interpretation stack item, may be adequately described by the
lates only with the return stack, because IP changes while the

return stack diagram.
programmer's code executes, and writing to IP will result in

an immediate control transfer. On the other hand, this does

A. 01.2.2.2 Stored data notation
not make a restriction: when we call an auxiliary procedure,

A.01.3 Additional usage requirements
the return stack becomes what the interpretation stack was.

A.01.3.1 Data types
Any changes that have to be done with the interpretation

stack, the auxiliary procedure does with the return stack.

The data type cp denotes an unaligned code pointer (ucp)
When the procedure exits, the interpretation stack becomes

for Classes 1‑4, and an aligned code pointer (acp) for Class 5,
what the return stack was.

because unaligned code pointers cannot be represented in

I

the return stack representation on systems of Class 5.

The rule of thumb for writing code that changes the inter‑ i

pretation stack is: write code that does with the return stack

The data types acp and ucp have two representations: the

what must be done with the interpretation stack; put this

data stack one (acp‑s and ucp‑s, correspondingly) and the re‑

code into an auxiliary procedure. This procedure will do the

turn stack one (acp‑r and ucp‑r). The symbol acp denotes acp‑s

required changes with the interpretation stack.

on the data stack diagrams and acp‑r on the return stack dia​

grams. This approach has been chosen because acp‑s and acp‑r

A. 01.3.5 Environmental queries

(ucp‑s and ucp‑r) are logically the same value.
A.01.4 Additional documentation requirements

A.01.4.7 System documentation

A.01.3.2 Data type relationships
A. 01.4. 1.1 Implementation‑defined options

For Class 1,
A.01.4.2 Program documentation

acp = a‑addr => cp = ucp = addr.

A program written for a standard system with environmen‑ I

tal restrictions can run on a standard system. A standard sys​

For Class 2, the return stack representation of code pointers
tem provides all of the functionality of the system with envi​

is different from the data stack representation.
ronmental restrictions, plus some additional functionality.

acp‑s = a‑addr => cp‑s = ucp‑s = addr,

acp‑r => cp‑r = ucp‑r => x.

A program written for an unstandard system cannot run

on a standard system. The functionality of a standard system

For Class 3, the code pointers are not necessarily data memory
is just different from the functionality of the unstandard sys​

addresses.
tem for which the program is written.

acp‑s => cp‑s = ucp‑s => u,

acp‑r => cp‑r = ucp‑r => x.

For example, if the system does not implement the word

/C@ , it is an environmental restriction. If the system allows I

For Class 4, the code pointers are not necessarily one‑cell wide.
in‑line literal data only within the first 32K of code memory,

acp‑s => cp‑s = ucp‑s => i*x,
it is an environmental restriction. A program aware of such

acp‑r => cp‑r = ucp‑r.
peculiarities still can run on a standard system. But if the

value returned by RR@ points to the called compiled token

A system of Class 5 is a system of Class 4 with the environ‑
instead of the next compiled token, the system is unstandard,

mental restriction that unaligned code pointers cannot be
and a program aware of this peculiarity cannot run on a stan​

converted to the return stack representation. This restriction
dard system,

affects all words that accept or return the data type cp.

cp‑s = acp‑s => ucp‑s => i*x,
A. 01. 5 Compliance and labeling

cp‑r = acp‑r => ucp‑r.
A.01.5.1 ANS Forth systems

A. 01.5.2 ANS Forth programs

The symbols cp‑s and cp‑r above denote cp in the data stack
A. 01.6 Glossary

and return stack representations correspondingly.
A.01.6.1 The Open Interpreter words

A. 01.3.3 Threaded code memory addresses
A.01.6.1.0450

"colon"
01

The standard does not require that the size (in bits) of one

name Execution: (i*,x ‑‑ 1*x

1: k *x cpl I*x acp3

code memory address unit is not greater than the size of a

character, but it is possible that systems on which it is not
1)

true will not be able to implement the Open Interpreter In‑
The initiation semantics of name has the interpretation stack

Line Data Access word set in a reasonably efficient way.
effect

(I : cpl ‑‑ cpl acp2

A. 01.3.4 The executable code and the code interpreter
The rest of execution semantics of name has the interpreta​

tion stack effect

The key to understanding the return address manipula‑

(1: k*x cpl acp2 ‑‑ I*x acp3

tions is a dual view on the interpreter stack. The threaded
thus giving

code interpreter considers the return stack and the interpre‑

1: k *x cp 1 ‑‑ I *x acp3

tation pointer (IP) as a single stack. The programmer manipu​

Forth Dimensions XXI.1,2

41

2)

A.OI.6.3.???? TOKEN,
"token‑comma" 01‑CODE

cpl is not necessarily aligned because the word 01.6.1.????

RUSH enables one to start execution of a colon definition with

The difference between 01.6.3.???? TOKEN, and 6,2,0945

an unaligned cpl. But if name is invoked by the threaded code
COMPILE, is that COMPILE, is allowed to do optimizations. If

interpreter, cpl just cannot be unaligned.
some word, say TUCK, is compiled with TOKEN, , the resulting

compiled token is guaranteed to have the size of 1 TOKENS

3)

and be decompiled (e.g,, with the word TOKEN>) as TUCK, while

If name does not do return stack manipulations, its interpre‑
if the same word is compiled with COMPILE, , the compiled

tation stack effect
token may be of some different size and decompile, for ex​

(1: acpl ‑‑ acpl
ample, as swAP OVER, or may be non‑decompileable.

is a "sum" of the interpretation stack effects of:

name initiation
A.01.6.3.???? TOKEN>
"token‑from"
01‑CODE

I : acpl ‑‑ acp1 acp2
A.01.6.3.???? TOKEN+
"token‑plus"
01‑CODE

name body (IP changes while the body is being interpreted)

The word TOKEN+ is not necessarily equivalent to the

I : acpl acp2 ‑‑ acpl acp4),

and EXIT (or run‑time semantics of 01.6.1.0460
phrase 1 TOKENS /xSWAP /+. If the code memory address at

I : acpl acp4 ‑‑ acpl
the stack top points to a token compiled with TOKEN,, they i

are equivalent. But if the code memory address at the stack

top points to a token compiled with COMPILE_ the word

A.01.6.1.???? RUSH
01

TOKEN+ is allowed to add the size of that token instead of

The word RUSH allows to get rid of an extraneous return adding the default size of a token.

I
stack element. If the word x does return stack manipulations,

then the interpretation stack elements are arguments to it.
A.01.6.4 The Open Interpreter threaded code access

Execution of X from inside an auxiliary definition is different
extension words

from execution of X without an auxiliary definition because
A.01.6.5 The Open Interpreter in‑line data access words

one more return address makes the difference. The word RUSH

allows an auxiliary definition to call X as if X was called in
A.01.6.5.???? /@
slash‑fetch" 01‑INLINE

place of the auxiliary definition.
If return addresses are one‑cell wide and code memory is data 1

memory, and if alignment requirements for compiled tokens

A.01.6.2 The open interpreter extension words
and data memory cells are different (that is, aligned code

pointers are not aligned addresses), the system can imple‑

~ A.01.6.2.???? RP@
"r‑p‑fetch"
OI‑EXT
ment only Class 3.

el

I

A.01.6.2.???? RP!
r‑p‑store"
01‑EXT

I

A.01.6.5.???? /+
"slash‑plus"OI‑INLINE

The purpose of these words is to provide non‑local exits
A.01.6.5.???? /ALLOT
"slash‑allot"
01‑INLINE

(which is required, for example, for a Prolog‑like cut statement). A.01.6.5.???? /GET
"slash‑get"
01‑INLINE

These words may be found on most (if not all) Forth systems. A.OI.6.5.???? /PUT
"slash‑put"
01‑INLINE

The value x used by these words is traditionally called "re‑

Code memory address units may have different size than

turn stack pointer".

data memory address units, and the phrase I CHARS /ALLOT

1 CHARS /ALLOT may give different results than the phrase

01.6.2.???? R‑SAVE‑SYS r‑save‑sys"
01‑EXT
2 CHARS /ALLOT.

An implementation may keep data that control nesting

structures in registers. For example, it may keep in registers

(The first phrase is guaranteed to reserve at least two code

do‑loop parameters (count, limit) and the locals frame pointer
memory address units; on a Class 5 system, the second phrase

may reserve only one code memory address unit, this hap​

(if not locals themselves). Therefore, a program that imple‑

ments non‑local exits using RP! shall save such information
pens if one code memory address unit is large enough to hold 1

using R‑sAvE‑sys before obtaining the return stack pointer
two characters.)

with RP@ and shall restore this information using R‑RESTORE‑

i

SYS after changing the return stack pointer with RP!.

Since the words /ALLOT and /+ may perform alignment

on a code memory address unit boundary, the data elements

01‑6.3 The Open Interpreter threadedcode access words
in code memory must be accessed in the same way as they

i

have been allocated.

There is a wide class of applications that do not need dy‑

I

namic code generation or run‑time patching of generated
A.01.6.6 The Open Interpreter in‑line data access extension

code. Therefore, it may be quite reasonable to introduce en‑
words

I vironmental restrictions on the use of words that write to

code space, for example, requiring that these words are not

These words are meaningful only on Class 4 and Class 5

used to patch finished definitions. Such system shall be la‑
systems. On a Class 5 system, unaligned code pointers can​

beled as "Providing the Open Interpreter threaded code ac‑
not be placed onto the return stack, and these are the only

cess word set with environmental restrictions", and the re‑
words that can do something with an unaligned code pointer.

<end ordocument>

strictions shall be documented.

42

Forth Dimensions XXI.1,2

