
CHAPTER 5. TEXT INTERPRETER

5.1. CHARACTER INPUT

GETCHAR (-- char)
Obtain the next character from either the keyboard, or the current input buffer, whichever is active.
IF IN is 0, use input from the keyboard; otherwise, IN points to text in the text buffer. For input from the
keyboard, bit 8 indicates an ALT or other special function key. Keyboard characters are normally echoed to the
screen. This is the only way by which the text interpreter obtains the source characters. LaForth thus treats source
code in files identically to that from the keyboard.

HEADER RAHCTEG,G
GTCHR: CALL NUCHAR

AND AX,O1FFh
PUSH AX
NEXT

Gets a character from either the keyboard or memory. Echos LF after a CR, but ignores the first LF after CR from
input.
NUCHAR:

MOV BX,INPTR Use keyboard input if INPTR is zero.
OR BX,BX
JNE BUFGET ; Get from buffer

NUCH1: CALL EGET ; Get from keyboard or equivalent
XOR BX,BX
OR AH,AH
JNS CRMOD
CMP AL,CRCH ; (DhCk for Carriage Return
NE NIJCH2
MOV AL,LFCH ; Now send a Line-Feed
CALL QCOUT
MOV AL,CRCH ; Restore the CR
XOR AH,AH
MOV BH,OFFh ; Set a flag
JMP CRMOD

NUCH2: OR AH,AH
JZ CRMOD ; If not a special character, return
CMP AL,LFCH ; Check for Line-Feed
JNE NUCH4
MOV AH,CRSEEN ; Check the CR flag
OR AH,AH
JZ NUCH3
XOR AH,AH ; Clear flag
MOV CRSEEN,AH
JMP NTJCH1 ; and ignore the Line-Feed

NUCH3: CALL QCOUT ; Echo other Line-Feeds
JMP CRCLR

NUCH4: CMP AL,ESCCH ; Escape Code
JNE CRCLR
CALL EGET ; ESC key seen. Get next character,

CRCLR: XOR BH,BH ; clear BH
CRMOD: MOV CRSEEN,BH ; and CRSEEN flag.

RET

BUFGET: MOV AL,ES:[BXj ; Get a character from the buffer.
INC BX

29

CMP AL,CRCH Check for Carriage Return
JNE BUFG1
MOV AH,OFFh
MOV CRTXT,AH ; Set Carriage Return Flag
iMP GOOD

BUFG1: CMP AL,LFCH ; Check for Line-Feed
JNE BUFG2
MOV AH,CRTXT ; LF seen. Was it preceded by a CR?
OR AH,AH
JZ GOOD
XOR AH,AH ; Yes. Ignore LF after CR,
MOV CRTXT,AH ; clear the flag,
iMP BUFGET ; and get the next character.

BUFG2: XOR AH,AH
CMP AL,lAh Check if Ctl-Z (End-of-File)
JE BUFG4
CMP AL,TABCH
JNE BUFG3
MOV AL,20h ; Change Tab to space

BUPG3: OR AL,AL
JNE GOOD

BUFG4: MOV AL,CRCH ; Print a Carriage Return (&LF)
CALL COUT
MOV AL,LFCJ-I
CALL COUT
XOR BX,BX ; Clear INPTR
MOV AX,BX ; Restore the Null

GOOD: MOV INPTR,BX
XOR AH,AH
RET Handle special character problems & test for delimiters.

QCR: CMP AL,DELIM
JE SETRET
CMP AL,CRCH ; ? Carnage Return
JE SETRET
CMP AL,lCh ; Ctl-Z End-of-file character
JE SETRET
CMP AL,Q ; Null at end of Text-buffer
JE SETRET
CLC ; Non-delimiter case
RET

SETRET: STC
RET

5.2. STRING WORDS

LaForth reserves an extra 64K byte segment above the code-data-stack segment to process text obtained from files.
Many string words assume that the text is in this extra segment pointed to by ES segment pointer. However,
compatibility with earlier versions requires that a segment address be given to these words, but it is discarded or
replaced by the contents of ES segment pointer.

DSADDR (--ds)
Push the Data Segment DS on the stack. CS and SS have the same value. This is the only word by which you can
infer where the code-data segment is Located in the physical memory map. The extra text segment is I000H above
the segment pointer returned by DSADDR.

HEADER RDDASD,D

30

DSADDR: PUSH DS
NEXT

TEXT! (addrln--addr2)
Top=delimiter byte, 2nd=address. Store n characters from the input stream in ascending addresses, todelimiter,
2nd=address. Terminates when delimiter is reached. A null is stored in place of the delimiter, and its address is put
on the stack.

HEADER ! !TXET,T
TEXT: POP CX ; Get delimiter

POP BP ; Get address
MOV XHOLD,BP
DEC BP

TEXT1: INC BP
MOV N,BP

TEXT2: CALL NUCHAR
MOV BP,N
OR AH,AH
JNZ TEXT3
CMP AL,DELCH
SE TEXT5

TEXT3: MOV DS:[BP],AL
CMP CL,AL
JNE TEXT1
CMP AL,21h
SE TEXT4
CALL NUCHAR
MOV BP,N
CMP AL,DELCH
JE TEXT5
CMP AL,21h
SE TEXT4
CMP CL,AL
JE TEXTI
INC BP
MOV DS:[BP},AL
JMP TEXTI

TEXT4: XOR AL,AL
MOV DS:[BP],AL Replace delimiter with null
PUSH BP
NEXT

TEXTS: CMP BP,XHOLD
JE TEXT2
DEC BP
MOV N,BP
MOV DH,DS:[BPJ
CMP DH,20h
SE TDEL6
CALL DELCHR
JMP TEXT2

TDEL6: ; Delete a control character by
CALL COUT ; emitting the character then
MOV AL,”\” ; sending a \ character.
CALL COUT
JMP TEXT2

(TEXT (delim..)
Obtain characters from the input stream and store them in the buffer area.

HEADER TXET(,H

31

STEXT: POP CX
STEXT1: CALL NUCHAR

CM? AL,DELCH
JNE STEXT2
MOV BX,TPTR
CMP BX,BOTB
JE STBEEP
DEC BX
MOV TPTR,BX
MOV AL,ES:[BX]
CMP AL,20h
JAB STEXTE
CALL DELCHR
3M? STEXT1

STEXTE: CALL COUT
MOV AX,005Ch ; Send \ character
CALL COUT
JMP STEXTI

STEXT2: MOV BX,TPTR
CMP AL,CL ; Check if delimiter
JE STXTX
MOV ES:[BX],AL
INC BX
MOV TPTR,BX
JMP STEXTI

STXTX: XOR AL,AL ; Delimiter found. Replace it with Null.
MOV ES:[BXJ,AL
NEXT

STBEEP: MOV AL,07
CALL COUT
JMP STEXT1

.NMvIE (cfa--)
Print Out the name of the word whose address is on top. Character in the name are stored backward, from high
address to low.

HEADER EMAN.,N
PNAME: POP BX

SUB BX,3
PNAME1: MOV AL,[BXI

AND AX,007Fh
JZ PNAME2
CALL COUT
DEC BX
JMP PNAME1

PNAME2: NEXT

DELCHR: MOV BX,OFFSET ERASE
JMP TYPEM

ERASE DB 8,20h,8,O

.TEXT (segaddr--)
Print text from buffer memory. Stop on a NULL. Top=start address, 2nd=segment.

HEADER TXET.,N
PTEXT: POP BX

POP AX ; Throw away segment!
PTEXT1: MOV ALES:[BX]
PTEXT2: OR AL,AL

JZ PTEXT4

32

CALL COUT
CMP AL,ODh ; Is character CR?
JNE PTEXT3
MOV AL,OAh ; Yes. Send a LF also.
CALL COUT
INC BX
MOV AL,ES:[BX] ; Get next character
CMP AL,OAh ; Is it LF?
NE PTEXT2

PTEXT3: INC BX
CALL XKEYQ ; Check for any key.
JZ PTEXT1

PTEXT4: NEXT

-$< (addrladdr2--f)
Backwards String LESS. Compare two strings. Two strings are compared for the purpose of ordering them. Note
that no count is specified! At the first mis-match, the comparison stops. The flag is true (-1) if the byte at the first
string is less than that at the second string. Note that addrl must not be the same as addr2. Further note that the
strings run backwards in memory.

HEADER !<$-,M
MSLESS: STD

JMP SLESS1

(addrladdr2--f)
String LESS. Compares two strings. Two strings are compared for the purpose of ordering them. Note that no
count is specified! At the first mis-match, the comparison stops. The flag is true (-1) if the byte at the first string
is less than that at the second sthng. Note that addrl must not be the same as addr2.

HEADER k$,D ; WATCH MACRO CALL ***

SLESS: CLD
SLESS1: POP AX

POP BX
PUSH SI
PUSH DI
MOV CX,-1
MOV SI,BX
MOV DI,AX
CMPSB
REPE CMPSB
SBB AX,AX
CLD
POP DI
POP SI
PUSH AX
NEXT

5.3. THE WORD PARSER

-WORD (char - addr)
Gets Null and a reverse character string to dictionary. Leaves address of highest byte plus 1 on top of stack. There
is a null at each end of the word. Top item is the delimiting character. Put a Null in the dictionary. Fetch
characters from the input stream, skipping initial occurrences of the delimiter character. The non-delimiter characters
are stored in the dictionary in reverse order until a delimiter or a carriage return character is encountered. Add a Null
after the string in the dictionary, and return the address of that null on the stack. The dictionary pointer is not
update

HEADER DROW-,M

33

MWORD: POP
MOV
CALL
PUSH
NE)C
XOR
PUSH
CALL
CALL
JC

TRUB: CMP
JNE
POP
CMP
JE
CALL
JMP

SC: PUSH
SC1: CALL

CALL
JNC
MOV

words goes here.
XOR
MOV
XOR
DEC

SC2: INC
INC
POP
MOV
AND
-JNE
MOV
MOV
RET

BX
DELIM,BL
GETW
BX

AX,AX
AX
NUCHAR
QCR
GETW2
AL,DELCH
SC
AX
AX,O
GEThVI
DELCHR
SC1
AX
NUCHAR
QCR
TRUB
BX,DICT

Get delimiter
Save it

Put initial null on the stack

Ignore if a delimiter
Test rub-out
No: Its a stack character

Put null back if at end

Proceed with next character

SKIP (addrlchar—addi2)
Skip over leading occurrences of char at the string beginning at addrl. Leave-the address addr2 which points to the
first character not equal to char.

HEADER PIKS,S
SKIP: POP CX

POP BX
SKi: MOV AL,{BXJ

CMP AL,CL
JNE SK2
INC BX
JMP SKi

5K2: PUSH BX
NEXT

SCAN (addrchar-- addrcount)
Scan the string beginning at addr until char or a delimiter occurs. The delimiter is at addr+count.

HEADER NACS,S
SCAN: POP DX

POP BX
PUSH BX
XOR CX,CX Clear the count

GETW:
GETW1:
GETW2:

Character string on stack
Get dictionary pointer Logic to force Even boundaries for

AL,AL
[BXI,AL ; Force string terminator
CX,CX
CX ; Character count set to -1
BX ; Point BX to next character position.
CX ; Increment character count
AX
[BXI,AL ; Store backwards in dictionary
AL,AL
SC2 STRING IS IN DICT (A)=O
ARGCNT,CX ; Save character count
ARGLOC,BX ; Save pointer to null at end of argument

We use this simple approach merely
to save code space. Use of SCAS would
be faster for large no. of leading
delimiters.

34

MOV DH,ODh ; CR character to DH
SCNI: MOV AL,[BX] ; Get character

CMP AL,DL ; Compare with delimiter
JE SCN2
CMP AL,DH ; Compare with CR
SE SCN2
INC CX
INC BX
JMP SCN1 ; Loop if not a delimiter

SCN2: PUSH CX ; Reached end of string
NEXT

5.4. DICTIONARY SEARCH WORDS

?DEF (--n)
Search for previously scanned word in GROWING dictionary. Searches the GROWING vocabulary for the word just
obtained from the input stream. If the word is found, return the address of the word. If the word is not found, return
a 0.

HEADER FED?,1F
QDEF: MOV BX,GROWNG

CALL FIND
JMP PTIC2

(‘ C—n)
Returns with top=the execution address, if found If not found, top = 0 This is a primitive version of ‘. When
executed, get the next word from the input stream and search the dictionary for a match. If found, return the execution
address on the top of the stack. If not found, return a value of 0.

HEADER !‘(,H ; WATCH MACRO CALL ***

DPX EQU N
PTIC: MOV DL,BLCH ; Space is delimiter

MOV DELIM,DL
CALL GETW
MOV DX,OFFSET SRCHNG ; Pointer to vocabulary

PTIC1: MOV BP,DX
MOV BX,DS:{BP]
OR BX,BX
JZ SETF ; Test for end of search order
CMP BX,DS:[BP+21 ; See if we’ve searched this before
JE PTIC3
CALL FIND ; Returns with condition Z=0 if found

PTIC2: JNE PUSHB
PTIC3: SUB DX,2

iMP PTIC1
PUSNB: ADD BX,3 ; Bump BX to execution address

MOV AX,BX
IMP XPUSH

SETF: XOR AX,AX ; Set false (lag
XPUSH: PUSH AX

NEXT

Search the dictionary. (BX) = address of pointer to start of dictionary thread. ARGLOC contains address of word
we are hunting for. Z=0 if found.
FIND: PUSH SI ; Save various registers

PUSH DI
PUSH ES ; We may not need to save ES

35

STD
MOV AX,DS
MOV ES,AX

SVOC: OR BX,BX Check if address is 0 (terminate).
JZ FCOM
MOV BL,[BX] ; Get vocabulary number.
MOV DI,ARGLOC
ADD BL,[DI-1] ; Add first character
AND BX,00lFh ; Knock off high order bits
SHL BX,1 ; Multiply by 2 for word offset
ADD BX,OFFSET VOCABT ; Add base of Vocabulary table
MOV BX,[BX]
MOV DPX,BX ; Fake thread to start
MOV BX,OFFSET DPX-1 ; Pointer to dictionary

SDIC: MOV CX,ARGCNT ; Get search Count
MOV DI,ARGLOC ; Get search argument
DEC DI
MOV BX,[BX]+1 ; Point SI to dictionary thread
OR BX,BX
JZ FCOM If thread is 0, we can’t find it.
MOV SI,BX
LODSB
AND AL,7Fh ; Knock off immediate bit

FOUND ; Length=O is universal find
SCASB ; Compare with first argument character
JNE SDIC
REPE CMPSB ; Compare remaining characters
JNE SDIC

FOUND: OR AX,I ; Set Z=0
FCOM: CLD ; Restore direction flag

POP ES
- ; Restore various registers

POP DI
POP SI
RET

‘PRE (vndxl cfal -- vndx2 cfal cfa2)
Pushes address of proceeding dictionary word. Initially top must be a word address. At end of a dictionary thread,
addr2 has a value of 0.

DB 0
DB
CHAIN G

TICPRE: MOV BX,SRCHNG
MOV CX,[BXI ; Get Searching Vocabulary number.
POP BX ; CFA
POP DX ; Vocabulary Index
MOV BP,BX ; Save initial CFA
SUB BX,2 ; Point to link

TP1: MOV BX,[BX] ; New head pointer
OR BX,BX ; Set flags
JE EOCC ; End of current chain
MOV AL,DL ; Vocab Index
SUB AL,[BXJ ; Subtract first character
AND AL,OlFh ; This word’s Vnum
CMP AL,CL ; Compare with Vocab Number
JE FND ; If equal, we found it.
INC BX ; Get Link
JMP TP1

EOCC: INC DX ; End of current chain. Try next one.

36

CMP DL,32
JGE NOPRE ; Jump if no more chains.
MOV BX,DX ; New Vocab Index
SHL BX,l
ADD BX,OFFSET VOCABT ; New Head Pointer
JMP TP1

FND: ADD BX,3 ; Get to code address
NOPRE: PUSH DX

PUSH BP
PUSH BX
NEXT

LAST (--cfa)
Pushes the address of the last word in the GROWING vocabulary.

DB 0
DB “TSAL”
CHAIN G

FLAST: MOV BX,{LASTW]
ADD BX,3
PUSH BX
NEXT

(-.-cfa) [(‘O[BACKIJ
Read the next word from the input stream and pushes the address of that word onto the stack. Searches first the
SEARCHING , then the ROOT vocabulary. If the string is not found, the bell rings and the cursor is backed up to
the beginning of the input string. This continues until a string is found. If necessary to get out of this, use
something like: DUP DROP

HEADER !‘,G ; WATCH MACRO CALL ***

TIC: NEST
DW PTIC
DW XDUP
DW ZBRAN
DW TIC1
DW UNNEST

TIC1: OW DROP
DW BACK
OW BRAN
DW TIC+3

5.5. NUMBER CONVERSION OPERATION

(NUM (--nO)or (--dblcnt) or (---1)
Address of digit string in ARGLOC. If the string contains no imbedded decimal points and can fit within a 16 bit
word without overflow, the string is converted, the value pushed on the stack, and a flag of 0 is additionally
pushed. If the string has a decimal point and can be converted to a double precision value, that value is pushed on
the stack, and a flag having a value one greater than the number of digits to the right of the decimal point is pushed
on the stack. If the conversion process fails, a value of-i is pushed on the stack. If the string contains a ‘5’
character, the following characters are treated as decimal digits. If the string contains a ‘#‘ character, the following
characters are treated as hexadecimal digits. Convert, normally using value in BASE, the ASCII sthng just input
with -WORD. If the string begins with a $ character, use 10 as a temporary base. If the string begins with a #
character, use 16 (Hexadecimal) as a temporary base. A minus sign may be used to input a negative number. If the
string contains a decimal point, the string is converted to a double ;number. If the sthng cannot be converted, a flag
of-i is returned. If a single precision number is indicated, a flag of 0 is returned. If a double number is returned, a
positive number is returned containing the number of digits to the right of the decimal point, plus 1.

HEADER MUN(,H

37

NUMB: PUSH SI ; Save registers for other use
PUSH DI
STD ; Setup for backward strings
MOV SI,ARGLOC ; Get search argument
DEC SI Point to first character
XOR BX,BX ; Clear Accumulator
MOV CX,BX
MOV DPT,BH ; Clear double precision flag
MOV EFLAG,BH ; Clear Error flag
MOV DI,CBASE ; Set current base

CB: XOR AH,AH
MOV BYTE FTR N+1,AH ; Sign switch

GDIG: CMP SI,DICT ;? Done
JE FINE
LODSB ;Get character
SUB AL,’O’ ; Reduce to possible digit
JC LOW
CMP AL,1O
JC DIGIT
SUB AL,7 ; Possible letter form
CMP AL,1O ; Invalid between 9 and A
JC BAD
MOV AH,DPT
OR AH,AH
JZ DIGIT ; Test for Decimal point seen
INC DPT ; Yes, increment count.

DIGIT: XOR AH,AH ; ?Larger than base
CMP AX,DI
JNC BAD
MOV BP,AX ; Current digit to BP
MOV AX,DI ; Previous Accumulation to AX
MUL CX ;Accum*Base
ADD AX,BP ; Add in the digit
ADC DX,O
MOV CX,AX ; Low part of new Accum
MOV BP,DX ; Partial product
MOV AX,DI
MUL BX ; Hi Accum * Base
ADD AX,BP ; Hi product
MOV BX,AX Hi part of new Accum
ADC DX,O
JZ GDIG ; Check for overflow

BAD:
POP DI ; Restore DI, SI, and DF
POP SI
CLD

BAD1: MOV AX,-l ; Push a “bad” flag
PUSH AX
NEXT

LOW:
ADD AL,2 ; Is character a Decimal Point?
JNE TMINUS
INC AL
MOV DPT,AL ; Set Double Flag
JMP GDIG

TMINUS: INC AL
JNE TDOLAR
ROR N÷1,1 ; Set Negation flag

38

JMP GDIG
TDOLAR: ADD AL,9 ; $ forces Decimal temporary base

JE DECMAL
INC AL ; # forces Hex temporary base
JNE BAD
MOV DI,16
JMP CB

DECMAL: MOV DI,1O
JMP CB

FINI: POP DI
POP SI
CLD
MOV AL,DPT
OR ALAL
JZ SINGLE ; ? Single Precision
MOV AL,BYTEPTRN+I
OR AL,AL
JZ DDONE
OR BX,BX
JS BAD1 ; ft’s an error if already negative
NEG CX
JNC NEGB
XOR BX,-I

DDONE: PUSH CX
PUSH BX
MOV AL,DPT
XOR AH,AH
PUSH AX
NEXT

NEGB: NEG BX
JMP DDONE

SINGLE: OR BX,BX
•JNZ BAD1 ; 7 Overflow
MOV AL,BYTE PTR N+1
OR AL,AL
JZ SDONE
OR CH,CH
JNS SDONE
NEG CX

SDONE: PUSH CX
XOR AX,AX
PUSH AX

DONE: NEXT

5.6. CURSOR BACKUP

(B (--)
Back up the cursor by one word. This is the principal error handling routine which moves the cursor back to the
beginning of the word just entered. ft is called when this word is not found in the dictionary and it cannot be
converted to a number. LaForth does not prompt you with ‘ok’, as most Forth does. If it accepts a word, the word
is processed (executed or compiled) immediately. ft will only inform you that it fails to process a word by beeping
and backing up the cursor.

HEADER B(,H
BACK: MOV AX,7 ;Bellcode

CALL COUT

39

MOV
INC
MOV

BNL: MOV
CALL

NOBS: DEC
MOV
CMP
JGE
DEC
Jz
JMP
LOOP
INC
MOV
OR
JE
SUB
DEC
XOR
MOV
MOV
JMP

CX,ARGCNT
CX
BX,ARGLOC
AX,BSCH
COUT
BX
AL,[BX]
AL,020h
PBK
CX
PBK2
NOBS
BNL
EFLAG
BX,INPTR
BX,BX
DONE
BX,ARGCNT
BX
AX,AX
INPTR,AX
CSTATE,AX
PTEXTI

Account for delimiter

Backspace character
Output backspace
Point to next character
Examine next character

Set error
Print out if error in Run Mode

Dont forget delimiter

Clear Run Mode
Clear Compile state

5.7. TEXT INTERPRETER

80h
LESS
ZBRAN,XEQIT
COMMA
UNNEST
DROP
NUMB
XDUP
ZLESS
ZBRAN
CMPL1
DROP
SRCH
CUT

PBK:
PBK2:

INTERPRET (--)
Process one input word, compile if STATE is true. Input a string from the input stream and interpret it. If STATE
is 0, execute it; otherwise, compile it. If it is not a word in the dictionary, convert it to a number. If STATE is 0,
leave the number on the stack; otherwise, compile the number as a literal into the dictionary.

HEADER TERPRETNI,I
INTERP: NEST
INT1: DW PTIC Find next word in input stream.

DW STATE,AT,ZBRAN,XEQNUM ; If state =0, Ececute or push.
DW XDTJP,ZBRAN,CMPLIT ; If word not found, compile lit.
DW XDUP,THREE,SUB,CAT
DW CLIT
DB
DW
DW
DW
DW

CMPLIT: DW
DW
DW
DW
DW
DW
DW

BADNUM DW
DW
DB 6
DW PLUS
DW AT

Immediate -- So execute it.

Compile a literal.Drop 0 from FIND
Literal value

Check if valid number

It’s a bad number

40

DW EXEC
DW BRAN
DW INTl

CMPL1: DW ZBRAN
DW CSNGL
DW COMP ; It’s Double Precision
DW DLIT
DW COMMA
DW COMMA
DW UNNEST

CSNGL:
DW XDUP ; ? LIT or CLIT
DW LIT
DW OFFOOh
DW XAND
DW ZBRAN
DW CCLIT
DW COMP
DW LIT
DW COMMA
DW UNNEST

CCLIT: DW COMP ; Compile a Character Literal.
DW CLIT
DW CCOMM
DW UNNEST

XEQNUM:
DW QDUP ; State is zero. Execute or make zero.
DW ZBRAN
DW MKNUM

XEQ1T: DW FROMR ; Execute it.
DW ORPH1
DW STORE
DW EXEC
DW QSTACK
DW ORPH1
DW AT
DW TOR
DW UNNEST

MXNUM: DW NUMB
DW ZLESS
DW ZEQU
DW ZBRAN
DW BADNUM
DW UNNEST

ORPH1: CALL AT This is an “orphan’
DW RHOLD

SO (-addr)
Pushes address of stack origin on the stack.

HEADER OS,S
SO: NEST

DW LIT
DW TOES
DW AT
DW TWOM
DW UNNEST

41

RUN (segaddr--)
Transfers top to IN. Used to execute from a text buffer. Contents of the text buffer are read from low address to
high and control returns to the keyboard when a NULL character is encountered. If addr isO, take input from the
keyboard. Otherwise, addr is the address offset pointing to the text stream to be interpreted in the text buffer.

HEADER NUR,R
RUN: NEST

DW LIT
DW INPTR
DW STORE
DW DROP
DW UNNEST

?STACK C--)
Test for stack underfiow, and issue “EMPTY STACK” and call QUIT. ;Also tests for stack full and reports if less
than 256 bytes ;remain. You can make more stack space by forgetting from the ;dictionary or dropping words from
the stack. You have 256 bytes ;to use before the stack overruns the dictionary. Equivalent Forth code is:

SO SP@ 1+ U<?[.“ Empty Stack’ QUIT]? MEM #FF U< ?[.“ MEM=” MEM .B DROP]?

HEADER KCATS?,1F
QSTACK: NEST

DW SO
DW SPAT
DW TWOP
DW ULESS
DW ZBRAN
DW QI

RMT DW PTYPE ; R-stack is empty
DB ‘Empty Stack’ ; Print message,
IDE 7,0 ; Ring the Bell.
DW QUrr

Qi DW MEM ; Test if less than 255 bytes left
DW CUT
IDE OFFh
DW ULESS
DW ZBRAN
DW Q2
DW PTYPE
DB ‘MEM=’
1DB 7,0
DW MEM
DW HPB
DW DROP

Q2 DW IJNNEST

5.8. SYSTEM INITIATION

QUIT C--)
This is where the text interpreter starts. The system is prepared to accept and process text from the keyboard. Clears
the computational and R-stacks, then pushes the address of the input area, zero for keyboard, and executes CR.
Equivalent Forth code is:

SP! IN @ 00 RUN 0 STATE! RP! RMT 2- >R CR [[INTERPRET]]

HEADER TIUQ,Q

42

QUIT: NEST
DW SPSTO
DW UT
DW INPTR
DW AT
DW ZERO
DW ZERO
DW RUN
DW ZERO
DW STATE
DW STORE
DW RCLR
DW LIT
DW RMT-2
DW TOR
DW CR

QUIT1 DW INTERP
DW BRAN
DW QU1T1

WARM (--)
Warm start. Issues the entry message and calls QUIT. Equivalent Forth code is:

DECIMAL ROOT DEFS CR .“ PC LaForth V4.O” QUIT

HEADER MRAW,W V

WARM: NEST
DW DEC
DW ROOT
DW. DEFS -

DW CR
DW PTYPE

V

DB ‘PC LaForth V4.O’
DB 0
DW QUIT

COLD (--)
Cold start. First check to see if an input file was specified on the DOS command line. If true, open the input file
and read it into the text buffer. Then pass control to WARM and bring the LaForth system up.

HEADER DLOC,C
COLD: NEST

DW SPSTO
DW CLIT
DB 80h Check if any input file specified
DW CAT ; on the Command Line.
DW ZBRAN ; 80h C@ IF 81h 20h SKIP 20h SCAN OVER +

DW COLD1 0 SWAP C! OPEN >R LT DUP NEG 1 lOh -
DW DSADDR ; R> READ TP +! 0 LT DROP TP @ XC!
DW CLIT ;080C! THEN
DB 81h ;WARM
DW CLIT
DB 20h
DW SKIP
DW CUT
DB 20h
DW SCAN
DW OVER
DW PLUS

43

DW ZERO
DW SWAP
DW CSTOR
DW OPEN
DW TOR
DW LT
DW XDUP
DW XNEG
DW LIT
DW llOh
DW SUB
DW FROMR
DW READ
DW TP
DW PLSTOR
DW ZERO
DW LT
DW DROP
DW TP
DW AT
DW XCSTOR
DW ZERO
DW CLIT
DB 80h
DW CSTOR

COLD1: DW WARM

44

