
THE GO GAME

The GO game was originated in China. Earliest references
to it date back to the Han Dynasty about the time of Christ. It

has been the national pastime since. In the Tang Dynasty about

the 8th century, it migrated to Japan with many other cultural

influences. While the Chinese enjoyed GO purely as a game,

the Japanese turned GO into an industry. Currently, Japan

boasts the best organized GO societies and maintains the largest

group of professional GO players supported by mass population.

Western observers would naturally mistake GO as a Japanese
game. Being a Chinese, -I have to clarify the origin of this

game out of my racial pride.

This game is played on a board with •a 19x19 grid. White and.

black stones are played alternately by two players on the cross-

points of the grid. Once a stone is put on the board, it may not

be moved. The aim is to connect the stones to form territories.

The side occupying more territory is the winner. The rules are

very simple. Since the stones are static, i.e., they may not be

moved after being played also makes it attractive for computeri
zation. The problem is the huge size of the board, which allows
an almost infinite number of variations.

The problem in computerizing the GO game must be attacked
from many different angles. The coding and storing of games
to form databases to be used as guides in playing, or as
references for analysis is one aspect. The strategy
and the methodology in playing the game is another. One can
also separate the beginning and ending of the game from the

main game so that the local effects and tactics can be defined
more precisely.

I am not capable of solving any of these problems. I can
only offer some suggestions and some tools to treat a few very
well defined tasks. In this section, I included four programs.
The first one shows how to code a complete game and store the
game on disk, to be recalled and displayed on a CRT terminal.
The second one is the implementation of an algorithm published
by Dr. J. K. Millen. The third is a scheme to collect vast
numbers of beginning patterns on disk, which might be useful in
building a GO playing computer. The last one is a GOMUKO game,
which is not related to GO, though played on the same board
using the same black and white stones.

32

CODING AND DECODING OF GO GAMES

I want the computer to read a GO game stored on disc and play it
back on a terminal. I want to demonstrate in this program two
very unique features of FORTH :

1. Choosing a BASE value best to code and decode GO games;
2. Define a defining word which codes (compiles) a game and

also decodes (interprets) the compiled game for play—back.

RULES OF GO GAME

GO game is played on a board of 19 rows and 19 columns. Black
stones and white stones are placed alternately on the board at
crossing points by two players.

Connecting stones of the same color form territories. The play
er who manages to surround more territories wins the game.

GO game is better suited for computer processing because the
game is static, i. e., stones do not move once they are placed
on the board. However, a group of stones may be removed from
the board if they are completely surrounded by the opposing
stones.

GO GAME COMPILER

A defining word :GAME compiles a game, represented by a list of
locations of stones. When a game defined by :GAME is executed,
the listed is interpreted and the entire game is played out on a
terminal. This is a tool to build a library of games, forming a
data base for strategy analysis and possibly a GO computer.

Note the base of location codes is 20, making the codes extreme—
compact, comforming to the conventions used by GO societies.

33

BOARD AND STONES

BLACK, WHITE, CROSS Codes to represent stones and empty points
BOME Return the cursor to upper left corner.
CLEAR Clear the CRT screen and home the cursor.
BLINK Set the cursor mode to ‘blinks.
RESET Reset the cursor mode to normal.
GOTOXY Move the cursor to the location specified.
STONE Move the cursor to the board location.
BOARD Print the 19x19 board grids on CRT.
INDEX Print the column numbers.
PLACE Print the stone on the board location.

DISPLAY A GAME

COLOR A flag indicating the color of the stone to be played.
DELAY Delay 5 seconds before playing the next stone.
PLACE Display a stone in blinking mode for 5 seconds and

restore it to normal mode.
PLAY Place a stone at the location specified on the stack.

If the stone location is greater than 400, delete the
stone at the location (modulo 400). Reverse the color
for the next stone.

:GAME A defining word to compile a go game from disk block
into the dictionary. When the defined game is exe
cuted the stones compiled are displayed on the CRT in
seguentce.

34

BOARD FOR A TEC-70 TERMINAL, CHT, 2—13—81)
HEX
40 CONSTANT BLACK 4F CONSTANT WHITE 2B CONSTANT CROSS

HOME lB EMIT 8 EMIT
CLEAR lB EMIT 5 EMIT ;

: BLINK lB EMIT 22 EMIT ;
RESET lB EMIT 20 EMIT ;
GOTOXY C X Y -—-) lB EMIT OE EMIT 80 SWAP - EMIT

80 SWAP — EMIT ;
STONE C X Y —-—) SWAP 2* 20 + SWAP GOTOXY ;
BOARD 14 1 DO 14 1 DO I J STONE CROSS EMIT LOOP LOOP ;
INDEX 14 1 DO I 14 STONE I . 0 I STONE I . LOOP ;

DEC I MAL
PLACE C STONE LOC -——) 20 /MOD STONE EMIT ;

PLAY, CHT, 2—13—81)
VARIABLE COLOR

DELAY 5 0 00 30000 0 DO LOOP LOOP ;
PLACE 2DUP BLINK PLACE DELAY RESET PLACE ;
PLAY (N ———)

DUP 399 > IF CROSS SWAP 400 — PLACE
ELSE COLOR @ IF BLACK SWAP PLACE

ELSE WHITE SWAP PLACE
THEN COLOR DUP @ NOT I

THEN
:GAME CREATE BEGIN 32 WORD NUMBER DUP , NOT END

DOES> BEGIN DUP @ PLAY 2+ DUP @ NOT END ;
EXIT (FOLLOWING IS THE FIG—FORTH VERSION OF :GANE)

:GAME CREATE BEGIN 32 WORD HERE NUMBER DROP , NOT END
DOES> BEGIN DUP @ PLAY 2+ DIJP @ NOT END ;

A SAMPLE GAME, CHT, 2—23—81)
:GAME SAMPLE

GG 33 4G H3 AG 3E FA 64 3C
4C 4B 4D 3A 6G 6F 7F 5F 8G6D
3H 3G 4H 5G 5H 6H 61 7E 16H 7H 9E
AE G4 G3 E4 G5 E6 F4 G6 F6 F7
F5 E5 G7 F8 1G6 H6 A6 49 5B GE EG
HG HH HF IH GC EB ED 34 44 45
55 43 54 23 32 25 46 42
5222 2G2F 2H2ECHAICFDE
DFEFEEBEBFAFCEDDDCCD
BD CC lEE AE BC AC AB 9C DI 9B EC
BB CB lAB AR CA HB HA lB IA IG HO
HO CI AS 86 88 94 C3 A3 BE 83
E3 77 68 57 53 132 133 31 73 67 75 78
79 89 8E 8D 9F 90 99 AD 0

35

D r. Jonathan K. Milen published a
very interesting article on “Pro
gramming the Game of Go” in the

April issue of Byte magazine in 1981. It
was a milestone in the computerization of
this ancient Chinese board game. There
were two major contributions in this
work. First was the very simple algorithm
for analyzing the progress of the game by
counting the liberties of connected groups
of stones. The liberty count became the
priority scale that could be used to
decide the next move by the computer.
Second was the demonstration that,
using this approach, a very small micro
computer could be programmed to play
the Go game, which had always been
considered to be too complicated for
small computers,

This simple algorithm cannot cope
very satisfactorily with all the intricacies
of Go; however, it does provide a very
firm foundation for future improvements
and embellishments. The fact that Mullen’s
program is capable of playing legitimate
games, with only minor exceptions, dem
onstrates well that his algorithm captured
the most essential features of the game, It
forms a backbone of advanced Go pro
grams in which other features can be
added readily to deal with tactics and
strategy.

I took Dr. Millen’s article as a chal
lenge to a programmer’s skill to implement
it on a small computer. His implementa
tion was on a KIM-i with 1 Kbyte of
memory. The response time for a move
was about one second. These features are
hard to match. It would be interesting to
see if it could be put on other computers,
preferably in a high-level language to
make the program transportable. Forth
was chosen because of its compactness
and efficiency in both programming and
runtime. This game was programmed and
used as both a practical example and a
teaching example of the Forth language in
late 1981, when I was back in Taiwan

by C. H. Ting

C. H. Ting, Offere Enterprise.,, 1306 South
B Street, San Mareo, California 94402.

Copyright © 1982, 1983 by C.H.Ting.
AU rights reserved.
?errnLrsion is granted for personal, non.
:omnierical use only. Any use for profit
or other corntnercial gain without written
,ermisjjon of the author is prohibited.

trying to preach the gospel of Forth. It
was very effective because the difficulty
in this game was well understood over
there. A working Go game, in spite of its
shortcomings, was impressive.

The Algorithm
The algorithm to play the game of

Go as published by Dr. Mullen is shown in
Figure 1 (page 55). For a more detailed
description of the mechanism and ration
ale in this program, the interested reader
should consult the original article. How
ever, the structured English he used to
express the algorithm is not difficult to
comprehend.

Implementation
The program was first developed on

an LSI -11 microcomputer with Poly-Forth
as the operating system. The source code
spans 8 Kbytes, though loosely packed.
The compiled code, including 362 bytes
to hold, the complete l9-by-19 board,
occupied about 3 Kbytes. The response
time for a move is about seven seconds.

Later, after I had finished a Forth-79
system for the Apple U and had succeeded
in putting Forth in PROMs (replacing the
Applesoft BASIC chip set), I tried to
transfer the Go game into the Apple.
Since the source code is less than S Kbytes,
it was burned into four 2716’s and moved
into the Apple on an ‘Apple ROM card.
The Forth system in the Apple compiles
the source code in ROM to object code
stored in RAM and executes the Go game.
The interesting thing about this scheme is
that I can run a number of games with
the same Apple, with all the games on
ROM cards in source form.

Transportability
To make sure that the program can

be transported to other microcomputers,
it is important to avoid memory-mapped
graphic representation! of the Go board.
Standard terminal I/O commands are
used to draw the board with stones on
the CRT screen. The only terminal-
dependent commands are HOME and
EOL (HOME returns the cursor to the
upper left corner of the screen and EOL
erases a line of characters). These two
commands manage a stationary board on
the screen and facilitate the key-in of the
player’s moves. They are not necessary if
one does not mind the scrolling of the
game board.

Although Forth-79 standard was
used to present the program, it can be

readily modified to fig-Forth or other
Forth systems. In fact, I have seen the
program running on a couple of CP/M
fig-Forth systems, some of which I imple
mented for local computer manufacturers
in Taipei for demonstration purposes.

The Board
Let us turn to the source screens in

Listing One (page 63) to see how the al
gorithm is implemented.

The first two lines in screen 160
declare some constants arid variables.
BLACK is the code of’ black stones,
having a constant value of .1. Similarly,
WHITE has a constant value of 2. COL
OR is a variable used to transfer the code
of the stone groups currently under proc
essing. LIBERTY is the libêFt. count
(discussed below) accumulatedfor a
group of connected stones; thisis the
primary indicator of the priority’ for
attention to a given group of stones. MAP
is an array of 362 bytes, storing the cur
rent board configuration. Each location
on the 19-by-19 grid is designated as a
byte in this array. A zero in a byte indi
cates an empty grid location, a I indicates’.
a black stone, and a 2 indicates a white;
stone.

Skipping the rest of screen 160, let us
look at the source code in screen 161, be-
cause it deals with the display of the
game board. HOME moves the cursor to’
the upper left corner of the screen, pre
paring to write the new board configura
tion over the old board. It is desirable,to
keep an image of the old board on the
screen. HOME is written in assembly
code, calling the Apple Monitor routine
to do the trick. “.,“;-

BK, WT, and CROSS respectively
print a black stone, white Stone, or grid
cross point on the screen..A black stone
is the “@“ character. A’white stone is
the capital “0.” The grid.&ossing was
first represented by the ‘“+“ sign, but
later replaced by the period because the
“+“ signs are too heavy and ,tend’to
obscure the stones on the CRT screen.

LIMITS places two numbers, 361 and
0, on the stack because they are often
used to designate the loop limits in the
analysis of board positions.

INDEX prints a line of indices on
the top of the board to designate the col
umns of the board. BOARD prints the
complete board on the screen, with indices
on top and left. It takes the contents of
the array MAP and prints the appropriate
stones on the board. The MAP array is

GO in Forth
N

36
I’. i,,k.’. -,,._.....I X,,,..,,,. 0’)

initialired by CLRMAP, which erases the
array to zeros.

PLACE stores a code into one of the
array elements. The top of stack has the
board position; the next item is the code
to be stored in that location. KSTONE
removes a stone from the board by stor
ing a zero In the corresponding array
element. These two commands change
the board configuration. PUT is a utility
to put a contiguou! block of stones on
the board for testing purposes. The color
of the stones Is specified by the contents
of COLOR.

Base 19 Numbering System
GOBASE stores 19 into the user van-

able BASE, specifying that all subsequent
number conversions are to be done in
base 19. This is the most appropriate
number base for the Go game, since it is
played on a 19-by-19 board. The advan
tage in using base 19 is that all rows and
columns can be designated with one char
acter from 0 to 9 and A to 3. When typ
ing in a move, the player can type one
number — e.g., 35, AF, 93, etc. — to rep
resent a board location. This number is
the exact offset to pick up the proper
array element in MAP, without any com
plicated conversions. The freedom in
choosing the best number base for a spe
cific application is a luxury only a Forth
programmer can enjoy.

A very good example of how to usc
GOBASE is the command HANDICAP,
which places nine handicap stones on the
board to give the computer a fighting
chance to compete with a human player.
After switching the base to 19 via GO-
BASE, the board positions can be conven
iently specified as 33, 3A, 3F, etc., and
PLACEd on the board in a short loop.
After HANDICAP, the base is returned
to decimal for normal processing.

liberty Counts
The most important procedure in

Mitten’s algorithm is that which scans a
group of connected stones of the same
color, and counts the liberties, or the

LIsting 1: Structured English specifications of COUNT module
to find and cows t the liberties of. connected group containing
a stone at point “x” of color “coio, COUNT calls Itself re
cursively, savIng x on the push-do pm stack during each call.

COUNT(x,color):
IF x is not off the edge
THEN

IF there is a stone at x AND
it Is the given color AND
it Is not marked

THEN
mark it
CALL COUNT(NORTh Cx). color)
CALL COUNT(EAST Cx). color)
CALL COUNT(SOUTH Cx), color)
CALL COUNT(WEST(x). color)

ELSE IF there Is no stone at x
THEN

mark the point ass liberty
increment the liberty count

END
END

Listing 2: Module specification for the main loop of the Go
p/a ying program and two of its called modules.

MAIN:
place black handicap Stones
LOOP

display the board
get white’s move from keyboard
CALL WEFFECT for the effect of white’s move
CALL BEFFECT to obtain a tentative black move
CALL PATS to check for a pattern match
place black stone

END

WEFFECT:
FOR each point x with a black stone DO

CALL COUNT(x,black)
IF the group has no liberties
THEN remove its stones
ELSE IF the group has at least one liberty

THEN
choose a liberty not on edge line

IF the group has I or 2 liberties
THEN CALL EVAL for the chosen liberty

END
END

BEFFECT:
FOR each point x with a white stone DO

CALL COUNT(x,white)
IF the oup has exactly I liberty
THEN

designate it as the black move
remove the white stones
EXIT

ELSE IF the group has 2 or more liberties
THEN

choose a liberty
CALL EVAL for the chosen liberty

END
END

Listing 3: Module specifications for move evaiuation, look-
ahead, and pattern matching.

EVAL (move,liberties):
GLOBAL (best-move, best-liberties)
IF iiberties<best-iiberties AND

LOOKAHEAD (move) 2
THEN

best-move — move
best-liberties - liberties

END

LOOKAHEAD(move):
place black stone at move
CALL COUNT (move,black)
remove black stone
RETURN count of liberties

PATS:
FOR each white stone DO

IF there isa pattern in the table
centered on that white stone

THEN
get suggested black move y
CALL EVA L(y,2)
EXIT

END
END

Figure 1.
From “Programming in the Game of Go” by Jonathan Millen, originally published in the April 1981 issue of Byte magazine.

Used with the written permission of Jonathan K. Millen.

:r. Dl:l’ 1urn.il, Nii.: ill Scj’tciher 9S3 37

open grid positions, around this group.
This procedure is implemented in screen
160.

Let us follow the order in which
commands are defined in screen 160.
?OUT takes the number at the top of the
stack and checks its range. If the number
is between 0 and 360 inclusive, a false
flag is returned; otherwise, a true is re
turned. It will be used to abort a count
ing procedure if the stone location is
outside of the board.

?STONE merely returns the code of
the stone whose location is given on the
top of the stack. The top of stack number
is used as an offset into the MAP array to
pick up the code stored in the specified
location.

NORTH, SOUTH, EAST, and WEST
are the commands that convert the cur
rent stone location on top of the stack to
the neighboring location in the direction
indicated by the names of the commands.
The returned location might be outside
of the board, as NORTH and SOUTH
would do if the given location is at the
edge of the board. In the cases of EAST
and WEST, there is the problem of hori
zontal wrap-around. If the current loca
tion is at the left edge, WEST will then re
turn the number 1000, which is definitely
outside of the board. EAST will do like
wise at the right edge.

MARK sets the most significant bit
of the code whose location is on the top
of the stack. This command puts a mark
on the locations that were scanned at
least once so that the location will not
be repeatedly scanned or repeatedly
counted.

RECUR is the famous Fig-Forth
command allowing compilation of recur
sive procedures. (Other verinns of Forth
may use other words, such as MYSELF or
RECURSE.) It compiles the code field
address of the procedure, which is still
in the process of compilation, allowing It
to call itself at runt.inie.

COUNTS walks through an entire
group of connected stones and accumu
lates its liberties in the variable LEBERT
The color of the stone group is specified
in the variable COLOR. It walks by the
left-turn rule of the maze theorem, ex
amining the locations north, east, south,
and west of the current location. If that
neighboring location has an unmarked
stone of the same color, it will jump into
this location and call itself to continue
the walking. It will increment the LIBER
TY count if the neighboring location is
empty and unmarked, It marks every
location it examines so that locations will
not be repeatedly scanned or counted. At
the end of this recursive process, all the
connected stones of the same color will
have been scanned and all the liberties
around this group will have been marked
and counted.

The recursive procedure is naturally

limited in its depth by the sizes of the
stacks allocated by the system. In this im
plementation each level of call uses one
cell of the return stack and one cell of the
data stack. Since in most Forth systems
the return stack has about 256 bytes,
COUNTS can process a group of 100
connected stones. This is adequate for
most games normally played. The system
will crash if the stacks overflow.

Removing Stones
In screen 162, the important com

mands are DESIGNATE and REMOVE.
DESIGNATE is to be used in the case
that a group of white stones has only on
liberty left. The computer will immedi
ately kill this group by playing a black
stone into the liberty. After the counting
process, this liberty location is the only
location having a code of 128, empty and
marked. DESIGNATE simply scans the
board, and upon finding this location,
plays the killing move.

REMOVE erases an entire connected
group of stones, whose color is designated
in COLOR.. REMOVE is very similar to
COUNTS, using the same recursive tech
nique to scan the connected group. It
marks the member stones in the group by
setting the seventh bit of the code as the
kill mark, so that the stone scanned will
be deleted at the end of the REMOVE
process. KMARK performs this marking
task.

After the counting or the removing
process, many locations examined are
tagged by the counting marks or the kill
marks. To continue the processing of
other stone groups, these marks must be
removed to restore the board map to a
clean state. This is accomplished by the
command UNMARL UNMARIC scans
through the whole board and resets all
the bits in the codes according to the
reset pattern given on the top of the stack.
This way, it can be used to selectively
reset either the counting bits, the kill bits,
or both at the same time.

Lookahead
This Go program only has the ability

to look ahead by one step, which is one
of its many weaknesses. However, one-step
lookahead does give it some similarity to
an amateur player. Screen 163 contains
the commands to examine the board con
figuration one step ahead.

The variables BEST-MOVE, BEST
UBERTIES, BEST-COUNT, and !COL
OR are temporary storage locations
used to determine the best move in a
given board configuration. The command
LOOKAHEAD takes a board location
given on the top of the stack, tentatively
places a black stone in this location, and
counts the liberties around the group of
black stones connected to this stone. The
liberty count is returned to the stack, and
the black stone is removed from this loca

tion. A better move for the black would
have a larger liberty count. The liberty
count is then compared to that in the
BEST-LIBERTIES to decide whether
BEST-MOVE needs to be updated in the
later command.

EVAL does the comparison and up
dating. It takes two values off the stack;
the top value is the maximum liberty
count allowed in the current configura
tion and the second is the move to be
examined. EVAL calls LOOKAHEAI) to
get the liberty count of the proposed
move. If the resulting liberty count is
greater than the count in BEST-COUNT,
and the maximum count given on the
stack is not greater than the count in
BEST-LIBERTIES, the proposed move
should be a better choice than the one
indicated in BEST-MOVE as the result
of prior analysis. In this case the variables
BEST-MOVE, BEST-COUNT, and BEST-
LIBERTIES are updated. Otherwise, the
best move as determined by prior analysis
remains intact.

Going through this evaluation proc
ess for all the black groups, the computer
will be able to pick up the weakest black
group and find the best move to maxi
mire its liberty count; hopefullythis will
save the black group from being captured
by the white stones. In attacking the
weakest white group, it also chooses the
most secured move so that the attacking
stone will not be threatened easily.

Pattern Recognition
The following two screens, 164 and

165, contain commands dealing with
some elementary pattern recognition,
designed to identify some favorable posi
tions to be considered in the evaluation
process. Dr. Millen identified seven pat
terns in which a designated black move
usually improves on the overall black
configuration. These seven patterns, in
cluding some permutations and reflec
tions, are reduced to twelve 16-bit pat
terns stored in an array named PATTERN.
The coding scheme, is illustrated in Fig
ure 2 (page 59). An empty location will
be examined by coding the stone distri
butions in the neighboring 3-by-5 regions
to its immediate north, east, south, and
west. If any of the four codes matches
with one of the twelve patterns, this
empty location is assigned a liberty count
value of 2, a rather high priority.

?RANGE takes a board location off
the stack and returns the code stored in
the location. The difference from ?STONE
is that if the location is outside of the
board, ?RANGE will return a I, the code
for black stone. This is the “ghost stone”
asserted by Dr. Millen. The entire board
can be considered as being surrounded by
black stones to take into account some
favorable conditions near the edges of the
board.

Given a particular board location,

38

?N, ?E, ?S, and ?W return the code of its
northern, eastern, southern, and western
neighbor, respectively. They use ?RANGE
to find the codes. If the neighbor is off
the board, the code of a black stone will
be returned.

+4 is a strange command that
generates a 16-bit code according to the
rules for the codes being constructed in
PATrERN. It takes eight items off the
stack and packs the least significant two
bits in each item into a 16-bit code, to be
left on the stack. These items are the
codes of stones immediately around. a
location, and their order on the stack is
according to the sequence specified in
Figure 1.

PNORTH is given a specific location
on the stack and looks at its northern
neighboring location. If this neighbor is
empty, PNORTH will walk through its
eight neighboring locations, push their
codes of stones on the stack, and call +4*
to pack these eight codes into a single
16-bit pattern code. However, if the
northern neighbor is not empty, PNORTH
will exit immediately because this neigh
boring location is not playable and does
not need pattern matching.

PEASt PSOUTH, and PWEST behave
similarly. It seems rather clumsy that four
similar words have to• be defined to do
very similar tasks. Some better tools are

needed here to clean up the codes.
MATCH is the command that does

the pattern matching. It takes a coded
pattern off the stack and compares it
with the patterns stored in PATTERN. If
the coded pattern matches with one of
the stored patterns, a true flag Is left on
the stack; otherwise, a false flag is left.
The big command PATS scans the whole
board looking for white stones. Finding
a white stone, PATS will use PNORTH,
PEAST, PSOUTH, and PWEST to exa
mine its V surroundings to see if a stored
pattern could be identified. It will abort
the loop at the first sight of a matched
pattern, assign a priority of 2 to this
pattern, and call EVAL to do an evalua
tion. Since PATS Is the last pass in the
evaluation process, its finding is preferred
over other evaluations of the same
priority.

In matching a coded pattern with the
stored patterns, I initially used the com
parison command = to match the pat
terns. This turned out to be a very restric
tive operation because among the eight
neighbors there are two or three con
sidered to be crucial — the others can be
ignored. FIX takes the coded pattern and
ANDs it with the stored pattern to elimi
nate the non-crucial bits in the coded
pattern. The resulting modified pattern
is then compared with the stored pattern

to determine a match. However, adding
FIX to MATCH tends to make the corn
panson too liberal. It is probably neces
sary to define a set of masks to be used
together with the patterns in order to be
able to precisely identify the desired
patterns.

AnalysisV Screen 166 hosts the two major anal
ysis routines: WEFFECT which analyzes
the effects of the white stones, and B-
EFFECT, which analyzes the effects of
the black stones. The variable ?STOP
and the command STOP (which clears
ISTOP) will be used later in the main
loop to bypass the pattern recognition
process if the computer makes a capture.
It is rather cumbersome to transmit this
stop flag on the stack. A variable is
needed to do the job.

UNMARKS initializes the move anal
ysis routines: WEFFECT, which analyze,
bits in the MAP amy and storing the
color of the stones to be processed, gven
on the stack, into COLOR. EXAMINE
takes a board location and calls COUNTS
to count the liberties of the group of
stones connected to this location; EX
AMINE then returns the liberty count on
the stack.

WCHO and BCHO are two com
mands that scan the board for empty but

wj
PATTERN 1010 PATTERN 1001 PATTERN 0101

PATTERN 001’.

‘4000

PATTERN 00’.’.

I \l I I

Q0°

I j
I ‘°7

POSITION CODES

PATTERN 010’.

Figure 2.
Coding scheme developed by Dr. Jonathan
K. Millen. This diagram depicts the seven
patterns and position codes in which a desig
nated black move will usually improve the
overall black configuration.

PATTERN DNa’,

)r. flIh’ Jurnil uiithc 83, Septmber 1983 39

marked locations and push these loca
tions on the stack. These locations are
candidates for the next black move, and
are to be analyzed using the lookahead
technique. A zero is pushed on the stack
first as a floor for the location values.
These locations will be picked up by CHO
to do the actual analysis. CHO scans the
locations on the stack and analyzes their
priorities. When it finds a zero on the
stack, it terminates the analysis. The
choice of the best move is stored in
BEST-MOVE. WCHO differs from BCHO
in that it does not scan the edges of the
board, because it is futile for black to
play on the board edges to avoid cap
turing.

‘CHO is used to determine whether
the liberty count of the current stone
group is greater than the value stored in
BEST-LIBERTIES. If the liberty count is
greater, there is no need to do the move
analysis because this move is of a lower
priority.

WEFFECT scans all the black stone
groups. If a black group has a liberty
count of zero, it is completely surrounded
by white stones and must be removed
from the board. If the liberty count is
less than 3 and equal or less than BEST-
LIBERTIES, an analysis is performed.
If a more pressing move is found, the con
tents of BEST-MOVE, BEST-COUNT,
and BEST-LIBERTIES are updated.

BEFFECT scans all the white stone
groups. If a white group has a liberty
count of 1, the computer will capture this
group by playing into the last liberty. The
STOP flag will be cleared at this point.
Otherwise, BEFFECT will pick the best
attacking move.

Terminal Input
?MOVE in screen 167 is the corn

snand that accepts a number from the
keyboard as the next move by the human
player. It prints a prompting message,
clears the rest of the line, and waits for an
input string from the keyboard, ter
minated by a carriage return. It checks the
range of the number and also whether
the board location is occupied. It will
loop until a valid number is entered.
Since it uses the standard NUMBER
command to do the number conversion,
it will abort to the interpreter if an in-
valid number is entered. This turns out to
be a convenient way of stopping the Go
game for whatever purpose. The aborted
game can be resumed at the point of
interruption by the command RESUME.

EOL is the command to clear the rest
of the current line. It calls an Apple
monitor routine to do the job. It is not
absolutely necessary if the player is aware
of the way the screen display is managed.

It is important to use numbers in the
base 19 format. This way a location is

selected by a two-digit number from 00
to JJ, without spaces between the two
digits. The columns and the rows of the
board are numbered accordingly to facili
tate the input process.

The Main Game Loop
The command for playing the Go

game is RESUME, which is an infinite
loop. In this loop, first the current board
and stones are printed out on the CRT
screen, the player is asked to input his
move, and the computer then goes through
the WEFFECT, BEFFECT, and PATS rou
tines to decide its best move. The com
puter does not know when to stop. It is
the human player who usually gets worn
out and quits.

.BEST is used to print out the var
iables stored in BEST-MOVE, BEST-
COUNT, and BEST-LIBERTIES. Printing
out this information is interesting, as it
shows how the computer arrives at its
final moves. Since the computer takes
about eight seconds to decide its move,
printing the intermediate results assures
the player that the computer is not idling.

MAIN is the initial entry point of the
game. It clears the board, places the nine
handicap stones on board, sets the base to
19, and drops into the RESUME loop to
play the game. If the game is interrupted
by intentionally or unintentionally enter
ing an invalid number, a new game can be
started by MAIN or the current game can
be continued by RESUME.

Concluding Remarks
The resulting program, compiled into

Forth code, occupies about 3 Kbytes of
memory. The response time for each
move is about eight seconds. These statis
tics cannot match those of Dr. Mullen’s
implementation on KIM-i at 1 Kbyte and
one second response time. Inefficiency in
the high-level codes and poorunderstand
iaigs of the original algorithm are among
the most obvious reasons for the decrease
in performance. I don’t think much can
be done in the area of high-level language,
since Forth is just about the best high-
level language for this type of application.
To really make it run faster, many of the
routines will have to be coded in assem
My. I wonder if anybody will do it, ex
cept Dr. Mullen.

There are many possible ways of im
proving the performance of this Forth
program. Restricting the scope of search
ing and analysis will greatly speed up the
execution. I tried to limit the searching
to two 5-by-S areas around the black
stone last played and the white stone
just played. This shortcut speeds up the
response time to less than two seconds,

without significantly weakening the per
forniarice of the computer part of the
game. Recording the results of a whole
pass of analysis and using them for the
next pass will reduce much of the redun
dant work performed in each pass. The
results of analysis need only minor up
dating and the best move can be quickly
selected in the next pass.

There are also some more fundamen
tal problems not properly addressed in
the original program, like ko fights, the
ladder configuration, Joseki’s, etc. These
problems can be solved by adding more
complicated analysis routines to the
framework. The most serious problem is
probably that of recognizing two eyes in
a connected group of stones and of
generating two eyes to build a secured
group, immune from being captured. The
counting algorithm is not capable of
doing this job. To accommodate this Ca
pability, a radically different algorithm is
needed to do much more sophisticated
pattern analysis. A full-scale connectivity
analysis could be the best solution. This
route is currently being explored.

There will be no end to the look-
ahead analysis. Professional players look
ahead ten or more steps, which is very
difficult to simulate by computer. Prob
ably a two- or three-step lookahead in
combination with a more extensive pat
tern analysis process will be sufficient. An
important area is the opening games or
Joseki’s. Large collections of Joseki’s
compiled into data bases can be useful in
guiding the initial games in the four cor
ners on the board. Not much intelligence
is needed besides searching the data base
for the particular opening. The same is
true for the game endings. However, it
will then be necessary that the computer
have disk storage to hold the data bases.

Computerizing the game of Go is
very interesting and challenging. I heartily
congratulate Dr. Mullen for opening up
this field with his excellent work, and
hope that many people will also contrib
ute their expertise to a fuller implementa
tion of this game on the microcomputer.
Hopefully; we will have the computer
Go game reach the level of sophistication
of the chess games now available com
mercially.

I),

(Listing begins on page 63)

Reader Ballot
Vote for your favorite feature/article.

Circle Reader Service No. 196

4C
Dr l)ohh’c JoIrIhl Nurnlwr t j.,., I Q 1

GO • Listing (Text begins on page 54)

160 LIST

0 C STONES. CHT.10—1—82)
1 VARIABLE COLOR VARIABLE LIBERTY I CONSTANT BLACK

2 2 CONSTANT WHITE VARIABLE MAP 360 ALLOT

3 i ?OUT DtJP 0< OVER 360) OR I 19 CONSTANT 19

4 i ?STONE C N —— CODE + ce
5zNORTH(N1—-—N2? 19-C i$OUTHt9.

6 • EAST DUP 19 MOD 18 IF DROP 1000 ELSE 1+ THEN I

7 I WEST DUP19 MOD IF 1— ELSE DROP 1000 THEN I

8 C COUNTS. 10—1-82
9 I MARK-MAP + DUP C! 128CR SWAP C!,.I

10 I RECUR LATEST PFA CFA , 1 IMMEDIATE
11 COUNTS ?OUT IF DROP EXIT THEN CUP ?STONE COLOR ! — IF

12 CUP MARK PUP NORTH RECUR CUP EAST RECUR
13 DUP SOUTH RECUR WEST RECUR
14 ELSE DUP ?STONE 0— IF MARK 1 LIBERTY +!

15 ELSE DROP THEN THEN I

161 LIST

O C DISPLAY. CHT. 10-1—82) HEX I BK .‘ !“ I I UT .“ 0” I

1 CODE HOME XSAVE STX. 24 STY, 25 STY. FC22 .JSR. XSAVE LOX,

2 NEXT ,JMP, END—CODE DECIMAL
3 I LIMITS 361 0 C CROSS • .“

4 I IND 2 SPACES 19 0 DO I 2 .R LOOP
5 I BOARD HOME INC LIMITS DO
6 I 19 /MOD SWAP 0 IF 2 .R ELSE DROP THEN
7 I ?STONE 3 AND DUP 0— IF CROSS DROP
8 ELSE BLACK — IF BK ELSE UT THEN THEN LOOP 1

9 PLACE C CODE N -—- C MAP + C! I

10 GOBASE 19 BASE C GOBASE
11 HANDICAP 33 39 3F 93 99 9F F3 F9 FF 9 0 DO
12 BLACK SWAP PLACE LOOP i DECIMAL

13 CLRMAP MAP 362 ERASE
14 C KSTONE C N -—— > MAP ÷ 0 SWAP C’

15 PUT SWAP DO COLOR @ MAP I + C LOOP

162 LIST

o C REMOVE. CHT, 10—22—81)
KMARK MAP + CUP C! 64 OR SWAP C! I

2 : REMOVE 1 N
3 ?OUT IF DROP EXIT THEN
4 CUP ?STONE 67 AND COLOR e — IF
5 CUP KMARI< CUP NORTH RECUR CUP EAST RECUR
6 CUP SOUTH RECUR CUP WEST RECUR KSTONE ELSE DROP THEN
7
8 C DESIGNATE, UNMARK, CHT, 10—1—82)
9

10 UNMARK C PATTERN -—-) MAP 361 OVER + SWAP DO
11 I C! OVER IF I C! 3 AND I C! THEN LOOP DROP
12 DESIGNATE LiMITS DO I ?STONE 128 —

13 IF BLACK I PLACE LEAVE THEN LOOP I

14
15

163 LIST

0 1 LOOKAHEAC, CHT, 10—1-82>
1 VARIABLE BEST—MOVE VARIABLE BEST—LIBERTIES
2 VARIABLE BEST-COL’NT VARIABLE COLOR
3 LOOKAHEAD (MOVE --— LIBERTY
4 BLACK OVER PLACE COLOR 8 ‘COLOR BLACK COLOR

5 0 LIBERTY 123 UNMARK 129 UNMARK
6 CUP COUNTS KSTONE ‘COLOR 8 COLOR LIBERTY C
7
8 1 EVAL. CHT. 10-1—82)
9

10 EVAL I r1DVE LIBERTY
11 OVER LOOKAHEAD >R I BEST—COUNT 8 1 MAX >
12 OVER BEST-LIBERTIES 8) O AND
13 IF BEST—LIBERTIES BEST-MOVE R> BEST—COUNT
14 ELSE 2DRC’P R> DROP THEN
15

(Continued on page 65)

Dr. Dobbs Joum, Number 83, September 1983
41

GO. Listing
(Listing continued, text begins on page 54)

164 LIST

G (PATS, MATCH. CHT. 10—1-82) HEX
1 VARIABLE PATTERN 14 , 44 • 1400 • 4400 • 1001 , 0110 • 404
2 401 • 101 104 • 1010 • 1010 PATTERN DECIMAL
3 2 ?RANGE C N ——— CODE ?OUT IF
4 PROP BLACK ELSE ?STONE 3 AND THEN I
5 i 7N NORTH 7RANGE ; $?E EAST 7RANGE I

I ?S SOUTH 7RANGE 1 1 7W WEST 7RANGE s
7$ 2*DUP+I .2 +4* 080 000UP+DUP++LOOP;
8 : PNORTH C MOVE ——— PATTERN D$JP ?N IF DROP 0 EXIT THEN
9 >R I NORTH 7E I ?E I NORTH EAST DUP 7E

10 SWAP ‘N I NORTH. ?W I
11 7W R) NORTH WEST DUP 7W SWAP ?N +4*
12 PEAST DUP ?E IF DROP,O EXIT THEN
13 >R I EAST ?S I 7S I EAST SOUTH ?S
14 I EAST SOUTH ?E I EAST ?N I ‘N
15 I EAST NORTH ?N R) EAST NORTH ?E +4*

165 LIST

0 C PATS, MATCH. CHT. 10—1—82) FIX DUP ROT AND I

1 PSOUTH (MOVE ——— PATTERN I DUP 7$ IF DROP 0 EXIT THEN
2 >R I SOUTH ?E I ?E I SOUTH EAST ?E I SOUTH EAST ?S
3 I SOUTH 7W 1 7W I SOUTH WEST 7W R> SOUTH WEST ?S +4*
4 : PUEST DUP 7W IF DROP 0 EXIT THEN
5 >R I WEST 7S I 7$ I WEST SOUTH 7$ I WEST SOUTH 7W
6 I WEST.?N I ?N I WEST NORTH ?N R> WEST NORTH 7W +4*
7 2 MATCH C PATTERN-—— F) DIJPIF 0 12 0 DO OVER PATTERN I 2*
8 + FIX = IF 1+ LEAVE THEN LOOP SWAP DROP THEN I
9 : EVPAT 1 BEST-COUNT 2 EVAL I

10 PATS LIMITS DO I ?STONE WHITE AND IF I PNORTH MATCH
it IF I NORTH EVPAT LEAVE ELSE I PEAST MATCH
12 IF I EAST EVPAT LEAVE ELSE I P500TH MATCH
13 IF I SOUTH EVPAT LEAVE ELSE I PUEST MATCH
14 IF I WEST EVPAT LEAVE THEN THEN THEN THEN THEN LOOP I
15

166 LIST

0 C WEFFECT, BEFFECT. CHT, 10—1—82)
I VARIABLE ‘STOP : STOP 0 ?STOP
2 : UNMARKS COLOR-——) 129 UNMARK 130 UNMARK COLOR
3 : EXAMINE 128 UNMARK 0 LIBERTY COUNTS. LIBERTY @
4 : UCHO 0 341 19 DO 1 19 MOD ?DUP IF 18 - IF I ?STONE 123
5 IF I THEN THEN THEN LOOP I
6 2 CHO BEGIN ?DUP WHILE LIBERTY @ EVAL REPEAT
7 : 7CHO BEST—LIBERTIES € LIBERTY < 0
8 : SCHO 0 LIMITS DO I ?STONE 128 = IF I THEN LOOP
9 2 WEFFECT BLACK UNMARKS 360 BEST—LIBERTIES

10 LIMITS DO I ‘STONE BLACK — IF I EXAMINE
11 0= IF I REMOVE ELSE LIBERTY e 3 C
12 IF ‘CHO IF UCHO CHO THEN THEN THEN THEN LOOP
13 BEFFECT WHITE UNMARKS LIMITS DO I ?STONE WHITE = IF
14 I EXAMINE 1 = IF DESIGNATE I REMOVE LEAVE STOP
15 ELSE ?CHO IF BCHO CHO THEN THEN THEN LOOP

167 LIST

0 1 ‘MOVE. CHT. 10—1—82) HEX
1 CODE EOL XSAVE STX. FC9C JSR. XSAVE LOX, NEXT JMP, END-CODE
2 DECIMAL
3 : ‘MOVE BEGIN CR . YOUR MOVE: “ EQL
4 0 >IN TIB @ 19 EXPECT 32 WORD NUMBER DROP riuP . ‘OUT
S IF . RANGE’ ‘ DROP 0 ELSE DUP ?STONE 3 AND 0=
6 IF WHITE SWAP PLACE 1 ELSE .“ OCCUPIED.” DROP C) THEN
7 THEN UNTIL
0 (RESUME. MAIN. CHT, 10—1-82

.BEST 3 SPACES BEST—MOVE 7 BEST—COUNT ? BEST-LIBERTIES 7 1
10 : RESUME BEGIN BOARD ?MCIVE 1 ?STOP 0 BEST—COUNT
11 WEFFECT .BEST BEFFECT .BEST ?STOP @ IF PATS
12 BLACK BESTMOVE @ .BEST PLACE THEN AGAIN

MAIN GOBASE C:LRP HANDICAP RESUME
14 EXIT
15

End Listing

Dr. Dobb’s Journal. Number 83, September 1983

180 LIST

COUNTS, CHT,10—22—81) EMPTY
VARIABLE COLOR VARIABLE LIBERTY 1 CONSTANT BLACK
2 CONSTANT WHITE 3 CONSTANT 3 VARIABLE MAP 360 ALLOT

?OUT DUP 0< OVER 360 > OR ; 19 CONSTANT 19
?STONE C N ——- CODE) MAP + C@ ;
NORTH (Ni -—— N2) 19 — ; : SOUTH 19 + ;
EAST DIJP 19 MOD 18 = IF DROP 1000 ELSE 1+ THEN ;
WEST DUP 19 MOD IF 1— ELSE DROP 1000 THEN ;
MARK MAP + DUP C@ 128 OR SWAP C! ; : RECUR ;

: COUNTS ?OUT IF DROP EXIT THEN DUP ?STONE COLOR @ = IF
DUP MARK DUP NORTH RECUR DUP EAST RECUR
DUP SOUTH RECUR WEST RECUR

ELSE DUP ?STONE 0= IF MARK 1 LIBERTY +i
ELSE DROP THEN THEN ;

COUNTS 2 - ‘ RECUR 2 - OVER : RECURSE HERE SWAP DO I @ OVER
= IF OVER I I THEN 2 +LOOP 2DROP ; RECURSE

181 LIST

(DISPLAY, CHT, 10—22—81)
HEX MSG BK 2002 , 40 , MSG WT 2002 , 4F ,

MSG CROSS 2002 , 2E , MSG HOME 1B04 , 2059 , 20 , DECIMAL
LIMITS 361 0 ;
INDEX 2 SPACES 19 0 DO I 2 U.R LOOP ;
BOARD HOME INDEX LIMITS DO

I 19 /MOD SWAP 0= IF CR 2 U.R ELSE DROP THEN
I ?STONE 3 AND DUP 0= IF CROSS DROP
ELSE BLACK = IF BK ELSE WT THEN THEN LOOP ;

PLACE (CODE N —-—) MAP + CI ;
GOBASE 19 BASE I ; GOBASE
HANDICAP33393F93 999FF3F9FF 90D0

BLACK SWAP PLACE LOOP ; DECIMAL
CLRMAP MAP 362 ERASE ;
KSTONE C N -—-) MAP + 0 SWAP Cl ;
PUT SWAP DO COLOR @ MAP I + CI LOOP ;

182 LIST

REMOVE, CHT, 10—22—81)
KMARK MAP + DUP Ce 64 OR SWAP C! ;
REMOVE C N

?OUT IF DROP EXIT THEN
DUP ?STONE 67 AND COLOR @ = IF

DUP KMARK DUP NORTH COUNT DUP EAST COUNT
DUP SOUTH COUNT DUP WEST COUNT KSTONE ELSE DROP THEN ;

REMOVE 2 - ‘ COUNT 2 — OVER RECURSE

UNMARK (PATTERN ---) MAP 361 OVER + SWAP DO
I C@ OVER = IF I C@ 3 AND I CI THEN LOOP DROP ;

DESIGNATE LIMITS DO I ?STONE 128 =

IF BLACK I PLACE LEAVE THEN LOOP ;

43

183 LIST

LOOKAHEAD, EVAL, CHT, 10—22—81)
VARIABLE BEST-MOVE VARIABLE BEST-LIBERTIES
VARIABLE BEST-COUNT VARIABLE !COLOR

LOOKAHEAD (MOVE -- LIBERTY)
BLACK OVER PLACE COLOR @ ICOLOR I BLACK COLOR I
O LIBERTY 1 128 UNMARK 129 UNMARK
DUP COUNTS KSTONE ICOLOR @ COLOR I LIBERTY @ ;

EVAL (MOVE LIBERTY)
OVER LOOKAHEAD >R I BEST-COUNT @ 1 MAX >
OVER BEST-LIBERTIES @ > NOT AND
IF BEST-LIBERTIES I BEST-MOVE R> BEST-COUNT I
ELSE 2DROP R> DROP THEN ;

184 LIST

PATS, MATCH, CHT, 10—22—81) HEX
VARIABLE PATTERN 14 , 44 , 1400 , 4400 , 1001 , 0110 , 404 ,

401 , 101 , 104 , 1010 , 1010 PATTERN I DECIMAL
?RANGE (N ——— CODE) ?OUT IF

DROP BLACK ELSE ?STONE 3 AND THEN ;
?N NORTH ?RANGE ; : ?E EAST ?RANGE ;

: ?S SOUTH ?RANGE ; : ?W WEST ?RANGE ;
4* 0 8 0 DO 2* 2* + LOOP ;
PNORTH (MOVE --- PATTERN) DUP ?N IF DROP 0 EXIT THEN

>R I NORTH ?E I ?E I NORTH EAST ?E
I NORTH EAST ?N I NORTH ?W I

?W I NORTH WEST ?W R> NORTH WEST ?N +4*

PEAST DUP ?E IF DROP 0 EXIT THEN
>R I EAST ?S I ?S I EAST SOUTH ?S

I EAST SOUTH ?E I EAST ?N I ?N
I EAST NORTH ?N R> EAST NORTH ?E +4*

185 LIST

PATS, MATCH, CHT, 10—22—81)
PSOUTH (MOVE --- PATTERN) DUP ?S IF DROP 0 EXIT THEN

>R I SOUTH ?E I ?E I SOUTH EAST ?E I SOUTH EAST ?S
I SOUTH ?W I ?W I SOUTH WEST ?W R> SOUTH WEST ?S 4*

PWEST DUP ?W IF DROP 0 EXIT THEN
>R I WEST ?S I ?S I WEST SOUTH ?S I WEST SOUTH ?W

I WEST ?N I ?N I WEST NORTH ?N R> WEST NORTH ?W +4*

MATCH (PATTERN--— F) DUP IF 0 12 0 DO OVER PATTERN I 2*
+ @ = IF 1+ LEAVE THEN LOOP SWAP DROP THEN ;

EVPAT 1 BEST-COUNT I 2 EVAL ;
PATS LIMITS DO I ?STONE WHITE AND IF I PNORTH MATCH

IF I NORTH EVPAT LEAVE ELSE I PEAST MATCH
IF I EAST EVPAT LEAVE ELSE I PSOUTH MATCH
IF I SOUTH EVPAT LEAVE ELSE I PWEST MATCH
IF I WEST EVPAT LEAVE THEN THEN THEN THEN THEN LOOP ;

44

186 LIST

WEFFECT, BEFFECT, CHT, 10—30—81)
VARIABLE ?STOP : STOP 0 ?STOP I

UNMARKS (COLOR———) 129 UNMARK 130 UNMARK COLOR I ;
EXAMINE 128 UNMARK 0 LIBERTY 1 COUNTS LIBERTY @ ;
WCHO 0 34]. 19 DO I 19 MOD ?DUP IF 18 — IF I ?STONE 128 =

IF I THEN THEN THEN LOOP ;
CEO BEGIN ?DUP IF LIBERTY @ EVAL AGAIN ;
?CHO BEST-LIBERTIES @ LIBERTY @ < NOT ;
BCHO 0 LIMITS DO I ?STONE 128 = IF I THEN LOOP ;
WEFFECT BLACK UNMARKS 360 BEST-LIBERTIES I

LIMITS DO I ?STONE BLACK = IF I EXAMINE
0= IF I REMOVE ELSE LIBERTY @ 3 <
IF ?CHO IF WCHO CEO THEN THEN THEN THEN LOOP ;

BEFFECT WHITE UNMARKS LIMITS DO I ?STONE WHITE = IF
I EXAMINE 1 = IF DESIGNATE I REMOVE LEAVE STOP
ELSE ?CHO IF BCHO CEO THEN THEN THEN LOOP ;

187 LIST

?MOVE, RESUME, MAIN, CUT, 10—29—81) EMPTY
180 LOAD 181 LOAD 182 LOAD 183 LOAD 184 LOAD 185 LOAD 186 LOAD

EOL 27 EMIT 75 EMIT ;
: ?MOVE BEGIN CR .“ YOUR MOVE: “ EOL

0 >IN I SO @ 80 EXPECT
32 WORD NUMBER DUP . ?OUT
IF .“ RANGE? “ DROP 0 ELSE DUP ?STONE 3 AND 0=
IF WHITE SWAP PLACE 1 ELSE .“ OCCUPIED.” DROP 0 THEN
THEN END ;

.BEST CR BEST-MOVE ? BEST—COUNT ? BEST—LIBERTIES ? ;
RESUME BEGIN BOARD ?MOVE 1 ?STOP ! 0 BESTCOUNT 1

WEFFECT .BEST BEFFECT .BEST ?STOP @ IF PATS
BLACK BEST-MOVE @ .BEST PLACE THEN 0 END ;

MAIN GOBASE CLRNAP HANDICAP PAGE RESUME ;

188 LIST

45

JOSEKI —- OPENNINGS OF GO GAME

Just like chess, opennings of GO are numerous and very
extensive collections and analyses had been worked out. I have

a ‘Small Dictionary of Joseki’s’, in which 6000 patterns were
recorded and analyzed. GO masters seem to be able to remember

most of them and can choose the appropriate ones in their
tournament games, while the amateurs stumble over them, some

times very miserably. This has been my experience. Computer

can help a player locating a particular joseki. A joseki data

base will also be extremely useful in programming the computer

to play GO. The pressing need is a good method to code and to

retrieve these patterns efficiently.

CODING THE JOSEKI’S

I am presenting here one way to code and store the joseki’s.

Using this method, it is possible to store all the 6000 patterns

in one floppy disk. It is quite easy to search out any one of
interest. However, I haven’t worked out the best retrieval
scheme to be able to offer deep insights at this moment.

A full implementation of tree structures ‘for joseki’s is too

complicated due to the number of branches at every level. I
choose a simple two level structure. The primary level, or the
stems, consists of about 10 moves. 10 to 20 branches can grow
on the same stem. A joseki pattern then is composed of a stem
and an associated branch. Both the stem and the branch are
coded as long Ascii strings, in which two consecutive bytes

define a move.

JOSEKI CODES STORED ON DISK

Taking advantages of the disk blocks in FORTH, it is rather
convenient to store one stem and all its branches in one block.
The stem will be placed in line 0 in the block, and the
branches are stored afterwards. Strings are separated by one
or more blanks.

The advantage of storing joseki’s as strings is that the
strings are readable and they can be keyed in using a regular
FORTH editor. One disadvantage is that one move costs two bytes.

Since joseki’s are played in corners, it is possible to code one

move using only one byte. This data compression technique is
outside of the scope here.

46

30 LIST

335226223223343141214224255455
6445 655666677458
6556666757647463537383847275768245463647374835443839179351497779

655666675764746353477358
655666576758515071
6556666474637362726167
655666647463735367
655666637372625364438271816184
65566663737464728362858293
6556666251615053634443
65566662516150536343404464825746473678
65566661573778
6556665162618272737183
655666675764746353477358
65565150716675768597 4546443564
4546443556654736645766757485

31 LIST

3352262232233431412142
2453
24255411453547
2425534551507066
2425455335386573
242545533538636255517382
24254553353863627251715547375664736667764454
15532535362746396673
14532535362746152439

32 LIST

335226223223342431
2536354521548257
2536354521544638566372838293
25363545214644544353426241513073
25363545442116171154431213534262554663646173517140
253635454421115443121353426255466364617372516310620174658366
25351627172882182164
2535361621284654
2535361621284654040305241211201001

47

JOSEKI STRING INTERPRETER

A simple interpreter was developed to decode the stem and
branch strings and to play the sequence of moves on a CRT
terminal. The interpreter is very simple, occupying only one
screen. However, it does need some supporting instructions
in the GOMUKO games to draw the GO board and to place stones
on the board.

SHOW JOSEKI

This screen shows the typical usage of the instruction JOSEKI.
It requires a block number and the total number of branches in
this block. It will display all the joseki patterns in
sequence by reading the stem and a branch, combining them in
a string buffer, and decode the string to be played out on the
CRT terminal.

JOSEKI

SBUF The string buffer in which the joseki code is cons
tructed from the stem and a branch of it.

STRING First copy the stem to the beginning of SBUF, and then
append it with the n’th branch.

S@ Given a branch number and a block number, fetch out
the joseki code string to SBUF.

S. Print the contents of SBUF as a string for diagnosis.
DELAY A 2 second delay loop.
3. Decode the string in SBUF and play the joseki on CRT.
JOSEKI Given the block number and the branches on the stack,

play all the joseki patterns in sequence on the CRT
terminal.

48

27 LIST

28 LIST

(SHOW JOSEKI, CHT, 4—13—82)
30 18 JOSEKI 31 8 JOSEKI 32 8 JOSEKI 33 7 JOSEKI
34 7 JOSEKI

29 LIST

JOSEKI, CHT, 4—13—82)
SBUF HERE 128 + ;
STRING (N —-—) 32 WORD DUP C@ 1+ SBUF SWAP MOVE

0 DO 32 WORD DROP LOOP HERE C@ SBUF C@ +
HERE DUP 1+ SWAP C@ SBUF DUP C@ 1+ + SWAP MOVE

SBUF C! ;
S@ (N BLOCK ———) >IN 2@ >R >R 0 >IN 21

STRING R> R> >IN 21 ;
S. SBUF COUNT TYPE ;
DELAY 30000 0 DO LOOP ; : DELAY DELAY DELAY ;
J. SBUF 1+ SBUF C@ OVER + SWAP 00 2 HERE Cl 32 HERE 3 + C!

I HERE 1+ 2 MOVE I 2 AND IF WHITE ELSE BLACK THEN
HERE NUMBER PLACE DELAY 2 +LOOP ;

JOSEKI (BLOCK N ---) 1+ 1 DO GOBASE CLRMAP BOARD DELAY
I OVER S@ J. LOOP DECIMAL ;

49

GOMUKO

Gomuko is a glorified tic—tac—toe game played on a 19x19
GO game board. The first player having 5 of his stones con
nected in a straight line, vertical,horizontal, or diagonal,
wins. The rule is much simpler than that of GO. It is much
easier to play. It is one of the most popular games among
oriental children.

I use a weighting scheme to evaluate the importance of a
specific location. It is based on the number of stones of the
same color in a line of five positions about the location to be
evaluated. The weights in the N—S, E—W, NE—SW, and NW—SE
directions are grouped together to decide the priority of next
move.

BOARD AND STONES

COLOR, WHITE, BLACK Color codes of the stones.
MAP An array to store the placements of stones.
WEIGHT A variable to weight the best move.
ICOLOR Temporary storage of the color of the current stone.
?STONE Return the color of the stone.
?OUT Return a true flag if the stone is outside the board.
WT, BK, DOT Print a white, black, or a blank stone.
HOME Move the cursor to upper left corner.
SHOW Given the color and position, print a stone on CRT.
>XY Change the stone position to x,y coordinates.
XY> Change the stone x,y coordinates to stone position.
XY@ Fetch the stone color from its x,y coordinates.

DISPLAY AND WINDOW

INDEX Print the column numbers on top of the board.
BOARD Print the board with stones stored in MAP.
PLACE Store a color code into a MAP location.
GOBASE Set the base to 19 for stone position I/O.
CLRMAP Clear the MAP array to all zero.

WINDOW Calculate the weight function of the 5 stone configu
ration. Positions of the stones are on the stack
with a zero on the top. The weight is equal to the
number of stones of the same color in this configu
ration. If stones of both colors are detected, the
weight is zero.

50

210 LIST

211 LIST

GOMUKO, STONE & BOARD, 12—4—81, CHT) EMPTY
VARIABLE COLOR 1 CONSTANT BLACK
2 CONSTANT WHITE 3 CONSTANT 3 VARIABLE MAP 360 ALLOT
VARIABLE WEIGHT VARIABLE !COLOR

?STONE (N ——— CODE) MAP + C@ ;
?OUT (N ——— F) DUP 0< SWAP 18 > OR ; HEX
WT 20 EMIT 4F EMIT ; : BK 20 EMIT 40 EMIT ;
DOT 20 EMIT 2E EMIT ;
HOME lB EMIT 59 EMIT 20 EMIT 20 EMIT ;
SHOW (CODE X Y -—-) lB EMIT 59 EMIT 21 + EMIT

2* 34 + EMIT ?DUP IF BLACK = IF BK ELSE WT THEN
ELSE DOT THEN ; DECIMAL

>XY (N ——— X Y) 19 /MOD ;
CODE XY> 2 S) S) ADD S) ASL 2 S) S) ADD S) ASL

S) ASL S) ASL S) S)+ ADD NEXT
XY@ C X Y -—— CODE) XY> ?STONE ;

212 LIST

DISPLAY AND WINDOW, CHT, 12—4—81)
INDEX 20 SPACES 19 0 DO I 2 U.R LOOP ;
BOARD HOME INDEX 361 0 DO

I 19 /MOD SWAP 0= IF CR 20 U.R ELSE DROP THEN
I ?STONE 3 AND DUP 0= IF DOT DROP
ELSE BLACK = IF BK ELSE WT THEN THEN LOOP ;

PLACE C CODE N -——) 2DUP >XY SHOW MAP + C! ;
GOBASE 19 BASE ! ;
CLRMAP MAP 362 ERASE ;

PUT SWAP DO COLOR @ I PLACE LOOP ;

WINDOW (Ni N2 N3 N4 N5 0 ——— WEIGHT)
0 5 0 DO ROT ?STONE ?DUP IF OR SWAP 1+ SWAP
THEN LOOP 3 = IF DROP 0 THEN ;

51

WEIGHT ANALYSIS

XY>> From the x,y data, return the map position. If the
x,y coordinate is outside the board, return 361.

EVAL If the configuration of the 5 positions specified
on stack has a weight larger than that was in
WEIGHT, put the new weight in WEIGHT.

NS Analyze the weight of the 5 stones in the NS
direction from the stone coordinates on stack.

EW Analyze the EW direction.
STOPPER Put a 3 in the 361’th MAP positior. Illegal code.

NE, NW DIRECTIONS

NE Analyze the NE direction.
NW Analyze the NW direction.

?XY If x,y is within range, push true one top of them.
Otherwise, leave only false.

3DUP Duplicate the topmost three items on the stack.

WEFFECT AND BEFFECT

WHITE—MOVE Temporary stoarge for the last white stone.
BLACK—MOVE Temporary storage for the last block stone.
?END Look around position N. If there are 5 stones in

a continuous line, return a true flag to indicate
the end of game.

WEFFECT If the last white stone completes a line of white
stones, accept defect.

BEFFECT If the position on stack completes a line of black
stones, the computer wins the game.

ORDER Temporary storage for the weight factors.
RECORD Storage of priority codes derived from ORDERed data.

Print the first three items in RECORD, showing the
moves of the highest priorities.

LEVEL A variable holding the dimension of search area.
52

213 LIST

NS, EW, NE, NW, CHT, 12—4—81
XY>> (X Y --— N, IF OUT OF RANGE, 361

OVER ?OUT OVER ?OUT OR IF 2DROP 361 ELSE XY> THEN ;
:EVAL(N1N2N3N4N5X———)

DROP 0 WINDOW WEIGHT @ MAX WEIGHT I ;
: NS (X Y ——— WEIGHT) 0 WEIGHT I

DUP1+15MIN SWAP4—OMAX DO DUPI5+I
DO DUP I XY>> SWAP LOOP EVAL LOOP DROP ;

EW (X Y --- WEIGHT) 0 WEIGHT 1
OVER1+15MIN ROT4—OMAX DO DUPI5+I
DO I OVER XY>> SWAP LOOP EVAL LOOP DROP ;

STOPPER 3 MAP 361 + C! ;
STOPPER

214 LIST

NE, NW, CHT, 12—4—81)
: NE (X Y ——- WEIGHT) 0 WEIGHT I

4 — SWAP 4 + SWAP 5 0 DO 2DUP 5 0 DO
2DUP XY>> ROT 1- ROT 1+ LOOP DROP EVAL
1+ SWAP 1- SWAP LOOP 2DROP ;

NW (X Y ——— WEIGHT) 0 WEIGHT I
4 - SWAP 4 - SWAP 5 0 DO 2DUP 5 0 DO

2DUP XY>> ROT 1+ ROT 1+ LOOP DROP EVAL
1+ SWAP 1+ SWAP LOOP 2DROP ;

?XY (XY-——XY1,OROIFOUTOFRANGE)
OVER ?OUT OVER ?OUT OR IF 2DROP 0 ELSE 1 THEN ;

3DUP DUP 2OVER ROT

215 LIST

WEFFECT, CHT, 4—8—82)
VARIABLE WHITE-MOVE VARIABLE BLACK-MOVE

?END (N -—-) >XY 2DUP 2DUP 2DUP NS WEIGHT @ >R
EW WEIGHT @ >R NE WEIGHT @ >R NW WEIGHT @
B> MAX R> MAX B> MAX 5 =

WEFFECT WHITE—MOVE @ ?END
ABORT” YOU WIN!!! “ ;

BEFFECT (N ——-) ?END ABORT” YOU’VE LOST. “ ;
VARIABLE ORDER 6 ALLOT VARIABLE RECORD 8 ALLOT

.R HOME RECORD DUP ? 2+ DUP ? 2+ ? ;

VARIABLE LEVEL 5 LEVEL I

53

PRIORITY

<SWAP Swap the two numbers stored at the address.
PRIORITY Order the data stored in ORDER and compress its

contents to a 16 bit value representing priority.
EXAM Evaluate the surroundings of the given position

and store the weight values in ORDER.
IPRIORITY Evaluate the priority value of the given position.

If this value is greater than that at the beginning
of RECORD, make it the first RECORD and pushes the
ones in RECORD down.

PICK Verify the stone position before calling IPRIORITY.
SCAN Scan a vertical line of points and update RECORD

accordingly.

MAIN GOMUKO LOOP

SCANS Scan a square region whose dimension is determined
by LEVEL and store the moves of the highest
priority into RECORD.

?MOVE Ask user input of the next move. Check range,
occupancy, etc., and display the move on board.

RESUME The main game playing loop.
MAIN Entry to the game with initiation.

54

216 LIST

217 LIST

DUP 2@ 2DUP >
ELSE 2DROP DROP THEN

ELSE .“ OCCUPIED.” DROP 0 THEN

WEFFECT

PLACE 0 END ;

218 LIST

BEST-MOVE, CHT, 4-8-82)
<SWAP (ADDR

IF SWAP ROT 21
PRIORITY (--- VALUE

6 0 DO 6 0 DO ORDER I + <SWAP 2 +LOOP 2 +LOOP
0801)05* ORDERI+@ +2+LOOP;

EXAM (X Y ———) 2DUP NS WEIGHT @ ORDER 1
2DUP EW WEIGHT @ ORDER 2+ 1 2DUP NE WEIGHT @ ORDER

4 + I NW WEIGHT @ ORDER 6 + I ;
!PRIORITY (X Y --—) 2DUP EXAM PRIORITY DUP RECORD @ >

IF RECORD I RECORD 2+ 21 .R ELSE 2DROP DROP THEN ;
PICK 2DUP XY>> ?STONE 0= IF IPRIORITY ELSE 2DROP THEN ;
SCAN C X Y I ----) DUP 1+ OVER MINUS DO

3DUP - SWAP I + SWAP PICK
3DUP ROT + SWAP I + PICK 3DUP + SWAP I - SWAP PICK

3DUP MINUS ROT + SWAP I - PICK LOOP 2DROP DROP ;

?MOVE, RESUME, MAIN, CHT, 10—29—81)
211 LOAD 212 LOAD 213 LOAD 214 LOAD 215 LOAD 216 LOAD

EOL 27 EMIT 75 EMIT ;
SCANS (XY -—-) >XY LEVEL @ 1 DO 2DUP I SCAN LOOP ;
?MOVE BEGIN HOME •“ YOUR MOVE: “

0 >IN I SO @ 80 EXPECT
32 WORD NUMBER DUP . DUP 0< OVER 360 > OR
IF .“ RANGE? DROP 0 ELSE DUP ?STONE 3 AND 0=
IF DUP WHITE-MOVE I
WHITE SWAP PLACE 1
THEN END ;

RESUME PAGE BOARD BEGIN ?MOVE
RECORD 6 ERASE WHITE-MOVE @ SCANS
BLACK RECORD 2+ 2@ XY> DUP BEFFECT

MAIN GOBASE CLRMAP RESUME ;

55

