
CHAPTER 6. DATA AND CONTROL STRUCTURES

6.1. LITERAL STRUCTURES

LIT (--n)
Useful only within a: definition to get the value of the word which follows pushed onto the stack. Note the
following word can not be an Immediate word, for this to work. Prefix word for In-line 16 bit literals.

HEADER TIL,L
LiT: LODSW

PUSH AX
NEXT

CLIT (--n)
A primitive word which is followed by a byte literal in a colon definition. The value of the literal is concatenated
with 8 high order 0 bits and pushed on the stack when CLIT is executed. Prefix word for In-line 8 bit literals.

HEADER TILCIC
CLIT: LODSB

XOR AH,AH
PUSH AX
NEXT

DLIT (--d)
A primitive to be used during compilation, and typically followed by a double-word in-line literal. When DLIT is
executed, the two following words are pushed onto the stack. Prefix word for In-line 32 bit literals.

HEADER TILD,D
DLIT: LODSW

MOV DX,AX
LODSW
PUSH AX
PUSH DX
NEXT

6.2. STRING LITERAL STRUCTURES

(I’ (__)
In-line primitive for.” strings. Prints the succeeding in-line characters until a Null is encountered.

DB 0
1DB lilt

1DB 11(11

CHAIN H
PTYPE: MOV BX,SI

CALL TYPEM
MOV SI,BX
INC SI
NEXT

C” (-addr)
Primitive in-line string operator. The count of the string is at the word preceding the address. The string is
terminated by a null (not included in the count).

1DB 0
1DB
DB

45

CHAIN H
PQUOTE: MOV BX,[SI]

ADD SI,2
PUSH SI
INC SI
ADD SI,BX
NEXT

6.3. CONTROL STRUCTURE WORDS

(=?[(nln2--) or (nln2--nl)
Primitive CASE branch. When executed within a colon definition, the top two stack elements ar tested for equality.
If the top two elements have a different value, the top element is dropped and the next in-line value is taken as the
branch address. If the two elements are equal, both elements are dropped, the in-line value is skipped, and execution
continues.

HEADER [?=(,H
CASE: POP AX

MOV BP,SP
CMP AX,[BPI
JNE BRAN
POP AX
JMP NOBRAN

C?] (f--)
Branch if stack is false (0) primitive conditional branch. When executed within a colon definition, the top of the
stack is popped and tested. If the result is zero, the next in-line value is taken as the branch address. If the result is
non-zero, the in-line value is skipped, and execution continues.

HEADER]?(JI
ZBRAN: POP AX

OR AX,AX
JZ BRAN

NOBRAN:
ADD SI,2
NEXT

C] C——)
Unconditional branch Test the value at the top of the return stack. If it is non-zero, decrement it by I and then jump
to the location specified ;y the next in-line value. If the top of the Return stack is zero, pop it from the Return
stack, jump over the in-line value, and continue execution.

HEADER](,H
BRANI EQU THIS WORD ; Strange construct to allow
BRAN: MOV SI,[SI] ; modification of code !!!

NEXT Break-Key Branch Code
ABNORM MOV AX,348Bh ; Code for MOV SI,[SI]

MOV BRAN1,AX ; Restore to BRAN
XOR AX,AX ; Clear the Break Flag
MOV DS,AX
MOV BX,471h
MOV {BX]AL
MOV AX,CS
MOV DS,AX
iMP WINIT

46

(]# (--)
End of run-Lime loop. Test the value at the top of the return stack. If it is non-zero, decrement it by 1 and then
jump to the location specified by the next in-line value. If the top of the Return stack is zero, pop it from the
Return stack, jump over the in-line value, and continue execution.

HEADER #J(,H
PLOOP: DEC WORD PTR ES:-2[DIj

INS BRAN
MOV AX,ES:-2 [DI]
INC AX
JNZ BRAN
SUB Dl,2
ADD SI,2
NEXT

6.4. DICTIONARY HEADER

READ, (--)
Obtain the next word from the input stream and create a dictionary entry containing the name field and linkage, but
no action part of the new word. The head starts with a name field, which begins with a null byte and the name of
the new word laid down backward. The name field is followed by a 2 byte link field, pointing to the link field of the
link field of the previously defined word in its linked chain. Following the name field is the code field where
executable code will be placed. Equivalent Forth code is:

#20 -WORD DUP DP! 1- DUP C@ GROWING @ @ + IF AND
2* VOCABT + DUP @ , OVER LATEST!!

HEADER !,DAEH,H
HEADC: NEST

DW CLIT
DB 20h
DW MWORD
DW QDEF
DW QDUP
DW ZBRAN
DW HEADC1
DW SPACE
DW PNAME
DW PTYPE
DB “previously defined “,O

HEADC1: DW XDUP
DW DP
DW STORE
DW ONEM
DW XDUP
DW CAT
DW GROW
DW AT
DW AT
DW PLUS
DW CUT
DB lFh
DW XAND
DW MTWO
DW LIT
DW VOCABT

47

DW PLUS
DW XDUP
DW AT
DW COMMA
DW OVER
DW LATEST
DW STORE
DW STORE
DW UNNEST

1MM C—)
Make the last defined word have the property that it executes when used inside a: definition rather than be compiled.
Used to create the conditional and looping words.

HEADER MMLI
1MM: NEST

DW LATEST
DW AT
DW SCOMP
DW UNNEST

6.5. VOCABULARY

:VOC (--)
A defining word which creates a new vocabulary. Word 0 of the new vocabulary body contains a vocabulary number
(in the range 0 to 31), which is incremented for each new vocabulary. Word 1 contains a link to a prior vocabulary
to be searched, if a sought after word is not found in the current vocabulary. This is nominally set to ROOT.
Word 2 is a vocabulary linkage used by a ‘smart” FORGET. Word 3 contains the address of a word to be executed
when the search fails. This is normally set to (NUM to specify a search for a literal number. Word 4 contains the
address of a word to be executed when the attempt to make a literal fails. This is normally set to (B ,which will
back up the cursor, and beep. Equivalent Forth code is:

:BUJLD 1 VOCNUM +! HERE 3- VOCNUM @ , VOCNUM 2+ DUP HERE $OE CMOVE ! $OE ALLOT 3-
INSTALL

HEADER COV!:,Z ; WATCH MACRO CALL ***

VOC: NEST
DW BUILD
DW ONE
DW VOCNUM
DW PLSTOR
DW HERE
DW THREE
DW SUB
DW VOCNUM
DW AT
DW COMMA
DW VOCNUM
DW TWOP
DW XDUP
DW HERE
DW CLIT
DB OCh
DW CMOVE
DW STORE
DW CUT

48

DB OCh
DW ALLOT
DW PSEMIC

DOVOC: LCALL DODOES
DW THREE
DW SUB
DW INSTAL
DW UNNEST

DEFS (--)
Make GROWING have the value of SEARCH.

HEADER SFED,D
DEFS: NEST

DW SRCH
DW AT
DW GROW
DW STORE
DW UNNEST

INSTALL (voc-addr --)
Install the vocabulary specified by the address in the SEARCHING vocabulary.

3 + DUP SEARCHING! 2÷ SEARCHING 2+ $OE CMOVE

HEADER LLATSNI,I
INSTAL: NEST

DW THREE
DW PLUS
DW XDUP
DW SRCH
DW STORE
DW TWOP
DW SRCH
DW TWOP
DW CLIT
DB OEh
DW CMOVE
DW UNNEST

ROOT (--)
The basic default vocabulary. WARM establishes this as both SEARCH and GROWING vocabularies.

1DB 0
DB TOO’
1DB ‘R’ OR IMMFLG ; IMMEDIATE
CHAIN R

ROOT: CALL DOVOC ; ROOT
DW 0 ; Vocabulary Number
DW 0 ; Vocabulary link
DW NU?s4B : Not in dictionary
DW BACK ; Not valid number
DW 0 ; Spare (What to do on Break?)
DW 0 ;Spare
DW 0 ;Spare
DW 0 ;Spare

49

6.6. THE VOCABULARY LINKS

VOCTABLE (- addr)
Address of the vocabulary table. This table contains 32 addresses, which point to the last words defined in the 32
vocabulary threads. LaForth hashes words and vocabularies into 32 threads. Each vocabulary is assigned a
vocabulary index. This index is added to the first character of a word to be linked into this vocabulary. The sum is
multiplied by 2, forming an offset into this vocabulary table to select one of the threads to which the new word is
added. Thus a word can be uniquely identified by its name and the vocabulary it belongs.

HEADER ELBATCOV,V
VOCTAB: LCALL AT

DW VOCABT

The threads are constructed using the following macro facilities in MASM assembler, at the very beginning of the
source listing.

HEADER MACRO text,sfx ;; For creating headers
DB 0 ;; Backwards terminator is a null.
DB “&text”
DW LINK&sfx-3
LINK&sfx = $

ENDM

CHAIN MACRO sfx ;; Auxiliary for making headers when
DW LINK&sfx-3 ;; the text is difficult for Assembler.
LINK&sfx = $

ENDM

LINKO = 3 ;; First of 32 links

IRPC sfx,ABCDEFGHLJKLMNOPQRSTUVWXYZ ;; Next 26 links
LINK&sfx =3

ENDM

IRPC sfx,BCDEF :; Last 5 links.

LINK1&sfx=3
ENDM

These assembly macros establish 32 linked lists, with names LINKO, LINKA to LINKZ, and LINK lB to LINK1F.
The first link in each list is 0, which tells the text interpreter it is the end of a linked thread. The last link of a
thread is store in a table VOCABT, which is defined at the end of the source listing.

At the end of the source listing, the vocabulary link table is allocated after the word ROOT.

VOCABT DW L]NKO-3 ; Vocabulary table

JRPC sfx,ABCDEFGHIJKLMNOPQRSTI.JVWXYZ
DW LINK&sfx-3

ENDM

The assembler resolves the link addresses for the 32 threads and places these link heads in VOCABT table:

3391 149E 109B R + DW LINKA-3
3392 14A0 1294 R + DW LINKB-3
3393 14A2 142B R + DW LINKC-3
3394 14A4 13A3 R + DW LINKD-3
3395 14A6 1065 R + DW LINKE-3

50

3396 14A8 OBFB R + DW LINKF-3
3397 14AA 1014R + DW LINKG-3
3398 14AC 12EC R + DW LINKH-3
3399 14AE 1419 R + DW LINKI-3
3400 14B0 0C69 R + DW LINKJ-3
3401 14B2 06B0 R + DW LINKK-3
3402 14B4 1284 R + DW LINKL-3
3403 14B6 1266 R + DW LINKM-3
3404 14B8 0849R + DW LINKN-3
3405 14BA 122ER + DW LINKO-3
3406 14BC 062E R + DW LINKP-3
3407 I4BE 134F R + DW LINKQ-3
3408 14C0 1486 R + DW LINKR-3
3409 14C2 1207 R + DW LINKS-3
3410 14C4 125C R + DW LINKT-3
3411 14C6 1071 R + DW LINKU-3
3412 14C8 1032 R + DW L]NKV-3
3413 14CA 137D R + DW L]NKW-3
3414 14CC O6FC R + DW LINXX-3
3415 14CE 0000 + DW L]NKY-3
3416 14D0 13DB R + DW LJNKZ-3

IRPC sfx,BCDEF
DW LINK1&sfx-3

ENDM

3420 14D2 0F89 R + DW UNK1B-3
3421 14D4 OSCB R + DW LINK1C-3
3422 14D6 OF5B R + DW LINK1D-3
3423 14D8 0558 R + DW LINKIE-3
3424 14DA 12A8 R + DW L]NK1F-3

51

