to [PERSON] .

not have to manually construct a PERSON object in our EM​PLOYEE constructor (base classes' constructors are automati​cally called by a constructor). Also, we would not have to manually do double indirection to get at the PERSON fields (as seen in the EMPLOYEE version Of <COMPARE>). This tends to clutter the code. It is also difficult for the user to remem​ber when it is needed, which is a common source of bugs in object‑oriented programming.

At one time, prior to implementing multiple‑inheritance (in version 2.0 of C++), Stroustrup experimented with some​thing called delegation. This is essentially what we are doing in OOOP with having a pointer to an object (. PERSONAL). The user would list the delegation classes next to the base class name in the class declaration. The construction of the delegated object would be performed automatically. From a practical standpoint, however, it doesn't really matter if he manually constructs this delegated object in his constructor or if the compiler automatically generates this code for him. Stroustrup says this about his experiment [21:

RTTI [run‑time type information] can be used to write thinly disguised switch statements [see Figure Three]. I have heard this style described as providing "the syntactic elegance of C combined with the run‑time efficiency of Smalltalk," but that is really too kind. The real problem is that this code does not handle classes derived from the ones mentioned correctly and needs to be modified whenever a new class is added to the program. Such code is usually best avoided through the use of virtual functions. ... For many people trained in languages such as C, Pascal, Modula‑2, Ada, etc., there is an almost irresistible urge to organize software as a set of switch statements. This urge should most often be resisted.

Forth Dimensions XXI.1,2

Run‑time type checking ‑ needed for copying objects

One of Oberon's most powerful is run‑time type check​

ing. We have this too. The word is ‑ A takes an object address

as a parameter and has a class name in the input stream after

it. IS A returns a flag indicating if that object is a member of

that Jass. The flag will also be returned true if the object is a

member of a class derived from the indicated class. The pro​

grammer should use IS_A sparingly. Bjarne Stroustrup has

this to say [2]:

we filled the . PERSONAL pointer in Our EMPLOYEE object with the object address of a PERSON object, we used DELEGATE. DELEGATE, in addition to filling this pointer (which ! could have done), also sets the . KRYSHA field in the PERSON object to point to the EMPLOYEE object doing the delegating. In our EMPLOYEE constructor, we also overrode one of the virtual vec​tors in the PERSON object (the TITLE field). We filled this vector with a function that we had just written, This is a vir​tual function of PERSON, So its SELF is the PERSON object. Our function uses SELF to access the . SEX field in the PERSON ob​ject. Within this virtual function, it can Use KRYSHA to obtain the object address of the delegating object (the EMPLOYEE ob​ject). Our function does this to "get back" to the . LANGUAGE data field in the EMPLOYEE object.

The word krysha is Russian and literally means "roof." In general usage, a person's krysha is an upper echelon figure in the police or the mafla who will protect that person from harm [9]. The EMPLOYEE object is the krysha of the PERSON object because the only way to get access to the PERSON ob​ject is by going through the EMPLOYEE object. The EMPLOYEE object could customize the virtual functions of the PERSON object because every use of the PERSON object would be in the context of it being a delegated object of the EMPLOYEE object. Modifying these virtual vectors does not affect other objects of PERSON class (who may or may not have a krysha) that are also in use at this time. They have their own . TITLE vectors inside of themselves set by the PERSON constructor, If we were using a VMT, then all PERSON objects would use the same . T I TLE vector in the VMT, and modifying it would af​fect all of them. Because we don't have a VMT, we can use delegation effectively and we do not have to let the multiple​inheritance genie out of the bottle. Multiple‑inheritance is nicer looking syntactically than delegation, but it is compli​cated to implement and slow to execute. It is clearly not in line with our minimalist Oberon‑like philosophy. On the other hand, we can't ignore the concept entirely. We need to have a workable alternative ‑ and we do.

