
APPENDIX: GLOSSARY Convert double top to ASCII digits using # and
output enough spaces to right justify when digits are
printed.

back-tab -- 9
Returns control to word which called the present one.
Generated by semi-colon. Return address must be on
top or R-stack, hence cannot be used inside of #[j#
or if >R values are on R-stack. It can be used within
conditionals to abort. Synonym for RET.

<control-break>
The <control-break> is not a normal word.
However, it may be issued at any time to cause a
Warm re-start. The keyboard interrupts must be
enabled.

valaddr-
Stores 2nd at the address in the top.

!* -- 72
Compile address of this word into this definition.
This allows recursion. It is the user responsibility to
test for the exit condition; otherwise, the R-stack will
overflow.

-- address 64
Begins a quoted string. This is a state-smart word
which may be use either inside or outside of colon
definitions. The string is terminated by another”
mark and a following space, tab, or carraige return.
The count of characters within the string is found at
the word located at “address-2”. In addition, the
string is terminated by an ASCII null, not included in
the string count. If the string is used outside of a
colon definition, it is transitory, and will be over
written by other words which use PAD, just above
the stack. A “mark may be placed in the text string
by using two of them, “ . A “ mark may also be
followed within the string by any other printable
character other than a space.

lohi--charlo’hi’
Divide double number on top by value in BASE,
leave digit as an ASCII character, with double
quotient on top.

#>. ?00-- 66
Discard final quotient (value 0.0), then output ASCII
digits from stack until NIJLL character is reached.

#R dbl--? 66

#S dbl--? 67
convert double top to ASCII digits (one digit per
word on stack) using #. Leaves quotient value of
zero on top. This is useful when it is necessary to
force leading zero digits.

#VOCS -- addr 61
52 Address of maximum number of vocabularies in

search order.

#[n-- 66
Marks start of a decrementing indexed loop. Initial
index value is moved to the R-stack. The end is

15 marked by]#. Must be used within a colon
definition.

$< addrl addr2 -- flag 33
Two strings are compared for the purpose of ordering
them. Note that no count is specified! At the first
mis-match, the comparison stops. The flag is true (-
1) if the byte at the first string is less than that at the
second string. Note that addrl must not be the same
as addr2.

--addr 37
Reads string; pushes the address of that word onto the
stack. Searches first the SEARCHING , then the
ROOT vocabulary. If the string is not found, the bell
rings and the cursor is backed up to the beginning of
the input sthng. This continues until a string is
found. If necessary ‘to get out of this, use something
like: DUP DROP

‘LAST -- addr 37
Pushes the address of the last word in the
GROWING vocabulary.

‘PRE addrl -- addrl addr2 36
66 Pushes address of proceeding dictionary word.

Initially top must be a word address. At end of a
dictionary thread, addr2 has a value of 0.

-- addr
Primitive in-line string operator. The count of the
string is at the word preceeding the address. The
string is terminated by a null (not included in the
count).

(,

80

This is a primitive version of ‘. When executed, get
the next word from the input stream and search the
dictionary for a match. If found, return the execution
address on the top of the stack. If not found, return a
value of 0.

In-line primitive for .‘ strings. Prints the succeeding
in-line characters until a Null is encountered.

(;C --

A primitive used to change from normal high-level
interpretation to code level.

(=?[nln2-- or nln2--nl
Primitive CASE branch. When executed within a
colon definition, the top two stack elements ar tested
for equality. If the top two elements have a different
value, the top element is dropped and the next in-line
value is taken as the branch address. If the two
elements are equal, both elements are dropped, the in
line value is skipped, and execution continues.

(?J n-
Primitive conditional branch. When executed within a
colon definition, the top of the stack is popped and
tested. If the result is zero, the next in-line value is
taken as the branch address. If the result is non-zero,
the in-line value is skipped, and execution continues.

(]
Primitive unconditional branch. When executed
within a colon definition, the next in-line address is
taken as a branch address, and execution is transfered
to that point.

(E] --

Primitive branch on error. When executed within a
colon definition, an internal error flag EFLAG is
tested. If the flag is non-zero, the next in-line value is
taken as a branch address. Otherwise the in-line value
is skipped and execution continues.

(B --

Back up the cursor by one character.

(CALL --

A primitive operator which compiles a CALL
instruction followed by the calculated offset address
based on the contents of the word following the
(CALL word.

(DEFER --

Primitive routine for defered words.

(DOS ds dx cx bx ax -- ax’ ds’ dx’ cx’ 0
or ds dx dx bx ax -- ax ax’ -1

Primitive operator for DOS calls. If the top value
returned is 0, there were no errors. It the top element
is -1, then the requested operation results in an error
specified by ax’.

(JMP --

A primitive operator which compiles a machine
language iMP instruction followed by the calculated
offset address based on the contents of the word
following the (JMP instruction.

(NUM -- nO or -- dbl cnt or -- -1
Convert, normally using value in BASE, the ASCII
string just input with -WORD. If the string begins
with a $ character, use 10 as a temporary base. If
the string begins with a # character, use 16
(Hexadecimal) as a temporary base. A minus sign
may be used to input a negative number. If the string
contains a decimal point, the string is converted to a
double number. If the string cannot be converted, a
flag of -1 is returned. If a single precision number is
indicated, a flag of 0 is returned. If a double number
is returned, a positive number is returned containing
the number of digits to the right of the decimal point,
plus 1

(TEXT n --

Obtain characters from the input stream and store
them in the buffer area.

(]#
Test the value at the top of the return stack. If it is
non-zero, decrement it by 1 and then jump to the
location specified by the next in-line value. If the top
of the Return stack is zero, pop it from the Return
stack, jump over the in-line value, and continue
execution.

* nln2--n3
Multiply top by 2nd, leaving single precision signed
product top.

*1 nln2n3--n4
Unsigned multiply ni by n2, keeping 32 bit accuracy,
divide this by n3.

+ nln2--n3
Add top to 2nd, leaving their sum.

81

naddr-
Add 2nd to word whose address is on top.

n-
Add top to the value on top of the R-stack.

n-
Move top word to top of dictionary, HERE. Then
bump DP by 2.

- nln2--n3
Subtract top from 2nd, leaving the difference.

addrl addr2 -- flag
Two strings are compared for the purpose of ordering
them. Note that no count is specified! At the first
mis-match, the comparison stops. The flag is true (-
1) if the byte at the first string is less than that at the
second string. Note that addrl must not be the same
as addr2. Further note that the strings run backwards
in memory.

-1 ---1
Push a value of -1 on the stack.

-2 ---2
Push a value of -2 on the stack.

-ROT ni n2 n3 -- n3 ni n2
Rotate the top three items on the stack so that the
former top of stack becomes the 3rd item on the stack.

-WORD n--addr
Top=delirniter. Put a Null in the dictionary. Fetch
characters from the input stream, skipping initial
occurences of the delimiter character. The non-
delimiter characters are stored in the dictionary in
reverse order until a delimiter or a carraige return
character is encountered. Add a Null after the string
in the dictionary, and return the address of that null on
the stack. The dictionary pointer is not updated.

9--

Prints out the entire stack as though dots had been
entered in sufficient quantity to just empty the stack.

n-
Print the signed value of top followed by one space.
Numberic conversion determined by value in BASE.

Print the string which follows. A “mark followed by
a space, tab, or carraige return terminates the string.
The string can be any length and contain any 8-bit

ASCII character. If an imbedded” mark is desired, it
can be followed by any printable non-blank character,
or alternatively each pair of “ characters may be used
to represent a single “mark. Imbedded Line-Feeds
and carraige returns are allowed. Note, however, that
a Line-Feed does not automatically follow a Return--
even though on input Return does echo the Line-
Feed.

“9

The same as .“ except in swallows the first character
of the text string and uses it for the terminating
delimiter. This delimiter can be any character except
NULL. This allows “to be in the text strint.

nlcnt-
Print the value ni in a field cnt characters wide. The
count includes a possible leading minus sign, a
sign, and an irnbeckied decimal point, and two digits
to the right of the decimal point.

.A n-
Displays the low order 8 bits from top as an ASCII
character. Control characters are shown as “ followed
by the character, other characters are shown as a
space then the character. This is useful to make the
control characters displayable.

--

Display top, right 8-bits, with 2 hex digits. No space
follows and value in BASE hasno effect.

.D$ dcnt-
Display the signed double precision number in a field
cnt characters wide. If the field is wider than
necessary, leading spaces will be displayed. If the
field is too narrow, characters may be truncated. If
the double number is negative, the count must include
a place for a leading minus sign. The count must also
include room for a “$“ sign, an imbedded “.“, and
two numbers to the right of the decimal point.

.NAME addr-
Print out the name of the word whose address is on
top.

.R nln2--
Top specifies the width of the field, 2nd is unsigned
and printed with a space following, BASE determines
the conversion.

.TEXT segment addr --
Print text, stopping on a NULL. Top=start address,
2nd=segment.

82

Decrease the value of top by 2. Faster and shorter
.TYPE addr-- than2-.
Type a null-delimited string.

2/ nl--n2
.VOCAB addr -- Shift the value in top right one bit position. A 0 bit is
Print the vocabulary whose pointer address is on top. shifted in to the high bit position.
Typical use is: SEARCHING .VOCAB

2! dbladdr-
-- Store the double number 2nd and 3rd on the stack at

Display top word with 4 hex digits. No space the address on the top of the stack.
follows and the value in BASE has no effect.

2+ nl--n2
/ n 1 n2 -- quot Add a value of 2 to the top item on the stack. Faster
Unsigned divide 2nd by top, leaving single precision and shorter than 2+
quotient top. Arguements and result are unsigned.

2- nl--n2
/MOD num den -- rem quot Subtract 2 from the top item on the stack. Faster and

shorter then 2 -

Treat the top two operands as unsigned numbers.
Divide the second by the top. The quotient replaces 2@ addr -- dbl
the top value, and the remainder replaces the second Replace the address on the top of the stack with the
value, double number found at the address.

o --o 2DROP nln2--
Push a value of 0 on the top of the stack. Drop the top two numbers from the stack (or the top

double number).
0< n--flag
If the sign bit of the number at the top of the stack is . 2DUP dbl -- dbl dbl
set (signifying a negative number), replace the Duplicates the double number on top of the stack.
number with -l . Otherwise, replace the number with
0. 21 --n

Pushes a value onto the Parameter stack which is
0= n -- flag twice the value of the contents of the top of the R
If the value on the top of the stack is 0, replace it with Stack.
-1 . Otherwise, replace the top of the stack with 0.

2OVER dld2--dld2dl
1 -- 1 Pushes a copy of the second double word on the the
Push a value of 1 on the stack, stack. In terms of 16-bit words, the stack behavior is:

ni n2 n3 n4 -- ni n2 n3 n4 nl n2
1+ nl--n2
Add a value of 1 to the top item on the stack. 2SWAP dl d2 -- d2 dl

Exchange the top two double numbers on the stack.
1- nl--n2
Subtract 1 from the top of the stack. Faster and 3 -- 3
shorter then 1 -. Push a value of 3 on the stack.

2 --2 4 --4
Push a value of 2 onto the stack. Push a value of 4 on the stack.

2* nl--n2
Shift the value in top left one bit position. Create a new dictionary word. : defmitions must be

terminated with a semi-colon, or aborted with a \.
2- nl--n2

:ARRAY nln2--

83

Father word which creates a two dimension word
array. Dimension parameter which is 2nd is used at
reference time as multiplier times top index which is
then added to index which is second on stack.

:BUTLD --

Used in a “Father word” to define a new “Child
word”. Usage is:
father :BUILD creation logic ;: inherrited logic;

Each time the “father” is executed :BUILD take
following input string for the “child” name.

:CON n-
Fetch a word name from the input stream. Add this
name to the dictionary as a constant with the value
specified by the top of the stack. When the name is
later executed, the value will be pushed on the stack.

:TNDEX1 -->0
Creates an array of word values which are ‘addresses
of other words. The size in words must be in Top.
On execution of the child word the zero origin element
number must be on top, the returned value is the
address from the array. If this is followed by
EXECUTE this makes a CASE statement.

:VAR n-
Fetch a word name from the input stream. Add this
name to the dictionary as a variable, and store the
value at the top of the stack as the initial value of the
variable. When the name is later executed, the
address of the variable will be pushed on the stack.
The word @ is required to replace the address with
the contents.

:VECT n --

This is a word which creates a vector of the number
of words specified by top. The child word uses a
parameter and returns the address of that element of
the vector.

:VOC --

A defining word which creates a new vocabulary.
Word 0 of the new vocabulary body contains a
vocabulary number (in the range 0 to 31), which is
incremented for each new vocabulary. Word 1
contains a link to a prior vocabulary to be searched, if
a sought after word is not found in the current
vocabulary. This is nominally set to ROOT. Word 2
is a vocabulary linkage used by a “smart” FORGET.
Word 3 contains the address of a word to be executed
when the search fails. This is normally set to (NUM
to specify a search for a literal number. Word 4
contains the address of a word to be executed when

the attempt to make a literal fails. This is normally set
to (B , which will back up the cursor, and beep.

Terminate Colon definition. Check and warn if
parenthesis and brackets don’t balance.

;[
Suspend : definition temporarily. When]: is
subsequently executed the stack must be as it was
when ;[was used.

Marks where the inherited properties in a “Father-
word” begin. That which follows;: will get exectued
when the “Child-word” is invoked. Used with
:BUILD to create “Father-words”.

nln2--flag
If 2nd is less than top replace them with -1.
Otherwise, replace them with zero.

nln2--Onln2
Insert zero under top word on stack. Used to begin
numeric output of a double precision number.

= nln2--flag
If 2nd is equal to to replace them with -1. Otherwise,
replace them with zero.

=?[nln2-- or nln2--nl
Used inside a colon definition as a case construct. If
the top two elements are equal, they are both dropped
from the stack, and the code following is executed. If
the two elements are not equal, the statements
following are skipped up to the occurrence of the next
][or the trailing 1]? which terminates a series of case
statements. A rarely used alternative is to terminate
withal?.

> nln2--flag
If 2nd is greater than top replace them with -1.
Otherwise, replace them with zero.

>R n-
Remove top and push it onto the R-Stack. Within a
colon definition must be balanced with R> so that ;S
generated by ; can properly execute. Can be used
outside a definition but the user must guard against
removing more values from the R-stack than are
there.

n-

84

Test. Do following if value on top is true, otherwise
skip to matching]? or][or]]

?]
Jump back to [[if value on top is zero.

?COMP --

If STATE is true, i.e. compiling, do nothing. If
STATE is zero issue message “CANT EXECUTE”
and call QUiT.

?CSP --

Check stack pointer to verify it is at the same place
following a : definition as at the beginning. This will
detect unmatched looping constructs.

?DEF --n
Searches the GROWING vocabulary for the word
just obtained from the input stream. If the word is
found, return the address of the word. If the word is
not found, return a 0.

?DUP n--nfl or
Dup top unless it isO.

o--o

?STACK --

Test for stack underfiow, and issue “EMPTY
STACK” and call QUiT. Also tests for stack full and
reports if less than 256 bytes remain. You can make
more stack space by forgetting from the dictionary or
dropping words from the stack. You have 256 bytes
to use before the stack overruns the dictionary.

Mark position where ?] or]] will go back to.
Alternate use is to mark the beginning of a series of
conditionals like ?[or =?[and terminated by]]?.

\
Begin a comment. The comment is terminated by
another \ of the end of a line.

1] ——

Unconditional jump back to [[

--

End of indexed loop. If the index value at the top of
the R-stack is non-zero, decrement the index value by
one, and loop back to the start of the ioop (just after
the #[). If the index is zero, pop the value from the
R-stack, and exit from the loop. Must be used within
a colon definition.

Resume suspended : definition. The stack must be as
it was when ;[was executed.

]?
Demarks end of?[logic.

——

Otherwise. Seperates the ‘true’ and ‘false’ logic in
conditional.

1] ——

Repeat. Branches back to [and also marks where?[
will go when the proceeding?[finds top ‘false’

Terminate a series of conditionals. Used in the
sequence like:
[[... ?[...“[...]]? or:
[[... =?[...][... =?[...][...]]?

@ addr--n
Use top as an address to get word which replaces it.

Terminate a colon definition, if necessary, then delete
the last dictionary entry from the GROWING
vocabulary. Finally, print the name of the dictionary
entry which is now the most recent.

ABS nl--n2
Replace value of top with its absolute value. Make
positive.

ALLOT n-
Reserve number of bytes specified by top at the end
of the dictionary. Frequently used to allow space in a
table following a :BUILD definition.

AND nln2--n3
Logical, bit-for-bit, “and” of 2nd with top.

BASE --n
Variable containing the radix for number conversions
on input or output. Value must be greater than 1 and
less than 127.

BINARY --

Sets the value of BASE to two.

BT -- seg addr
Gets the segment and address of the beginning of the
text buffers.

BUF

85

Defining word which creates a CONSTANT whose
value is the beginning of a new buffer. Also
terminates the last buffer.

BYE --

Leave Forth and return to the operating system.

C@ addr--n
Replace the address at the top of the stack with the
contents of the byte at the specified address. 8 high
zero bits are appended to the byte.

C! naddr-
Store the least significant 8 bits of the value 2nd on
the stack at the address specified on the top of the
stack.

C, n-
Move right 8-bits from top word to top byte of
dictionary, HERE. Then bump DP by one.

dd mmyy -- cdn Top=YY, 2nd=MM,CDN
3rd=DD.
Converts these three values to a value which is the
number of days into the Century. This does not have
only 28 days in February 1900, hence it is not reliable
prior to 1 Jan 1901. 7 MOD of this result is the day
of the week with 0 being Sunday.

CHAR n-
Father word which creates an N element vector. At
reference time a single index is used and the address
left on the stack is that of the N-th character in the
vector.

CHOP addr --

Top must contain the address of a dictionary word.
CHOP deletes all words back through that word from
the dictionary.

CUT --n
A primitive word which is followed by a byte literal in
a colon definition. The value of the literal is
concatenated with 8 high order 0 bits and pushed on
the stack when CLIT is executed.

CMOVE source dest count --

Character move. Top=byte count, 2nd=to address,
3rd=from address. Moves one byte at a time from low
addresses to higher addresses. This is a smartH
move, which does not cause a fill.

COLD

Deletes all words back through the word FORTH
from the dictionary, recreates FORTH then executes
WARM.

COMP nl--n2
Compliment the value at the top of the stack.

COMPILE --

Copy next word in this definition into the word being
compiled. This word is not IMMEDIATE; it is
frequently used in words which are IMMEDIATE.

CONSTANT n --

Defining word. The word defined will push the value
which is now in top, when it is executed.

CR --

Sends a RETURN, LINE-FEED sequence to the
terminal.

D+ dld2--d3
Replace the top two double numbers with their sum.

1)- dld2--d3
Subtract the top double number on the stack from the
second double number. Replace the two double
numbers with that difference.

D0= dbl-- flag
If the double number at the top of the stack is 0.0,
drop the double number and push a -1. Otherwise
drop the double number and push a 0.

D2* udi -- ud2
Shift left by 1 the double number at the top of the
stack.

D2/ udi -- ud2
Shift right by 1 the double number at the top of the
stack. The most significant bit of the result is 0.

D< dld2--flag
If the second double number on the stack is less than
the top double number, replace them with a -1.
Otherwise replace them with a 0.

DECIMAL --

Sets the value of BASE to ten.

DEFER -- (DEFER name)
Creates a DEFERed word. The operation of the word
may be changed later by an operation such as
name2 NEW name

86

DEFS --

Makes GROWING have the value of SEARCH.

DICT --

Prints out the location, in hex, and the names in the
SEARCH vocabulary, from last defined down. DICT
prints slow for ease of reading and to be stoppable, it
uses SCR.

DL1T -- dbl
A primitive to be used during compilation, and
typically followed by a double-word in-line literal.
When DLIT is executed, the two following words are
pushed onto the stack.

DMY cdn--ddmmyy
Converts the Century Day number to Year Month and
Day. Top=Year, 3rd=day.

DOS dsdxcxbxax--ax’dsdxcx
Make a DOS 21H call to request some DOS service.

DP --addr
Variable which points to the next free byte at the top
of the dictionary.

DROP n-
Drops top from the stack.

DSADDR -- ds
Push the Data Segment DS on the stack.

DUP n--nfl
Duplicates the top word on the stack.

ECHO -- addr
Variable yeilding the address of an echo flag. If the
flag is zero, the normal characters will not be echoed
on input. This is useful when input has been re
directed from a ifie, and you do not wish to see the
text displayed on the screen.

EMiT char—
Puts the low order 8 bits from top out to the terminal
as a character.

ESC --

Emits an ASCII Escape Character. It avoids having
the escape character in the definition

EXC addrl addr2 --

Exchanges the values of the two words whose
addresses are in top two words on stack.

EXECUTE addr --

Execute the word whose address is on top.

FILL addr cnt value --

Fills a block of memory with any specific character.
Top=the fill character, 2nd is the count of characters,
3rd is the low order address of the block.

FORGET --

Forget from the dictionary the word specified by the
next string, and all the words which were defined
after it.

FORTH --

This is an infinite loop of INTERPRET. It is used to
invoke the entire FORTH system from within a word.
Executing the word ‘back-space’ will return control to
the word which used the word FORTH.

GCD nln2--n3
Finds the Greatest Common Divisor of two top
words.

GET n--val
Obtain the n-th item from the stack and push it on top.
Note that 0 GET is equivalent to DUP.

GETCHAR -- char
Obtain the next character from either the keyboard, or
the current input buffer, whichever is active. For
input from the keyboard, bit 8 indicates an ALT or
other special function key. Keyboard characters are
normally echoed to the screen.

GO addr-
A Jump-to-Subroutine is executed going to the
address in top. The JSR instruction leaves its return
address on top, unless preserved in the subroutine the
RTS will remove it.

GROWING -- addr
Variable whose value is a pointer to the vocabulary in
which new definitions ar placed. HEAD, makes all
new words go into the vocabulary specified by this
variable. The value at addr is a vocabulary number in
the range 0 to 31.

HEAD, --

Obtain the next word from the input stream and create
a dictionary entry containing the name field and
linkage, but no action part of the new word.

HERE -- addr

87

This simply places the address of the first free byte
above the dictionary on top.

HEX --

Sets the value of BASE to sixteen.

I
Pushes a copy of the top of the R-stack. Used to get
the index value in an indexed FOR-NEXT loop.

I4
Makes the last defined word have the property that it
executes when used inside a : definition rather than be
compiled. Used to create the conditional and looping
words.

INCNT -- n
Return the number of characters in the circular input
buffer.

INSTALL addr --

Install the vocabulary specified by the address in the
SEARCHING vocabulary.

INTERPRET --

Input a string and interpret and execute it.

3 --n
Pushes a copy of the 2nd word from the R-stack.
This is the index of the outer of two nested indexed
loops. To get deeper nesting use: RP@ value + @

KEY --n
Read a character from the keyboard and push it with 8
leading zero bits as a word. There is no echo of the
character. If the character would have been a special
character, it is shifted right by 8 bits and bit 8 is set to
a one.

KIN --

Executes FORTH if there are any characters in the
input buffer. Used to provide the ability to stop when
a character is received from the keyboard. The time it
delays is determined by the count value in RATE.

LiT n-
Useful, only within a: definition to get the value of
the word which follows pushed onto the stack. Note
the following word can not be an Immediate word,
for this to work.

LT -- segment addr

Pushes the segment and address of the Last Text
entered into the text buffer. It can be used with MT to
discard the last text.

M* nln2--udbl
Unsigned multiply 2nd by top. Leave 32 bit result
with high order part on top and low order part 2nd.

MAX n1n2--n3
Replace 2nd and top with the larger of the two.

MEM --n
Gets the number of bytes of free memory available for
stack and dictionary entries.

MN nln2--n3
Replace 2nd and top with the smaller of the two.

MINUS nl--n2
Negate the top value.

MOD nln2--n3
Divide 2nd by top and leave the remainder.

MT segment addr --

Purges text buffer down to the segment and address
which is contained in top.

NEG nl--n2
Negate the top item on the stack.

NEW n-
Puts the value in top into the constant whose name
follows. This is the safe way to change the value of a
:CON

NIP nln2--n2
Deletes the second item on the stack.

NUM --n
This requests a number from the keyboard and puts it
on top.

OCTAL --

Sets the value of BASE to eight.

OPEN seg addr -- handle
Open a file for reading and writing. The segment and
address point to an ASCIIZ string specifying the file.
The “handle” is returned.

OR n1n2--n3
Logical, bit-for-bit, “OR” of 2nd with top.

88

OVER nln2--nln2nl
Push a copy of the second item on the stack.

P@ addr--n
Fetch the 16 bit value from the port address specified.

P! naddr-
Store the 16 bit value at the port address specified.

PAD --addr
The address of a temporary storage area, generally
placed at SO +2.

PC@ addrn-
Fetch the 8 bit value from the port address specified.

PC! naddr-
Store the 8 bit value at the port address specified.

PH addrl -- addr2
Prints line of hex from address on top through the end
of that hex decade. It leaves the address of the next
hex decade on the stack so that successive lines are
dumped if PH is used several times. This is the basis
for DUMP.

PRE addrl -- addr2 addrl
Top must contain a word address. PRE puts the
address of the preceeding dictionary word under it.
PRE calls QUIT when at the end of the dictionary.
Used in the dictionary printing words.

PREVIOUS --

Removes the most accessible vocabulary from the
search order and restores the previous search order.

PROG --

Enters text into the text buffer as does TEXT, but this
then automatically RUNs the text which was just
entered. This is useful in the development of
programs, because it captures in the text buffer the
source of each definition. See REDO.

PUT vain--
Store uvaUt at the n-th item on the stack, losing the
previous contents. Note that -1 0 PUT will replace
thetopitemwithavalueof-1.

QUIT --

Clears the computational and R-stacks, then pushes
the address of the input area, zero for keyboard, and
executes CR.

R>

Removes top of R-stack and pushes it onto the stack.

RAND --n
Pushes a word of random bits onto the stack. The
seed is two words at INPTR 2- and INPTR 4 -. The
sum of the two words in the seed must be odd.

RDROP --

The value at the top of the R-stack is dropped.

READ seg addr count handle -- count
Read from the file whose handle is specified into the
buffer at the segment and address is given.

REDO --

This empties the last entered text in the TEXT buffer,
and then does a PROG. Useful with PROG in
capturing the source of new word definitions.

RET --

Returns control to word which called the present one.
Generated by semi-colon. Return address must be on
top or R-stack, hence cannot be used inside of #[]#
or if >R values are on R-stack. It can be used within
conditionals to abort.

ROOT --

The basic default vocabulary. WARM establishes this
as both SEARCH and GROWING.

ROT nln2n3--n2n3nl
Move 3rd word in the stack to top.

RP! --

Restores the Return Stack to its initial state. Clears
the Return Stack.

RUN segaddr-
Transfers top to IN. Used to execute from a text
buffer. Contents of the text buffer are read from low
address to high and control returns to the keyboard
when a NULL character is encountered.

S= --

Nondestructively prints out the entire contents of the
stack.

SCAN addr char -- addr count
Scan the sthng beginning at addr until char or a
delimiter occurs. The delimiter is at addr+count.

SCNT
Pushes count of words on the stack, not counting
itself.

89

SCOMP addr --

Complements the sign bit of the byte addressed by
top.

SEARCH -- addr
Variable whose value is changed by executing a
vocabulary word. SEARCH @ points to a pointer
within the vocabulary word. ‘and its assembly search
routine (‘depend on the value in SEARCH and
GROWING to find words in the dictionary.

SIGN n--n
Outputs a dash if the value on top is negative.

SKIP addrl char-- addr2
Skip over leading occurrences of char at the string
beginning at addrl. Leave the address addr2 which
points to the first character not equal to char.

SMUDGE --

Makes the current dictionary header invisible. Used
in: to allow renaming instead of recursion.

SO --addr
Pushes address of stack orign.

SP! --

Empties the computational stack.

SP@ -- addr
Gets the address of the top of the computational stack
then pushes that value.

SPACE --

Outputs one space character to the terminal.

SPACES n-
Outputs the number of space characters specified by
top.

STATE -- n
Variable whose value isO when not compiling in a:
definition. Used to allow IMMEDIATE words which
behave differently when compiling than when simply
executed from the input stream.

SWAB ni -- n2
Exchanges the right and left 8-bit bytes in top.

SWAP nln2--n2nl
Interchange the values in top and 2nd.

SYS

This is the vocabulary where words which are
primitives used in the implementation of FORTH are
hidden.

T: --

Find the dictionary entry of the next word in the input
stream. Put the address of the word in a Break
detector.

TEXT! addrl n -- addr2
Store characters in ascending addresses,
top=delimiter, 2nd=address. Terminates when
delimiter is reached. A null is stored in place of the
delimiter, and its address is put on the stack.

TP -- address
Returns the address of the Text Pointer of the current
buffer in the buffer segment.

U< nln2--flag
Treat the top two items on the stack as unsigned
integers. If the second item is less than the top item,
replace them with a value of -1. Otherwise, replace
them with a 0.

UD< dld2--flag
Treat the top two double numbers on the stack as
unsigned double integers. If the second double
number is less than the first, replace them with a -1.
Otherwise replace them with a value of 0.

UD* udi ud2 -- uquad
Unsigned multiply of two double precision numbers,
yielding a quadruple precision result.

UDMOD/ uquad udbl -- udquot udrem
Divide a quad precision number by a double precision
number. Note that the unsigned double quotient is
2nd on the stack and the unsigned double remainder is
on the top.

USER -- addr
Variable which points to top of a user constant area.
Typical use is: n :CON xxx 2 USER +!

TiME --lohi
Returns the double precision “tick” from the IBM
clock.

VOCNTJM -- addr
The address returned is the location of the most
recently assigned vocabulary number. The value at
the address should be in the range from 0 to 31.

90

VOCTABLE— addr
The address returned is the location of the Vocabulary
table. There are 32 word enthes in the table. Each
word points to the first character of the name of a
word in a linked list.

WARM --

Executes DECIMAL ROOT DEFS CR , issues the
entry message and calls QUIT.

WDAYS ddl mml yyl dd2 mm2 yy2 -- n
This takes two calander dates in the CDN form and
calculates the number of working days (Monday -

Friday) there has been between the two dates.

WENDS cdn -- n
This takes a Century Day Number and calculates the
number of Saturdays and Sundays which occured in
the century. This is used in WDAYS, the difference
between the two values is accurate; the number of
week-end days may be off by a fixed amount.

X@ segment addr -- n
Replace the address and segment with the contents of
the word addressed.

X! n segment addr --

Store the 16 bit value which is 3rd on the stack at the
address specified by the segment and offset. Drop all
three items from the stack.

XC@ segment addr -- n
Replace the address and segment with the contents of
the byte addressed.

XC! n segment address --

Store the 8 bit value which is 3rd on the stack at the
address specified by the segment and offset. Drop all
three items from the stack.

XOR nln2--n3
Logical, bit-by-bit, exclusive OR of 2nd with top.

91

