[image: image1.png]Figure Three. Write-one time slot

€ tsiot )i(—— trec —>|
VeuLLup Y — I) 5 X
VpuLLup MIN \
ik \ DS1996
ViL Max SAMPLING WINDOW
ov ) w—4 h\
<€tow1 P
{OD: 2 us)
15 s i (OD:6 pis)
< 60us —>
RESISTOR Regular Speed Overdrive Speed
MASTER 60 us s tgor <120 ps 6us sty <16 us
Tus stow <15ps Tusstom <2us
TUS S teee <0 TUS St <
Figure Four. Write-zero time slot
trec
< tsior > | o
VeuLLue €
VeuLLup MIN “ 22\
VIH MIN \ DS1996
VL max SAMPLING WINDOW
oV \ )Y
<€ 15 usPp,
(0D:2 us) (0D:6 )
6 us
) Bus >
€ tlowo —>
Regular Speed Overdrive Speed
60 US < tiowo < taor < 120 us 6 S = tiowo < tuar < 16 s
TUS < e <@ Tus sty <





mulators, A and B, and these are indicated by using . A or . B respectively.

Words are defined by the bracketing Hc: and ; Hc defin​ing words, which basically perform the same functions as : and ; in Forth, or CODE and END‑CODE in Forth assemblers. The assembly address of a FIC: name is left on the stack when the name is invoked. For subroutines, we have also de​veloped the defining words SUB: and ; SUB which have the following characteristics:

; SUB compiles an RTS, instruction before doing the "end​definition" work of ; Hc, and SUB: makes a header similar to HC: with the additional DOES> property of compiling a JSR to the name's address.

This means that a word defined by SUB: can be invoked simply by its name. Le., it does not need to be invoked by saying NAME JSR, which is what HC: names require. This has the net effect of making the code look very much like high​level Forth. For example, if we have SUB: routines like:

SUB: OVER
code instructions
;SUB

SUB: SWAP
code instructions
;SUB

SUB: +
code instructions 
;SUB

51

... we can simply write, in a subsequent definition:

SUB: NEW‑WORD
SWAP OVER + (etc.) 
SUB

In fact, the code becomes almost simultaneous Forth and assembler, in that it's possible to have a set of statements that look like Forth, and then have opcodes one after another as in assembler. For example, at the end of the word MAKE ‑ U D P, we have:

CRC16 LDB, FF # B EOR, iBCRC LDA, FF # A EOR, PSHD SWAP ! "UDPBUFF" SWAP OVER C@ "X' + ;SUB

The first two lines are almost pure assembly, but the last is a lot like Forth.

2.2 The iButton Code‑The Bits

With those preliminaries out of the way, we can now pro​ceed to examine the code in detail, After the Forth kernel and the two CRC lookup tables, the iB code proper starts. First of all, we name the port line (an address, and a bit mask) and its associated Direction Register line (again, an address

Forth Dimensions XXI.1,2

