<BIND

compile‑time

\ object‑adr

run‑time

COMPILE <SELF>
COMPILE @
COMPILE >R

\ push old <SELF> to return stack

COMPILE <SELF>
COMPILE
IMMEDIATE

\ set <SELF> to object‑adr

BIND>

compile‑time

run‑time

COMPILE R>

COMPILE <SELF>
COMPILE ! ;
IMMEDIATE

\ restore old <SELF>

\
To define early‑bound words, use <BIND at the beginning of the colon word and

\
BIND> at the end. In addition to putting in a BIND> prior to the semicolon,

\
you must put in a BIND> prior to any EXIT inside of the word. Forgetting to

use BIND> will cause the word to crash the machine as it tries to use the old

<SELF> value as a return address. If you are getting unexplained crashes, use

a text editor to find all of your <BIND words and manually look to see that the

semicolon and any EXIT words have a BIND> before them. In general, it is best

to use late binding (VIRTUAL words) normally and to only use early binding if

speed and memory are critical and you are absolutely certain that you will

never want to override the member function in a derived class.

It is possible to write colon words which use SELF and which are called on by \ VIRTUAL words. These should always be made PRIVATE since they can't be called \ by anything but VIRTUAL functions and to do so would be a bug (since they use SELF and SELF isn't valid). These aren't early‑bound member functions because they aren't passed an object address like the VIRTUAL functions are. Think of them as helper functions for the VIRTUAL functions. We don't actually have early‑bound functions. It is also possible to write colon words which are passed one or more object addresses on the stack and which muck with the object(s) in some way (by calling VIRTUAL functions and/or by modifying fields). These aren't member functions, they are extraneous to the class.

****** How to define fields ******

ALIGN_INDEX \ index
aligned_index

DUP NEEDED
+ ;

FIELD \ index size
new‑index

CREATE

OVER
store index for use by DOES>

+
return new index; for next field

DOES>
object‑adr ‑‑ field_adr

@
object adr index ‑​

+
field_adr ‑‑

VIRTUAL
index
new_index

CREATE

ALIGN_INDEX

DUP ,

store index for use by DOES> (and by VIRTUAL_ADR)

W+
\ return new index; for next field

DOES>
\ object_adr ‑‑

@
object‑adr index ‑​

OVER <BIND

+
field adr ‑​

PERFORM
execute the virtual function

BIND> ;

\ If possible, a register should be used for the variable <SELF>. Any word that \ accesses <SELF> should be in assembly. All such words should be in this file.

Forth Dimensions XXI.1,2
73

\
I recommend against using CREATE and ;CODE to replace CREATE and DOES> since

\
it is somewhat slow this way. I recommend using CODE to create a machine code

\
word and then executing an assembly macro which generates the proper machine

\
code and which assembles the index value into this machine code as an immediate

\
operand. This is much faster than ;CODE which causes the pfa to be passed into

\
the machine code. The machine code then must fetch the index value from this

location. Using CODE instead of CREATE is somewhat non‑traditional but, for

something as important as COP, the speed increase makes it worthwhile.

VIRTUAL_ADR \ object_adr
field_adr \word: virtual_field_name

PFA @
[COMPILE] LITERAL

object‑adr virtual‑field_index ‑‑

COMPILE + ; IMMEDIATE

\ VIRTUAL ADR is used by the constructors who need the address of the \ virtual field within the object which they are constructing. They need \ this so that they can fill it in with a vector to the proper function. \ Filling in these vectors is the primary thing that constructors do. \ Unlike in C++, the user has to write this vector filling‑in code himself.

: STRING \ index size ‑‑ new‑index
\ counted strings

1+ FIELD ;

\ 1+ to make room for the count byte

INTEGER \ index ‑‑ new index

numbers

ALIGN_INDEX
W FIELD ;

DINTEGER \ index ‑‑ new index

double numbers

ALIGN_INDEX
W 2* FIELD

POINTER \ index ‑‑ new index

pointers to data (usually other objects)

ALIGN_INDEX
W FIELD

STRING and FIELD provide unaligned fields of variable length. INTEGER, DINTEGER, POINTER and VIRTUAL provide aligned fields of W multiple length.

****** Access to class struct ******

When we define a class_name, the following data go in its pfa

0
PFA_FIELD
SIZE

size of objects created by this class

1
PFA FIELD
BASE

ptr to base class's pfa

2
PFA FIELD
CONSTRUCTOR
\ ptr to constructor function

3
PFA_FIELD
DESTRUCTOR
\ ptr to destructor function

SIZE_OF \
‑‑
\word: class‑name
\ compile‑time

\ ‑‑ object size

\ run‑time

PFA
SIZE @
(COMPILE] LITERAL ;
IMMEDIATE

When we define an object, the following data go at its address.

0 PFA FIELD
CLASS
ptr to defining class's pfa

I PFA FIELD
KRYSHA
ptr to delegating object, if there is one

2 PFA_FIELD
DATA
this is all of the user's FIELD and VIRTUAL data

CREATE NOTHING

W 2*
size of the object (the
CLASS and
KRYSHA pointers)

0
base class pfa (the 0 is looked for by <IS‑A>)

0
class constructor

0
class destructor

NOTHING is the base class for everything. We build it by hand. Normally classes are built with CLASS ... END_CLASS.

74
Forth Dimensions XXI.1,2

SIZE
\ object‑adr‑‑‑object_size

.CLASS @
class_pfa ‑‑

.SIZE @

SIZE is primarily for incrementing a pointer through an array of objects. SIZE should be used instead of SIZE_OF as much as possible.

****** Constructing and destructing

NADA \ ‑​

(this word does nothing)

NADA is a null‑operation. It can be given to END_CLASS as the constructor or destructor of classes which don't need any specific actions here.

ABSTRACT \ ‑‑

TRUE ABORT" *** You have tried to execute an abstract member function.

ABSTRACT is for initializing VIRTUAL functions which are intended to be defined in a derived class and which have no behavior in this class.

<CONSTRUCT>
class_pfa

\ needs SELF to be valid

DUP
BASE @

class_pfa base_class_pfa ‑‑

DUP NOTHING IF
DROP ELSE
RECURSE THEN
call base class constructor

.CONSTRUCTOR PERFORM
call our own constructor

<DESTRUCT>
\ ‑‑

needs SELF to be valid

SELF CLASS @
BEGIN
DUP NOTHING <> WHILE
\ class_pfa ‑‑

DUP
DESTRUCTOR PERFORM
call our own destructor

‑ BASE @
REPEAT DROP
repeat with base_class_pfa

SELF FREE ;

deallocate the memory at object‑adr

DESTRUCT \ object_adr

<BIND <DESTRUCT> BIND>

DESTRUCTS \ first_object‑adr how‑many ‑​

DUP 1 < ABOR7' *** DESTRUCTS needs a how many parameter >= 1

<SELF> @ >R
hold old <SELF> value

>R
hold how many value temporarily

DUP SIZE
SWAP
\ object_size object_adr ‑‑

R> 0 DO

DUP <SELF> ! <DESTRUCT>
set <SELF> value and destroy that object

OVER +
LOOP 2DROP

R> <SELF> !
;
\ restore old <SELF> value

DESTRUCT and DESTRUCTS are called by the user. <CONSTRUCT> and <DESTRUCT> are for internal use only.

DELEGATE \ object_adr field ‑ adr‑‑‑
\ to be used inside of constructors

OVER >R
!
\ fill field ‑ adr with object_adr

SELF R>
KRYSHA
\ fill KRYSHA field of object with SELF

KRYSHA \ ‑‑ object_adr

SELF KRYSHA @

DUP [1) BAD_VIRTUAL = ABORT" *** KRYSHA field was never filled in.

KRYSHA is to be used inside of overridden functions of the delegatee object. It provides them with the object_adr of the delegating object.

Forth Dimensions XX11,2
75

Copying objects and testing objects' class

<IS‑A>
\ class‑pfa target_class_pfa ‑‑ flag

>R
\ hold target_class_pfa on return stack

BEGIN
DUP WHILE
\ NOTHING's
BASE field contains a 0

DUP
R@ = IF

\ this is it!

R> 2DROP
TRUE EXIT THEN

.BASE @ REPEAT
\ repeat using base class

R> 2DROP
FALSE ;
\ target_classpfa not in class_pfa's inheritance chain

IS‑A \ ‑‑
\word: class‑name
\ compile‑time

\ object_adr ‑‑ flag

\ run‑time

COMPILE @
\ class pfa ‑‑
\ an assumed CLASS

PFA [COMPILE] LITERAL
\ class_pfa target_class_pfa

COMPILE <IS‑A>

IMMEDIATE

COULD_OCOPY
\ source_object_adr destination_object_adr
flag

>R

\ hold dst‑adr on return stack

.CLASS @ R> CLASS @ <IS‑A> ;

OCOPY
\ source_object_adr destination_object ‑ adr ‑​

>R

\ hold dst‑adr on return stack

DUP
CLASS @ R@ CLASS @ <IS‑A>

0= ABORT" *** Can only OCOPY sre to dst if src IS of dst's class ***"

W+
R@ W+ R> SIZE W‑ CMOVE ;
\ dst object's CLASS field unchanged

OCOPY will truncate the data if srcls class is derived from dst's class. If they are exactly the same class, no data will be lost. OCOPY adds W to the src and dst addresses and also subtracts W from the size of the copy (dst's size) in order to not copy the CLASS field.

It is illegal to OCOPY if src's class is a base class of dst's class since we have no way of knowing what data to put in the extra fields. It would be bad programming (according to Niklaus Wirth) to initialize these extra fields to some default value. This is the hallmark of OBERON which we are emulating. Don't subvert this by writing your own words to "typecast" objects; try working within the constraints of OCOPY as an experiment to test Wirth's idea.

<IS A> should be written in assembly to make OCOPY run quickly. SIZE also to help OCOPY and because it is important on its own.

****** How to define classes ******

All of the field defininitions are bracketed by CLASS and END_CLASS.

CLASS doesn't take any parameters but does require the class ‑ name and the base_class_name. It defines the class‑name as a new word.

END ‑ CLASS needs to be given the vectors to the constructor and destructor (as well as the data which CLASS left on the stack and which FIELD and VIRTUAL have been updating). END_CLASS fills in the class pfa fields.

CLASS
\ ‑‑ base_class_pfa index
\word: class‑name base_class_name

CREATE

0 ' 0 ' 0 ' 0
fill class ‑ pfa with dummy values

PFA

base ‑ class_pfa ‑​

DUP SIZE @

base ‑ classpfa initial‑index ‑​

DOES> \ how_many
object_adr

<SELF> @ >R

\ hold old <SELF> value

i

76
Forth Dimensions XX1.1,2

