with a little more effort, on any ANSI Forth system. OOOP is
should also work just fine,

currently running under UR/Forth. If anybody does port it to

any other Forth system, please e‑mail a copy to the author.
Summary ‑ keep it simple

There are some sticky points. The PRIVATE/END‑MODULE

Forth's primary arena is embedded controllers, many of

pair, which we have already discussed, is the worst. Another
which are eight‑bit. OOOP is designed to be used in this arena.

area in which the implementor is going to need to do some
As such, it has been purposely kept as simple as possible. This

custom programming is MALLOC and FREE. MALLOC Uses AL‑
has several benefits. One is easy implementation ‑ OOOP is

LOT internally. This is not suitable for practical use, The reader
going to have to be implemented by programmers who are

will need to rewrite MALLOC and FREE to use a heap. Heaps
eager to get started on their application and don't really want

aren't complicated, but they are beyond the scope of this ar‑
to delve into any systems‑level Forth programming. A lot of

ticle. There are some design decisions that the implementor
these programmers may actually be electrical engineers who

needs to make. Mostly, he needs to decide if he is going to
see programming as being a small part of the work involved

have a static internal array which he allocates memory from
in a project and would like it to be smaller. Another benefit is

(good on an embedded controller), or if he is going to use the
reliability. As Wirth pointed out in the quote at the top of the

operating system's memory allocation facility (good on a desk‑
article, simplicity is the key to reliability. Because OOOP is

top computer). Also complicating the implementation would
"pure" object‑oriented programming assuming that the pro​

be if the programmer wants to get involved in using far point‑
grammer uses restrained type casting), OOOP programs are

ers on a processor that has banked memory (such as the 8086).
amenable to verification of their correctness. This can be

If there is interest in how to implement a heap, readers should
important in embedded systems that control machines which,

contact the author. Perhaps we can have a Forth Dimensions
if they fail, could put people in the hospital or smash up ex​

article about heaps sometime in the future.
pensive equipment. Yet another benefit of OOOP is a reduced

A minor point that may cause implementors difficulty is
learning curve. If a feature isn't going to be used by most of

the COMPILE word. A very grievous weakness of Forth‑83 is
the users, then all of the users should not be forced to learn

that we don't have any standard word which takes a CIA and
it, OOOP does not have any superfluous or gratuitous fea​

compiles it. This word is easy to write (on a threaded system
tures, and the features that it does have are uncomplicated.

it is just a comma), however, it is different on every compiler.

OOOP is not necessarily the best choice for all applications.

This kind of situation is exactly what standardized words are
As projects get bigger, polymorphism and information hiding

for ‑ they hide compiler specific details from the applica‑
become increasingly important. OOOP doesn't have true poly​

tion programmer. The result of this weakness is that we don't
morphism. Our PRIVATE mechanism provides somewhat crude

have a good way to write macros (immediate words that com‑
information hiding in that it only simulates the creation of

pile a sequence of words). Within the sequence of words, we
protected words if all the class definitions of an inheritance

have to deal with immediate words differently than with non‑
chain are in a single module. Desktop software tends to get a

immediate words. We use [COMPILE] for immediate words
lot bigger than embedded controller software. Desktop soft​

and COMPILE for non‑immediate words, We can use WORD
ware also usually involves supporting a large API (set of inter​

FIND to determine if a word is immediate or non‑immediate,
face words to the operating system). Name‑space conflicts can

Once we have used WORD to take it out of the input stream,
become common. OOOP. which doesn't do any modification

however, we have no way of compiling it since COMPILE needs
of the dictionary search, is probably not a good solution in

it I . n the input stream. We don't have a word which can take
this environment. In general, programmers should choose their

the CFA provided by FIND and compile it. Essentially, com‑
OOP system depending upon the application which they are

PILE needed to be factored into its two constituent parts:
working on. The strength of Forth is that choices like these

getting the word out of the input stream and compiling it.
can be made. If a programmer doesn't make these choices but

OOOP has a few macros (SELF, <BIND, and BIND>). These
expects to be given a single standard solution to use on every

use COMP ILE and assume that the words being compiled are
application, then he is not taking advantage of the Forth lan​

all non‑immediate. We have a word called CHECK_IMMEDIACY
guage. It is a mistake to become trapped in the idea that there

that is run at compile‑time to check that the words used by
is a single best solution waiting to be found. This is the path to

COMP ILE actually are non‑immediate. If they are immediate
mediocrity, because no single solution is going to be optimum

on any compiler that the reader may be using, then the reader
for the entire spectrum of applications that can be written.

will have to rewrite the macros. >R and R> are words that, in
Ironically, the path to mediocrity is most heavily traveled by

some Forth compilers, are immediate and, in other Forth com‑
elitist types who feel that they deserve only the best.

pilers, are non‑immediate. >R and R> may cause problems.

The difficulty in writing macros is one of those heartbreak
Bibliography

situations where Forth‑83 almost does what is needed.
[1]
Object Oriented Forth, Dick Pountain, 1987

Other than these points, OOOP should be easy to imple‑
[21
The Design and Evolution ofC++, Bjarne Stroustrup, 1994

ment on any compiler. We don't use any particularly fancy
[3]
Programming in Oberon ‑ Steps beyond Pascal and Modula,

programming techniques, such as dictionary search modifi‑

Martin Reiser and Niklaus Wirth, 1992

cations (vocabularies) or "second order defining words" [1].
[4]
Eiffel: the language, Bertrand Meyer, 1992

OOOP should be easily implemented on a cross‑compiler. This
[5]
Object‑Oriented Design, Grady Booch, 1991

is important, since we have said that OOOP is intended for
[6]
"SWOOP: Object‑Oriented Programming in SwiftForth",

use on embedded controllers, and these are generally pro‑

Forth Dimensions (XX.5,6), Rick Van Norman.

grammed with cross‑compilers. The author hasn't tried imple‑
[7)
Thinking Forth, Leo Brodie

menting OOOP on a cross‑compiler. The author has written
[8]
"DynOOF‑style Objects for the i2l microprocessor",

a cross‑compiler (MFX for the MiniForth processor at Testra),

Forth Dimensions (volume XX, number 4), Andrds Zs6t6r

however, and is quite familiar with how cross‑compilers work.
[9)
Dermo! The Real Russian Tolstoy Never Used, Edward Topol,

The author predicts no difficulty in getting OOOP to run on

1997

MFX. Any cross‑compiler comparable to MFX in capability

70

Forth Dimensions XXI.1,2

