
THE VIRTUAL FORTH COMPUTER

A major shortcoming of my book Systems Guide to fig—FORTH
was that it did not fully explain the functions of the low
level FORTH codes. It is thus very difficult to convince the
readers many of the inherent advantages of FORTH. I tried to
explain some of the most important low level codes which are
related to the inner interpreters in FORTH. Since it was very
difficult to use the 6502 machine codes as published in the
fig—FORTH Model and Installation Manual, I chose to describe
these words in the PDP-ll codes, which are much more descriptive
as to the functions of these low level words. To explain fully
how the FORTH virtual computer operates, one really has to go
through the entire nucleus and understand all the low level
words. I thought the best way was to rewrite the Installation
Manual in PDP—ll codes and put a ‘Guide’ on top of it.

SYSTEMS GUIDE TO THE FORTH NUCLEUS

I took John James’ PDP—ll fig—FORTH and translated it into
the form of the Installation Manual. In this chapter, I will go
through the nucleus part of it and try to comment on all the
low level words. I think this will be useful for those who are
still looking for a map to travel through this maze of codes.

In order to follow me through this advanture, it is assumed
that the reader has a basic understanding of the PDP—ll machine
architecture and its instruction set, particularly the strange
addressing modes in the handling of operands. One has to put up
with the reverse Polish style of the assembly codes. What we
will gain is the clarity in expressing the functions of FORTH
words in terms of the PDP—ll codes.

PROGRAMMING MODEL OF THE FORTH VIRTUAL COMPUTER

The FORTH virtual computer consists of a bank of memory, a
set of registers, and some I/O devices. The most crucial part
is the registers and their functions. There are five registers:
SP The data stack pointer which manages the flow of data

through the FORTH computer. Since all the computational
functions occur on top of the stack, one might visualize
the data stack as the ALU in the FORTH computer.

RP The return stack pointer which keeps track on the nesting
and unnesting of high level words. It is identical to the
stack in conventional computers for subroutine calls.

IP The interpreter pointer which always points to the next
word to be executes by the inner interpreter NEXT.

W The current word pointer through which the inner interpre
ter jumps indirectly to the routine executing this word.

194

I

120 LIST

121 LIST

COLD AND WARM ENTRY, USER PARAMETERS
VOCABULARY NEWFORTH IMMEDIATE VARIABLE ORIGIN ASSEMBLER
HERE ORIGIN ! NEWFORTH DEFINITIONS ASSEMBLER
HERE JMP, (COLD) HERE JMP, (WORD ALIGNED TO WARM)
11 , 0 , (CPU AND REVISION PARAMETERS
0 , (TASK-lO, TOPMOST WORD IN FORTH VOCABULARY
10 , (BACKSPACE CHARACTER
0 , C XUP, POINTER TO USER AREA
0 , C XSO, POINTER TO INITIAL TOP OF STACK
0 , C XRO, POINTER TO INITIAL TOP OF RETURN STACK
0 , (TIB, TERMINAL INPUT BUFFER)
37 , (MAXIMUN NAME FIELD WIDTH)
1 , C WARNING MODE, WITH DISC)
0 , C XDP, FENCE TO PROTECT AGAINST ‘FORGET’ THE SYSTEM)
0 , C XDP, INTIAL VALUE OF DP)
0 , (XXVOC, POINTER TO INITIAL VOCABULARY LINK) ;S

122 LIST

START OF NUCLEUS, NEXT, LIT, EXECUTE)
0 , (DSKBUF, INITIALIZE ‘FIRST’
0 , (ENDBUF, INITIALIZE ‘LIMIT’)
0 , 0 , C AVAILABLE FOR USER

FORTH DEFINITIONS (DEFINED ‘NEXT,’ AS A MACRO

NEXT, I?)+ W MOV, W @)+ JMP,

NEWFORTH DEFINITIONS ASSEMBLER

195

UP The user area pointer holding the offset address to the
data table where all the system variables are kept.

THE CODE INTERPRETER--- NEXT,

NEXT, is an assembly macro which is appended to every low
level word in the nucleus. It is equivalent to the RTS code
in the conventional machine codes. What it does is to pick up

the address in the cell pointed to by the interpreter pointer
IP and execute it. Because FORTH codes are indirectly threaded

through their code fields, NEXT, puts this code field address
in current word pointer W and make an indirect jump to the code
routine whose address is store in the code field. In standard

POP—li assembly format, NEXT, appears as following:
NEXT: MOV (IP)+,W

JMP @(W)+

Meanwhile, IP is incremented to point to the next word to be
executed and W is incremented to point to the parameter field of

the word currently under execution.

LIT This word is compiled before an in—line literal so
that the literal will be pushed on the data stack
instead of being interpreted as an address. The
literal pointed by IP is pushed on stack and IP is
incremented

EXECUTE It executes the word whose code field address is on
top of the data stack. This address is poped into
W and an indirect jump does the execution.

THE BRANCHES

The FORTH computer uses two words to implement unconditional
and conditional jumps. They are compiled into high level word
to construct appropriate structures and are not to be used
elsewhere or for any other purposes.

BRANCH The next cell following always has an offset to the
address of the next word to be executed. Add this
offset to IP and NEXT, will pick up the execution
sequence at that point.

OBR.ANCH Do the branch only if top of data stack is zero.
Otherwise, skip the offset cell and continue on the
normal execution sequence.

196

123 LIST

124 LIST

LIT, EXECUTE, BRANCH, OBRANCH)

CODE LIT IP)+ S —) NOV1 NEXT, C;

CODE EXECUTE S)+ W MOV, w @)+ JMP, C;

CODE BRANCH (ADJUST IP BY IN—LINE LITERAL)
IP () IP ADD, NEXT, C;

CODE OBRANCH C IF TOS IS ZERO,
S)+ TST, EQ IF, IP C)
ELSE, IP)+ TST, THEN,

;S

BRANCH FROM LITERAL
IP ADD,

NEXT, C;

125 LIST

LOOP CONTROL, (LOOP , (+LOOP)

CODE (LOOP) (INCREMENT LOOP INDEX, LOOP UNTIL REACHING LIMIT
RP () INC, RP C) 2 RP I) CMP,
LT IF, IP C) IP ADD,
ELSE, IP)+ RP)+ CMP, RP)+ TST,
THEN, NEXT, C;

CODE (+LOOP)
S C) RP
LT IF,
ELSE,
THEN,
LT IF,
ELSE,

IP () IP ADD,
IP)+ RP)+ CMP,

(INCREMENT INDEX BY TOS, LOOP TO LIMIT)
C) ADD, S H- TST,
2 RP I) RP C) CMP, C NEGATIVE TOS)

RP () 2 RP I) CMP, (POSITIVE TOS)

RP)+ TST, THEN, NEXT, C;

197

THE LOOPS

Controlled or finite loops end with one of two loop endings
which returns the execution to the starting point of the loop or
exits the loop, depending upon the index and limit values on the
return stack left by DO. Before exiting the loop, return stack
has to be restored.

(LOOP) Increment the loop index on top of the return stack.
If the index is equal or greater than the limit under
it, restore return stack and exit the loop. Otherwise
return to DO, whose offset is in he next cell.

(÷LOOP) Increment index by the amount on the data stack. It
is similar to (LOOP), except it will have to take
care the cases in which the increment is negative. In
this case, reverse index and limit before comparison.

(DO) Move the limit and index values from the data stack
to the return stack, thus starting the DO—LOOP

I Copy the current loop index on top of the return
stack to the top of the data stack, to be used by
other words inside the DO—LOOP.

DIGIT Given an Ascii code and the current base on the data
stack, convert the code to its corresponding numeric
value according to the current base. If the conversion
is successful, leave the value and a true flag on the
stack. Otherwise, leave only a false flag.
This is the basic numeric input routine which convert
Ascii codes to numbers. The fact that BASE is used
in this routine gives FORTH the capability to switch
from one number system to the other, which can be
matched by few computer systems, mainframe or not.

DICTIONARY SEARCH
(FIND) This is the basic routine to do dictionary search.

Given the address of a string in memory and the
name field address of a word in the dictionary, this
(FIND) will search through the dictionary linked to
the given word for the instruction whose name
matches the given string.
The strategy used here is to compare the first two
bytes, the length bytes and first character, as a
number. If this comparison failed, the search goes
on to the next word in the linked chain. If the first
two bytes match, the strings are compared to their
ends.
If a word is found, its parameter field address, its
length and a true flag are on the stack. Otherwise,
only a false flag is left on the stack.

198

126 LIST

(DO—

CODE (DO) (MOVE TWO STACK ITEMS TO RETURN STACK
S) + RO MOV, S) + RP -) MOV, RO RP -) MOV,
NEXT, C;

CODE I (COPY CURRENT LOOP INDEX TO STACK)
RP () S -) MOV, NEXT, C;

127 LIST

(DIGIT
CODE DIGIT (CONVERT ASCII CHAR—2, WITH BASE—i

(IF OK RETURN DIGIT-2, TRUE—i; OTHERWISE FALSE-i)
60 # 2 S I) SUB, 2 S I) 11 t CMP, (IF > 9, BRANCH)
GT IF, 7 1 2 S I) SUB, 2 S I) 12 1 CMP,

LT IF, HERE (2$) S H- TST, S () CLR, NEXT,
THEN,

THEN, (1$) 2 S I) TST,
GE IF, 2 S I) S C) CMP,

LT IF, 1 1 S C) MOV, NEXT, C VALID DIGIT)
THEN,

THEN,
2$) JMP, (ERROR RETURN) C;

128 LIST

FIND FOR VARIABLE LENGTH NAMES)
CODE (FIND) C HERE NFA ——— PFA LENGTH TRUE; ELSE FALSE)

S)+ RO MOV, S)+ Ri MOV, R5 RP -) MOV, R4 RP -) MOV,
R3 RP -) MOV, RP -) CLR, Ri () R2 MOV, 100200 * R2 BIC,

BEGIN, C FCOMP) RO C) R3 MOV, 100300 # R3 BIC, R2 R3 CMP,
NE WHILE, BEGIN, HERE (XMATCH) RO)+ TST, MI UNTIL,

RO C) TST, EQ IF, (FAILED) RP)+ TST, RP)+ R3 MOV,
RP)+ R4 MOV, RP)+ R5 MOV, S -) CLR, NEXT, THEN,

RU C) RU MOV, REPEAT,
NOFAST) RO () RP () MOV, Ri R5 MOV,

BEGIN, 100000 1 RO)+ BIT, EQ WHILE, (MLOOP) R5)+ TST,
R5 () R4 MOV, RO () R3 MOV, 100000 1 R3 BIC, R3 R4 CMP,
XMATCH) BNE, REPEAT,

C FOUND) RP)+ R2 MOV, RP)+ R3 MOV, RP)+ R4 MOV,
RP)+ R5 MOV, 4 1 RO ADD, RO S —) MOV, 177400 1 R2 BIC,
R2 S -) MOV, 1 # S -) MOV, NEXT, C; ;S

199

THE PARSING ROUTINE --- ENCLOSE

ENCLOSE This is the tool used by the text interpreter to
isolate words from the input stream of characters.
The input on data stack are the address of the
character stream and the Ascii character serving as
the delimiter. It skips the leading delimiters in
the stream, leaves the address of the stream, the
offset to the first non—delimiting character, the
offset to the end of the found string before the
trailing delimiters, and the offset to the first
trailing delimiter. A word is thus found in the
input stream.

Ascii NUL is the absolute delimiter. The offsets
returned by ENCLOSE will never pass a NUL character.

TERMINAL I/O

EMIT Print an Ascii character to the console CRT
terminal.

KEY Wait until a key is pressed on the console keyboard.
Return the corresponding Ascii code on the stack.

?TERMINAL Return a false flag on the stack if no key was
pressed on the keyboard. Otherwise, returns a true
flag, which is the Ascii code in this particular
implementation.

CR Output a carriage return and a line feed to terminal.

BLOCK MOVE - -- CMOVE

CMOVE This word copies a range or memory, byte by byte,
to another memory area. The starting address, the
distination address and the byte count are given
on the data stack.

If the byte count is zero, nothing will be copied.

200

129 LIST

ENCLOSE
CODE ENCLOSE C ADDR DELIM --- ADDR OFFSET END NEXT

S C) RU MOV, 2 S I) Ri MOV, 4 # S SUB,
BEGIN, (ENC1) Ri)+ RO CMPB, NE UNTIL,
1 # Ri SUB, Ri 4 S I) MOV,
HERE C ENC2) Ri () TSTB, NE IF, (NOT NULL)

Ri)+ RO CMPB, BNE, (TO ENC2)
Ri S () MOV, 1 * Ri SUB,

ELSE, (ENC4, NULL CASE) Ri S () MOV, Ri 4 S I) CMP,
EQ IF, 1 * Ri ADD, THEN,

THEN, (ENC3) Ri 2 S I) MOV, 6 S I) Ri MOV,
Ri S () SUB, Ri 2 S I) SUB, Ri 4 S I) SUB,
NEXT, C;

130 LIST

TERMINAL I/O EMIT, KEY, ?TERMINAL, CR
CODE EMIT (PRINT ASCII VALUE ON TOS, INCREMENT OUT)

42 U I) INC, BEGIN, 177564 @# TST, NE UNTIL,
S)+ 177566 @# MOV, NEXT, C;

CODE KEY (ACCEPT ONE CHAR FROM TERMINAL TO TOS
BEGIN, 177560 @# TSTB, NE UNTIL, 177560 @* CLR,
177562 @1 Ri MOVB, 177600 * Ri BIC, 177 * Ri CMP,
EQ IF, 10 # Ri MOV, THEN, Ri S —) MOV, NEXT, C;

CODE ?TERMINAL (‘BREAK’ LEAVES 1 ON STACK; OTHERWISE 0)
177560 @# TSTB, EQ IF, S —) CLR,
ELSE, 177562 @# S —) MOV, THEN,
177560 @# CLR, NEXT, C;

CODE CR (OUTPUT CR/LF TO TERMINAL
BEGIN, 177564 @* TST, NE UNTIL, 15 # 177566 @t MOV,
BEGIN, 177564 @* TST, NE UNTIL, 12 * 177566 @4 MOV,
NEXT, C; ;S

131 LIST

CMOVE
CODE CMOVE (FROM-3, TO-2, COUNT-i --—)

S C) TST, NE IF,
2S1)ROMOV, 4SI)R1MOV,
BEGIN, Ri)+ RO)+ MOVB, S C) DEC, EQ UNTIL,

THEN, 6 * S ADD, NEXT, C;

;S

201

UNSIGNED MULTIPLICATION

UMULT This multiplication subroutine takes the top two
unsigned numbers on the data stack, multiply them
and returns the 32—bit unsigned double product on
the stack.
The reason why this routine is coded as a subroutine
is that one might easily substitute it with a
hardware multiplication instruction if the PDP—ll
CPU supports such an instruction.

This is the actual FORTH word for unsigned multi
plication. It calls UMULT as a subroutine.

Multiplications and divisions are fundamental to any high
level computer. They must be implemented in the nucleus.

UNSIGNED DIVISION

UDIV An unsigned 32—bit divisor and a 16—bit unsigned
divider are on the stack. This subroutine returns
the 16—bit quotient on the top of stack and the
remainder under it.

UI The actual FORTH unsigned 32—bit division word.
All the other variants of dividing words are derived
from UI.

LOGICAL OPERATORS

AND It is strange that PDP—11 instruction set does not
include the AND code. It is synthesized from a
complement and a bit clear instructions.

OR Bitwise OR of the top two numbers on the top of the
data stack.

XOR Exclusive OR code is provided in the Extended Instruc
tion Set (EIS) of PDP—11. Covering the low end PDP
machines which may not have this provision, the XOR
is again synthesized.

202

132 LIST

(U , UNSIGNED MULTIPLICATION FOR 16 BIT NUMBERS)
CODE UMULT

S)+ R2 MOV, 20 $ RP —) MOV,
RO CLR, Ri CLR, (ACCUMULATOR)
BEGIN, (2$) Ri ROL, RD ROL, R2 ROL,

CS IF, S () Ri ADD, R0 ADC, THEN,
RP () DEC, EQ UNTIL,
Ri S () MOV, RO S -) MOV, RP)+ TST, PC RTS,
C;

CODE U* PC ‘ UMULT JSR, NEXT, C;

;S

133 LIST

(UI , UNSIGNED DIVIDE FOR 31 BIT NUMBER)
CODE UDIV

S)+ R2 MOV, (DIVISOR) S)+ RD MOV,
S)+ Ri MOV, 20 # S —) MOV, (LOOP COUNT)
BEGIN, (1$) Ri ASL, RD ROL,

NE IF, R2 RO SUB, Ri INC,
CS IF, R2 RD ADD, Ri DEC, THEN,

THEN,
S C) DEC, EQ UNTIL,
S)+ TST, RO S —) MOV, Ri S -) MOV, PC RTS,
C;

CODE UI PC ‘ UDIV JSR, NEXT, C;

134 LIST

(LOGICALS AND, OR, XOR)

CODE AND C LOGICAL BITWISE AND OF TOP TWO ITEMS)
S C) COM, S)+ S () BIC, NEXT, C;

CODE OR (BITWISE OR OF TOP TWO ITEMS)
S)+ S () BIS, NEXT, C;

CODE XOR C EXCLUSIVE-OR OF TOP TWO ITEMS)
S C) RP —) MOV, 2 S I) RP () BIC, S)+ S C) BIC,
RP)+ S C) BIS, NEXT, C;

;S

203

MISCELLANIOUS STACK OPERATORS
sP@ Fetch the current data stack pointer to the top of

the data stack. For safty, the stack pointer is
fetched through a scratch register.

SP! Load the initial value into the data stack pointer.
The value is stored as the third item in user area.

RP! Initialize the return stack pointer from user area.

High level return. It must be executed as the last
word in any colon definition. It unnests the high
level word by one level, undoing what DOCOL accomp
lished.
It pops an address from the returu stack back into
the interpretive pointer IP and calls NEXT, to execute
it. This restore the execution sequence left by the
execution of a high level colon word.

RETURN STACK OPERATORS

LEAVE It simply copies the index value on top of the
return stack to the limit just below it. This
action ensures that the next time (LOOP) executes,
the loop will be terminated unconditionally.

>R Pop the top of data stack and push it onto the
return stack.

Pop the top of the return stack and push it onto the
data stack.

R, R@ Copy the top of the return stack and push it onto the
data stack. Functionally the same as I, but may
differ in other implementations.

NUMERIC TESTS

0= Return a true flag if top of stack is zero. Other
wise, return a false flag.

0< Retrun a true flag if top of stack is negative.
Otherwise, return a false flag.

These two tests are the most fundamental ones. All other
numeric tests, like > , < , = , etc., can be derived from these
two tests. The other tests are left in the high level section.
Only these two are implemented in the nucleus.

204

135 LIST

STACK INITIATION, SP@, SP!, RPI, ;S)

CODE SP@ (FETCH STACK POINTER TO TOS)
S Ri MOV, Ri S -) MOV, NEXT, C;

CODE SP! (LOAD SP FROM SO IN USER AREA)
6 U I) S MOV, NEXT, C;

CODE RP! C LOAD RP FROM RO IN USER AREA)
10 U I) RP MOV, NEXT, C;

CODE ;S C RESTORE IP FROM RETURN STACK)
RP)+ IP MOV, NEXT, C;

136 LIST

RETURN STACK WORDS LEAVE, >R, R>, R)

CODE LEAVE C FORCE EXIT OF DO—LOOP BY SETTING LIMIT TO INDEX)
RP C) 2 RP I) MOV, NEXT, C;

CODE >R C MOVE FROM DATA STACK TO RETURN STACK)
S)+ RP -) MOV, NEXT, C;

CODE R> (MOVE FROM RETURN STACK TO DATA STACK
RP)+ S -) MOV, NEXT, C;

CODE R (COPY TOP OF RETURN STACK TO TOS)
RP () S -) MOV, NEXT, C;

R@ R ;
;S

137 LIST

TESTS 0=, 0<

CODE 0= C REVERSE LOGICAL STATE OF TOS)
S C) TST, NE IF, S C) CLR, ELSE, 1 * S C) MOV,
THEN, NEXT, C;

CODE 0< (LEAVE TRUE IF NEGATIVE, OTHERWISE FALSE)
S C) TST, MI IF, 1 * S () MOV, ELSE, S C) CLR,
THEN, NEXT, C;

205

MATH OPERATORS

+ Return the sum of the top two stack items.

Add two double integers on the stack and leave the
double integer sum on the stack.

MINUS Negate the top of stack.

DMINUS Negate the double integer on top of the stack.

These are the most fundamental math operators which has to

be coded in machine codes. Other math operators can be
derived from them.

STACK OPERATORS

OVER Duplicate the second item on the data stack.

DROP Pop the top item off the data stack.

SWAP Exchange the top two items on the data stack.

DUP Duplicate the top item on the data stack.

Since most words use only the topmost items on the data
stack, these stack operators are quite adequate. If you have to
dig deeper into the data stack to find things, it is a good time
to think again on your program design.

DIRECT OPERATIONS IN MEMORY

Add the second number on the stack to the contents
of memory addressed by the top stack item.

TOGGLE Toggle bits in a memory byte addressed by the second
item on the stack. Bits to be toggled are those
set in the top item on the stack.

These two operators allow us to change memory contents
without having to get the memory contents first on the data
stack.

206

138 LIST

MATH ÷ , D+ , MINUS, DMINUS

CODE +

)

LEAVE SUM OF TWO TOP ITEMS)
S)+ S () ADD, NEXT, C;

CODE D+ (ADD TWO DOUBLE INTEGERS, LEAVE DOUBLE NUMBER)
2 S I) 6 S I) ADD, 4 S I) ADC, S C) 4 S I) ADD,
4 # S ADD, NEXT, C;

CODE MINUS (TWO’S COMPLEMENT OF TOS)
S () NEG, NEXT, C;

NEGATE MINUS ;
CODE DMINUS C TWO’S COMPLEMENT OF TOS DOUBLE NUMBER

S C) NEG, 2 S I) NEG, S () SBC, NEXT, C;
DNEGATE DMINUS

139 LIST

STACK MANIPULATION OVER, DROP, SWAP, DUP)

CODE OVER (DUPLICATE SECOND ITEM AS NEW TOS)
2 S I) S —) MOV, NEXT, C;

CODE DROP (DROP TOS
2 # S ADD, NEXT, C;

CODE SWAP C EXCHANGE TWO TOS ITEMS)
2 S I) Ri MOV, S () 2 5 I) MOV,
NEXT, C;

CODE DUP C DUPLICATE TOS
S () S —) MOV, NEXT,

140 LIST

C;

Ri S () MOV,

MEMORY INCREMENT +1 , TOGGLE

CODE +1 (ADD SECOND TO MEMORY ADDRESSED BY TOS)
2 S I) OS @1) ADD, 4 #S ADD, NEXT, C;

CODE TOGGLE C BYTE AT
2 5 I) S —) MOV,
2 S I) RP C) BIC,
2 S I) S —) f4OV,
NEXT, C;

ADDR-2, BIT PATTERN-i ---)
O S @1) 5 () MOVB, S C) RP —) MOV,

S)+ S () BIC, RP)+ S C) BIS,
2 S I) 0 S @1) MOVB, 6 t S ADD,

)

207

MEMORY OPERATIONS

Replace the address on top of the stack with its
contents.

C@ Replace the address on top of the stack with the
byte value it addresses.

Store the second stack item in the memory addressed
by the top item on the stack.

CI Store the second byte value on stack into the memory
addressed by the top item.

COLON DEFINITION

Create a header for a high level colon definition
and start the compilation process.

DCCCL This is the address interpreter which executes a list
of addresses like a sequence of subroutines. What it
has to do is: save the address in IP on the return
stack, to be returned to by ;S , and copy W register,
which points to the parameter field of the currently
executed colon word, to IP, and call NEXT, to do the
work. IP points now to the list of addresses to be
executed in sequence. It is equivalent to SUBROUTINE
in FORTRAN, without all the complications.
Compile a ;S at the end of a colon definition and
return to the interpretive or execution mode.

OTHER INNER INTERPRETERS

CONSTANT Defining word to create named constants.
DOCON The constant interpreter which copies the contents in

the parameter field onto the data stack. This routine
interrprets the constant word defined by CONSTANT.

VARIABLE Defining word to create named memory addresses.
DOVA.R The variable interpreter which pushes the parameter

field address of a variable onto the data stack, allow
ing the contents to be accessed or modified.

USER Defining word to create user variables.
DOUSE The user variable interpreter which returns the

memory address of the user varaible defined by USER.

DOCON, DOVAR, and DOUSE are interpreters which are invoked
by referencing named constants, variables, or user variables.

208

141 LIST

MEMORY OPERATIONS I C@ , I , C!)

CODE @ (REPLACE STACK ADDRESS WITH CONTENTS)
o S @1) S () MOV, NEXT, C;

CODE C@ (REPLACE STACK ADDRESS WITH POINTED BYTE VALUE
o S @1) Ri MOVB, 177400 # Ri BIC, Ri S () MOV,
NEXT, C;

CODE ! C STORE SECON AT LOC ADDRESSED BY TOS)
2 5 I) 0 S @1) MOV, 4 # S ADD, NEXT, C;

CODE C! C STORE SECOND AT BYTE ADDRESSED BY TOS)
2 S I) 0 S @1) MOVB, 4 # S ADD, NEXT, C;

;S

142 LIST

COLON DEFINITION : , ;)

CREATE NEW
?EXEC !CSP
CREATE]

DOCOL:)

COLON DEFINITION UNTIL ;
CURRENT @ CONTEXT I

;CODE IMMEDIATE
IP RP -) MOV, W IP MOV,

)

NEXT, C;

TERMINATE COLON DEFINITION
?CSP COMPILE ;S SMUDGE [COMPILE] [IMMEDIATE

143 LIST

CONSTANT, VARIABLE, USER)

CONSTANT (WORD WHICH LATER CREATES CONSTANTS
CREATE SMUDGE , ;CODE

DOCON:) W C) S —) MOV, NEXT, C;

VARIABLE (WORD WHICH LATER CREATES VARIABLES
CONSTANT ;CODE

DOVAR:) W S —) MOV, NEXT, C;

)

USER CREATE USER VARIABLE
CONSTANT ;CODE

DOUSE:) W C) S —) MOV, U S () ADD, NEXT., C;

209

