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Forth Hardware 
This issue contains the top three articles 

selected firom those we received in re- 
sponse to our call for articles about Forth 
hardware. It was a successful experiment, 
in my jaded editorial eyes, because it 
brought us a number of very good manu- 
scripts (only three of which are presented in 
this issue-we will publish others, with 
their authors' permission, in upcoming 
issues). There was an interesting split deci- 
sion in the judging, calling for editorial 
arbitration, but Phil Koopman's "Design 
Tradeoffs in Stack Computers" received a 
unanimous vote for first place. Second 
place went to John Hayes for "The SC-32: 
a 32-Bit Forth Engine," while third place 
went to Dr. C.H. Ting's "Phase Angle 
Difference Analyzer." Cash awards will be 
sent to those three authors in recognition of 
their contributions. We are honored and 
pleased to bring you their work. 

Times have changed since Glen Hay- 
don and Chuck Moore closeted themselves 
in Glen's computer-riddled crow's nest, 
densely wire-wrapped boards lying like 
disemboweled mazes atop the gurneys they 
used for workbenches. Chuck left to de- 
velop what would become the NC2000 for 
Novix (a device that will probably be re- 
membered only as the first real Forth chip). 
Well, the hardware bug bit some of the best 
minds in the Forth world, and it bit them 
hard. Perhaps they sensed, as Jack Woehr 
suggested in the last issue, that Forth as we 
have known it all these years is--at its most 
metaphysical roots--an evolving descrip- 
tion of an ultra-efficient microprocessor 
architecture. Or perhaps it was just that 
Forth's way of seducing us into hardware 
intimacy led us to believe we could do 
anything. 

In any case, soon we had a selection of 
interesting devices to tinker with. Indusm- 

ous efforts (some realized and some not) 
sprang out of small shops and universities, 
and there were Zilon's Suuer8 and 
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Rockwell's R65Fll. These acactually be- 
came bread-and-butter hardware for some 
Forth programmers. 

who had 
teamed Kmpman.lr' Soon the 

loft was streaming Out 

ics, and the two of them were selling wire- 
wrap kits and PC boards as the promising 
WISC (i.e., writeable instruction set com- 
puter) CPU/16 and CPUD2. These were 
stack-based devices whose native ~ ~ S ~ T U C -  

tion sets could be changed about as easily as 
a Forth definition, and they blazed right 
along at fine speed. Phil also dove into a 
doctoral program; his r6sumC must have 
left the entrance examiners a bit breathless, 
unless they are accustomed to candidates 
who have already implemented working 
examples of a promising, untried micro- 
processor architecture. Much of his inter- 
esting research has been published as Stack 
Computers, The New Wave. 

The kicker is that the CPUl16 and 132 
drew the attention of Harris Semiconduc- 
tor. Harris negotiated for the rights to de- 
v e l o ~  lhis teehnolog~, and since then have 
invested considerably in its success. They 
incorporated the WISC concepts in their 
standard library and produced the RTX 
4000 the RTX 2000 is 
their Novix successor. 

This string of developments, which 
continues to unfold, offers hope for the 
future employment of Forth programmers: 
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DESIGN TRADEOFFS IN 
STACK COMPUTERS 

A PERSONAL EXPERIENCE 
PHILIP KOOPMAN, JR. - WEXFORD, PENNSYLVANIA 

m 

w e n  I started designing stack  roc- 
essors for WISC ~echnGlogies in i985, 
little had been published about the architec- 
tural requirements of Forth engines. A sub- 
stantial amount of architectural measure- 
ment had been performed on previous 
stack-based processors (in particular the 
Xerox Mesa architecture), but the behavior 
of single-stack processors for executing 
conventional languages is not representa- 
tive of the types of things Forth processors 
do. When I started, all I knew was that Forth 
programs did a lot of subroutine calls, but 
beyond that I was groping in the dark. Here 
I hope to describe some of the history 
behind the development of the WISC and 
32-bit RTX processors in terms of discov- 
eries, blunders, and serendipity. Along the 
way, I will talk about the various require- 
ments for implementing a high-speed Forth 
engine, and will describe the motivations 
underlying the design of Harris' 32-bit 
RTX architecture. 

THE HARDWARE-FRENZY PHASE 
The first phase of my continuing jour- 

ney to stack-computer enlightenment was 
characterized by a frenzy of designing, 
building, debugging, and programming 
Forth hardware. 

The WISC CPU/16 
The WISC CPUl16 was my first stack 

computer design (and, for that matter, my 
first computer design of any type). The 
"WISC" stands for Writable Insmction 
Stack Computer. It was implemented en- 
tirely in 74LSxxx series 'lTL components, 
wire-wrapped on a single IBM-PC plug-in 
board. We produced a printed circuit board 
version once the design was shaken out. 
The design decisions for the CPUl16 were 
made in favor of simple and inexpensive 

prototyping first and foremost. This led to 
the decision to use a microcoded design, 
with RAM chips for a writable control store 
instead of a hardwired design.' A block 
diagram of the CPU/16 is shown in Figure 
One. 

The design had 256 elements for each 
stack, and 256 opcodes with eight possible 
micro-instructions per opcode. Most in- 
structions took three micro-cycles to exe- 
cute, with subroutine calls and returns tying 
up the data bus to the exclusion of other 
operations. Figure Two shows the two in- 
struction types supported: subroutine call 
and opcode. Thus, the importance of 
Forth's subroutine call was incorporated, 
but the rest of the design was dictated pri- 
marily by the constraints of fitting every- 
thing onto a single board while still using 
standard 'ITL components. 

The RISC vs. CISC 
battle was about to 
take a new turn... 

The Novix NC4000 chip had been i n m  
duced shortly before the WISC CPUl16 
was built. A principle difference between 
the two designs (other than the fact that the 
Novix was a single chip compared to the 
CPUJ16 discrete implementation) was that 
the Novix was a hardwired processor, while 
the CPUl16 was microcoded. The simplis- 
tic microcode implementation techniques 
used on the CPUl16 caused it to take an 

1. This decision was perhaps influenced by the faa 
that I did not possess an EPROM programmer, and 
that available programmable logic for use in spthe- 
sizing random logic was very modest in capabili- 
ties-and I didn't have a programmer f a  that either. 
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Figure One. WISC CPUJl6 block 
diagram. 

average of three micro-instructions for 
each opcode (at a cost of three clock 
cycles). At similar clock speeds (which 
translated into similar program memory 
speeds), one would have expected the 
NC4000 to outperform the CPUl16 by a 
factor of three to one. 

But that didn't happen. Instead, the4.77 
MHz CPUl16 was much slower than a 5 
MHz NC4000 on programs that used 
simple operations, but competitive (al- 
though, probably, not quite as fast) on pro- 
grams that used more complex operations. 
This was because complex operations, 
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1 1 1 1 1 1  
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0  

I address 1 
0.b Function 
0-1 5 Subroutine address 

(bits 8-1 5 of the address must not all be 1) 

m F u n c t i o n  
8-1 5 All 1 ,  specifying an operation instruction 

0-7 Opcode 

Figure Two. CPUI16 instruction formats. 

BifS Function 
23-31 Opcode 
2-22 Address for jump or call (word aligned) 

0-1 Program flow control 
00 Jump 10 Call 
01 Return 11 unused 

I I 

Figure Three. CPUl32 instruction format. 

ctl opcode 

such as double-precision mirth and multi- 
element stack manipulations, were imple- 
mented in microcode in fewer clock cycles 
than the equivalent sequences in NC4000 
assembly language. The execution speed 
for a mix of Forth primitives was just under 
one million typical Forth operations per 
second (including complicated operations 
such as multiply and double-precision 
math in a typical insuuction mix). 

As a result of my CPUl16 experience, I 
think microcoded techniques are inappro- 
priate for a 16-bit Forth processor in most 
cases. Primarily, this isbecausetherequire- 
ments for 32-bit wide microcode cause a 
single~hip implementation to be too large 
to be competitive with a hardwired ap 
proach. Also, the use of a microcoded ap- 
proach does not provide many additional 
benefits when the processor is resaicted to 

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1  
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0  

address 

a 16-bit instruction format. However, the 
experience showed that something inter- 
esting was possible--microcoded ma- 
chines could, perhaps, be competitive with 
hardwired machines with similar func- 
tions. This was because flexibility of opera- 
tion and a high semantic content in each in- 
struction could make up for a lack of raw 
speed. In other words, the RISC vs. CISC 
battle was about to take a new turn in the 
arena of stack computers. 

The Monster132 
WISC Technologies produced a single 

prototype of a 32-bit computer that was 
seen by a very few people at the 1986 
Rochester Forth Conference. In his book 
The Mythical Man-Month (Addison- 
Wesley. 1982), Fred Brooks describes 
what he calls the "second system syn- 

drome." In this syndrome, the designer of a 
system saves up scores of neat ideas that 
can't be implemented in the first system 
because of time and money constraints. 
When the designer gets another crack at a 
similar problem (the second system), all 
these ideas are thrown in, usually with 
disastrous results. 

The Monster132 was my second system. 
The only truly good idea that was included 
was the decision to make it a 32-bit ma- 
chine. Some of the ideas were reasonably 
good, but poorly executed. One idea was 
the inclusion of extra registers around the 
ALU. This eliminated congestion caused 
by having to save and restore the topof- 
stack register when using the ALU for other 
calculations. Another idea was the addition 
of separate hardware to increment subrou- 
tine return addresses independent of the 
ALU. 

The worst ideas had to do with the 
micro-instruction format and the use of 
multiple counters for addressing program 
memory. The 64-bit micro-instructions had 
a large number of interesting features, in- 
cluding the capability to specify a variable 
length for each micro-cycle. None of these 
features turned out to be very useful. The 
complexity of the micro-instruction format 
did result in almost impenetrable micro- 
code that was very difficult to write and 
debug. 

The Monster132 was constructed using 
eight wire-wrappedboards in an S-100card 
cage (but without using the S-100bus in the 
usual manner). The wire-wrapping exer- 
cise itself taught me an immrtant lesson 
about the value of simplicity, and wore out 
my first electric wire-wrap gun.2 The sys- 
tem was eventually operational for a period 
of two weeks, and successfully ran a Forth 
system. The folks who saw it operate at the 
Rochester Forth conference never did ask 
why the attachment cable to the IBM PC 
host was only a foot long. There was an in- 
credible noise problem in the host inter- 
face, and any longer cable wouldn't work 
reliably. 

It became clear that, for a number of 
reasons, my fmt 32-bit design was a flop. 
Fred Brooks, again in The Mythical Man- 
Month, asserts that you should always be 
prepared to "throw one away." So we did. 

2. Based an this experience, I rate battery-powered 
wire-wrap guns at about two miles of wire per gun. 
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Figure Four. WISC CPUP2 block 
diagram. 

The CPUl32 
I began to distill the MonsW2 experi- 

ence, and to decide what formed the true 
essence of an efficient WISC system. The 
CPUl16 had been arbitrarily constrained to 
simplicity, whereas the Monstern2 had 
been allowed to grow almost limitlessly. 
While there were a few good ideas to be 
salvaged, overall my immensely complex 
32-bit design was a waste of good silicon. I 
began to see what I had missed in the realm 
of hardware design, despite my extensive 
experience with FoRh: within limits, 
simpler is better. 

At the same time, I began to combine 
several ideas that had been collecting in the 
back of my mind. One of them was that 
CPU cycle times can be made much faster 
than affordable memory speeds. Another 
was that taking advantage of concurrency 
in operations is a traditional way of speed- 
ing up computers that I had not exploited 
very well in previous designs. The last 
major idea was that, since microcoded 
stack machines only need eight or nine bits 
to specify an opcode, much of my 32-bit 
instruction memory was being wasted as 
unused bits in opcode-type instructions. 

3. I don't ranemberjust how the idea came to me. M y  
best ideas u d y  come during my morning showa. 
Howmr I was not clcctmcuted, so this are probably 
did n d  

0 4 8 12 16 20 24 28 32 36 

STACK BUFFER SIZE 

Figure Five. Return stack spilling overhead vs. stack buffer size. 

The answer to all my collected concerns 
hit like a bolt of lightning one day? There 
were enough bits left over in an opcode in- 
suuction to also hold a large address, so 
why not make every instruction have both 
an opcode and a subroutine call? This had 
the effect of reducing program size, as well 
as providing for simultaneous operation of 
subroutine calls and opcodes. Thus, the 
resulting machine allowed control flow 
(subroutine calls and returns) to proceed in 
parallel with data manipulations (data stack 
operations), allowing two separate opera- 
tions to be accomplished on each instruc- 
tion. In other words, it offered the ideal 
situation for a Forth programmer: subrou- 
tine calls for free. Of course, in order to have 
a complete set of machine operations, a 
subroutine return format was required, 
which also combined an opcode with the 
return operation. 

Not every instruction was a subroutine 
call or return, so there was a need for an 
instruction that incremented the program 
counter as well. In my quest to simplify the 
hardware, I made another discovery: the 
program counter was unnecessary. By us- 
ing a jump instruction format instead of an 
increment-PC instruction format, I could 
have every instruction point to the next 
instruction to be executed (even if it was 
just the next sequential instruction). This 

reused the logic that performs subroutine 
calls, with a modification to suppress the 
push of the return address onto the return 
stack. The instruction format of the CPU/ 
32 is shown in Figure Three. 

Other enhancements to the CPU132, 
based on experiences with the Monstern2 
and the limitations of theCPU116, included 
using a latch between the bus and the ALU 
to facilitate single-cycle exchange of data 
between the DHI register and the Data 
Stack. The microcode format was trimmed 
back to 32 bits, which makes microcode 
simple enough to be easily comprehen- 
sible, and saves a large amount of memory 
space. A block diagram of the CPUP2 is 
shown in Figure Four. 

Another important insight in the design 
of the CPU132 was the balance achieved 
between program memory speed and proc- 
essor speed. RISC processors strive to 
execute one instruction per clock cycle. 
That implies that memory must be cycled 
as quickly as the clock in order to provide 
a steady stream of instructions. In a simple 
and streamlined processor, that means that 

I 
programs must reside in fast memory. ~ Usually, the required memory chips are so 
expensive that even high-end RISC sys- 

1 tems must use them sparingly as cache 
memories. Many Forth applications have 
traditionally been in the areas of real-time 

L 
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control. Many real-time control applica- 
tions cannot afford the unpredictabiiity of 
cache memory. Many others can't afford 
the cost of even a single bank of fast mem- 
ory chips for any pmpose. So, taking ad- 
vantage of the fact that a microcoded ma- 
chine can have a higher instruction seman- 
tic content (i.c., it can accomplish more 
work per instruction), I designed the CPUI 
32 to execute an instruction every two 
microcycles, with each memory bus cycle 
taking two clock cycles. Assuming that 
both microcycles of every instruction are 
well employed, this allows twice the proc- 
essing power for a given memory speed 
than an approach of one instruction per 
clock cycle. 

The CPUB2 was originally built on 
reused S-100 boards from the Monster/32, 
with 74ALSxxx logic and some 74Fxxx 
logic for speedcritical sections. The use of 
"F" logic caused enough noise problems 
that the wire-wrapped version never mn at 
speed, so we produced a printed circuit 
board version before debugging was com- 
pleted. This five-board version eventually 
ran at a 6 MHz microcycle rate, and exe- 
cuted approximately three million Forth 
operations per second. 

The RTX 32P 
ThefinishedCPUL32 wasdemonstrated 

atthe 1987RochesterForthConference. At 
that conference, Harris Semiconductor was 
promoting its RTX 2000 processor, a rede- 
sign of the NC4000. They were intrigued 
by the possibilities for the CPU/32 as a 32- 
bit member of the RTX family. So, in July 
of 1987, I visited Melbourne Florida and 
transferred the schematics of the CPUn2 
into their standard cell design system. In 3 1 
days, the design was entered and verified 
with the help of one Harris engineer? The 
product of this effort was, in January of 
1988, an implementation that was func- 
tionally identical to the three printed circuit 
boards of the CPU132 core ~~r, re- 
d u d  to two chips operating at an 8.3 MHz 
microcycle rate. The two chips were the 
data chip (with the ALU, data stack, and 
half the microcode memory) and the con- 
trol chip (with the memory addressing 
logic, the return stack, and the other half of 
the microcode memory). 

The reason for a twochip set instead of 

4. nat includes the w e & d  I took off to visit Walt 
Dirney World. 

a single-chip processor implementation 
was to allow maximum flexibility with the 
finished system. 2K words of microcode 
memory were included on-chip, since 256 
opcodes seemed to be more than I could 
possibly use? When asked how big the 
stacks should be, Ireplied,"Gee, how much 
will you give me?" So, the chips ended up 
with 512 elements by 32 bits each for data 
and return stacks. This resulted in three 
things: it allowed Harris to make the big- 
gest chip they have ever attempted, it made 
for a poor yield, and it produced chips 
which have logic on one quarter and mem- 
ory in the other thw. But, all these results 
were in keeping with the experimental 
nature of the project. 

THE ANALYSIS PHASE 
After the successful production of the 

CPU/32, I began to define and build a 
commercial version of the architecture for 
inclusion in the RTX product family. This 
exercise involved optimizing the architec- 
ture to fit the design constraints of CMOS 
chip technology as well as evolving the 
architecture to improve performance and 
better address theneedsof themarketplace. 

In the summer of 1987. I foolishly 
agreed to simultaneously refine the archi- 
tecture for Harris and write a book about 
stack computer architecture. I did survive 
the summer, and found that the synergy 
between the two tasks was amazing. The 
book required me to think about measuring 
and describing the essence of stack ma- 
chines. The design task required me to 
think about efficiency and architectural 
refinement. By theendof the summer, I had 
reached a number of conclusions about 
mdeoffs in stack machine design. 

Stack Size 
One of the big unknowns in producing 

the RTX 32P was how big to make the 
stacks. Before, I had been limited either by 
the need to keep chip count low or by 
standard high-speed memory chip sizes. 
On the RTX 32P, I guessed at 512 stackele- 
men&. 

I guessed wrong. Simulationsof several 
Forth programs show that many programs 
never used more than four or five stack 
elements. Of those that used mare stack 
elements, all showed a small variability in 

5. Of anme thi~ munr that  ICY werc completely 
filled with mostly worthlux jmk .Imat i n d -  
ately. 

stack size amss  reasonably large periods 
of time. In order to reduce hardware costs, 
it is advantageous to exploit this behavior 
and reduce on-chip stack sizes to the mini- 
mum possible. 

An interesting line of thought to pursue 
is to assume that on-chip stacks are so 
expensive that they will be smaller than 
required. Also assume that there is some 
mechanism (say,a finite state machine that 
monitors stack overflows and underflows) 
that will copy elements to and from mem- 
ory as required. The question to ask, then, is 
how much does this copying cost in terms 
of program performance degradation? Fig- 
ure Five shows the results of a simulation 
for the return stack on a number of pro- 
grams. The vertical axis indicates the amor- 
tized costs of stack spills in terms of wasted 
memory cycles per instruction executed in 
the course of the program. Notice that this 
axis has a logarithmic scale. The horizontal 
axis specifies the size of the on-chip stack 
buffer. The amazing thing is that, for a stack 
size of 16 elements, the cost is less than one 
percent. For a stack size of 16 to 32 ele- 
ments, the cost reduces to essentially zero. 
Data stack behavia is similar. 

The right answer, then, to how big 
stacks should be is 16 or 32 elements, no 
more. In the case of a multitasking environ- 
ment, it is advantageous to have a parti- 
tioned stack that allocates 16 or 32 stack 
elements for each task in order to eliminate 
context-switching overhead. 

Hardwired vs. Microcoded 
Performance 

With the design of the RTX 32P, the 
hardwired control vs. microcoded control 
issue became ripe for detailed study. The 
RTX 2000 and the RTX 32P represent two 
processors designed to accomplish similar 
tasks using similar technology. One is 
hardwired, the other microcoded. The 
question is, which is faster? 

I collected statistics on instruction exe 
cution tkquency for Forth programs. But, I 
didn't simply gather numbers for the obvi- 
ous primitives such as DUP, +, and SWAP. 
Instead, I took an IBM PC Forth compiler 
that was optimized to the point that any- 
thing worth speeding up was written in 
assembly language. This became my set of 
Forth "primitives"; that is, the basic build- 
ing blocks used by real Forth code in real 
programs. Not surprisingly, these primi- 
tives included many double-prec.sion op 
erations (including '2-type" stack opera- 
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tions), and slow instructions such as multi- 
ply and divide. After I had measured the 
instruction execution frequencies for sev- 
era1 programs, I multiplied the frequency 
times the number of clock cycles required 
for each of the RTX 2000 and RTX 32P 
processors. I assumed that RTX 2000 pro- 
grams were operating on 16-bit data, and 
that RTX 32P programs were operating on 
32-bit data. The result was surprising. 

Despite the fact that most instructions 
on the RTX 2000 execute in a single clock 
cycle and that all instructions on the RTX 
32P execute in two or more clock cycles, 
the RTX 32P required only ten pcXCent 
more clock cycles than the RTX 2000 to do 
the same amount of work. In other words, 
clock-for-clock, the two processors did 
about the same amount of work. Part of the 
reason for the RTX 32P's good perform- 
ance was the fact that its microcoded Op- 
codes mapped well onto the high-level 
Forth operations used in real programs. 
Another part of the reason was that many of 
the subroutine calls counted as instruc- 
tions, but were executed "for free" by the 
RTX 32P when combined with opcodes in 
the same machine instruction. Note that, 
although the program execution speed is 
similar, the RTX 32P accomplishes the 
same amount of work in half the memory 
accesses as the RTX 2000, since it accesses 
memory every two clock cycles. This dif- 
ference allows it to use much slower 
memory for comparable processing 
speeds. 

The result of this comparison is that it is 
not clear that the RISC approach of hard- 
wired instructions and single-clock-cycle 
execution offers a compelling benefit over 
microcoded designs in terms of program 
execution speed for stack machines. This 
means that designing a 32-bit processor 
with hardwired control mav result in 

""VY'Y ..V. "1 -..-I,,.".".. .." ...-.. Y.0 "..... 
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architectural features required to support C 
go a long way towards supporting Ada for 
the military market. So, the RTX family is 
migrating to a position in which C is the 
primary language for many u w - ~ .  Forth 
then becomes the "assembly language" for 
the system, used for optimizing critical 
routines. 

Aside from minor quirks of C (such as 
signed and unsigned characters, requiring 
optional signed byte extension on byte 
fetches), the only important C structure that 
is incompatible with Forth-based stack 
machines is the stack frame. C Wllal'lti~~ 
arsume that anything in the stack frame is 
addressable as a normal memory element. 
Furthermore, C stack frames grow too big 
to fit into any reasonably sized on-chip 
stack buffer. SO, a stack processor must 
have some efficient method of s~ppoIt.ing a 
stack fWtle. At a minimum, this means 
having a dedicated frame pointer on-chip, 
as well as the capability for using frarne- 
pointer-plus-offset addressing. The RTX 
2000 design incorporated a movable User 
Area pointer that can fulfill this require- 
ment (an improvement over the NC4000, 
which had a fixed User Area location). The 
RTX 32P did not have this capability, but 
you can be assured that the commercial 32- 
bit RTX chip will. 

For Forth users, the frame pointer can 
provide unexpected benefits. Many Forth 
programmers have advocated the use of 
local variables of some sort as a way of 
improving code organization and readabil- 
ity. A frame pointer mechanism makes an 
ideal implementation vehicle for a local 
variable stack, as well as providing a clean 
interface between C procedures and Forth 
subroutines. 

Conclusions 
I've described some of the history be- 

hind the sequence of processors leading up 
to the 32-bit RTX chip now in develop- 
ment. Along the way, I've aied to give 
some insight into why the pmessm have 
been designed the way they have, and into 
stack machine design issues in general. 
While the information has ban  presented 
as a personal history, it should provide 
,me idea of the essential elements of &- 
signing stack computers. 

In the real world, design of a good 
architecture is seldom done entirely 
through the sole use of wisdom and knowl- 
edge, and is never done right on the first try. 
Happenstance, and the background and 
education of the designer have much to do 
with the process.  ore important than the 
ability to get it right the first time is the 
ability to recognize mistakes, try new 
ideas, andretain thebest of the old while in- 
corporating the best of the new. 

I would like to take this opportunity to 
the involvement of two 

peoplewithout whom thishistory couldnot 
have taken place. Glen Haydon provided 
insight, encouragement, and financial sup- 
port for the WISC Technologies proces- 
son. Dave Williams has been penonally 
responsible for the acceptance and survival 
of the RTX 32-bit technology at Harris 
Semiconductor. 

too high, and the lack of bits in the instruc- 
tion format to support simultaneous opcode 
and subroutine call execution makes the 
potential payoff too low. 
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C-The Realities of the Marketplace 
Forth is Good. But, Forth doesn't al- 

ways sell. me fact is, c is beMming the 
language of choice in many application 
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FORTH ENGINE 
JOHN HAYES - LAUREL, MARYLAND 

m 

O v e r  a period of several years, a 
group of us at the Johns Hopkins Univer- 
sity Applied Physics Laboratory have de- 
signed a series of microprocessors that 
directly execute the Forth programming 
language. The SC32 is the third in the 
series. 

Interpreted languages have a big ad- 
vantage over compiled languages, in their 
shorter software development cycles and 
their ability to interactively test and debug 
programs. This is especially true with 
Forth, whose simple syntax allows it to be 
extended in application-unique ways. 
Unfortunately, the performance of Forth 
on conventional computers suffers when 
compared to compiled languages because 
of the need for run-time interpretation. 
Forth-oriented processor chips, by treating 
Forth as object code, eliminate run-time 
interpretation. Consequently, interactive 
Forth programs running on the SC32 exe- 
cute just as fast as equivalent compiled 
programs on conventional microproces- 
sors. 

All of the SC32's internal and external 
data paths are 32 bits wide. The chip has an 
external 32-bit address bus and 32-bit data 
bus. 16-bit processors will be useful in 
many applications for years to come. 
However, once the size of a program or its 
data exceeds the memory addressable by a 
16-bit processor, the bank switching and 
segmentation schemes that must be re- 
sorted to hurt system performance. The 
flat, linear address space of a 32-bitproces- 
sor provides the most convenient program- 
ming model for large applications. 

Forth Direct Execution 
The SC32 directly executes the Forth 

programming language. From this descrip- 
tion, you might think that the chip reads in 

Forth source code and executes it. However, 
the reality is less exotic and more subtle. 
Three aspects of the SC32 make it a Forth 
diit-execution engine: elimination of run- 
time interpretation, an instruction set opti- 
mized for Forth, and an internal processor 
data path designed to support Forth stack- 
based programming. Each of these points is 
discussed in the sections that follow. 

Most Forth primitives 
are implemented with 
one instruction. 

Eliminating the Inner Interpreter 
Forth is implemented on traditional 

processors using the virtual machine ap- 
proach shown in Figure One. Because of the 
mismatch between Forth's stack model and 
the native processor, a layer of run-time 
interpretation is necessary. A tiny assembly 
language program called the inner (or ad- 
dress) interpreter is written for the bare 
processor. Forth's primitive stack opera- 
tors, also written in assembly language, are 
implemented in the kernel layer. The top 
layer of aForth system, the interactive outer 
interpreter is written in Forth. The SC32 
processor implements the inner interpreter 
and kernel layers in hardware, eliminating 
run-time interpretation. This means that 
Forth programs running on the SC32 exe- 
cute as fast as equivalent compiled pro- 
grams while retaining Forth's interactive 
environment. 

The inner interpreter in traditional Forth 
systems uses a technique called threaded 
code [Rit80]. Figure Two shows how the 
Forth program: 

: mod /mod drop  ; 

is compiled on an indirect-threaded code 
system. /MOD has been previously defined 
using : (colon). In the body of MOD'S 
definition, /MOD and DROP are repre- 
sented as pointers (threads) to their respec- 
tive definitions. DROP is a primitive and its 
definition is in assembly language. The 
definition of /MOD, another colon defmi- 
tion, consists of threads to its constituents. 

When MOD is executed, the inner inter- 
preter traces through the list of threads, 
nesting down when necessary, until a 
primitive word defmed in assembly lan- 
guage is found. Control is then transferred 
to the primitive. In Forth systems imple- 
mented on traditional processors, 35-50% 
of the system's time is consumed by the 
inner interpreter. 

The SC32 eliminates this run-time 
overhead by eliminating the inner inter- 
preter. Figure Three shows the MOD ex- 
ample compiled for the SC32. Instead of a 
pointer to DROP, the actual object code for 
DROP appears within MOD'S definition. 
The pointer to /MOD is replaced with a 
subroutine call to /MOD. At run time, a list 
of SC32 instructions is traced, instead of a 
list of pointers. The inner interpreter has 
become the fetch-execute cycle of the 
processor. 

Readers familiar with advanced Forth 
implementation techniques will realize 
that the scheme described above is subrou- 
tine threaded with in-line code expansion. 
Theoretically, nothing precludes using this 
technique on conventional processors. 
However, the mismatch between Forth and 
typical instruction sets would cause com- 
piled Forth programs to become much 
larger. For example, if several instructions 
are needed to implement DUP on a given 
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outer interpreter 

kernel - stack machine 

inner interpreter 

processor 

conventional hardware 

SC32 hardware 

Figure One. The Forth virtual machine. 
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Figure Two. Indirect-threaded code. 
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Figure Three. Direct execution. 

processor, the resulting object code could 
be significantly bigger than the size of a 
thread. The instruction set of the SC32 has 
been designed so that almost all Forth 
primitives are implemented with one in- 
struction. This is the subject of the next 
section. 

Instruction Set 
The SC32 instruction set was designed 

specifically to support the Forth program- 
ming language. There is a one-to-one 
mapping between most Forth primitives 
(DUP, +, DROP, etc.) and SC32 instruc- 
tions. All of the instructions execute in one 
machine clock cycle, with the exception of 
load-from-memory and store-to-memory, 
which take two cycles. Consequently, a 
complete Forth primitive is executed al- 
most every clock cycle. 

All SC32 instructions are 32 bits wide. 
Having 32 bits to represent instructions 
allows a chip designer to create a more 
regular instruction set with less instruction 
decoding circuitry needed on chip. Less 
decoding logic allows the chip's clock rate 
to be increased, reducing the time needed 
to execute an instruction. The instructions 
come in three categories: control flow, 
loads/stores, and arithmetic operations. 
Table One shows each instruction type 
available within a given category. There 
are a total of eight instruction types, with 
the three most significant bits of the in- 
struction determining its type. 

The notation used to describe the in- 
structions in Table One is unusual. Tradi- 
tional assembly languages, consisting of 
an operation followed by operands, are in- 
adequate for describing the SC32's in- 
struction set Instead, a register transfer 
notation is used in Table One and through- 
out this article. 

There are three control flow instruc- 
tions: subroutine call, branch, and condi- 
tional branch. These instructions all con- 
tain an embedded destination address. 
Measurements show that a single-cycle 
subroutine call is the most important ingre- 
dient of a Forth engine. Calling a colon- 
defined word from within another colon 
word is the most frequently executed op- 
eration in Forth programs. The bit-level in- 
struction encoding of the call instruction 
was chosen so that the processor interprets 
any 32-bit pointer (thread) into the low 
words of memory as a subroutine call. 

Fast branch instructions are important 
too. A single-bit condition code flag deter- 
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mines whether or not the conditional 
branch is taken. The flag must be set by an 
earlier instruction. 

The load/store category of instructions 
consists of load-from-memory, store-to- 
memory, load-address-low, and load-ad- 
dress-high. In these instructions (and in the 
micro-instruction described below), Rl  
and R2 are operand selectors. Possible 
operands include the top four locations on 
Forth's parameter stack, the top four return 
stack locations, and miscellaneous regis- 
ters. The load-from-memory instruction 
takes the operand specified by R l ,  adds a 
16-bit Offset value to form a memory ad- 
dress, fetches a value from memory, and 
places it where indicated by R2. Store-to- 
memory is similar, but the R2 operand is 
stored at the computed memory address. 
These two instructions take two clock 
cycles to execute. In the load-address-low 
instruction, the address computation is 
performed as described above. However, 
instead of fetching from memory, the ad- 
dress is put in R2. The load-address-high is 
similar, but the Offset value is shifted left 
sixteen bits before being added to R l .  The 
load address instructions execute in one 
clock. 

The micro-instruction (so called be- 
cause of its similarity to conventional mi- 
crocode) performs arithmetic, logic, and 
shift functions. One ALU operand is se- 
lected by Rl  and the other operand is al- 
ways on the top of the parameter stack. The 
ALU result is stored in R2. Much detail 
about the micro-instruction has been sup- 
pressed in Table One. The ALUop control 
field actually has two formats, one for 
controlling shift operations and the other 
for controlling arithmetic operations. The 
arithmetic format has six subfields for se- 
lecting the arithmetic operation, the source 
of the carry input, and the result to be 
loaded in the condition code flag. The shift 
format is similar, except that the arithmetic 
operation subfield is replaced by four shift 
control subfields. 

Micro and load/store Category instruc- 
tions also have the ability to control Forth's 
stacks and select the source of the next 
instruction using the Stack and Next fields. 
Stack can specify that any combination of 
pushing and/or popping the parameter and 
return stacks should occur in parallel with 
the execution of the instruction. Next se- 
lects either the program counter (PC) or the 
top of the return stack (TOR) as the source 
address of the next instruction. Usually, the 

PC provides the address. However, if TOR 
is specified in Next and the return stack is 
popped, a return-from-subroutine is done 
concurrently with the execution of the cur- 
rent instruction. In other words, a subrou- 
tine return occurs in zero time. (Note that 
the similar Novix return bit always popped 
the return stack [Go185].) 

There are a number of programming 
tricks that are useful on the SC32 and that 
help in the implementation of Forth. The 
single addressing mode, register indirect 
plus offset, is more powerful than it ap- 
pears. This simple addressing mode sub- 
sumesthefunctionsofsevedothermodes. 
For example, a register indirect mode re- 
sults from setting the offset to zero. The 
SC32 has an internal register that always 
returns the value zero when read This al- 
lows the construction of an absolute ad- 
dressing mode by adding the offset to the 
zero register. The offset becomes an abso- 
lute address. More complex addressing 
modes can be constructed using more than 
one instruction. 

The load address instructions also pro- 
vide some tricks. Programmers familiar 
with conventional instruction sets might 
have been surprised by the absence of a 
move instruction in Table One. Adding a 
zero offset to the Rl  operand in a load 
address instruction is equivalent to moving 
Rl  into R2. A move immediate instruction 
that loads a literal value into R2 can be 
produced by setting Rl  to the zero register. 
The result is that the offset is loaded into 
R2. Any 16-bit literal can be produced in 
one clock cycle using this trick. Any 32-bit 
literal can be constructed in two clocks 
using a load-address-high followed by a 
load-address-low. 

Data Path 
The data path of a processor is the or- 

ganization and connectivity of internal 
resources such as registers and ALUs. The 
data path, along with some control logic, 
implements the processor's instruction set. 
Several elements of the SC32 data path 
(such as the zero register and condition 
code flag) have already been mentioned. 
However, the most important features of 
the data path are two stack caches, one for 
the parameter stack and one for the return 
stack. The stack caches are key to executing 
one Forth primitive every cycle. The SC32 
stack caching algorithm guarantees that the 
top four values of both stacks are always 
present in the chip. Consequently, Forth 

primitives always find their operands on 
chipandneverneedextramemorycycles to 
fetch them. 

A stack cache is implemented as a six- 
teen-word circular buffer. As Forth primi- 
tives push or pop words from the stack, the 
words are added to or removed from the 
buffer. When the buffer fills, hardware 
intervenes and inserts two cycles to write a 
word from the buffer into external memory. 
When the buffer is almost empty, hardware 
again intervenes to read a word f?om exter- 
nal memory back into the buffer. To use the 
stackcaches, the programmer loads aregis- 
ter with the address of the external over- 
flow region. Subsequently, theoperationof 
the stack cache is completely transparent 
and gives the programmer the illusion of 
arbitrarily large on-chip stacks. 

The concept of a stack cache will proba- 
bly be new to most readers. Once the idea 
sinks in, you might wonder how well it 
performs. Nothing is free, and the extra 
cycles added on buffer overflow and under- 
flow will slow down a running program. 
However, measurements show that this 
"slow down" is less than one percent for 
typicalForthprograrns [Hay88]. Thedepth 
of the stack oscillates around an average 
value for long periods of time. The cache 
attempts to adjust itself so that the buffer is 
centered on the average depth and captures 
as large a range of depth variations as 
possible. 

Forth on the SC32 
Now that we've examined the three 

elements of the SC32 direct execution 
engine, it's time to see how Forth is imple- 
mentedontheprocessor. TableTwoshows 
some representative Forth primitives im- 
plemented with the SC32 instruction set. 
The stack operations that push or pop the 
parameter stack are denoted by &P and TP. 

DUP is implemented with a load-ad- 
dress-low instruction. The value on the top 
of the parameter stack (TOS) is read into 
the ALU and zero is added to it. In the 
meantime, the parameter stack is pushed, 
allocating a new top-of-stack slot. Then the 
ALU result is written into the slot. The 
entire operation takes one clock cycle. 
NoticethatinTableTwo,operandselectors 
to the right of the arrow refer to the state of 
the stack after the push or pop has occurred. 
Thus, the two uses of TOS in DUP refer to 
two different storage locations. 

A slew of Forth data movement primi- 
tives can be built with the load-address-low 



control flow 1 Tv~e:3 I Address29 

call 
branch 
conditional branch 

loadlstore 

Table One. SC32 instruction set. 

Type13 I Next:l I R1:4 / R2:4 / Stack:4 I Offset:16 

micro 

Primitive 
DUP 
>R 
R> 
OVER 
1+ 
1234 
12345678 

load: '(R, + Offset) -+ R, 
store: '(R, + Offset) t R, 
load address low (lal): R, + Offset -+ R, 
load address high (lah): R, + Offset . 216 -+ R, 

Type13 I Next1 I R1:4 I R2:4 1 Stack:4 I ALUop:16 

SC32 Instruction 
TOS -+ TOS; &P 
TOS -+ TOR; ?P; LR 
TOR -+ TOS; ?R; LP 
SOS -+ TOS; LP 
TOS + 1 -+ TOS 
ZERO + 1234 -+ TOS; JP 
ZERO + 1234 216 -+ TOS; JP 
TOS + 5678 -+ TOS 
'(TOS + 0) -+ TOS 
'(TOS + 0) t TOS; ?P 
?P 
SOS + TOS + TOS; ?P 
SOS - TOS; Nx,V -+ FL -+ TOS; ?P 
TOS; Z -+ FL -+ TOS 

micro: R, ALUop TOS -+ R, 

Table Two. SC32 implementation of some typical Forth primitives. 

Sequence 
OVER 1+ 
R> + 
+ o= 
AVARIABLE @ 
OVER @ 
OVER ANARRAY + @ 
DUP 9 + @ 
BEGIN 
DUP SIZE < WHILE 

0 OVER FLAGS + ! 
OVER + 

REPEAT 

SC32 Instruction 
SOS + 1 -+ TOS; JP 
TOR + TOS -+ TOS; ?R 
SOS + TOS; Z -+ FL -+ TOS; ?P 
'(ZERO + AVARIABLE) -+ TOS; JP 
'(SOS + 0) -+ TOS; LP 
'(SOS + ANARRAY) + TOS; &P 
'(TOS + 9) -+ TOS; JP 

ZERO + 8190 -+ TOS; JP 
SOS - TOS; Nx,V + FL; ?P 
conditional branch <forward> 
'(TOS + FLAGS) t ZERO 
SOS + TOS -+ TOS 
branch <back> 

Table Three. SC32 object-code compaction. 

instruction. DUP, >R, R>, and OVER in 
Table Two are examples. Primitives that 
add small (16-bit) constants to TOS (e.g. 
1+, 2+, etc.) are implemented with load- 
address-low. Small literals are created with 
load-address-low by adding the literal 
value to the zero register and pushing the 
result on the parameter stack. Table Two 
also shows how a large literal is constructed 
by pushing the most significant part of the 
number on the stack. then adding in the 
least significant part. Forth's @ and ! op- 
erators are implemented with the load- 
from-memory and store-to-memory in- 
structions, in the obvious way. 

Forth has several arithmetic primitives 
that operate on the top two parameter stack 
elements, pop the stack, and write the result 
to the top of the stack. Examples of such 
binary operators are +, AND, XOR, etc. 
These operators are implemented with the 
micro-instruction. RI selects the second 
item on the parameter stack (SOS) as one 
ALU operand (remember that the other 
operand is always TOS in micro-instruc- 
tions). The ALU performs the selected 
arithmetic or logic operation, the stack is 
popped, and the result written to TOS. 
Binary comparison primitives such as <, =, 

u<, etc. are also implemented with the 
micro-instruction. Micro has the ability to 
produce a 32-bit 0 or -1 truth value as the 
result of a comparison. Unary arithmetic 
primitives (e.g., NEGATE, I-, NOT, etc.) 
and unary comparisons ( 0 <, 0=, 0 >, etc.) 
can all be realized with one micro-instruc- 
tion. 

By now, the reader should have a good 
feel for how Forth's primitives are imple- 
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mented on the SC32. However, this is not 
the whole story. The SC32 instruction set 
and data path are more general than the pure 
stack model needed for Forth. As a result, it 
is possible to map multiple Forth primitives 
into a single SC32 instruction. Consider the 
sequence of primitives OVER l+. OVER 
works by sending SOS through the ALU 
unmmed and pushing the value onto the 
stack. 1+ now reads this value through the 
ALU again, this time adding one. The first 
movement through the ALU is superfluous 
and can be eliminated by combining OVER 
1+ into one instruction. 

Table Three has several more compac- 
tion examples. Each entry in the table sug- 
gests an entire class of compactions. There 
is an astronomical number of possible 
combinations. An optimizer written for the 
SC32' captures most of the more useful 
cases. All of the examples in the table, 
including the last one, were compacted by 
the optimizer without human intervention. 
The last example, the inner loop of the 
Sieve of Eratosthenes [Gi183], was in- 
cluded to test your understanding of the 
SC32. 

Wrapup 
The SC32 microprocessor is fabricated 

in a two pm CMOS process and packaged 
in an 84-pin PGA. We are using the SC32 
on a number of projects within JHUIAPL, 
the most interesting being the flight com- 
puter of a magnetometer processor that is 
part of a Swedish satellite named Freja. The 
chip is also available commercially from 
Silicon Composers in Palo Alto, Califor- 
nia. 

Our Forth chipdesign team consists of 
Martin E. Fraeman, myself, Susan C. Lee, 
Robert L. Williams, and Thomas Zaremba. 
A description of the SC32's predecessors 
can be found in [Hay87a] or [Hay87b]. A 
more comvlete descrivtion of the SC32 will 
appear in iHay891. 
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CONFIGURABLF: ON-LINE 

.AUTO XDAD SCREEN BOOT 

.LINE & SCREEN EDITORS 

.DECOMPILER AND 
DEBUGGING A I D S  

*8 08 8 ASSEMBLER 

GRAPHICS t SOUND 

mNGS ENHANCEMENTS 

.DETAILED MANUAL 

.INEXPENSIVE UPGRADES 

0NGS USER NEWSLETTER 

A COMPLETE R3mH 
SYSTEM. 

PFUCEB BTART AT $70 I 
NEWeHP-150 C -110 
VERSION8 AVAILABLE 

NEXT GENERATION BY- 
P-0-BOX 2987 
BANTA CLARA, CA- 95055 
(408) 241-5909 
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PHASE ANGLE 
DIFFERENCE ANALYZER 

T e  Phase Angle Difference Ana- 
lyzer is an instrument which can determine 
accurately the time delay and phase differ- 
ence between two analog signals sampled 
simultaneously by two sensors. The signals 
are digitized by two fast A/D converters 
and the results are analyzed by an NC4000 
microprocessor. The frequency range of 
the input signals is from 20 Hz to 20 KHz, 
and the accuracy is about 0.05 degrees. It is 
especially useful for direction-finding 
based on acoustic waves. 

Introduction 
The Phase Angle Difference Analyzer 

(PANDA) measures the phase difference 
between two channels of analog inputs, as- 
suming that the inputs are generated by the 
same source with different time delays 
between the two channels. This method is 
very similar to correlation analysis, but 
much simpler and faster. 

Figure One shows a block diagram of 
the PANDA system. The signals received 
by two identical sensors are amplified and 
digitized by two analog-to-digital (AD) 
converters. The digital outputs of the AP 
converters are then fed into a micropmes- 
sor. The microprocessor analyzes the two 
channelsof signal anddetermines thephase 
angle difference between the two channels. 

A large number of samples are taken by 
the A/D converters and are stored in two 
arrays in the computer's memory. The time 
difference between the two input channels 
is computed by shifting and comparing 
values in the two arrays. The point of mini- 
mal difference is then interpolatedand used 
to compute the phase difference. This 
analysis pmedure is similar to a correla- 
tion analysis. However, the comparing step 
involves only subtraction, absolution, and 
addition. By avoiding multiplication, as 

C.H. TING - SAN MATEO, CALIFORNIA 

required in conventional correlation analy- 
sis, the computation can be greatly acceler- 
ated to allow the PANDA system to per- 
form phase measurements in real time. 

The most crucial components in the 
PANDA system are the A/D converters, 
since their sampling rate determines the 
upper frequency of PANDA operation. It is 
assumed that the microprocessor can read 
the output from the A/D converters and 
store the sample data in memory. The upper 
frequency limit of PANDA was 20 KHz. 
To analyze an input signal of 20 KHz, 
PANDA must sample at a rate of 400 KHz 
so that it can determine the phase difference 
to the order of 0.1 degree. 

channels. A maximum conversion rate of 
an ADC 0820 is 1 MHz, which matches 
rather well with the NC4000. 

The required sampling rate depends 
upon the frequency of the input signal. 
Generally, it is necessary to sample at least 
20 times within one wave period. The total 
number of samples collected into memory 
is limited to 120 pairs due to memory and 
real-time processing requirements and 
limitations. Too few samples within one 
period would cause aliasing, and thus limit 
the range of angles in which the correct 
phase difference can be computed. Too 
many samples within one period would 
increase the error of measurement because 
the sampled array might not cover enough 
periods to compensate for the truncation of 

Most commercial microprocessors, 
including rather sophisticated 16-bit ma- 
chines like the Intel 8086 and Motorola 
68000, cannot read data at this required 
sampling rate. Most data acquisition sys- 
tems built for commercial microcomputers 
have an upper sampling rate of about 20 
KHz and are not suitable for PANDA. A 
special CMOS 16-bit microprocessor, the 
NC40001 invented by Mr. Charles H. 
Moore, was thus chosen as the CPU for this 
PANDA. An NC4000 running at a clock of 
4 MHz can perform 16bit input/output at 4 
MHz. To store data obtained from the VO 
port takes two clockcycles. It is thus poten- 
tially capable of acquiring data at a speed 
exceeding 1 MHz. Two high-speed flash A/ 
D converters,National ADC 0820, are used 
to digitize simultaneously the two input 

PANDA rn uSt 
at a rate of 400 K H z  

Phase Difference Analysis 
As mentioned above, the method 

adopted in PANDA to analyze the phase 
difference between the two input waves is 
closely related to the conventional correla- 
tion analysis. Figure Two shows schemati- 
cally how the PANDA analysis is carried 
out. Two channels of input waves are 
sampled by the A/D converters and the 
sampled data are stored in two memory 
arrays, A and B. The data are represented 
as: 

% A1 % ... 
BO B2 B3 ." B119 

From these two sets of data, 20 phase- 
difference sums (bucket values) are com- 
puted. The bucket values are equivalent to 
the results of a correlation analysis: 
So S l  S 2  ... S19 

S i  = SUM I A, - Bj+l-,o l 
j=o  t o  1 0 s  

waves at the end of the sampling array. 
About ten periods are needed to give good 
accuracy. 
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HARVARD S O F T W O R K S  
NUMBER ONE IN FORTH INNOVATION 

(513) 748-0390 P.O. Box 69, Springboro, OH 45066 

MEET THAT DEADLINE ! ! ! 

Use subroutine libraries written for 
other languages! More efficiently! 
Combine raw power of extensible 
languages with convenience of 
carefully implemented functions! 
Yes, it is faster than optimized C! 
Compile 40,000 lines per minute! 
Stay totally interactive, even while 
compiling! 
Program a t  any level of abstraction 
from machine code thru application 
specific language with equal ease 
and efficiency! 
Alter routines without recompiling! 
Use source code for 2500 functions! 

*Use data structures, control 
structures, and interface protocols 
from any other language! 
Implement borrowed feature, often 
more efficiently than in the source! 
Use an  architecture that supports 
small programs or full megabyte 
ones with a single version! 
Forget chaotic syntax requirements! 
Outperform good programmers 
stuck using conventional languages! 
(But only until they also switch.) 

HSIFORTH with FOOPS - The 
only flexible full multiple 
inheritance object oriented 
language under MSDOS! 

Seeing is believing, OOL's really are 
incredible a t  simplifying important 
parts of any significant program. So 
naturally the theoreticians drive the 
idea into the ground trying to bend 
all tasks to their noble mold. Add on 
OOL's provide a better solution, but 
only Forth allows the add on to blend 
in as  an integral part of the language 
and only HS/FORTH provides true 
multiple inheritance & membership. 

Lets define classes BODY, ARM, and 
ROBOT, with methods MOVE and 
RAISE. The ROBOT class inherits: 

INHERIT> BODY 
HAS> ARM RightAnn 
HAS> ARM LeftArm 

If Simon, Alvin, and Theodore are 
robots we could control them with: 
Alvin Is RightArm RAISE or: 
+5 -10 Simon MOVE or: 
+5 +20 FOR-ALL ROBOT MOVE 
Now that is a null learning curve! 

WAKE UP ! ! ! 

Forth is no longer a language that 
tempts programmers with "great 
expectations", then frustrates them 
with the need to reinvent simple 
tools expected in any commercial 
language. 

HS/FORTH Meets Your Needs! 

Don't judge Forth by public domain 
products or ones from vendors 
primarily interested in consulting - 
they profit from not providing needed 
tools! Public domain versions are 
cheap - if your time is worthless. 
Useful in learning Forth's basics, 
they fail to show its true potential. 
Not to mention being s-1-o-w. 

We don't shortchange you with 
promises. We provide implemented 
functions to help you complete your 
application quickly. And we ask you 
not to shortchange us by trying to 
save a few bucks using inadequate 
public domain or pirate versions. We 
worked hard coming up with the 
ideas that you now see sprouting up 
in other Forths. We won't throw in 
the towel, but the drain on resources 
delays the introduction of even better 
tools. Don't kid yourself, you are not 
just another drop in the bucket, your 
personal decision really does matter. 
In return, well provide you with the 
best tools money can buy. 

The only limit with Forth is  your 
own imagination! 

You can't add extensibility to 
fossilized compilers. You are a t  the 
mercy of that language's vendor. You 
can easily add features from other 
languages to HS/FORTH. And using 
our automatic optimizer or learning a 
very little bit of assembly language 
makes your addition zip along as  well 
a s  in the parent language. 

Speaking of assembly language, 
learning i t  in a supportive Forth 
environment turns the learning curve 
into a light speed escalator. People 
who failed previous attempts to use 
assembly language, conquer i t  in a 
few hours or days using HS/FORTH. 

HSB'ORTH runs under MSDOS or 
PCDOS, or from ROM. Each level 
includes all features of lower ones. Level 
upgrades: $25. plus price difference 
between levels. Sources code is in 
ordinary ASCII text files. 

All HS/FORTH systems support full 
megabyte or larger pmgrams & data, and 
run faster than any 64k limited ones even 
without automatic optimization -- which 
accepts almost anything and accelerates to 
near assembly language speed. Optimizer, 
assembler, and tools can load transiently. 
Resize segments, redefine words, eliminate 
headers without recompiling. Compile 79 
and 83 Standard plus F83 programs. 

STUDENTLEVEL $145. 
text & scaled/clipped graphics in bit blit 
windows,mono,cga,ega,vga, fast ellipsee, 
splines, bezier curves, arcs, fills, turtles; 
powerful parsing, formatting, file and 
device U0; shells; interrupt handlers; 
call high level Forth from interrupts; 
single step trace, decompiler; music; 
compile 40,000 lines per minute, stacks; 
file search paths; formats into strings. 

PERSONAL LEVEL $26. 
software floating point, trig, tranacen- 
dental, 18 digit integer & scaled integer 
math; vars: A B * IS  C compiles to 4 
words, 1..4 dimension var arrays; 
automatic optimizer-machine code speed. 

PROFESSIONAL LEVEL $395. 
hardware floating point - data structures 
for all data types from simple thru 
complex 4D var arrays - operations 
complete thru complex hyperbolics; 
turnkey, seal; interactive dynamic linker 
for foreign subroutine libraries; round 
robin & interrupt driven multitaskers; 
dynamic string managqr; file blocks, 
sector mapped blocks; x86&7 assemblers. 

PRODUCTION LEVEL $495. 
Metacompiler: DOS/ROMldidindirect; 
threaded systems start a t  200 bytes, 
Forth cores at 2 kbytes; C data 
structures & struct+ compiler; 
Turbowindow-C MetaGraphics library, 
200 graphidwindow functions, Postscript 
style line attributes & fonts, viewports. 

PROFESSIONAL and PRODUCTION 
LEVEL EXTENSIONS: 

POOPS+ with multiple inheritance$ 76. 
286FORTH or 386FORTH $295. 

16 Megabyte physical address space or 
gigabyte virtual for programa and data; 
DOS & BIOS fully and freely available; 
32 bit addresaloperand range with 386. 

BTRIEVE for HSDORTH (Novell) $199. 
ROMULUS HSlFORTK from ROMS95. 
FFORTRAN translatorfmath~ak 1 75. 

Compile Fortran subroutines! ~o&ulas,  
logic, do loops, arrays; matrix math, 
FFT, linear equations, random numbers. 

I 
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I PROCESS 

W' 

SENSOR 2 u u 
TERMINAL El 

Figure One. Block diagram of PANDA system. 

Bucket Number I 
Figure Two. Analysis of phase difference. 

Figure Three. Analog and AJD circuitry in PANDA system. 

If the two channels are identical, it is 
obvious that S,, should be zero and that it is 
the smallest of the 20 bucket values, be- 
cause all the difference terms in this sum 
are zero. Values neighboring S,, should in- 
crease gradually, forming a notch at s,, 
when the bucket values are plotted against 
the bucket number. The phase difference 
between the two input channels can be 
determined accurately by how much the 
notch shifts away from the S,,, as shown in 
Figure Two. 

A simple interpolation algorithm is 
applied to determine the true notch-bucket 
number, which is related to the time differ- 
ence of signal arrival at the two sensors. If 
the ith bucket has the lowest bucket value 
S ,  the true notch is calculated from the 
following equation: 

NOTCH = i + (S,, - S,,) / 
2 (S,, + S,, - 25,) 

An equation for BASELINE is f01- 
lows: 

BASELINE = D /  (delta * V) 

where D is the distance between the two 
sensors, delta is the sampling time, and V is 
the speed of signal. The angle-of-arrival 
(AOA) is then: 

AOA = sin-' [ (NOTCH - 10 ) / 
BASELINE] 

In the present PANDA system, the 
sampling time of the AID converter is pro- 
grammable through the system variable 
DELAY. The relationship between DELAY 
and delta is: 

delta = 0.25 (DELAY+ll) psec. 

The NC4000 processor cycle is 0.25 
microseconds using a4 MHz clock. It takes 
11 cycles to start the A D  converters, wait 
until the data is digitized, input the data, 
and store the data to memory. 

Hardware 
The PANDA main unit consisted of 

two circuit boards, one analog and one 
digital. The analog processing board con- 
tained a pair of OpAmp circuits to amplify 
and condition the input signals, and a pair 
of fast A D  converters to digitize the sensor 
input signal. The digital processing board 
contained the main CPU chip (NC4000), 

I 
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Total control 
with LMI FORTHTM 

EPROM, and SRAM memory chips, and 
digital 110 circuitry. The CPU analyzes the 
input signals and sends the results to a 
terminal (Qume QVT-102) or to a host 
computer for archiving and displaying 
tasks. 

Figure Three shows the schematics of 
the analog board. The amplifier/signal- 
conditioners are constructed with a single 
quad OpAmp IC (National LM324). Each 
single channel uses two OpAmps, one for 
input conditioning with a gain of ten, and 
another for amplification and offset adjust- 
ment to present the signah optimized for 
the A/D converter. The amplifier stage has 
an adjustable gain of 0.1 to 100, and an 
offset range of 0-5 volts. 

Two A D  converters are used in parallel 
to convert simultaneously the two channels 
of sensor signals in order to increase the 
conversion throughput and to avoid skew- 
ing in the sampling proces~.~ The A/D 
converters are eight-bit half-flash convert- 
ers. The start-conversion clock is provided 
by an I/O writeenable (WEB) signal from 
the MC4000, and the output data are read 
by the NC4000 through the B port. Each A/ 
D provides eight bits of data to the 16-bit B 

For Programming Professionals: 
an expanding family of compatible, high- 
performance, compilers for microcomputers 
For Development: 
Interactive Forth433 InterpreterlCompilers 
for MS-DOS, OSl2, and the 80386 

lbbit and 32-bit implementations 
Full screen editor and assembler 
Uses standard operating system files 
500 page manual written in plain English 
Support for graphics,floating point, native code generation 

For Applications: Forth433 Metacompiler 

port. Although the AID converters and the 
SPU are capable of running up to a 1 MHz 
sampling rate, due to the start-conversion 
and memory-storing overhead in the data 
acquisition process, the maximum practical 
sampling rate is400 KHz on both channels. 

The digital processor board is a CMOS 
single-board microprocessor (Silicon 
Composers SC1000-CPU). It contains a 
very fast CMOS 16-bit microprocessor 
(Novix NC4000). This CPU executes one 
CPU instruction in every clock cycle de- 
rived from a 4 MHz single-phase clock. All 
branch and subroutine-call instructions are 
also completed in one clockcycle. Memory 
access requires two cycles. This speed al- 
lowed the PANDA to obtain and analyze 
data from the A/D converters at the rate 
required by the PANDA experiments. 

Surrounding the NC4000 chip are two 
eight Kbyte EPROM memory chips hosting 
the PANDA software, two 32 Kbyte RAM 
chips for data storage, and four eight Kbyte 
RAM chips serving as one data stack and 
one return stack. A few MSI glue chips 
complete the processor board: a 74HC138 
for memory decoding, a 0 5 0  for reset 
and serial I f 0  buffering, and a 4 MHz 

I ~niqu~tabledriven multi-pass Forth compiler 
Compiles compact ROMable or disk-based applications I 

CMOS clock. 
Two bits in the X I/O port on the 

NC4000 are used to emulate an RS-232 
serial interface port, which allows the 
NC4000 to communicate with a terminalor 
host computer. Only the transmit and re- 
ceive lines are used in this RS-232 inter- 
face. The data format is 9600 baud, eight 
data bits, and one stop bit. Parity is dis- 
abled. The transmit and receive lines are 
buffered through the CD4050. 

The digital and analog boards are con- 
nected through a bussed backplane. Al- 
though all the memory and 110 signals are 
brought out to the backplane, the analog 
processor uses only the B port VO signals. 

Software 
The software installed in the PANDA 

system controls the operations of the sys- 
tem and its user-host interface. It allows the 
user to specify the conditions under which 
the PANDA system is to be operated, such 
as the sampling rate, the time delay be- 
tween data reports, and the format of the 
data reports. It also allows a host computer 
to receive the results and to pmess the raw 
data with more sophisticated data analysis 

Excellent error handling 
Produces headerless code, compiles from intermediate states, 
and performs conditional compilation 
Crosscompiles to 8080,Z-80,8088,68000,6502,8051,8096, 
1802,6303,6809,68HC11,34010, V25, RTX-2000 
No license fee or royalty for compiled applications 

Labomtory Micmsystems incorporated 
Fbst Office Box 10430, Marina del Rg,  CA 90295 
M C d i t  Card Olders to: (213) 3067412 

HU(: (213) 3 o i m i  

Thinking of using the 
Zilog Forth Super8 Chip? 

Inner Access has FORTH 
Super8 development tools 
for you! 

H Development Lab 

Metacompiler 

H Development ROMS I 
with F83 based terminal emulation 
and file server software for the IBM 

A Inner Access Corporation 
Box 888 Belmont CA 94002 

L r A  (415) 591-8295 , 
I 
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( PANDA SETUP,  10AUG86CHT ) 

HEX 
3 C 0  CONSTANT RESULTS ( B u c k e t  v a l u e s  ) 
4 0 0  CONSTANT l T E S T  ( P r i m a r y  data a r r a y  ) 
A 0 0  CONSTANT 2TEST ( S e c o n d  data a r r a y  ) 

C CONSTANT COUNTER ( R e p o r t  c o u n t e r  ) 
1 CONSTANT DELAY ( D e l a y  b e t w e e n  s a m p l e s  ) 

2 CONSTANT WAITING ( D e l a y  b e t w e e n  reports  ) 
3 CONSTANT RADIUS ( B a s e l i n e  b e t w e e n  s e n s o r s  ) 
4 CONSTANT SAMPLES ( N u m b e r  of A/D s a m p l e s  ) 
5 CONSTANT FREQUENCY ( F r e q u e n c e y  m u l t i p l i e r  ) 
6 CONSTANT PHASE ( P h a s e  o f f s e t  ) 

7 CONSTANT T I C K S  
DECIMAL 

: ONE-PASS ( PHASE -- SUM ) 
0 ( I n i t i a l  s u m  ) 
SAMPLES @ 2 0  - ( A n a l y z e  o n l y  1 0 0  s a m p l e s  ) 
FOR OVER l T E S T  + I + @ ( C h a n n e l  1 da ta  w i t h  o f f s e t  ) 

2 T E S T  I + 1 0  + @ ( C h a n n e l  2 da ta  ) 
- ABS + ( S u b t r a c t ,  a b s o l u t e ,  a c c u m u l a t e  ) 

NEXT 
SWAPDROP ; 

: 20-PASSES ( -- ) 
1 COUNTER + !  ( I n c r e m e n t  report  c o u n t  ) 
RESULTS 2 0  ERASE ( C l e a r  s u m  a r r a y  ) 
1 9  FOR 

I ONE-PASS ( D o  a n a l y s i s  ) 
I RESULTS + ! ( S t o r e  a w a y  r e s u l t i n g  s u m s  ) 

NEXT ; 

( F o r  R a d i x  6 4  o u t p u t  ) 

: SHOW-RESULTS ( -- ) 
COUNTER @ 3 .R ( C o u n t  f i e l d  ) 
1 9  FOR 

RESULTS I + @ 3 . R  ( 2 0  s u m s  ) 

NEXT 
CR 1 0  EMIT ; ( CR a n d  t w o  L F  ' s  ) 

( P M D A  ANALYSIS,  07MAY86CHT ) 

: RATIO ( N 1  N 2  N 3  --- RATIO, ~ 1 > ~ 2 > N 3  ) 
SWAP OVER - >R ( N2-N3 ) 
- R> 5 0 0  ( N1-N3 ) 
ROT */ ( [ ~ 2 - N 3 ] * 5 0 0 / [ N l - N 3 1  ) 

5 0 0  SWAP - ; ( [ ~ 2 - ~ 3 + ~ 1 - ~ 3 ] * 5 0 0 / [ ~ l - N 3 ]  ) 

software. 
Because NC4000 is a microprocessor 

supporting the high-level language Forth, 
it is natural that PANDA is programmed in 
Forth. The SC 1000-CPU board developed 
by Silicon Composers includes the operat- 
ing system cmForth3 written by Charles H. 
Moore, the creator of Forth and also the 
chief designer of the NC4000. The 
PANDA program is generated by the target 
compiler in cmForth and installed in the 
PANDA system via a pair of eight Kbyte 
EPROMs. 

The complete source code of PANDA 
is shown in Listing One. Very extensive 
comments are included and most of the 
code is self-explanatory. Only a few words 
are highlighted here to illustrate how the 
PANDA system is used to collect data and 
compute the phase difference between sig- 
nals received from the input channels. 

A set of user-changeable parameters is 
defined as user variables so that the 
PANDA system can be adapted to analyze 
input signals within a very wide frequency 
range: 

SAMPLES Number of samples col- 
ected in one acquisition 
process. (120) 

DELAY Number of empty loops 
inserted between sam- 
plings. (4) 

WAITING Number of 0.3-second 
delays between data re- 
ports. (10) 

RADIUS Bucket-number* 1000, 
corresponding to a half 
period. (8000) 

FREQUENCY Number of periods in 
synthetic test input sig- 
nals. (20) 

PHASE Phase delay between two 
channels in the TEST rou- 
tine. (Variable) 

COUNTER A running counter for 
data reports. (Variable) 

The numbers in parentheses are default 
values to analyze signals in a 20 KHz 
range. 

~ T E ~ T  is the primary data array to 
receive raw data from the A/D converters. 
A/D clocks the A/D converters and stores 
data into 1 TEST. Data from channel one is 
stored in the lower eight bits and data from 
channel two is stored in the upper eight bits 
of a 16-bit word in 1TEST. DIGEST ex- 
tracts channel two data and stores it in the 
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2 TEST array while it clears the upper bytes 
in 1TEST. 

ONE-PASS takes a sample from 
ITEST, subtracts it from a corresponding 
sample in ZTEST, and then accumulates 
the absolute difference into one term in the 
RESULTS array. The sample in 2TEST is 
offset from the sample in 1 TEST by aphase 
factor taken from the variable PHASE. 
When the phase factor is ten, the two arrays 
are exactly aligned. There are 20 sums in 
RESULTS, the phase difference between 
the two input signals is between -10 and +9 
sampling intervals. 

ONE-PASS is executed 20 times in 
2 0 -PASSES, with the phase factor varied 
from zero to 19. The RESULTS array then 
contains the sums of the phase difference 
analysis. These sums are referred to as 
buckets and bucket values. Plotting these 
bucket values against the phase factors, a 
curve with a notch near the center can be 
obtained (Figure Three). The minimum of 
the notch is the phase difference between 
the two input signals, relative to the center 
bucket with a phase factor of ten. The time 
delay between the two input signals is then 
the bucket value of the notch subtracted 
from ten and multiplied by the time interval 
between two consecutive samples. 

M1NIMUMSCansthr0~ghtheREsuLTS 
array and returns the bucket number of the 
bucket with the lowest bucket value. RA- 
T I O  computes the ratio (N3-N2)/(N3- 
Nl+N2-Nl), where N3>N2>Nl. This is 
the computation needed to interpolate 
among the three lowest buckets to deter- 
mine the true position of the notch among 
the20 buckets. NOTCH caUs~1~IMU~and 
RATIO to determine the notch position, 
which is represented by an integer bucket 
number and a fraction of the bucket number 
multiplied by 1000. 

If the two sensors are measuring the 
signals from a single source, the angle-of- 
arrival (AOA) of the source relative to the 
sensors can be calculated with the knowl- 
edge of the phase difference of the signals 
arriving at the sensors, the distance be- 
tween the sensors, and the velocity of the 
travelling signal. ARCSIN converts the 
phase difference to the angle-of-arrival by 
interpolation with the help of the arc-sine 
table in (ARCS IN). The value in RADIUS 
is used as the baseline for arc-sine calcula- 
tion. 

There are several data-reporting rou- 
tines to sample the signals and display the 

: MINIMUM ( -- N  ) 
1 9  RESULTS 1 9  + @ ( B u b b l e  so r t  ) 
18 FOR 

I RESULTS + @ 
2DUP > 
I F  SWAP DROP 

SWAP DROP 
I SWAP 

ELSE DROP 
THEN 

NEXT 
DROP ; 

: NOTCH ( -- REMAINDER BUCKET ) 
MINIMUM DUP 
RESULTS + >R ( S m a l l e s t  b u c k e t  ) 
I 1 + @  ( Two n e i g h b o r i n g  b u c k e t s  ) 
1 1 - @  
2DUP > ( R e o r d e r  b u c k e t  v a l u e s  ) 
I F  R> @ RATIO ( a n d  i n t r a p o l a t e  b e t w e e n  ) 

1 0 0 0  SWAP - ( b u c k e t s  ) 
SWAP 1 - 

ELSE SWAP R> @ RATIO 
SWAP 

THEN ; 

( DATA ACQUISITION,  10AUG86CHT ) 

HEX 

: A / D  ( GET SAMPLES INTO l T E S T  ARRAY ) 
0  l T E S T  1 - ( DATA ADDR ) 
SAMPLES @ 
FOR 0  8 I !  ( S t a r t  A/D c o n v e r s i o n  ) 

1 ( DELAY ) 
@ FOR NEXT ( W a i t  till data r e a d y  ) 
1 ! +  ( S t o r e  a w a y  p r e v i o u s  data  ) 
8 I@ SWAP ( R e a d  both c h a n n e l s  ) 

NEXT 
2DROP ; 

: DIGEST 
SAMPLES @ 1 - 
FOR 

( S e p a r a t e  CH2 data ) 

l T E S T  I + DUP @ ( G e t  s t o r e d  data ) 
DUP >R 
F F  AND SWAP ! ( Low b y t e  t o  l T E S T  ) 
R> 6 TIMES ( S h i f t  h i g h  b y t e  ) 

[ 8 0 0 1  , ( 2 /  ) I 
F F  AND 2 T E S T  I + ! ( S t o r e  CH2 data t o  2 T E S T  ) 

NEXT ; 

DECIMAL 

: A C Q U I S I T I O N  ( -- ) 
A/D D I G E S T  20-PASSES ; 

I 
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( SIMULATED DATA, 18AUG86CHT ) 

7168  CONSTANT SINE ( A t a b l e  o f  s i n e  f u n c t i o n  ) 

: PATTERN ( FREQUENCY PHASE -- 
SAMPLES @ 
FOR I FREQUENCY @ 

* DUP 1 0 2 3  AND 
SINE + @ 
lTEST I + ! 
PHASE @ + 1 0 2 3  AND 
SINE + @ 
2TEST I + ! 

NEXT ; 

( G e t  f r e q u e n c y  m u l t i p l i e r  ) 
( O f f s e t  i n t o  s i n e  table  ) 
( G e t  d a t a  f r o m  t a b l e  ) 
( P u t  i n t o  lTEST a r r a y  ) 
( Add p h a s e  o f f s e t  ) 
( O f f s e t  d a t a  ) 
( P u t  t o  2TEST a r r a y  ) 

: ?KEY ( -- F ) ( T e s t  RS232 i n p u t  l i n e  ) 
0 WAITING @ 
FOR 

20000  FOR 
RX 1 6  XOR OR 

NEXT 
NEXT ; 

: TEST ( -- ) ( T e s t  PANDA w i t h  s i n e  waves  ) 
64 BASE ! 
0 COUNTER ! 
PHASE @ DUP >R 
0 PHASE ! 
BEGIN 

PATTERN ( S y n t h e s i z e  d a t a  ) 
PO-PASSES ( A n a l y z e  ) 
SHOW-RESULTS ( R e p o r t  r e s u l t s  ) 
DUP PHASE +! 

?KEY UNTIL 
DROP R> PHASE ! 
, 

( i n t r a p o l a t i o n  1 6 a u g 8 6 c h t  ) 

CREATE (ARCSIN) ( a t a b l e  o f  f u n c t i o n  v a l u e s  ) 
0 , 500  , 1002 , 1 5 0 6  , 2014 , 
2526  , 3 0 4 6  , 3 5 7 6  , 4116 , 
4668 , 5240  , 5824 , 6434 , 
7076  , 7754 , 8480  , 9272 , 
1 0 1 6 0  , 11198  , 12532  , 15708 , 

: ARCSIN ( 10000*SIN -- 100*ARCSIN ) 
DUP >R ABS 

1 0 0 0 0  M I N  500 /MOD ( 2 *  ) 
(ARCSIN) + 2@ ( I n t r a p o l a t e  ) 
DUP >R - 
500  */ R> + 
9000 1 5 7 0 8  */  ( S c a l e  t o  90 d e g r e e s  ) 
R> O< 
I F  NEGATE THEN ; 

: ANGLE ( FRACTION BUCKET -- ANGLE*100 ) 
1 0  - 1 0 0 0  + 
1 0 0 0 0  RADIUS @ * /  ( S c a l e  t o  t h e  b a s e l i n e  ) 
ARCSIN ; 
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Results and Discussion 
The PANDA system works very accu- 

rately and the response is very fast. Exten- 
sive experiments in calibration and also in 
analyzing real signals have shown that it 
performs well between 20 Hz and 20 KHz. 
The accuracy and reproducibility most 
often depend upon the noise contents in the 
input signals. When the input signals are 
strong and well balanced, the phase angle 
difference can be determined down to 0.05 

results. D IRECT ION sends a continuous 
stream of AOA values to be displayed on a 
terminal. The AOA values have a range 
from -9000 to 9000, corresponding to -90 
and 90 degrees. It can be interrupted by 
pressing a key on the terminal. METER is a 
visual display routine, showing a vertical 
bar among 80 columns on a CRT terminal. 
80 columns allow the display of AOA re- 
sults with aresolution of about 2.5 degrees 
in a -90 to 90 degree field. 

RUN is used to send the raw bucket 
values to a host computer. To minimize the 
transmission time, bucket values are en- 
coded in Radix 64. Each record contains 66 
characters. The first three characters en- 
code a record number, the next 60 charac- 
ters encode 20 bucket values, and the last 
three characters CR-LF-LF terminate a 
record. The Radix 64 scheme allows a 16- 
bit value to be represented by three ASCII 
characters without any ambiguity. 

When the PANDA system is turned on, 
it enters the RUN procedure immediately 
and sends the Radix 64 reports continu- 
ously. Any keystroke will terminate RUN, 
and the user can operate it interactively. 
The RESET procedure boots PANDA 
from EPROMs. 

degrees. PANDA was used to analyze 
audio and underwater acoustic signals in 
direction-finding applications. 

A very interesting property of PANDA 
is that its performance does not depend on 
the wave shape on the input signals. Sine 
waves, square waves, and randomly 
shaped waves can be analyzed with the 
same degree of ease and accuracy. The per- 
formance of PANDA degrades gracefully 
with increased noise in the input signals 
and imbalance between the two channels. 
In very noisy environments, the accuracy 
of the phase difference measurements can 
be increased by temporal integration. 

It is difficult to theorize the PANDA 
methodology, because of the difficulty in 
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modelling the absolution of difference be- 
tween two signal channels. Correlation 
analysis is related to the power spectrum of 
the signals, while the PANDA analysis is 
more closely related to the amplitude spec- 
trum. The PANDA analysis is likely to 
yield more accurate results in phase differ- 
ence, in which all the signal points contrib- 
ute equally. On the other hand, the results in 
correlation analysis are weighed more 
heavily towards signal points of higher 
amplitude. 

Since the PANDA method uses only 
addition, subtraction, and absolution, the 
computation load to the controlling micro- 
processor is much less than that of correla- 
tion analysis. The required dynamic range 
of the sums is also much smaller because it 
eliminates the multiplication operations. 
Consequently, a 16-bit microprocessor 
works comfortably. Even double integers 
are not necessary in the computation. 

The maximum frequency range of 
PANDA can be pushed to about 500 KHz 
using a 10 MHz RTX 2000 and a 10 MHz 
A/D converter. Both are readily available 
now. Most of the recent crop of fast-flash 
A/D converters can be driven directly by 
reading the strobes from the microproces- 
sor. Most of the instructions in the A/D 
procedure to strobe the converter can then 
be eliminated and the analysis can run 
much faster. 

References 
1. NC4000 is a microprocessor manufac- 
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available through Silicon Composers in 
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2. C.H. Ting, "A/D Converters with the 
NC4000," More on NC4000, Vol. 3, p. 
83,1987. 

3. C.H. Ting, Footsteps in an Empty Val- 
ley, 3rd ed., pp. 83-147. Offete Enter- 
prises, Inc., 1988. This book contains 
the most detailed information about the 
NC4000 itself and its operating system, 
cmForth. 

( CONTROL LOOPS, 31DEC86CHT ) 

: RUN ( -- ) ( Default output ) 
64 BASE ! 
BEGIN 

ACQUISITION 
SHOW-RESULTS 

?KEY UNTIL 

: DIRECTION ( -- ) 
DECIMAL 
BEGIN 

ACQUISITION 
NOTCH ANGLE ( Show AOA ) . 

?KEY UNTIL ; 

: SCALE ( -- ) 
CR 18 FOR 

I 9 - ABS 
48 + EMIT ( Show bar graph scale ) 
2 FOR 46 EMIT NEXT 

NEXT CR ; 

: METER ( -- ) 
BEGIN 

ACQUISITION 
NOTCH ANGLE ( Computer angle 
COUNTER @ 15 AND ( Show scale occasionally ) 
IF CR ELSE SCALE THEN 
9000 + 250 / ( Scaling to 80 columns ) 
71 FOR 

DUP I - 
IF 32 ELSE 124 THEN 
EMIT ( Display needle point ) 

NEXT 
DROP 

?KEY UNTIL ; 

: RESET ( INITIALIZE FOR 10 KHZ OPERATION) 

BOOT ( Initialize NC4000 
0 COUNTER ! ( Initialize PANDA variables ) 
9 DELAY ! ( for 20 KHz measurements ) 
10 WAITING ! 
8000 RADIUS ! 
20 FREQUENCY ! 
120 SAMPLES ! 
20 TICKS ! 
0 9 I! 0 10 I! 0 11 I! ( Initialize B port ) 
RUN QUIT ; ( Run host reporting routine) 
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ANS FORTH 
HARDWARE INDEPENDENCE 

JOHN R. HAYES - LAUREL, MARYLAND 

m 

1 k$th has always worked closely with 
the underlying hardware. The most popular 
architectures used to implement Forth have 
had byte-addressed memory, 16-bit opera- 
tions, and two's-complement number rep- 
resentation.TheForth-83 Standarddictates 
that these particular features must be pres- 
ent in a Forth-83 Standard system and that 
Forth-83 programs may exploit these fea- 
tures freely. However, there are many 
beasts in the architectural jungle that are bit 
addressed or cell addressed, or prefer 32-bit 
operations, or represent numbers in one's 
complement or BCD. Since one of Forth's 
strengths is its usefulness in "strange" 
environments on "unusual" hardware with 
"peculiar" features, it is important that a 
standard Forth run on these machines too. 

A primary goal of the ANS Forth stan- 
dard is to increase the types of machines 
that can support a standard Forth. This is ac- 
complished by allowing some key Forth 
terms to be implementation defined (i.e., 
how big is a cell?) and by providing Forth 
operators (words) that conceal the implem- 
entation. This frees the implementor to 
produce the Forth system that most effec- 
tively utilizes the native hardware. The 
machine-independent operators, together 
with some programmer discipline, enable a 
programmer to write Forth programs that 
work on a wide variety of machines. 

The ANS Forth standard cannot and 
should not force anyone to write a portable 
program. In situations where performance 
is paramount, the programmer is encour- 
aged to use every trick in the book. Writing 
a portable program is an opportunity. If a 
Forth programmer invents a new program- 
ming technique, then implements it so that 
it relies on every quirk of his Forth system, 
that program is only useful to people with 
an identical system. A portable program 

tween dissimilar machines. Consequently, 
examples of specific architectures with 
their respective problems are given. 

benefits a greater number of people and is 
consequently more valuable. When pro- 
gramming for profit, a portable program 
automatically has a larger potential market 
than a non-portable program. 

The computers that can host ANS Forth 
form a superset of the machines that run 
Forth-83. Forth-83 programs will work, 
with very little modification, on ANS Forth 
systems that use 16-bit cells and address 
memory as eight-bit bytes. However, 
Forth-83 programs will probably need 
substantial modification to run on other 
ANS Forth systems (e.g., systems with 32- 
bit cells). In other words, non-portable 
programs remain non-portable. Increasing 

Systems with different 
cell sizes will be 
encountered. .. 
the range of machines that can support ANS 
Forth does not diminish the range of ma- 
chines that run Forth-83 programs. This is 
important to remember while studying the 
ANS Forth definitions of such "familiar" 
concepts as byte, cell, and memory address- 
ing. The definitions were carefully chosen 
to be a generalization of Forth-83's defini- 
tions. Forth-83 programs (in ANS Forth 
jargon) have an environmental dependency 
that cells be 16-bits wide and that memory 
is addressed as eight-bit bytes. 

The rest of this article describes some 
ANS Forth features for making a program 
independent of hardware peculiarities. It is 
difficult for someone familiar with only one 

Hardware Independence 
Data and memory are the stones and 

mortar of program construction. Unfortu- 
nately, each computer treats data and 
memory differently. The ANS Forth Pro- 
gramming Systems standard gives defini- 
tions of data and memory that apply to a 
wide variety of computers. These defini- 
tions give us a way to talk about the com- 
mon elements of data and memory while 
ignoring the details of specific hardware. 
Similarly, ANS Forth programs that use 
data and memory in ways that conform to 
these definitions can also ignore hardware 
details. The following sections discuss the 
definitions and describe how to write pro- 
grams that are independent of the data and 
memory peculiarities of different comput- 
ers. 

I 

Definitions 
Three terms defined by ANS Forth are 

address unit, cell, and byte. The address 
space of an ANS Forth system is divided 
into an array of address units; an address 
unit is the smallest collection of bits that 
can be addressed. In other words, an ad- 
dress unit is the number of bits spanned by 
the addresses addr and addr+I. The most 
prevalent machines use eight-bit address 
units. Such "byte-addressed" machines in- 
clude the Intel 8086 and Motorola 68000 
families. However, other address unit sizes 
exist. There are machines that are bit ad- 
dressed and machines that are 4-bit-nibble 
addressed. There are also machines with 

I 
address units larger than eight bits. For 
example, several Forth-in-hardware com- 
puters are cell addressed (Novix NC4016 

machine architecture to imagine the prob- 
lems caused by transporting programs be- 
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A related problem is that of addressing 
an array of cells in an arbitrary order. A 
defining word to create an array of cells 
using Forth-83 would be: 

with 16-bit address units and the Silicon 
Composers' SC32 with 32-bit address 
units). 

The cell is the fundamental data type of 
a Forth system. A cell can be a single- 
precision integer or a memory address. 
Forth's parameter and return stacks are 
stacksofcells.Forth-83 specifiesthatacell 
is 16 bits; in ANS Forth the size of a cell is 
an implementation-defined number of 
address units. Thus, an ANS Forth imple- 
mented on a 16-bit microprocessor could 
use a 16-bit cell, and an implementation on 
a 32-bit machine could use a 32-bit cell. 18- 
bit machines (PDP-IS), 36-bit machines 
(PDP-10). etc. could also support ANS 
Forth systems with 18- or 36-bit cells, re- 
spectively. In all of these systems, DUP 
does the same thing: it duplicates the top of 
thepatameterstack. ! (store) behavescon- 
sistently too: given two cells on the pa- 
rameter stack, it stores the secondcell in the 
memory location designated by the top cell. 

Historically, the definition of a byte has 
been the most convenient amount of stor- 
age that could hold a character. The major- 
ity of machines built in recent years use 
eight-bit address units and store one char- 
acter per address unit. This has resulted in 
the widespread assumption that a byte is 
alwayseightbits. ANS Forth uses the more 
general definition: a byte is an implementa- 
tion-defined number of address units (but at 
least eight bits) used to hold a character. 

: ARRAY CREATE 
2* ALLOT DOES> 
SWAP 2*  + ; 

This removes the need for a Forth imple- 
mentor to provide eight-bit bytes on proc- 
essors where it is inappropriate. For ex- 
ample, on an 18-bit machine with anine-bit 
address unit, a nine-bit byte would be most 
convenient. Since, by definition, you can't 
address anything smaller than an address 
unit, a byte must be at least as big as an 
address unit. This will result in big byteson 
machines with large address units. An 
example is a 16-bit-cell addressed ma- 
chine, where a 16-bit byte makes the most 
sense. 

Addressing Memory 
ANS Forth eliminates many portability 

problems by using the above definitions. 
One of the most common portability prob- 
lems is addressing successive cells in 
memory. Given the memory address of a 
cell, how do you find the address of the next 
cell? In Forth-83 this iseasy: 2 +.This code 
assumes that memory is addressed in eight- 
bit units (octets) and that a cell is 16-bits 
wide. On an octet-addressed machine with 
32-bit cells, the code to find the next cell 
would be 4 +. The code would be 1+ on a 
cell-addressed processor and 1 6 +on abit- 
addressed processor with 16-bit cells. ANS 
Forth provides a next-cell operator named 
CELL+ that can be used in all of these 
cases. Given an address, CELL+ adjusts the 
address by the size of a cell (measured in 
address units). 

Use of 2 * to scale the array index assumes 
octet addressing and 16-bit cells again. As 
in the example above, different versions of 
the code would be needed for different 
machines. ANS Forth provides a portable 
scaling operator named CELLS . Given a 
number n, CELLS returns the number of 
address units needed to hold n cells. A 
portable definition of ARRAY is: 

: ARRAY CREATE 
CELLS ALLOT DOES> 
SWAP CELLS + ; 

There are also portability problems 
with addressing arrays of bytes. In Forth- 
83 (and in the most common ANS Forth 
implementations), the size of a byte will 
equal the size of an address unit. Conse- 
quently, addresses of successive bytes in 
memory can be found using 1 + and scaling 
indices into a byte army is a no-op (i.e., 1 
*). However, there are cases where a byte 
is larger than an address unit. Examples 
include systems with small address units 
(e.g., bit- and nibble-addressed systems) 
and systems with large character sets (e.g., 
16-bit characters on an octet-addressed 
machine). BYTE+ and BYTES operatom, 
analogous to CELL+ and CELLS, are 
available to allow maximum portability. 

ANS Forth generalizes the definitions 
of some Forth words that operate on 
chunks of memory to use address units. 
One example is ALLOT . By prefixing 
ALLOT with the appropriate scaling opera- 
tor (CELLS , BYTES, etc.), space for any I 
desired data structure can be allocated (& 
definition of ARRAY above). For example: 

CREATE ABUFFER 
5 BYTES ALLOT 
(Allots a 5-byte buffer.) 

The memory-block move word also 
uses address units: 

source dest 8 CELLS MOVE 
(Moves eight cells.) 

I 
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Alignment Problems 
Not all addresses are created equal. 

Many processors have resmctions on the 
addresses that can be used by memory 
access instructions. For example, on a 
Motorola 68000, 16-bit or 32-bit data can 
be accessed only at even addresses. An- 
other example is Sun's SPARC architec- 

Listing One 

\ Structure access words usage: 
\ structure £00 \ Declare a structure 
\ 3 bytes: .part1 \ consisting of a 3-byte part, 
\ cell: .part2 \ a one-cell part, 
\ byte: .part3 \ and a one-byte part. 
\ endstructure 
\ 

handle these alignment restrictions in one 
of two ways. Forth's memory access words 
(@, ! , + ! , etc.) could be implemented in 
terms of smaller-width access instructions 
which have no alignment restrictions. For 
example, on a 68000 Forth with 16-bit 
cells, @ could be implemented with two 
68000 byte-fetch instructions and a reas- 
sembly of the bytes into a 16-bit cell. Al- 
though this conceals hardware ugliness 
from the programmer, it Is inefficient. An 
alternate implementation of ANS Forth 
could define each memory access word 
using the native instructions that most 
closely match the word's function. On a 
68000 Forth with 16-bit cells. @ would use 
the 68000's 16-bit move instruction. In this 
case, responsibility for giving @ a correctly 
aligned address devolves onto the pro- 
grammer. A portable ANS Forth program 
must assume the worst and use the align- 
ment operators described below. 

One of the most common problems 
caused by alignment restrictions is in creat- 
ing tables containing both bytes and cells. 
When initializing the table using , and c , 
data is stored at the end of the dictionary. 
Consequently, the dictionary pointer must 
be suitably aligned. For example, a non- 
portable table definition would be: 

ture, where 16-bit data can be loaded or 
stored only at even addresses and 32-bit 
data only at addresses that are multiples of 
four. 

An implementor of A N S  Forth can 

CREATE ATABLE 
l C , X ,  2 C , Y ,  

\ 

\ structure foobar \ Declare another structure 
\ 2 cells: . this \ consisting of two cells,  
\ foo struct: .that \ and substructure 
\ endstructure 
\ 

On thesecond 68000Forth implementation 
described above, CREATE would leave the 
dictionary pointer at an even address, the 1  
C, would make the dictionary pointer odd, 
and , would crash the system by storing x 
at an odd address. A portable way to create 
the table is: 

CREATE ATABLE 
1 C, ALIGN X , 
2 C, ALIGN Y  , 

(Continued on page 33 .) 

\ create teststruct 
\ f oobar al lot  
\ 123 teststruct 

\ .that .part2 ! 

\ Allocate a structure instance 

\ & store something in it. 

Implementation notes: 

1. Stxucture instances must be put a& an aligned address (i.e.. via CREATE). 
2. ENDSTRUCTURE pads out the end of the structure--this is unnecessary. 

: structure ( - pfa template ) 

\ Start structure declaration. 
create here 0 , 0 
does> @ ; ( addrlsize] - size ) 

: aus: ( offset size - offset' ) 

\ Structure member compiler. 
create over , + 
does> @ + ; ( base addr[offset] - base' ) 

\ Add member's offset t o  base. 

: bytes: ( template n - template' ) 

\ Create n byte member. 
bytes aus: ; 

: byte: ( template - template' ) 

\ Create 1 byte member. 
1 bytes: ; 

: cells: ( template n - template' ) 

\ Create n cel l  member. 
cells >r realign r> aus: ; 

: c e l l :  ( template - template' ) 
\ Create 1 cel l  member. 

1 cells: ; 

: struct: ( template size - template' ) 

\ Create member of given size. 
>r realign r> aus: ; 

: endstructure ( pfa template - ) 
realign swap ! ; 

I 
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SILICON COMPOSERS 
Performance, Quality, Service 

SC/FOX P a 3 2  Parallel Coprocessor System32 
Uses the 32bit ~ ~ 3 2 ' ~  Forth CPU. 
System speed options: 8 or 10 MHz. 
Full-length 8- or 16-bit PC/XT/AT plug-in board. 
64K to 1M byte, 0-wait-state static RAM. 
Hardware expansion, two 50-pin strip headers. 
Includes SC/Forth32, based on the Forth-83 Standard. 

SC/FOX PCS Parallel Coprocessor System 
Uses Hams RTX 2 0 0 0 ~  real-time Forth CPU. 
System speed options: 8, 10 or 12 M H z  
Full-length 8- or 16-bit PC/XT/AT plug-in board. 
32K to 1M bytes, 0-wait-state static RAM. 
Hardware expansion, two SO-pin strip headers. 
Includes FCompiler; SC/Forth optional. 

SC/r;OX SBC Single Board Computer 
Uses RTX 2000 real-time Forth CPU. 
System speed options: 8, 10, 12 or 14 MHz. 
32K to 512K bytes 0-wait-state static RAM. 
RS232 56K-baud serial and printer ports. 
Hardware expansion, two 50-pin strip headers. 
64K bytes of shadow-EPROM space. 
Eurocard size: lOOmm by 160mm. 
Includes FCompiler; optional SC/Forth EPROM. 

SC/FOX SCSI 110 Daughter Board 
Plug-on daughter board for SC/FOX PCS and SBC. 
Source s/w drivers for FCompiler and SCIForth. 
SCSI adaptor with 5 Mbytes/sec synchronous or 
3 Mbytes/sec asynchronous transfer rates. 
Floppy disk adaptor; up to 4 drives, any type. 
Full RS-232C Serial Port, 50 to 56K Baud. 
16-bit bidirectional, latching parallel port. 

sc/Forthtm Language 
Based on the Forth-83 Standard. 
15-priority timesliced multitasking. 
Supports user-defined PAUSE. 
Automatic optimization and ~ c o d e  support. 
Turnkey application support. 
Extended structures and case statement. 
Double number extensions. 
In f i  equation notation option. 
Block or text file interpretation. 
Optional source-code developer system. 
Supports program spawning to any 64K page. 
Optional SC/DOS Fie disk operating system. 

SC32 Forth Microprocessor 
32-bit CMOS microprocessor, 34,000 transistors. 
Oneclock cycle instruction execution. 
Non-multiplexed 32-bit address bus and data bus. 
16 gigabyte non-segmented data space. 
2 gigabyte non-segmented code space. 
8 or 10 megahertz full-static operation. 
Stack depths limited only by available memory. 
Interrupt and interrupt acknowledge lines. 
Bus request and bus grant lines with on-chip tristate. 
Wait state line for slow memory and 110 devices. 
85-pin PGA package. 

RTX 2000 Forth Microprocessor 
16-bit CMOS microprocessor in 84-pin PGA package. 
1-cycle 16x16 parallel multiplier. 
14-prioritized interrupts, one NMI. 
l'bo 256-word stacks. Three ldbit timer/counters. 
%channel multiplexed 16-bit I/O bus. 

NC4016 Forth Microprocessor 
16-bit, 4MHz CMOS microprocessor in 121-pin PGA. 

Ideal for embedded real-time control, high-speed data acquisition and reduction, image or signal 

I processing, or computation-intense applications. For additional information, please contact us at: 

I SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763 
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FORML '89 
In Which We Meet in the Woods and Roo Gets Held Up ... 

BY PETER MIDNIGHT - SAN LEANDRO, CALIFORNIA 
(...the article, that is, not the holdup.) 
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time. Each author gets to address the con- 
ference for up to 15 minutes. They usually 
start by talking about whatever their paper 
is about. Then they might take a few ques- 
tions, which may include comments. This 
interplay dissolves into a discussion that 
nobody wants to end until the session chair 
says we have to move on. 

From the very beginning, this year, we 
find ourselves representing opposing 
points of view on a variety of issues. Some 
of us believe that long, descriptive word 
names make code more readable, while 
others of us believe that long names are as 
tedious to read as they are to write and leave 
less room on the printed page for reflecting 
logical structure or flow in the layout of the 
text. Someof us fear that the need fortheef- 
ficiency ofForth willdiminish with thecost 
of hardware, while others of us are hopeful 
that the demand for that efficiency will 
increase with the proliferation of uses for 
ever smaller and more numerous machines. 
And some of us appreciate the power of 
automated applications that don't bother us 
with the details of what all they have to do 
to achieve their results, while others of us 
are more concerned about the stifling effect 
this style of program has on the users' 
ability to understand and effectively man- 
age the operation of their own computers. 
Conveniently, this latter conflict foreshad- 
ows the subject of Object-Oriented Pro- 
gramming, which is sure to comeup sooner 
or later. 

Continuity 
The conference proceeds at a steady 

pace, even between sessions. The break 
between the afternoon sessions is half an 
hour long, but you spend that time waiting 
in line for your room key because this is 
your only opportunity to check in. Then 

O n c e  again this past Thanksgiving at 
Asilomar, some of the foremost Forthers 
from around the world gathered for the 
Eleventh FORML Conference. This was 
the tenth annual FORML Conference to be 
held at California's beautiful Asilomar 
Conference Center on the Monterey Penin- 
sula, just a short walk from the world fa- 
mous Pacific Ocean. However, this confer- 
ence was officially the eleventh because 
there was once another one someplace else 
and there never was a zeroth. 

As always, this year's FORML confer- 
ence had a theme. But the theme is really 
just a formality to help get the ball rolling. 
The theme this year was Object-Oriented 
Programming. And this topic did come up, 
from time to time. But the real purpose of 
the FORML Conference is to bring to- 
gether a diverse group of serious Forth 
users and to promote the propagation 
among them of enthusiasm, ideas, and 
useful information. 

The Woods 
The first thing you see when you arrive 

at the conference center is that you are not 
in Kansas anymore. You are in the woods. 
Asilomar is like a groupevent-oriented 
resort. The flagpole in the middle is sur- 
rounded by the Dining Hall, the lodge-like 
Administration Building, the Chapel, and 
the Barbecue Pit. From this area, paved 
footpaths, going slightly uphill in both di- 
rections, spread off through the trees to 
interconnect avariety of housing and meet- 
ing facilities of various sizes. The buildings 
have names like Spindrift, Manzanita, and 
Forest Lodge. Inside are wood-burning 
fireplaces, viewgraph projectors, and vats 
of less-than-ideal coffee. Outside, you're 
sure to see a few deer. 

Participation in this event begins as 

smn as you arrive at Asilomar. The fist 
stop is the Administration Building for 
registration. But before you even get there 
from your car, you begin to encounter other 
conferenceattendees. You meeta few more 
as you stop to pick up your notebook and 
meal ticket. By the time you sit down for 
lunch, you are among the people you have 
come here to see. Without leaving sea level, 
you have reached the mountain top, many 
thousands of feats above C level. For the 
next 48 hours, you can put the rest of your 
life on hold. 

Formal FORME 
After lunch, the conference begins in 

earnest, with our first session held in the 
Chapel. Here we learn that Tem Sutton, 
this year's chairperson, is unable to attend 
due to illness and that John Hall will cover 
for her during the conference itself. We also 
get the first of many handouts to be added 
to our already full notebooks. This is the 
first time we all get to open and close our 
three-ring binders together while someone 
is trying to speak. 

After a few more opening remarks, we 
get down to business. Here's how that 
works. The papers that were submitted by 
the latest deadline were then organized into 
about half a dozen subject areas. The 
groupings this year are looking into Forth; 
comparing Forth; measurements and 
mathematics; objects and graphics; match- 
ing, control flow, and F-PC; ANSI report 
and assembler innovations; and the future. 
These groups of papers become most of the 
sessions to be held at the conference and 
later become the chapters in the published 
proceedings. The conference chair, John as 
Tem, talks someone into chairing each 
session. The session chair introduces the 
author of each paper and keeps track of 



you make your way up to the Firelight 
Forum, where the remainder of the confer- 
ence will be heldthis year. Thedinner break 
is longer, but by the time you have been 
served your dessert-if you care to wait for 
it-it's about time to get started back up the 
hill for the evening session. 

Somewhere, your stomach is vying to 
make sense of what you've just eaten. At 
the same time, your brain is digesting a 
tasty selection of more abstract subjects. In 
this session, we are treated to a discussion 
of the application of mathematics to data 
types other than numbers. We also receive 
a rare explanation of what a CRC really is 
and how it can be practical to compute one. 

As the evening session draws to aclose, 
more or less on schedule, the wine and 
cheese are already being served at the back 
of the room. With more than six hours of 
presentations ahearly under our belts, we 
have plenty of food for thought and discus- 
sion, as well. In addition, this wine and 
cheese party is where we are joined by the 
guests that have accompanied some of us to 
the conference. They have been off some- 
place, enjoying noncomputing activities 
hosted by Min Moore. 

Officially, the party ends at midnight. 
All meeting facilities are supposed to close 
at this time. Those of us who don't give up 
that easily usually end up packed into 
someone's bedroom with the last of the 
wine. This is not an optimum situation for 
the neighbors and can be even worse for the 
people whose room has been ovemn. This 
year, we find a beautiful lounge in one of 
the buildings allocated to attendees of our 
conference. This lounge is not locked and 
shares no walls with any bedrooms. 
Whether by luckor chicanery, this is a great 
improvement over past years. There is no 
telling how late into the night the last few 
diehards among us are still in conference in 
that room. 

Breakfast comes at an hour some pro- 
grammers have never seen. Fortunately, 
coffee and doughnuts will be available 
during the morning break. It's only the 
second &y, and some of us are already 
suffering from sleep deprivation. But at 
nineo'clock,readyornot, thepresentations 
begin anew. 

Communication 
The theme of the conference this year 

could well have been communication. 
Whether in screens or in sequential files, 
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the source code we write is designed to 
communicate both with a machine and with 
whatever person or persons will need to 
deal with it in the future. All of OUT discus- 
sions of coding and commenting style ad- 
dress this problem. Even the occasional 
mention of Object-Oriented Programming 
refers to a method of selecting the informa- 
tion about each element of a program that 
will be communicated to a programmer or a 
user. Other problems discussed at the con- 
ference include communication of our 
understanding of the use of Forth to new 
and potential users and communication of 
the practical advantages of Forth to the en- 
gineers and managers who are the potential 
market for our skills and services. And, of 
course, the object t~wards which the 
FO~ML Conference is most directly on- 
ented is an opportunity for each of us to 
communicate in person with some of Our 
peers. 

For some of us, standing at a micro- 
phone and speaking to about 85 of the most 
knowledgeable Forth programmers in the 
world is like chatting with friends over a 
few drinks. For others of us, it is more like 
having to improvise a song a cappella on 
live network television in the nude! I-low- 
ever, we are usually too interested in the 
content of what other Forth Programmers 
have to say to be concerned about the style 
of their presentations, as long as they don't 
pass out. 

The style of our graphics, on the other 
hand, is interesting to observe. In the ab- 
sence of large video monitors, most pre- 
senters make at least some use of the 
viewgraph projector. Some just use it like a 
blackboard, while others have prepared 
slides to illustrate their work with varying 
degrees of polish. One presenter this year 
has used a pen plotter to render his 
viewgraph slides in color. And once, at a 
previous FORML Conference, we even 
saw movies. 

The proceedings, when they are pub- 
lished, will surely imply that this reporter is 
the only remaining Forth programmer with- 
out alaserprinter. But even if that were true, 
the hardware we use should not be as sig- 
nificant to us, as programmers, as is the 
software we use. What portion of this 
printed material do you suppose was devel- 
oped and formatted through the righteous 
invocation of Forth, as opposed to that 
unclean portion which was deep-fat fried 
by some autocratic word processor written 
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in one of the more fascistic languages, ap- 
proved by the Ministry of User Friendli- 
ness and sold, along with ozone-eating 
chemicals and used cars, by megalomani- 
acs with thinly veiled Mafii connections? 
We shall not dignify this sorry state of 
affairs with any further speculation. 

Informal FORML 
Over the years, several different types 

of sessions have been mixed in with the in- 
dividual, oral presentation sessions at the 
FORML Conference. On Saturday after- 
noon this year, we have working groups. At 
the beginning of such a session, several 
areas in the room are assigned to specific 
areas of interest. Discussions then take 
place simultaneously in all of these areas, 
each involving whomever of us find them 
the most interesting. Those of us not 
blessed with a one-track mind tend to 
wander around a bit during the working 
group session. 

The evening session provides another 
alternative form, impromptu talks. By this 
time, a great many thoughts have been 
churned up by the presentations, the work- 
ing groups, and the many informal conver- 
sations. There are also people among us 
with ideas to present who might have sub- 
mitted a paper, but didn't. The impromptu 
talks session is an opportunity for those 
thoughts and ideas to be presented. And it 
blends smoothly into another wine and 
cheese party on Saturday night. 

The second night of the conference 
passes much the same as the first. The same 
lounge is found unsecured, although it may 
be empty a little earlier this morning. And 
again, breakfast is strongly rumored to 
have taken place as scheduled. If you make 
it to breakfast and your roommate doesn't, 
or vice versa, you might go through the 
entire conference without ever finding out 
who your roommate is. It might even be the 
person you are sitting right next to when the 
final day of the conference begins. 

Computers 
Computers, themselves, have played an 

interesting role in the FORML Conference 
over the years. A decade ago, as you may 
recall, setting up a computer system at a 
conference was something of a project in 
itself. The first computer this reporter saw 
demonstrated at a FORML Conference 
was as offbeat as the undertaking of bring- 
ing it there. Instead of a cooling fan, it had 

(Continued on page 31 .) 
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I The Results of Our I 
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T e  results are in, and we have a 
winner. Although we only had three en- 
tries, they came from three distinct comers 
of the world. From Australia, David Doupe 
made his submission through the Usenet 
extension of our Virtual Forth Network. 
From Denmark, Henning Hansen sent his 
entry direct to the FIG offices. From our 
own back yard in Santa Cruz, California, 
Dwight K. Elvey made a remarkable win- 
ning entry. In fact, Dwight made two en- 
tries, one written for speed, the other writ- 
ten to minimize memory usage. I have 
included both, since they both are more 
than two times faster (on average) than 
their nearest competitor. I have also in- 
cluded code from Wil Baden, who has 
taken the time to further discuss [see be- 
low] the history of Dwight's method. 

The requirements for a sorting algo- 
rithm are varied, and should be determined 
more by the application than simply by the 
result of an abstract benchmark like we 
have used here. However, I might mention 
a few notes about our results. Although 
Dwight's DVD&KNKR is by far the fast- 
est, both it and David's MERGE produce 
consistent results no matter how the input 
data is ordered. It should also be noted that 
they both take significantly more memory 
than Henning's FIGSORT. In fact, 
Dwight'sentry is so unique that my tests do 
not adequately allow for his method. So the 
saying goes about lies and benchmarks! 
However, rules are rules, and Dwight de- 
serves the credit for winning under the rules 
of this contest. 

Therefore, with no further adieu, here 
are the entries. 

First Place 
DVD&KNKR.ARC 
Author: Dwight K. Elvey 
Santa Cruz, California 

"This sorting algorithm can be used as a 
general-purpose sort. The precedence or 
significance of the sort can be changed on 
the fly. This allows things like ignoring 
upper and lowercase,putting numbers after 
letters, or whatever, with almost no penalty 
in execution time. The time it takes to 
complete the sort is proportional to the 
number of items, and doesn't grow at some 
exponential rate like most of the more 
common sorts. This sort is similar to a 
Hollerith card sorter. 

"This sort is also similar to one I wrote 
forafriend who was doing mail sorting with 
Quick sort and was disappointed with the 
speed. When he saw the speed comparison, 
he said1 couldn'tbe sorting so fast and there 
must be a mistake! The one problem is that 
this sort doesn't usea compare function, but 
the rules require that I use one; so I will use 
it once to waste time. Since the purpose of 
this contest is to find thebest sort, I feel this 
is within the spirit of things. 

"The main disadvantage of this sort is 
that it does require more memory. This isn't 
normally a problem, since the data to be 
sorted is normally on disk and memory is 
cheap. For sorting strings, one could sort 
the links first then reorder the data, but that 
requires more memory." 

The Original Sort- 
A Commentary by Wil Baden 

Congratulations to Dwight K. Elvey for 
his implementation of Radix sort, a.k.a. 
Digit sort, Pocket sort, Basket sort. (See 
Knuth's, The Art of Computer Program- 
ming, volume three.) 

Given a thousand perfectly random val- 
ues, Insertion sort will make about 250,000 
comparisons, and Quick sort about 13,000 
comparisons. On a two-byte field, the Bas- 
ket sort will make exactly 2000 examina- 

tions. A comparison involves fields from 
two records, but an examination involves 
just one byte of one record. Thus, examina- 
tions should be more than twice as fast as 
comparisons. So a Basket sort really flies 
here. 

The Basket sort was used in the 1920s 
by IBM before it was called IBM. Intema- 
tional Tabulating Company (or Corpora- 
tion) was its name then. 

I believe the Basket sort is the origin of 
the word "sort" in its computing sense. The 
original meaning of sort is "classify." Sort- 
ing laundry, you put white stuff into one 
pile, or basket, dark colors into another, 
other colors into another, delicate hand- 
washable stuff into another, etc. A similar 
procedure was done with punched cards. 

First, the penny column was taken to 
sort (i.e., classify) cards into a batch for 
each digit, then the dimecolumn, thedollar 
column, the sawbuck column, the yard 
column, the grand column. 

Since the Basket sort is the original sort, 
and is so fast, why isn't it better known? 

The major disadvantage is not memory, 
but the number of passes needed. In com- 
mercial applications, it is common to sort 
on 30 or more columns. This would take 30 
or more passes in a simple-minded Basket 
sort, no matter how many records there 
were. Using Quicksort or Heapsort would 
take l o g 2 0  passes, where N is the number 
of records. 

With large memories, basket sorting 
may make a comeback. A file to be ordered 
by nine-digit social security numbers can 
be sorted in three passes by taking the 
number in "base 1000." 

[Wil Baden's code follows the contestants' 
entries.] 



DVD&KNKR.ARC 
Speed-optimized version's test results 

Test Dict RAM Fetches Stores Compares Time Score Max. Avg. 
RAMP 7052 37 1024 1024 1 0.71 6.91 6.98 6.84 
SLOPE 7052 35 1024 1024 1 0.71 6.91 6.98 6.84 
WILD 7052 32 1024 1024 1 0.66 6.56 6.98 6.84 
SHUFFLE 7052 31 1024 1024 1 0.72 6.98 6.98 6.84 
BYTE 7052 31 1024 1024 1 0.71 6.91 6.98 6.84 
FLAT 7052 36 1024 1024 1 0.71 6.91 6.98 6.84 
CHECKER 7052 31 1024 1024 1 0.72 6.98 6.98 6.84 
HUMP 7052 37 1024 1024 1 0.66 6.56 6.98 6.84 

DVD&KNKR.ARC 
Memory-optimized version's test results 

Test Diet RAM Fetches Stores Compares Time Score Max. Avg. 
RAMP 4952 32 2048 2048 1 0.88 8.28 8.28 8.13 
SLOPE 4952 36 2048 2048 1 0.88 8.28 8.28 8.13 
WILD 4952 31 2048 2048 1 0.88 8.28 8.28 8.13 
SHUFFLE 4952 36 2048 2048 1 0.88 8.28 8.28 8.13 
BYTE 4952 36 2048 2048 1 0.82 7.99 8.28 8.13 
FLAT 4952 36 2048 2048 1 0.82 7.99 8.28 8.13 

Test 
RAMP 
SLOPE 
W I L D  
SHUFFLE 
BYTE 
FLAT 
CHECKER 
HUMP 

Dict RAM 
676 84 
676 84 
676 68 
676 76 
676 76 
676 33 
676 72 
676 80 

Fetches 
7255 
7280 
12933 
12879 
11451 
1028 
3817 
10440 

Stores 
0 
1024 
4717 
4662 
4554 
0 
1450 
4308 

Compares 
7062 
7084 
12000 
11930 
10659 
1026 
3784 
9796 

Time 
1.92 
2.14 
3.95 
3.95 
3.57 
0.28 
1.21 
3.30 

Score 
15.40 
16.60 
31.81 
31.68 
28.65 
2.19 
9.71 
26.39 

Max. 
32.03 
32.03 
32.12 
32.12 
32.12 
32.12 
32.12 
32.12 

Avg. 
19.91 
19.87 
20.03 
20.19 
20.28 
20.05 
19.92 
20.00 

Test results I MERGE'ARC 

Test 
RAMP 
SLOPE 
W I L D  
SHUFFLE 
BYTE 
FLAT 
CHECKER 
HUMP 

Dict 
2558 
2558 
2558 
2558 
2558 
2558 
2558 
2558 

RAM 
58 
64 
63 
6 6 
65 
54 
63 
62 

Fetches 
14848 
20480 
27275 
27277 
27220 
14848 
21760 
27187 

Stores 
4608 
10240 
9337 
934 9 
9292 
4608 
6912 
9305 

Compares 
5120 
5120 
8969 
8964 
8964 
5120 
7424 
8941 

Time 
3.08 
4.34 
5.49 
5.50 
5.49 
3.07 
4.39 
5.49 

Score 
31.86 
46.11 
58.56 
58.61 
58.47 
31.83 
46.48 
58.40 

Max. 
59.70 
59.70 
59.70 
59.70 
59.70 
59.70 
59.70 
59.70 

Avg. 
48.69 
48.67 
48.80 
48.93 
49.04 
48.82 
48.80 
48.92 

/ 1 256 CONSTANT SIZEROT ( don't change f o r  m r e  data ) I I 
I 
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: ARRY ( 16 b i t  array maker ) 
( Size-in-items ) CREATE 2* ALLOT 
( Index - Addr ) DOES> SWAP 2* + ; 



(Continued frompage 28.) 

a chimney. There was a little sign on the 
chimney that said, "Thank you for not 
smoking!" And the software it ran was an 
equally creative expression of Forth, with 
no terminal input buffer and all the names 
stored backwards in the dictionary. 

Some years later, a few Model 100s 
started showing up. That is when we dis- 
covered how distracting the sound of typing 
can be during an oral presentation. A few 
people still take notes on computers at the 
conference. But they usually sit in the back, 
type very gently and quietly, and for the 
most part avoid typing when someone is 

~. 

speaking. 
In recent years, when Forth engines 

began to hit the scene, we started getting 
product announcements and flyers. Several 
machines appeared at the conference to 
show off their speed. A typical demonstra- 
tion would consist of a b& or two of elec- 
tronics and a 286 workstation acting as a 
dumb terminal. When told to go, the entire 
system would sit quietly for a few moments 
and then print out, "Look how fast I did 
that!" Each such system was backed up by 

(Sort code continued.) 

SIZEROOT ARRY LINKROOT ( This  i s  t h e  d i v i d e  p a r t  ) 
ITEMS ARRY DATALINK ( Links  t o  d a t a  ) 
ITEMS ARRY DATATMPl ( More space  ) 
ITEMS ARRY DATATMP2 ( More space  ) 
VARIABLE DATDIV ( used  f o r  f a s t  256 / t o  s e p a r a t e  bytes ) 
DATDIV 1+ CONSTANT DAT/256 ( Remove 1+ f o r  machines l i k e  68K ) 

: INITLINK ( i n i t  l i n k s  ) 
( Links need a marker f o r  end o f  cha in .  ) 
( Since  0 i s  a v a l i d  p o i n t e r  I ' l l  u s e  -1 ) 
[ 0 LINKROOT I LI& 
[ SIZEROOT 2* ] LITERAL -1 FILL ; 

: REORDER1 ( I n s e r t P o i n t e r  RLinkTo RLinkFrom - I n s e r t P o i n t e r '  ) 
DO I ( By m d i f y i n g  t h e  r o o t  l i n k  p o i n t e r  a t  ) 

( t h i s  p o i n t  one could  change t h e  s o r t  o r d e r  ) 
( l i k e  letters, numbers and t h e n  punc t s ,  ) 
( Through a t r a n s l a t i o n  t a b l e  u s i n g  ARRY ) 

LINKROOT @ ( F i r s t  Link i n  Chain ) 
BEGIN SWAP OVER 1+ ( end of l i n k  marked by -1 ) 
WHILE OVER DATATMPl @ ( Fe tch  d a t a  t o  r e s t o r e  ) 

OVER DATATMP2 ! ( Reorder Data ) 
1+ ( I n c r  INSERT P o i n t e r  ) SWAP 
DATALINK @ ( Follow l i n k  ) REPEAT 

SWAP DROP ( Save I n s e r t  P o i n t e r  ) 
LOOP ; 

: LSB ( Item - , S o r t  t h e  LSB's f i r s t  ) 
INITLINK ( Clea r  r o o t  l i n k s  ) 
0 DO ( This  b u i l d s  an  o rde red  l i n k  list o f  i t e m s  ) 

I S@ ( Order i s n ' t  impor tant  on f i r s t  p a s s  l i k e  i n  MSB ) 
DUP I DATATMPl ! ( Fe tch  and save  d a t a  ) 
255 AND ( 256 MOD s e p a r a t e  LSB b y t e  ) 
LINKROOT DUP @ ( Fe tch  o l d  l i n k  and p u t  new ) 

an enthusiastic entrepreneur to tell you 

- - i l  I DATALINK ! ( Bui ld  l i n k s  ) I SWAP- ! ( New i n  LINKROOT ) 

what it had just done. By listening carefully, LOOP ( Lsb l i n k s  now made s o  p u t  d a t a  back ) 
0 256 0 REORDER1 ( r e o r d e r  e n t i r e  a r r a y  ) DROP ; 

you could tell that this was pretty hot stuff 
you were not quite seeing. 

This year, we see very few computers. 
Even the assortment of laptop machines 
that is here is mostly not in evidence except 
during the breaks. One handmade R T ~  
2000 computer, somewhat smaller than a 
software package, is held up with pride 
before the conference. Have we come full 
circle yet? Perhaps not. That machine is for 
sale for $14,000 in moderate quantities. 
And it doesn't even have a chimney! 

Conclusion 
At the close of the FORML Conference, 

a bottle of wine is awarded to each of 
several participants whose presentations 

1 have been judged outstanding in one way or 
1 another. And two or three attendees are 

asked to say a few words about their expe- 
rience of the conference. Some of the obser- 
vations offered this year are that there is an 
awful lot of taking at the conference and 
probably even some listening, that typical 
Forth programmers here are older than 
typical Forth programmers in Finland, and 
that the presentations at the conference are 

(Continued on next page.) 
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: REORDER2 ( I n s e r t P o i n t e r  RZlinkTo RLinkFrom - I n s e r t P o i n t e r '  ) 
DO I ( By m d i f y i n g  t h e  r o o t  l i n k  p o i n t e r  a t  ) 

( t h i s  p o i n t  one cou ld  change t h e  s o r t  o r d e r  ) 
( l i k e  letters, numbers and t h e n  punc t s ,  ) 
( Through a t r a n s l a t i o n  t a b l e  u s i n g  ARRY ) 

LINKROOT @ ( F i r s t  Link i n  Chain ) 
BEGIN SWAP OVER 1+ ( end of l i n k  marked by -1 ) 
WHILE OVER DATATMP2 @ ( Fe tch  d a t a  t o  r e s t o r e  ) 

OVER S ! ( Reorder Data ) 
1+ ( I n c r  INSERT P o i n t e r  ) SWAP 
DATALINK @ ( Follow l i n k  ) REPEAT 

SWAP DROP ( Save I n s e r t  P o i n t e r  ) 
LOOP ; 

: MSB ( Item - , S o r t  t h e  MSB's nex t  ) 
INITLINK ( C l e a r s  r o o t  l i n k s  ) 1- ( L a s t  i t e m  ) 0 SWAP 
DO ( This  b u i l d s  an  o rde red  l i n k  list o f  i t e m s  ) 

I DATATMP2 @ ( Reverse o r d e r  n o t  t o  undo LSB's work ) 
DATDN ! DAT/256 C@ ( does  256 / unsigned ) 
LINKROOT DUP @ ( Fe tch  o l d  l i n k  and p u t  new ) 
I DATALINK ! ( Bui ld  l i n k s )  I SWAP ! ( New i n  LINKROOT) 

-1 +LOOP ( MSB l i n k s  now made so p u t  d a t a  back ) 
0 256 128 REORDER2 ( Do n e g a t i v e  v a l u e s  f i r s t  ) 

128 0 REORDER2 ( now p o s i t i v e  numbers ) DROP : 

: DVDLKNKR ( #Items - ) ( Divide and Conquer ) 
DUP LSB MSB 0.0 COMPARE DROP ; 

"This sort should score about 7.70 average on the test and have avery consistent time. I also have 
one thatuses aboul'lm less dictionaty b<tdoes twice the fetches and stores. It wouldhave ascore 
of about 8.10 averageon this test. but dictionary is less imuortant than fetches andstores. It seems 
that most of the van%tions I came up with had s'milar times, not varying by more than ten percent. 
"I have included the more memory efficient version on blocks eight through eleven, since it is 
better code and more useful but doesn't score as well on this test." 

(Sort code continues.) 
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(Sort code continued.) 

: ARRY ( 1 6  b i t  a r r a y  maker  ) 
( S i z e - i n - i t e m s  ) ClUWl"l' 2* ALLOT 
( I n d e x  - Addr  ) DOES> SWAP 2* + ; 

256 CONSTANT SIZEROOT ( d o n ' t  change f o r  more data ) 
SIZEROOT ARRY LINKROOT ( This i s  the d i v i d e  part ) 
ITEMS ARRY DATALINK ( L i n k s  t o  data ) 
ITEMS ARRY DATATMP ( More space ) 
VARIABLE DATDIV ( used f o r  fast  256  / t o  separate bytes ) 
DATDIV 1+ CONSTANT DAT/256 ( Remove I +  for mach ines  l i k e  68K ) 

: INITLINK ( i n i t  l i n k s  ) 
( L i n k s  n e e d  a m a r k e r  for e n d  o f  c h a i n .  ) 
( S i n c e  0 i s  a valid p o i n t e r  I ' l l  u s e  -1 ) 
[ 0 LINKROOT ] LITERAL 
[ SIZEROCYJ! 2* ] LITERAL -1 FILL ; 

: REORDER ( I n s e r t P o i n t e r  RLinkTo RLinkE'rom - I n s e r t P o i n t e r '  ) 
DO I ( By m o d i f y i n g  the r o o t  l i n k  p o i n t e r  a t  ) 

( th i s  point o n e  could c h a n g e  the sort order ) 
( l i k e  letters, numbers  and t h e n  p u n c t s ,  ) 
( Through a t r a n s l a t i o n  table u s i n g  ARRY ) 

LINKROOT @ ( F i r s t  L i n k  i n  C h a i n  ) 
BEGIN SWAP OVER 1+ ( e n d  of l i n k  marked  by -1 ) 
WHILE OVER DATATMP @ ( F e t c h  data t o  r e s t o r e  ) 

OVER S! ( R e o r d e r  D a t a  ) 
1+ ( I n c r  INSERT P o i n t e r  ) SWAP 
DATALINK @ ( F o l l o w  l i n k  ) REPEAT 

SWAP DROP ( S a v e  I n s e r t  P o i n t e r  ) 
LOOP .- 

(FORML, continued.) 

just an excuse for us to be here during the 
breaks, when the real interaction takes 
place. It is also noted that there has been 
almost no mention of Pooh Forth this year. 
although that $14,000 computer we saw 
earlier did bear the designation ROO. 

After lunch, with most of your good- 
byes said, you need a segue back to the real 
world. It has been 48 hours since the confer- 
encebegan, just about the length of time we 
humans seem to need in order to achieve 
saturation. This is the opportunity some of 
us take to head off across the dunes to the 
beach. This used to be a tedious trek and 
somewhat harmful to the dunes, as well. 
But now a boardwalk leads directly from 
the Barbecue Pit to the Coast Road and the 
beach. 

The beach affects us each in different 
ways. Some of us use this time to stroll on 
the sand while we mentally emerge. Others 
tend to stare out to sea, seeking to gain some 
perspective and letting the ocean put us in 
our place. Still others just go right on talk- 

: LSB ( Items - , S o r t  the LSB's first ) 
INITLINK ( C l e a r  root l i n k s  ) 
0 DO ( This bui lds  a n  ordered l i n k  l ist  of i t e m s  ) 

I S@ ( O r d e r  i s n ' t  i m p o r t a n t  on  first pass l i k e  i n  MSB ) 
DUP I DATATMP ! ( F e t c h  a n d  s a v e  data ) 
2 5 5  AND ( 256  MOD separate LSB byte ) 
LINKROOT DUP @ ( F e t c h  old l i n k  a n d  p u t  new ) 
I DATALINK ! ( B u i l d  l i n k s  ) I SWAP ! ( New i n  LINKROOT ) 

LOOP ( L s b  l i n k s  now made so put  data b a c k  ) 
0 256  0 REORDER ( reorder e n t i r e  a r r a y  ) DROP ; 

: MSB ( I t e m s  - , S o r t  the MSB's n e x t  ) 
INITLINK ( C l e a r s  root links ) DUP 1- ( L a s t  i t e m  ) SWAP 
0 DO ( T h i s  builds an ordered l i n k  l ist  of i t e m s  ) 

DUP I - S@ ( R e v e r s e  order so as n o t  t o  undo  LSB's work ) 
DUP I DATATMP ! ( fetch and s a v e  data ) 
DATDIV ! DAT/256 C@ ( does 256 / u n s i g n e d  ) 
LINKROOT DUP @ ( F e t c h  old l i n k  a n d  p u t  new ) 

I inn Forth or reioin the wives or other nuests I 

I DATALINK ! ( B u i l d  l i n k s  ) I SWAP ! ( New i n  LINKROOT ) 
LOOP DROP ( MSB l i n k s  now made so put data b a c k  ) 
0 256  1 2 8  REORDER ( Do n e g a t i v e  v a l u e s  first ) 

1 2 8  0 REORDER ( now p o s i t i v e  numbers  ) DROP ; 

I I 

I I : DVDhKNKR ( # I t e m s  - ) ( D i v i d e  a n d  Conquer  ) 
DUP LSB MSB 0 .0  COMPARE DROP ; 

Second Place 
FIGSORTARC 
Author: Henning Hansen 
Lyngby. Denmark 

I 

I I VARIABU LO VARIABLE HU) VARIABLE HI VARIABLE ?EQ VARIABLE ?FIN 

-- -- 

I I \ place high i t e m  after selecting a l l  smaller i t e m s  
: SELECT-SMALLER ( h i g h  low -- h i g h  l o w  ) 

HI @ >R oVER 1- SWAP 

w; may have lbrought along to the Gnfer- 
ence. Here is where you look back upon the 
conference, look forward to the coming 
year, and know where you will be next 
Thanksgiving. 

Peter Midnight war an audio and video 
technician until he got involved with 
computers in 1977. He has attended all 
ten FORML conferences at Asilomar 
and, since 1984, has been an engineer- 
ing consultant specializing in embed- 
ded systems. 

I 

(Continued from page 25.) 1 
ALIGN adjusts the dictionary pointer to I 

the first aligned address greater than or 
equal to its current address. An aligned 
address is suitable for storing or fetching 
bytes, cells, cell pairs, or double-precision 
numbers. 

After initializing the table, we would 
also like to read values from it. For ex- 
ample, assume we want to fetch the first 
celi, X, from the table. ATABLE BYTE+ 
gives the address of the first thing after the 
byte. However, this may not be the address 

I (Sort code continues.) I I 

BEGIN 2DUP < NOT 
WHIIE R@ 2 PICK S@ DUP HI ! 
COMPARE O< I F  SWAP 1- SWAP ELSE RECURSE THEN 

I 
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of x since we aligned thk dictionary pointer 
between the C , and the , . The portable way 
to get the address of x is: 



ATABLE BYTE+ REALIGN 

REALIGN adjusts the address on top of the 
stack to the first aligned address greater 
than or equal to its current value. 

Example 
Let's pull several of the techniques just 

described into a single example. Let's de- 
sign a machine-independent facility for 
building PascalIC-style record structures. 
Listing One shows the syntax for declaring 
a structure, creating an instance of a struc- 
ture, and accessing its members. FOO is a 
structure consisting of three parts: a three- 
byte member, a singlecell member, and a 
single-byte member. The FOOBAR struc- 
ture consists of two cells and a FOO sub- 
structure. The '.' in the name of a member 
is convention to make C and Pascal pro- 
grammers feel at home. 

The implementation also appears in 
Listing One. The order in which the mem- 
bers appear in a structure declaration is 
roughly reflected in the memory layout of a 
structure instance-roughly, because the 
structure compiler may place padding be- 
tween members to avoid alignment prob- 
lems. Each member defining word adjusts 
a template address by an appropriate size. 
The guts of the compiler, AUS : , adjusts the 
template address by a given number of 
address units. SO, BYTES : uses BYTES to 
compute the number of address units 
needed by its member and calls AUS : to 
allocate it. CELLS : works similarly but it 
aligns the template address first. 

The record-structure implementation 
has a number of nice features. The ANS 
Forth operators BYTES, CELLS, and 
REALIGN handily hide hardware details. 
The correct alignment of structure mem- 
bers is handled automatically by the struc- 
ture compiler. Observe that scaling and 
alignment are done at compile time. The 
structure is itself a word that returns the size 
of the structure in address units. A way of 
finding the size of a structure is essential, 
since it will vary from system to system. 
The size can be used with ALLOT to allo- 
cate a structure instance or with MOVE to 
copy a structure. 

Summary 
This article has described how to use 

data and memory portably in ANS Forth. 
Of course, there are other aspects of porta- 
bility. For example, different computers 

(Sort code continued.) 

REPEAT SWLP DROP 2DUP > 
I F  DUP S@ DUP HI ! 2 PICK S! R> OVER S!  ELSE R7 DROP THEN 
1+ ; 

\ so r t  few items using select ions 
: SORT-A-FEW ( high low -- ) 

OVER S@ HI ! BEGIN 2DUP > WHILE SELECT-SMAZILER REPEAT 
2DROP ; 

\ order three  items 
: ORDER-THREE ( high med low -- ) 

ROT DUP >R S@ ROT DUP >R S@ ROT DUP >R S@ 
2DUP COMPARE W 2OVER COMPARE O< 
2DUP OR NOT 
I F  2DROP ED R7 R7 2DROP 2DROP 2DROP 
ELSE OVER AND 

I F  DROP ROT R7 S! R7 DROP R> S! DROP 
ELSE 

I F  SWAP R> S! 2DUP COMPARE O< I F  SWAP THEN R> S!  R> S! 
ELSE ROT 2DUP COMPARE O< I F  SWAP THEN R7 S! R> S! R> S!  
THEN 

THEN 
THEN ; 

: ON ( addr -- ) -1 SWAP ! ; 
: OFF ( addr -- ) 0 SWAP ! ; 

\ par t i t i on  low and high ends of in terva l  
: PARTITION ( high low med - h.high h-low l .high 1.10~ ) 

S@ MED ! ?FIN ON 2DUP SWAP 
BEGIN ?EQ ON SWAP 

BEGIN 1 +  DUP S@ DUP LO ! MED @ CCMPARE 

DUE' 0 0  I F  ?EQ OFF THEN W NOT 
UNTIL SWAP 
BEGIN 1- MED @ OVER S@ DUP HI ! COMPARE 

DUP 0 0  I F  ?EQ OFF THEN O< NOT 
UNTIL ?EQ @ NOT I F  ?FIN OFF THEN 2DUP < 

WHILE ?EQ @ NOT I F  LO @ OVER S! HI @ 2 PICK S! THEN 
REPEAT 2DUP = I F  1 +  SWAP 1- THEN 
?FIN @ I F  2DROP 2DUP THEN ROT ; 

15 CONSTANT MANY 

\ so r t  from low t o  high using medium-of-three pa r t i t i on  
: SORT-THEM-ALL ( high low -- ) 

ZDUP - MANY < 
I F  SORT-A-FEW 
ELSE 

2DUP 2DUP + 2 /  SWAP ORDER-THREE 
2DUP + 2 /  PARTITION 

\ 2 0 V E R 2 O V E R - + < I F 2 S W A P T H E N  \ s m a l l e s t p a r t f i r s t  
2DUP > I F  RECURSE ELSE 2DROP THEN 
ZDUP > I F  RECURSE ELSE 2DROP THEN 

THEN ; 

\ use FIGSORT t o  so r t  t he  i t e m s  numbered 0 t o  n-1 
: FIGSORT ( n -- ) 1- 0 SORT-THEM-ALL ; 

Third Place 
MERGE.ARC 
Author: David Doupe 
Woollahra, NSW. Australia 
Though Merge sort is not spectacularly fast, it does have the advantage that it is a stable sort; i.e., 
sorting on one key (field) does not disturb previous sorting operations done on other keys. Also, it 
is O(n log n). The contest requirements result in reduced efficiency for this implementation. 

CREATE DATA2 ( - a P:Array f o r  emerging lists) 
ITEMS mus ALLOT 

I VARIABLE N-DATA2 ( - a P:Count f o r  newly emerging list ) I 
(Sort code continues.) 

I 
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: S2! ( n - ) N-DATA2 @ CELLS DATA2 + ! 1 N-DATA2 +! 
STORES !USE ; 

VARIABLE A1 VARIABLE A2 
VARIABLE N 1  VARIABLE N2 

( p o i n t e r s  & c o u n t e r s  t o  t h e  two c u r r e n t  s u b l i s t s  ) 

VARIABLE PL1 VARIABLE PL2 
( p o i n t e r s  t o  latest item# s e l e c t e d  i n  each s u b l i s t  ) 

: INCAl ( - f ) 1 A1 +! 1 PL1 +! PL1 @ N 1  @ > ; 
( Having chosen from s u b l i s t l ,  increment A1 and PL1, t h e n  

test i f  s u b l i s t l  i s  exhausted  ) 
: INCA2 ( - f ) 1 A2 +! 1 PL2 +! PL2 @ N2 @ > ; 

( Having chosen from s u b l i s t 2 ,  increment A2 and PL2, t h e n  
test i f  s u b l i s t 2  is exhausted  ) 

:aRD ( - 1  
BEGIN A2@ Al@ COMPARE -1 = 

IF  A2@ S2! INCA2 
I F  N 1  @ PL1 @ - 1+ 0 

DO A l @ S 2 !  l A l + !  
LOOP EXIT 

THEN 
ELSE Al@ S2! INCAl I F  EXIT THEN 
THEN 

AGAIN ; 

: SET-UP-MRG ( sl n l  s 2  n2 - sl ) 
N2 ! A2 ! N 1  ! DUP A1 ! 
1 PL1 ! 1 PL2 ! 0 N-DATA2 ! ; 

: TO>FROM-MOVE ( sl - sl ) DATA2 OVER CELLS DATA + ( s l  s d ) 
N-DATA2 @ CELLS ( sl s d n ) MOVE ; 

( T h i s  does  n o t  increment t h e  counted  f e t c h e s  and s t o r e s  ) 

: MRG ( sl n l  s 2  n2 - sl  nl+n2 ) 
SET-UP-MRG aRG> TO>FROM-MOVE 
( s l )  N l @ N 2 @ +  ; 

: RA-SPLIT ( s l  n - sl  n l  s2 n2 ) ( nl<= n2 ) 
2 /MOD SWAe OVER + >R 2DUP + FD ; 

: 2CHKSWAP ( n - ) ( compare an  a d j a c e n t  p a i r  & swap i f  nec)  
DUP S@ OVER 1+ S@ SWAP 
COMPARE -1 - 
IF DUP l+EXCHANGEEXIT 
ELSE DROP 
THEN ; 

( This  cou ld  be done qu icke r  w i th  2@ and 2! s i n c e  i t e m s  a r e  
always a d j a c e n t  ) 

: MSOCLIP ( sl n l  - s l  n l  P:Deal w i th  r ecu r s ion  exit cond i t ions )  
DUP 2 = I F  OVER 2CHKSWAP FD DROP EXIT THEN 
DUP 2 < I F  FD DROP EXIT THEN 

( THIS I S  THE MAIN AIGORITHM ) 
: +SORT> ( sl n l  - sl n l  ) 

MSOCLIP 
RA-SPLIT 
RECURSE 2SWAP RECURSE 2SWAP 
MRG ; 

(Sort code continues on page 39.) 

represent numbers in different ways and 
dependence on a particular representation 
should be avoided. Assumptions about the 
underlying Forth implementation should 
also be avoided. During Forth's history, an 
amazing variety of implementation tech- 
niques have been developed. The ANS 
Forth standard encourages this diversity 
and consequently restricts the assumptions 
that a user can make. 

There is no such thing as a completely 
portable program. A programmer should 
intelligently weigh the tradeoffs of provid- 
ing portability to specific machines. For 
example, machines that use sign-magni- 
tude numbers are rare and vrobably don't 
deserve much thought. B U ~  systems with 
different cell sizes will certainly be encoun- 
tered and should be provided for. In gen- 
eral, making a program portable clarifies 
both the programmer's thinking process 
and the final program. 

This issue alsp contains "SC32: a 32- 
Bit Forth Engine" by the same author. 1 

1 (Editoria1,fran page 4.) 

embedded-systems programming is draw- 
ing from the Forth labor pool, reportedly in 
increasing numbers. (Only heaven knows 
whether even a sweeping endorsement by 
industry would crack open the ivory gates 
of academia at large to Forth coursework, 
but it would be a great vindication to all the 
engineering departments happily using 
Forth in their laboratory classes.) 

One last thing ... 
We have published more pages this year 

than ever before, and we hope to continue 
doing so. It is only your membership in the 
Forth Interest Group that enables us to stay 
in print. Like public television, we hope 
you will vote with your checkbook to keep 
bringing quality Forth techniques and de- 
velopments to you. Watch for your mem- 
bership renewal notice, and return it soon. 
We anticipate an exciting year ahead-for 
the Forth language, the industry, and FIG- 
and we will bring the best and most impor- 
tant developments to you in this members' 
magazine. 

--Marlin Ouverson 
Editor 

I 
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GARY SMITH - LITTLE ROCK, ARKANSAS 
= 

N n v s  from the GEnie Forth 
RoundTable-The X31J14 ANS Forth 
Technical Committee, charged with the 
task of writing an ANS Forth Standard, has 
for some time discontinued official sanc- 
tion of GEnie (or any other public informa- 
tion service) as repository of comment and 
feedback to their efforts. This does not 
mean there is no standards activity on the 
GEnie Forth RoundTable-few things 
could be further from the truth. Comments 
are still being made and they are being 
monitored. By the time this makes print, we 
will also have had X3/J14 chair Elizabeth 
Rather as our guest in conference, her topic 
being the X3/J14 ANS standards effort. 
The future of Forth is being debated. Are 
you denying yourself a voice in this most 
important event ? Read the following re- 
cently posted exchanges and if something 
strikes a chord of harmony--or dishar- 
mony-join in. 

* * * 
From: Roedy Green 
Subj: IEEEfloating point 

If you specify IEEE binary format, 
mainframers will simply have to ignore 
you. The overhead of converting to IEEE in 
F! would be enormous and silly. If you 
don't specify IEEE format, the micro 
people will all use it anyway because that is 
how the 80387, etc.. work. So my vote goes 
for leaving it out. We might have a docu- 
ment on a data interchange format where 
IEEE has a big role. This is really outside 
the realm of the Forth language, though. 

To: Roedy Green 
From: Jack Brown 
Subj: IEEE FP 

Since I have been the major proponent 
for the inclusion of IEEE, you and others 
may be interested in knowing that my ear 
has been bent after listening carefully to 

several Forth people with mainframe and 
minicomputer backgrounds. I intend to 
withdraw my proposal to specify IEEE 
binary format in favour of one which will 
specify a word to convert a system's "inter- 
nal floating-point format" to the IEEE bi- 
nary format in order to promote exchange 
of floating-point data. 

The future of Forth is 
being debated. 

To: Roedy Green 
From: Ian Green 
Subj: Language of Forth Standard 

On standards I can offer some assis- 
tance. First I suggest that, regardless of 
what the bums at any standards committee 
have to say, one thing I have never seen for 
Forth is an extended (or standard) Bachus- 
Naur form of syntax definition for each 
word, etc. For example, in his book Pro- 
gramming in Modula-2, Wirth make sev- 
eral omissions regarding the way the lan- 
guage is supposed to work. He did, however 
(interspersed throughout the text and again 
in an Appendix), provide the Bachus-Naur 
formal definition in absolute precise terms. 
Because I can understand EBNF, I was able 
to simply refer to the syntax chart when I 
had a problem making a piece of code 
compile (now, of course, I do not need the 
tables, as I am quite proficient in that lan- 
guage). 

My biggest stumbling block about 
Forth, and many other languages for that 
matter, is the lack of a formal definition. 
With a formal definition using EBNF, it is 
possible to design an unambiguous lan- 
guage standard. Now, Modula-2 is only one 
of many very serviceable languages and I 
can also program in a variety of others, but 
I need the EBNF syntax charts if I am to 

make any headway. That combined with 
examples based on the syntax. 

To: Ian Green 
From: Roedy Green 
Subj: Language of Forth Standard 

Given the simplicity of the grammar of 
Forth-no precedence, only space and a 
separator, strict nesting, I don't see the lack 
of BNF as an important omission, except to 
welcome people with Wirthian language 
backgrounds. 

To: Ian Green 
From: Jerry Shifrin 
Subj: Language of Forth Standard 

Actually, for reasons which are beyond 
me, C.H. Ting did do a BNF for Forth. You 
can find it in his Fonh Notebook from 
Offete Enterprises or in the 2/82 issue of 
Dr. Dobb's Journal. As near as I can tell, 
the BNF description of Forth should be 
something like that shown in Figure One 
[page 411. 

To: Jerry Shifrin 
From: Ian Green 
Subj: Language of Forth Standard 

Yes, that is the idea I was looking for. 
That and examples of code relative to the 
syntax charts. If you or someone has the 
complete BNF syntax for Forth (I am cur- 
rently playing with F83). This, I feel, 
would go a long way towards clarifying the 
way the language works. 

To be more in keeping with EBNF, I 
suspect that Forth would be defined some- 
thing like Figure Two. The problem is, 
though I can write the syntax for a familiar 
language fairly easily, Forth is not so easily 
figured out. 

To: Ian Green 
From: Jerry Shijiin 
Subj: Language of ANS Forth 

I 
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Actually, Ian, the point I was trying to 
make is that Forth isn't usually willing to sit 
still long enough for someone to develop a 
detailed syntax. <grin> 

By that, I mean that every Forth token is 
eligible for redefinition and may alter the 
syntax of itself and subsequent string. For 
example, Forth programs may redefine or 
add IF or DO control structures; may rede- 
fine constants, e.g.: 

99 CONSTANT 5 
\ 5 now means 99! 

can even redefine existing functions in 
terms of themselves, e.g.: 

: DUP 
DUP . " DUPing ' . 
CR DUP ; 
\ Trace uses of DUP 

and, in fact, can even redefine defining 
words, e.g.: 

: CONSTANT 
CREATE ! 
DOES> @ DUP .S ; 

which redefines colon in terms of itself and 
adds a little counter. 

So, while you could get a BNF descrip- 
tion of typical usage, it doesn't really define 
the language. 

From: Roedy Green 
Subj: -LEADING -TRAIWNG 

I am concerned about the string-chop- 
ping verbs -TRAILING and SKIP. There 
are really six different, but related, words. 
The complete set need not be made part of 
the standard, but I think they should be 
consistently named so that it would be easy 
to add the missing ones. I think SKIP is a 
misleading name because it implies hop- 
ping over a unread record. 

Here are my proposed names: 
-LEADING -LEADING<> -LEADING= 
-TRAILING -TRAILING<> 
-TRAILING= 

-LEADING 
( addrl +n 1 -- addr2 +n2) 
Pronounced "dash-leading" or "minus- 
leading" 

Trims any leading blanks from a string. 
The length may also be zero or one, but not 
negative. The address and character count 
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+nl of a text string beginning at addrl is 
adjusted to exclude leading spaces. If +n 1 
is zero, then +n2 is also zero. If the entire 
string consists of spaces, then +n2 is zero. 
The length nl must be under 64K and the 
last character of the string must be covered 
by Seg of addr. Addr need not be canoni- 
cal. The original string is unmolested. c.f., 
-LEADING= -LEADING<> 
-TRAILING -TRAILING= 
-TRAILING<> SCAN SCAN<> 

-LEADING<> 
( addrl +nl char -- addr2 +n2) 
Pronounced "minus-leading-not-equal" 

Trims any leading characters that do 
not match char from a string. The length 
may also be zero or one, but not negative. 
If +nl is zero, then +n2 is also zero. The 
length nl must be under 64K and the last 
character of the string must be covered by 
Seg of addr. Addr need not be canonical. 
The original string is unmolested. c.f., 
-LEADING -LEADING= -TRAILING 
-TRAILING= -TRAILING<> SCAN 
SCAN<> 

-LEADING= 
( addrl +nl char -- addr2 +n2) 
Pronounced "minus-leading-equal" 

Trims any leading characters that 
match char from a string. -LEADING is 
equivalent to BL - LEADING=. The 
length may also be zero or one, but not 
negative. If +nl is zero, then +n2 is also 
zero. The length n 1 must be under 64K and 
the last character of the string must be 
covered by Seg of addr. Addr not be 
canonical. The original string is unmo- 
lested. c.f., -LEADING -LEADING<> 
-TRAILING -TRAILING= 
-TRAILING<> SCAN SCAN<> 

-TRAILING 
( addr +nl -- addr +n2) 
Pronounced "dash-trailing" or "minus- 
trailing" 

Trims any trailing blanks from a string. 
The length may alsobe zero or one, but not 
negative. The character count +nl of a text 
string beginning at addr is adjusted to ex- 
clude trailing spaces. If +nl is zero, then 
+n2 is also zero. If the entire string con- 
sists of spaces, then +n2 is zero. The length 
nl must be under 64K and the last charac- 
ter of the string must be covered by Seg of 
a&. Addr need not be canonical. The 
original string is unmolested. 
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( ad& +n 1 char -- addr +n2) 
Trims any trailing characters that do not 

match char from a string. 

-TRAILING= 
( ad& +nl char -- addr +n2) 

Trims any trailing characters from a 
stting that match char. 

To: Roedy Green 
From: Jack Brown 
Subj: Leaving out words 

There used to bea ControlledReference 
Wordse~ but that has been eliminated and 
is not likely to be put back in, as it was more 
like a compromise trash bucket. Words 
without enough support to get in the stan- 
dard were thrown into the controlled word- 
set, supposedly either on their way into or 
out of the standard next time round. There 
are still two other wordsets for words that 
cannot make it into the standard. They are 
the Resewed wordset for inherently non- 
portable common usage words like . S, 
DUMP, etc.; and the Future Directions 
wordset, for candidates for inclusion in a 
future standard. TUCK does not fit into 
either of these wordsets. To reserve the 
word TUCK, it would have to be included in 
either the Core wordset or Extended Core 

wordset. 

To: Roedy Green 
From: Jack Brown 
Subj: What w a  lejl out 

Thank you for uploading your com- 
ments on Basis 10. I will make sure that the 
editors of it are notified of some of the 
errors that you have detected. You have 
made some excellent points; however, if 
you feel very strongly that certain things 
should be changed, you should consider 
making a formal proposal. F m s  for doing 
this are available for downloading. Look 
for the file ANSlTPFZP 

Your comments are very likely to cause 
other members of the ANSI Technical 
Committee to generate proposals to fix and 
clarify problems that you have detected. 
But otherideas,like your - T R A I L I N G ~ ~ ~  
related words, will probably require a pro- 
posal generated by yourself to make it to the 
table for discussion. 

I will be looking carefully at your com- ' ments when I am preparing my proposals 
for the January meeting. 

From: Zafar Essak 
Subj: Basis 10 feedback 

Well here goes, more feedback from 

another BC Forth enthusiast Having spent 
an evening sitting around with a few others 
and discussing some of the concerns raised 
by a reading of Basis, the fmt realization is 
that others can come up with some pretty 
good justifications for their positions, at 
least enough to justify having to place defi- 
nitions in my 'Prelude" to accommodate 
them. 
F i  I too share Robert Berkey's wish 

that the FOR ... NEXT looping a-t 
used a word other than NEXT, which seems 
to be at the heart of the Forth inner inter- 
preter, at least conceptually. 

And then... 

7.0020 " 

( -- adr,u) 
"quote" 

I don't know the comglede history of 
this word, but feel strongly that if it returned 
the addms of the count it would be more 
useful. I realize this will break existing 
code, but since this word has not been 
included in a pmvious standard it is appro- 
priate to consider the stack effects and 
resulting usefulness. I am also aware of a 
number of other Forth implementations 
that return the address of the count for this 
definition. Before making a formal pro- 

" P R O G R A M M I N G  - mmmcumENVIRONMENTS 

Pmedings of the 1988 
Rochester Forth Conference . . . . . . . . . . . . . . . . . . . .  $25. 
7 invited papers and 51 presented papers on all aspects of Forth technology, 
implementation and its application including these invited papers: 

Forth on Unix Wxktations .................... Mitch Bradley, Sun M- ihc 1 
Cellular Automata Machines: 
A New Environment for Modeling ............... Norman Margolus, 

MITL.abo~moryfor Computs Science 

...................................... X-Script Paul Snow and CIS Click, ZcBSI 

ASYST: A Structured Interactive 
Environment for Scientists and Engineers ........ Sue Semancik and David Smith, 

Ayst Software TmhnoXogV, k 

RPL: A Mathematical Control Language ......... W.C. W~ckes, Hew& Packard 

Infrared Image Acquisition 
and Analysis in Forth .......................... W. Forrest, Univ. of lkhesfw 

TICOL: A Development Tool for 
S E C O N D  P R I N T I N G  FifthGenerationProgr a g Environments .... J. Dowe, ~ r c a ~ w  TQC-, and 

T Arai, N W  Infomation @stems 

Add $5 for S/H. Vi and Mastercard accepted. 
Institute for Applied Fbrth Research 70 Elmwood Avenue, Rochester, NY 14611 (716)235-0168 / (716)328-6426 fm 
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posal I would like to hear what others think 
about this. 

7.0790 BLK 
7.0800 BLOCK 
7.1790 LOAD 

Even though I find sequential file and 
stream UO more useful for editing source 
andmy applications, I read with interest the 
continued reference that "If BLK is z m ,  
the input stream is being taken from T IB." 
And for LOAD, "...an exception exists if u is 
zero, or is not a valid block number." 

Personally, this has never bothered me 
and seemed to offer consistency when 
thinking of virtual memory, even as a be- 
ginner, namely, that zero implied console 
input and any number greater than zero 
referred specifically to a block of virtual 
memory. And then along cameF83 with its 
definitions of virtual memory, including 
the numbering of the first block as zero, 
which could be edited but not loaded. 
Whenever I asked people why this incon- 
sistency, all I got were rationalizations 
about how it provided a great place for 
comments. Now really, a simple -->or ; S 
at the beginning of any block allows the 
placement of comments, so why should I 
want to be restricted to one block of com- 
ments right at the beginning of the file: just 
to say "And the rest is silencey'? 

But I am still not clear from Basis 10 if 
BLOCKS will be numbered from zero up or 
from one. 

To: Zafar Essak 
From:R Berkey [Robert] 

ZE> "...feel strongly that if ' returned 
the address of the count it would be more 
usefill." 

Yes, but address and length operands 
decouple the data structure from words that 
manage it, and allow one common, port- 
able, general-purpose string descriptor. 
SKIP and SCAN, for example, must have 
address and length. My preference is to 
have one common string descriptor in the 
standard, and another name for the single 
operand ". Just last week I ED IT ALL^^ 
through a megabyte of application code and 
renamed each of the " to $" in preparation 
for adding the address-and-length ' . 
ZE> "... I got .. .rationalizations how 

(block 0) provided a great place for com- 
ments." 

The only Forth I've known that had 
blocks starting with one was my mistaken 

(Continued on page41 .) 

(Sort code continued from page 34 .) 

Baden's Basket Sort 

: loc ( a -- a') cell+ ; ( When the next cell starts the data.) 

( : loc cell+ @ ; ( When the next cell points to the data.) 

256 constant M ( # of "digits".) 

: array ( k -- ) Create cells allot 
( i -- a) does> swap cells + ; 

M array botm 
M array top 

( The bottoms of the sublists.) 
( The tops of the sublists.) 

( Knuth's Algorithm H reworked.) 
: hook-up-queues ( link lim init -- tail) 

( Hook the sublists back up.) 
W ( link) 

I botm @ ( link link1) ?dup 
IF I top @ rot ! ( link1) THEN 

LOOP ; 

( The meat of Knuthls algorithm R.) 
: sort-on-byte ( K h -- ) 

( h is head of a list. K is byte in record to sort on.) 
0 botm M cells erase 

BEGIN ( K link) 
2dup loc + c@ ( K link i) 
dup botm @ 
IF 

2dup botm @ ! 
ELSE 

2dup top ! 
THEN 
THEN 
over swap ( K link link i) botm ! ( K link) 
@ 
dup O= 

UNTIL 2drop ; 

( The two foregoing definitions can be used as a foundation for 
( basket sorting. Here they are combined to provide a general 
( routine to sort on a field.) 

( Algorithm R.) 
: field-sort ( Head Field-start Field-end - ) 

( Given the head of a linked list and a field specification, 
( for each byte in the field from least significant to most 
( significant, separate the list into M sublists and then 
( hook back up the sublists. At the conclusion the list 
( will be logically ordered by the field.) 
DO ( Head) 

I over @ ( Head k P) 
sort-on-byte ( Head) 
dup M 0 hook-up-queues ( Head tail) 
0 swap ! ( Head) 

-1 +LOOP drop ; 

( This uses "sort-on-byte" and "hook-up-queues" for the data 
( in the sort contest. 'w@" and "w!" are for 2-byte data.) 

Create Links ITEMS CELL 2+ * allot Variable Head I 
: Crown Links Head ! ; I 
: Build-list 

Crown Head @ ( P) 
ITEMS 0 

(Sort cede continues on page 41 .) 
I 
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FIG CHAPTERS REPORT 1 
VISIT TO A 

PARALLEL UNIVERSE 

E r t h  is booming. The popular press 
has lost interest in Forth even to the extent 
of ritualistically announcing the Death of 
Forth. But in the ever-expanding field of 
embedded control programming, Forth has 
come into its own, joining the C language in 
what we, who know better from our own 
experience, might be otherwise tempted to 
call "the death of BASIC." 

Yet where will the Forth programmers 
come from to maintain tomorrow the soft- 
ware being written today? Colleges don't 
exactly churn out trained Forthers in large 
numbers. The role of producing new Forth 
programmers is one that has traditionally 
been assumed by the Forth Interest Group 
and its members and affiliated chapters. 
The tremendous increase in accessibility of 
expert assistance in Forth via telecom now 
offers another path to progress for the 
would-be Forther. And every once in a 
while, a ray of bright light breaks through 
the perpetual gloom surrounding Forth's 
hind-teat position on the sow of Academia. 

Joseph Gradecki is a senior at Metro 
Community College in Denver, Colorado. 
He has built a 16-node hypercube parallel 
processor out of Intel 8031 microproces- 
sors. Each node has Forth in 8K EPROM 
and sports 32K static RAM. The system 
controller runs on an MS-DOS portable, 
which communicates serially with the 
nodes in a round-robin poll. The nodes 
communicate internally with each other in 
parallel along the edges of the hypercube 
via 8255 peripheral interface adapters, two 
per board. 

Each node runs an identical Forth, 
which Mr. Gradecki wrote himself. 

Mr. Gradecki and his Computer Sci- 
ence instructor, Dr. Charles P. Howerton, 
spoke at the January meeting of the Denver' 
FIG Chapter, held at the National Institute 
of Standards and Technology before what 
(for Denver FIG) constitutes an overflow 

JACK WOEHR - 'JAX' on GEnie 
rn 

crowd, 26 souls all told. Joe's PPC (Per- 
sonal Parallel Computer) is 16 wire- 
wrapped boards inside a tinted Plexiglass 
case. The cooling fan hums quietly and 
there are red LEDs flashing as each node 
wakes up. It's a veritable "black box." The 
PPC engages in distributed processing. 
Program and data are uploaded serially to 
the nodes from the system controller. Mr. 
Gradecki's chosen demo to the group fea- 
tures a keyed text search. Afterwards there 
are questions. 

FD: How did you learn Forth? 
Mr. Gradecki: "My two guidelines 

were fig-FORTH for the 8080 and a book 
called Threaded Interpretive Languages 
(Loeliger, Byte Books, 1981). I converted 
the floating point from 8086 code. 

"Dr. Howerton got me interested in 
Forth. He gave me Brodie's book and got 
me started on the PC. To be truthful, this 
[demo] is the second Forth [application] 
program that I have ever written. I've spent 
so much time in the development that I 
haven't had time to play! 

"My first Forth program was a Mandel- 
brot program. It pushed the limits of Forth. 
This code probably does too, but it was 
hacked together in the last few days. Time 
has been crucial." 

FD: What has been your impression of 
Forth since you started to use it? 

Mr. Gradecki: "I like it." 
FD: What is the advantage? What is 

attractive about it? 
Mr. Gradecki: "To me, it's simple. I 

can think in Forth very easily. Other 
people, I know, like things likeC. I'm in the 
process of translating a ray-tracing pro- 
gram for the PPC from C. It's going to be 
real interesting. It's going to be real Forth; 
a case of 'let's see if this language can 
handle this.' 

"With the cube here, when I was testing 
I didn't have to compile, link, handle the 

warnings.. . I just entered a definition and 
boom! It was just outstanding for that." 

Dr. Howerton: "One of the reasons I 
suggested Forth to Joe was that he needed 
a bigger virtual environment in which to 
execute. He needed a richer instruction set 
without having to fall back to assembly 
language. So this way, by building a funda- 
mental TIL, and then with the ability to 
outload definitions to it and expand it on the 
fly, he could build anything he wanted and 
it was simple." 

FD: With the effort of implementing 
Forth on that chip, do you think that, in the 
end, you made a net memory savings in the 
program by using Forth rather than a 
straight assembly language program? 

Dr. Howerton: "In terms of a new 
single program, probably." 

Mr. Gradecki: "Definitely. I have the 
code on there pretty well optimized. In any 
event, it's a heck of a lot easier to program. 
Granted, I could write applications like this 
in assembler. I happen to enjoy assembler. 
It would have taken a lot longer, though. 
When I started, everything was in assem- 
bler. I didn't have the capability to upload 
to the processors. If I wanted something 
new in there, I burned it into EPROM." 

Dr. Howerton: "From the time I gave 
him the books until he demonstrated Forth 
running on this thing, he took nine days. I 
thought he was faking it, but he brought up 
the interpreter." 

FD: Is Forth something that you often 
bring up in your classes? 

Dr. Howerton: "I do when I teach as- 
sembly language. I usually save the last 
three or four weeks of assembly language 
courses to teach Forth. The result is an 
immediate improvement in the students' 
assembly language skills. It's a relatively 
easy transition for the students, once they 
are at that point. Some terms, I teach VAX 

, assembler; the term Joe took my course, I 
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taught PC assembler. There are Forths for 
all of them, so it doesn't really matter. I 
can't think of a machine going that doesn't 
have a Forth for it. There's Forth for the 
1802, Forth for the Cray . . ." 

Mr. Gradecki's next project is ray h-ac- 
ing with his hypercube, an experiment in 

producing something "non-trivial" for his 
PPC to run. And he envisions building 
future machines, "...based on what I've 
learned implementing this, based on what 
I've seen elsewhere. I like hypercubes. The 
obvious thing is, more speed, more mem- 
ory! Faster, better!" 

To which the Forth programmer con- 
cerned with the maintainability of his or her 
code into the next century can only add this 
plea to the Dr. Howertons of America and 
their students, "More Forth programmers, 
please! Faster, better!" 

(Continued from page 39.) 1 
fust attempt at a fig-FORTH. The problem 
only appears with operating-system 
Forths, as boot or object code gets put in 
block zero on standalone systems. At 
Dysan, we kludged around the problem by 
storing -1 in BLK when block zero was 
being interpreted. F'ygmy's approach in 
mapping file blocks onto one master set of 
block numbers has a certain elegance. 

because standardizing a word designed for 
obsolete loops that speed-optimize on DO is 
standardizing garbage. 

Figure One. 

Anyway, thanks for your comments 
about the 2 >R rationale. 

Figure Two. 

Good point. X3/J14 has deleted the 
Forth-83 specifications that there are 
known block numbers 0-31, with other 
available block numbers documented. I'm 
hesitant to guess why. 

ZE> "But I am still not clear from Basis 
10 $BLOCKS will be numbered from 0 up 
or from 1 ." 

To: Roedy Green 
From: R.Berkey [Robert] 

RG> "7.0340 2 >R Remove theeditor's 
note on why DO parms are backwar ds..." 

I agree, even if for a different reason. 
What the 2>R rationale doesn't quite 

say is that DO has been implemented on 
pre-1983 systems as: 

-- 
Program := { Word ) 

word - = . ,, . Identifier ( Word 1 Number } ';" 

: DO 
COMPILE 2>R ; 
IMMEDIATE 

with the parameters for Do having been set 
long before this 1981 implementation was 
noticed. 

Upon learning of 2>R, I at first thought 
that the parameters were backwards, a 
kludge to save a few bytes by not having a 
(DO). Later, I realized that they aren't 
backwards. Looking at how the numbers 
appear in memory, this version maintains 
the double number. Another way to de- 
scribe this is that 2 >R can be implemented 
using 2@ and 2 ! . 

If the rationale given in Basis was the 
reason for this order of parameters now 
being standardized, I'd be opposed to i t  

(Sort code continued from page 39.) 

DO 
dup cell+ ( P addr-for-copy-of-data) 
I s@overw! 2+ (Pnext-P) 
dup rot ! ( P) 

LOOP 
2- CELL - 0 swap ! ; 

: Reorder 
Head ( link) ITEMS 0 

DO @ dup cell+ w@ I s! LOOP drop ; 

( A trick to determine MSB of 2-byte cells.) 
1 Pad w! Pad c@ constant MSBX 

1 %B# - constant LSBX 

: Basket-sort 
Build-list 
Head 0 1 field-sort 

Reorder ; 

: Elvey-sort 
Build-list 
LSB# Head @ ( k P) sort-on-byte ( ) 
Head 256 0 hook-up-queues ( tail) 
0 swap ! ( ) 
MSBX Head @ ( k P) sort-on-byte ( ) 
Head ( link) 
256 128 hook-up-queues ( link) 
128 0 hook-up-queues ( tail) 
0 swap ! ( ) 
Reorder ; 

I 
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FIG 
CHAPTERS 

The FIG Chapters listed below 
are currently registered as active 
with regular meetings. If your 
chapter listing is missing or incor- 
rect, please contact Kent Safford at 
the FIG office's Chapter Desk. 
This listing will be updated in each 
issue of Forth Dimensions. If you 
would like to begin a FIG Chapter 
in your area. write for a "Chapter 
Kit and Application." Forth Inter- 
est Group, P.O. Box 8231, San 
Jose, California 95155 

U.S.A. 
ALABAMA 
Huntsville Chapter 
Tom Konantz 
(205) 88 1-6483 

- ALASKA 
Kodiak Area Chapter 
Ric Shepard 
Box 1344 
Kodiak, Alaska 9961 5 

ARIZONA 
Phoenix Chapter 
4th Thurs., 7:30 p.m. 
Arizona State Univ. 
Memorial Union, 2nd floor 
Dennis L. Wilson 
(602) 381-1 146 

ARKANSAS 
Central Arkansas Chapter 
Little Rock 

CALIFORNIA 
Los Angeles Chapter 
4th Sat., 10 a.m. 
Hawthorne Public Library 
12700 S. Grevillea Ave. 
Phillip Wasson 
(213) 649-1428 

North Bay Chapter 
2nd Sat., 10 am. Forth. A1 
12 Noon Tutorial, 1 p.m. Forth 
South Berkeley Public Library 
George Shaw (415) 276-5953 

Orange County Chapter 
4th Wed., 7 p.m. 
Fullerton Savings 
Huntington Beach 
Noshir Jesung (714) 842-3032 

Sacramento Chapter 
4th Wed., 7 p.m. 
1708-59th St., Room A 
Bob Nash 
(9 16) 487 -2044 

San Diego Chapter 
Thursdays, 12 Noon 
Guy Kelly (619) 454-1307 

Silicon Valley Chapter 
4th Sat.. 10 a.m. 
H-P Cupertino 
Bob BW (408) 435-1616 

Stockton Chapter 
Doug Dillon (209) 93 1-2448 

FLORIDA 
Orlando Chapter 
Every other Wed.. 8 p.m. 
Herman B. Gibson 
(305) 8554790 

Southeast Florida Chapter 
Coconut Grove Area 
John Forsberg (305) 252-0108 

Tampa Bay Chapter 
1st Wed., 7:30 p.m. 
Terry McNay (8 13) 725-1245 

GEORGIA 
Atlanta Chapter 
3rd Tues.. 7 p.m. 
Emprise Corp., Marietta 
Don Schrader (404) 428-081 1 

ILLINOIS 
Cache Forth Chapter 
Oak Park 
Clyde W. Phillips, Jr. 
(312) 386-3147 

Central Illinois Chapter 
Champaign 
Robert Illyes (217) 359-6039 

INDIANA 
Fort Wayne Chapter 
2nd Tues.. 7 p.m. 
I/P Univ. Campus 
B71 Neff Hall 
Blair MacDermid 
(219) 749-2042 

CONNECTICUT 
Central Connecticut Chapter 
Charles Krajewski 
(203) 344-9996 

2nd Sat., 2 p.m. & 
4th Wed., 7 p.m. 
Jungkind Photo. 12th & Main 
Gary Smith (501) 227-7817 

Rodrick ~ l d r i d ~ e  
(515) 294-5659 

Fairfield FIG Chapter 
4th Day, 8: 15 p.m. 
Gurdy Leete (5 15) 472-7077 

COLORADO 
Denver Chapter 
1st Mon., 7 p.m. 
Clifford King (303) 693-3413 

MARYLAND 
MDFIG 
Michael Nemeth 
(301) 262-8140 

IOWA 
Central Iowa FIG Chapter 
1st Tues.. 7:30 p.m. 
Iowa State Univ. 
214 Com~.  Sci. 

MASSACHUSETTS 
Boston Chapter 
3rd Wed., 7 p.m. 
Honeywell 
300 Concord, Billerica 
Gary Chanson (617) 527-7206 

MICHIGAN 
DetroidAnn Arbor Area 
Bill Walters 
(313) 731-9660 
(3 13) 861 -6465 (eves.) 

MINNESOTA 
MNFIG Chapter 
Minneapolis 
Fred Olson 
(612) 588-9532 

MISSOURI 
Kansas City Chapter 
4th Tues., 7 p.m. 
Midwest Research Institute 
MAG Conference Center 
Linus Orth (913) 236-9189 

St. Louis Chapter 
1st Tues.. 7 p.m. 
Thornhill Branch Library 
Robert Washam 
91 Weis Drive 
Ellisville. MO 6301 1 

NEW JERSEY 
New Jersey Chapter 
Rutgers Univ., Picataway 
Nicholas Lordi 
(201) 338-9363 
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NEW MEXICO 
Albuquerque Chapter 
1st Thurs., 7:30 p.m. 
Physics & Astronomy Bldg. 
Univ. of New Mexico 
Jon Bryan (505) 298-3292 

NEW YORK 
Rochester Chapter 
Odd month, 4th Sat., 1 p.m. 
Monroe Comrn. College 
Bldg. 7, Rm. 102 
Frank Lanzafame 
(716) 482-3398 

OHIO 
Cleveland Chapter 
4th Tues., 7 p.m. 
Chagrin Falls Library 
Gary Bergstrom 
(21 6) 247-2492 

Columbus FIG Chapter 
4th Tues. 
Kal-Kan Foods, Inc. 
51 15 Fisher Road 
Teny Webb 
(614) 878-7241 

Dayton Chapter 
2nd Tues. & 4th Wed., 6:30 
p.m. 
CFC. 11 W. Monument Ave. 
#612 
Gary Ganger (513) 849-1483 

OREGON 
Willamette Valley Chapter 
4th Tues., 7 p.m. 
Linn-Benton Comrn. College 
Pann McCuaig (503) 752-51 13 

PENNSYLVANIA 
Villanova Univ. Chapter 
1st Mon., 7:30 p.m. 
Villanova University 
Dennis Clark 
(215) 860-0700 

* TENNESSEE 
East Tennessee Chapter 
Oak Ridge 
3rd Wed., 7 p.m. 
Sci. Appl. Int'l. Corp., 8th Fl. 
800 Oak Ridge Turnpike 
Richard Secrist 
(615) 483-7242 

TEXAS 
Austin Chapter 
Matt Lawrence 
PO Box 180409 
Austin. TX 78718 

Dallas Chapter 
4th Thurs.. 7:30 p.m. 
Texas Instruments 
13500 N. Central Expwy. 
Semiconductor Cafeteria 
Conference Room A 
Clif Penn (214) 995-2361 

Houston Chapter 
3rd Mon., 7:30 p.m. 
Houston Area League of PC 
Users 
1200 Post Oak Rd. 
(Galleria area) 
Russell Harris 
(713) 461-1618 

VERMONT 
Vermont Chapter 
Vergennes 
3rd Mon., 7:30 p.m. 
Vergennes Union High School 
RM 210, Monkton Rd. 
Hal Clark (802) 453-4442 

VIRGINIA 
First Forth of Hampton 
Roads 
William Edmonds 
(804) 898-4099 

Potomac FIG 
D.C. & Northern Virginia 
1st Tues. 
Lee Recreation Center 
5722 Lee Hwy.. Arlington 
Joseph Brown 
(703) 47 1-4409 
E. Coast Forth Board 
(703) 442-8695 

Richmond Forth Group 
2nd Wed., 7 p.m. 
154 Business School 
Univ. of Richmond 
Donald A. Full 
(804) 739-3623 

WISCONSIN 
Lake Superior Chapter 
2nd Fri., 7:30 p.m. 
1219 N. 21st St., Superior 
Allen Anway (715) 394-4061 

INTERNATIONAL 
AUSTRALIA 
Melbourne Chapter 
1st Fri., 8 p.m. 
Lance Collins 
65 Martin Road 
Glen Iris, Victoria 3146 
03/29-2600 
BBS: 61 3 299 1787 

Sydney Chapter 
2nd Fri., 7 p.m. 
John Goodsell Bldg., RM 
LC19 
Univ. of New South Wales 
Peter Tregeagle 
10 Binda Rd. 
Yowie Bay 2228 
021524-7490 
Usenet 
tedr@usage.csd.unsw.oz 

BELGIUM 
Belgium Chapter 
4th Wed., 8 p.m. 
Luk Van Loock 
Lariksdreff 20 
2120 Schoten 
031658-6343 

Southern Belgium Chapter 
Jean-Marc Bertinchamps 
Rue N. Monnom, 2 
B-6290 Nalinnes 
0711213858 

CANADA 
BC FIG 
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