simple class to a complicated class, we have easy and obvious rules for filling out the data of a complicated class. Examples would include casting an integer to a real or a real to a com​plex. Notice, however, that our simple class is not a base class to our more complicated class. For example, a complex num​ber is not just a real with an extra field (the imaginary com​ponent) tacked on. A complex number has all of its arith​metic operations redefined. Assuming that these are virtual functions in the real number class, all of them would have to be rewritten. This kind of wholesale redefinition is not in the spirit of inheritance since nothing is being inherited. This is a good example of polymorphism, since both classes have member functions with the same names. It is not an example of inheritance, however.

Unrestrained type casting can be seen to be useful for a fairly narrow range of problems. It is useful when one class is a superset of the other class (complex numbers contain all real numbers) but does not inherit anything from this sub​set. Unrestrained type casting should not be used when the superset inherits functionality from the subset. ocopy will abort in this case. Users of OOOP are encouraged to work within the constraints of ocopy and to not bypass it. Let re​strained type casting be the hallmark of OOOP programming! To a large extent, OOOP is being put into the public domain as an experiment to see if restrained type casting will work in the real world, Try writing large programs using OOOR Is it ever necessary to cast from base classes to derived classes? When is the is A function ever needed? The author of OOOP would like some feedback on these questions.

Uniform Access ‑ better than Eiffel


C++ programmers know that they should not declare data

fields as being public because this makes it difficult to upgrade

the processing of the data in derived classes. Given a data field

X, they will generally make it private and then provide public

functions called GET X and PUT x which fetch a datum and

store a datum respectively. This really shows up what a weak

language C++ is. Normally the assignment statement (=) is used

for storing data into a variable. Now, however, we have a func​

tion (PUT_X) doing it by wrapping its parenthesis around the

expression that otherwise would have stood alone on the right

hand side of the assignment. Our expressions are also filled

with GET X function calls, each with a set of empty parenthe​

sis. Our C++ assignments now have more parenthesis then LISP

statements, and none of these parenthesis provide any infor​

mation at all! We also have the characters "GET ‑ " prefixed to

all of our field names in the expression. This isn't providing

the reader with any information either. These GET ‑ x and PUT‑X

functions are syntactical abominations ‑ one can hardly imag​

ine a more thorough way to clutter up one's source code. Not

only is the source code cluttered, but the object code suffers as

well. Function calls of member functions are big and slow com​

pared to direct access of data fields. Even the best optimizing

compiler is going to choke on all of these GET_x and PUT‑X

function calls,

Let us turn away from this madness and read what Bertrand Meyer, the inventor of Eiffel, has to say [4]:

An important property applies to feature calls written in dot notation and used as expressions: the notation is exactly the same for a Call involving a [member) function with no arguments and one involving an attribute [data field]. So the

expression

P1.AGE

where entity PI is of type PERSON, is applicable both if the feature AGE of class PERSON is an attribute or if it is a function.

If AGE is an attribute, every instance of PERSON has a field which gives the value of AGE for the instance. If AGE is a function, that value is obtained, when requested, through

some computation, presumably of the difference between

the current date and a "birth date" field.

For a client containing the above call, however, this makes no difference.

This property of untform access facilitates smooth evolution of software projects by protecting classes from internal implementation changes in their suppliers.

Uniform Access allows us to get rid of all Of Our GET x func​tions. We can make our data fields public and use Fhem in expressions. If we ever need to "smarten up" these features (such as with the calculated age in Meyer's example), we can rewrite them as functions. All of our code which uses these features can remain unchanged because the syntax for calling a member function or for accessing a data field is the same.

In C++, we couldn't upgrade a data field to a member func​tion because data fields use a different syntax than member functions (functions require parenthesis) and so every refer​ence to that feature would need to be located in a text search and changed. This text search could span dozens of files. If polymorphism is in use, a simple text pattern‑matching search is going to find a lot references that don't need to be changed. The user has to visually inspect each text search hit to deter​mine if it is code that needs to be changed. Massive text search and replace done on source code is an invitation to disaster. The avoidance of this is what prompted the C++ program​mers to use the GET ‑ x technique which, frankly, is just an invitation to a different disaster. C++ is a flexible language in regards to the problem of upgrading data fields to member functions. You will hang yourself, however, you have a choice of which rope to use.

Bertrand Meyer is clearly on the right track with his Uni​form Access. However, he hasn't done anything about the need for PUT x functions. Eiffel doesn't allow function calls on the left hand side of the assignment. Nor does C++ or any other such language. Can OOOP do this? Yes, it can! Unfor​tunately, the author of OOOP can't take credit for this ‑ Forth has had true Uniform Access since the day that it was in​vented. Leo Brodie [7] has discussed the concept, although he didn't call it Uniform Access (his example of counting the red and green apples).

Any Forth variable can be thought of as a word that provides an address where some data can be fetched from or stored to. It is very possible to write a colon word which similarly provides an address. Both variables and colon words are called with the same syntax (just a reference to their name), so it is possible to rewrite a variable as a colon word. All code that accesses the variable, whether for storing to or fetching from, will now ac​cess the colon word without having to be modified.

Forth has always had true Uniform Access, but a lot of Forth programmers are unaware of it. Only now, with the advent of object‑oriented programming, has it become im​portant. The programmer can define a data field in his class

68

Forth Dimensions XXI.1,2

