dom page access), and the others are used as a set to write data to a target page in memory via the scratchpad.

4.1 Moving Data to the Scratchpad‑SXMOVE

We start with the word which moves data to the scratchpad (which has been shortened to SX in word names), namely SXMOVE, which uses control data on the stack‑the address in the CPU's memory in which the data is stored, the target ill address, and finally the count (which must be less than or equal to 32 bytes). We do iBSKI P, then send the command byte $OF ("Write Scratchpad") followed by the two bytes of the target address (the 16‑bit address split into two separate bytes) and the count, then the actual data is sent byte‑bybyte. Note that all three numbers are left on the stack for subsequent words to check data against, and that the ill does not need to know the source address.

4,2 Checking the Scratchpad‑5X0Kand SXCHK

Next is the code to check the status of the move. Firstly, we use RDSX to get status information from the iB. After iBSKI P, RDSX sends the command byte $AA ("Read Scratchpad"), then reads back the next three bytes from the ill; these bytes represent the target address (as two separate bytes on the stack, just as we sent them), and the EIS status register.

The main scratchpad‑checking word is SXCHK. RDSX is run to get the SXMOVE result data, then the two target address words are checked against the target address still on the stack from sending the data, and then the EIS status byte is checked; if any of the uppermost three bits of EIS are set, there has been an error. Hence we compare to $20‑if the number is between $00 and $ 1 F, it is okay. If any errors are encountered during these checks, the carry flag is set (in which case we do

j
iBRST to clear the ill's communication and leave a set carry to indicate the error), and we proceed only in the case of a clear carry.

If things are all okay, we proceed to check every byte read back from the scratchpad against the bytes in memory from whence they were moved (using the source address on the very bottom of the stack). Again, any error causes carry to be set, which this time is left as the return code from the entire word.

We check the EIS byte in the word sxoK‑similar to SXCHK, if any of the uppermost three bits of EIS are set, there has been an error, so we again compare EIS to $20 (after dropping the address bytes).

4.3 Copying the scratchpad‑SXCOPY

The last word of this section is the scratchpad copy command, which gives the ill the all‑clear to write what is currently in thescratchpad to the target address. Afterthe iBSKIP we send the command byte $55 ("Copy Scratchpad"), and copies of the target address (again in separate bytes). Finally, we can drop the six numbers we have accumulated on the stack!

4.4 The Universal Data Packet (UDP).

To complete this section, we will look at the Universal Data Packet format recommended by Dallas Seminconductor. The UDP format is a count byte at the start, the data and then a two‑byte checksum (CRC). This means we can get a maximum of 29 net bytes in a 32‑byte memory page. The checksum is calculated from lookup tables provided by Dallas Semiconductor, as is the algorithm to perform the com

putation on bytes. There are two lookup tables, one for the

52

upper part of the CRC, and one for the lower. The algorithm for computation is:

Input byte X0Red with lower CRC, and the result of this is used as an index into CRC16HI to fetch the new high byte of the CRC. The result of the XOR is then used as the index into CRC1 6Lo, and the fetched byte is X0Red with the previous value of the higher CRC and the result is the new value of the lower byte of the CRC. At the end of the process, we invert all the bits by X0Ring with ‑1. This algorithm is coded in the word UPCRC.

Using UDPCRC, we develop the word MAKE ‑UDP, which takes a source address, ill target address (which is actually not used in MAKE‑UDP), and the count. The outputs are a new source address (the actual UDPBUFFer), the unaltered iB target address, and the original count incremented by 3. We have created a buffer UDPBUFF which is 32 bytes long as a staging area for this process. Firstly, we store the original count at UDPBUFF, and then CMOVE the bytes from the input address to UDPBUFFer+1. The last bit of the process is to calculate the CRC, by clearing our CRC accumulation variables, and then going through the source data and running UPCRC on each fetched byte. The result is stored in the UDPBUFF at the end of the data.

5. MMOVE and MMOVE>.

So we can now approach the "final" words, which we have named iBMOVE (to move data to the ill) and iBMOVE> (to move data back from the ill to the CPU's memory). To start with, we develop iBMOVE? and iBMOVE>?, which attempt a read/write and leave the carry flag as the result‑a set carry (CS) means the attempt was okay. If these words fail, the main words (iBMOVE and iBMOVE>) administer a set of retries.

iBMOVE? uses a source address, the ill target address, and a count. AMOVE? runs SXMOVE and then SXCHK. If all is okay, sxCOPY is run, with a subsequent SXOK to check that the move itself generated no errors. If all is not ok, the arguments are dropped, and a clear carry is left to indicate a fault.

iBMOVE>? again uses a destination address, the ill source address, and a count. iBIMOVE>? seeds the CRC variables with the ill page address, which is calculated by dividing the actual address by 32. We then run iBSKI P followed by the command byte $FO ("Read Memory"). We then send the target address (again as two separate bytes), and then a loop of reading the data from the ill, and we once again use the UDPBUFF as in interstitial area to read the data‑and we calculate the CRC using UDPCRC as we read each byte.

Seeding the CRC variables with the ill page address guarantees that the final result is $11001 (after CRCing the CRC in the iBpage itselfl), so this check is run to leave the final result in the carry flag.

Finally, AMOVE uses the same arguments as iBMOVE?, and iBMOVE> uses the same arguments as iBMOVE>?.

With iBMOVE, we first make the input data into a UDP, set up a counter to count retries (jarrah Computers use 20), and then begin with trials of iBM0VE?. If iBMOVE? is successful, we are done; but if it is not, we wait for about 2 Rsecs (to allow for ill recovery, in the case of a fault), decrement our counter, and try again. If we do not get a good write in our retries number of attempts, we must indicate an Error! to the system.

With iBMOVE>, we first increment the count by three (we know the ill UDP will be that much larger than the data bytes

Forth Dimensions

XXI.1,2

