
THE IMAGE PROCESSOR

The image processor for which this set of programs were
developed was IP—5500 System manufactured by De Anza, now a
division of Gould. The principal components in this system
consisted of:

1 MB of image memory organized in 4 pages of 512x512 bytes.
A dual 8 bit pipeline ALU array processor.
An LSI—ll microcomputer as its host controller.
A dual floppy drive storage system.
6 bit video A/D converter for realtime image digitization.
4 8 bit video D/A’s for image displaying.
Dual cursor controller and joystick controller.
Alphanumeric annotation memory.
Miscellanious image enhancement accessories.

IMAGE PROCESSING SOFTWARE

De Anza provided a library of image processing programs and
library modules so that users can use them to perform quite
extensive image processing operations without any programming
efforts. The user can also customize specialized programs in
FORTRAN and call approriate subroutines from the library,
guided by the programs supplied by De Anza. It was rather
flustrating if one has to learn how to use the image processor

by writing FORTRAN programs to operate the image processor.

With a poly—FORTH system installed in the LSI—11 computer,
I was able to interact with the image processor directly by
storing data patterns into the registers in the image
processor and observe the results immediately. I cannot think

of any better way to converse with the image processor.

A SHORT COURSE OF IMAGE PROCESSING

Through FORTH, it is possible to access all the registers and

image memory in the image processor interactively. Many of the

registers produce immediately visible results on images stored

in memory. Since the user can directly interact with the image

processor, he can learn the in’s and out’s of the image

processor very quickly and can do quite a lot of programming

on a short learning curve.

The following is a set of screens intended to be used with
the Image Processor Programming Manual provided by De Anza.
Without actually using the image processor, the Manual is very
dry reading. However, with FORTH one can learn the materials
in the Manual in a much more interesting way with lots of
experimenting.

79

C
II

3

[H
2

[H
I

[H
U

0co

2
.

Im
a
g

e
A

rra
y

P
ro

c
e
s
s
o

r
in

IP
5
5
0
0

1
7

7
1

I
t
,.

7
7
0

0
1
5
1
5
1
1

0
1

0

0
0
5
1
0
1
(1

5

0
0

W
IP

T
U

A
L

W
IN

D
O

W

TO
O

P

N
T

-

O
P

E
R

K
U

II
S

5
Y

5
0

(1
1

O
P

A
C

E

C
R

P
T

*
0
L

A
ID

PA
SO

(0
0
0
0
0
0
0
T

(

P
(W

IS
T

(N
S

A
0

(1
0

O
F

•I
0
*
1
1
1

/
1
0
0
.0

0
0

\\\\
\\\\

I2
0
.0

0
0

7
.5

0
0

0
1
.0

0
0

/
/

/
/

l
0
0
0

0
0
.0

0
0

‘O
A

R
S

P
(F

0
5
5
IA

0
(1

0
1

1

W
IN

D
O

W

0
W

O
R

D
S

O
P

P
E

0
1
5
1
E

P
S

S
P

E
C

IO
L

F
U

N
C

T
I0

0

0
(1

(1
1
1
0
0

L
O

C
k
U

P

1
1
0
1
(5

0
ll

1
(I

IS
O

T
O

1
0
0
W

5
F

O
R

II
A

T
I0

T
.

T
U

A
L

(5

*
L

P
0

1
0

0
II

U
R

IC

0
0

(0
1

0
0

1
1

7
.0

0
0

7
.5

5
0

I
1

5
5

0

1
7

.5
1

0

1
1

7
.5

0
0

I
1
.5

6
0

1
1

1
.7

1
W

I
l
l

H
O

D

1
1

7
,5

0
0

1
1

7
.0

0
0

I
1
1
.0

0
0

1
1

1
.0

0
0

1
1
0
.
0
0
0

1
0
7
.0

0
0

\\
I
0

6
.0

0
0

1
0
5
.5

0
0

1
0
1
.0

0
0

I
D

l.
5
0
0

I0
’I

.0
0

0

1
0
0
.0

0
0

1
1

7
.5

7
W

_
_
_
_
_
_
_
_
_
_
_
_

1
1
7
.5

5
0

_
_
_
_
_
_
_
_
_
_
_
_

1
1
7
.5

5
0

_
_

_
_

_
_

_
_

_
_

_
_

_
_

1
1
1
.5

2
0

_
_

_
_

_
_

_
_

_
_

_
_

_

1
1
7
.5

1
5

_
_

_
_

_
_

_
_

_
_

_
_

_

1
1
7
.5

1
0

_
_

_
_

_
_

_
_

_
_

_
_

_
_

1
1
7
.5

0
0

_
_

_
_

_
_

_
_

_
_

_
_

_
_

II
7
.5

1
5

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

II
7
.5

1
0

II
7
.1

2
6

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

I
l
l
.

52
5

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

II
7
.5

2
0

_
_

_
_

_
_

_
_

_
_

_
_

_

1
1
7
.5

0
0

1
1
1
.5

0
0

I
P

0
5
1
1
1
0
0

0
0
0
0
(1

1
0
0

S
T

A
T

U
S

:0
1

,0
0

1
II

1
0
1
—

1
1
0

ID
N

O
N

-P
L

O
II

0
0
1
-0

1
0

0
0

M
O

N
-P

L
O

II
G

IN
—

IS
O

10
(0

1
-P

lO
01

(O
N

-P
O

D
10

G
Il

t-
N

E
D

0
0
(0

1
*
0

S
C

O
IL

L
CI

q
I

S
P

L
IT

0
(0

1
S

P
L

IT
SC

C
H

A
P

1
P

C
U

ll
0

PO
P

C
H

IN
I

00
5

(N
A

N
0

0
(7

C
R

A
P

lv
C

O
A

l
1

1
C

O
A

l
2
1

C
H

IN
20

1
1
1
*
1

IT
C

H
Il

I
II

C
H

O
W

IT
C

II
A

R
O

N

O
U

T
PU

T
S

Il
O

S
?

O
P

R
IO

1
(5

1
H

IS
IN

P
U

T
P

A
IR

C
O

U
S

T
A

II
T

O
P

M
A

Sk
I

U
P

M
A

SH
A

C
C

U
N

T
(A

I
C

O
O

II
T

S
I

A

7
(0

0
7
*
5
0
5
1

(5
1
j.

5
TA

O
0

T
D

IS
T

Il
0

D
IS

T
Il

l
I

C
U

R
SO

R
21

1
*
1
5
0
1

21
C

U
M

U
lI

IT
(0

1
5

0
1

I
t

1
0

1
1
1
0

0
0
1

(0
1
1

P
0
0
(1

1
0
W

G
E

N
E

P
A

T
O

R

I(
F

(1
0
1
C

E

5
C

0
0

0
1

1
2

0
0

0

II
IA

G
E

A
R

R
A

Y

7
0
0
((

5
0

0
P

1
1
7
.5

2
0

_
_

_
_

_
_

_
_

_
_

_
_

_

C
0
1
5
0
1

I.
I0

0
5
T

O
C

_
_

_
_

_
_

_
_
_
_
_
_
_
_
_
_
_
_
_

1
1

7
.5

0
6

1
1

7
.0

0
0

3
.

M
em

o
ry

M
ap

p
ed

R
e
g
is

te
rs

in
1
P

5
5
0
0

REGISTERS IN THE IMAGE PROCESSOR

The registers in the image processor are mapped into a 16KW
window in the upper half of the LSI—ll memory, staring at
octal 100000. Each register has a unique address in this
window.

IS A defining word to define named registers with
the offset address from octal 100000.

Names of registers are defined following closely those
names used in the De Anza Programming Manual and in the image
processing library. One limitation in poly—FORTH is that names
are unique only up to the first three characters and the
length. Thus in many generic names, the significant characters
are moved towards the beginning three character fields.

READY AND PAUSE

GO Set the 0th bit in the ICSR register will initiate
an operation, processing one frame of image data.

READY Wait until the current image processing operation
to complete by testing the 7th bit in ICSR.

FMOPER Start an image operation and wait until it is
finished in 1/30 second.

KEY—START Clear the CSR of the console interface board,
preparing it to accept a key stroke on the keyboard.

KEY—END Test the console CSR. If a key was pushed, return
a true flag. Otherwise, a false flag. This
simulates the standard FORTh word ?TERMINAL.

SETUP Clear an initialize the registers in IP for normal
operations.

PEEK AND POKE

The wide acceptance of microprocessor BASIC shows its marks
in FORTRAN. Many versions of FORTRAN include the famous PEEK
and POKE either as libray calls or subroutines by necessity.
They are simply the fetch @ and the store 1 instructions in
FORTH. Basically, they are just about all what’s needed to
control the image processor.

• PEEK and POKE in this screen are the FORTH implementations
of the two examples given in the IP Programming Manual. PEEK
fetches out the contents of the ICSR register. POKE stores
a predefined pattern, octal 101000 into ICSR.

82

120 LIST

IP MNEMONICS, CHT, 11/5/82) OCTAL
IS 100000 + CONSTANT ;

0 IS IAOVLY 4000 IS OITT 4400 Is 1ITT 5000 Is 2ITT
5400 IS 3ITT
7000 IS OSFIT 11000 Is 1SFITT 13000 Is 2SFITT
15000 IS 3SFITT
17400 IS DVRGO 17406 IS X1CUR 17410 Is Y1CUR
17412 IS X2CUR 17414 Is Y2CUR 17416 15 CURCTL
17420 IS XDEST 17422 Is YDEST 17424 Is MEMPC
17426 IS ICSR 17434 IS ACNTR 17436 Is BCNTR
17440 Is ABPM 17442 Is BBPM 17444 IS CONST
17446 IS INPDP 17450 IS TSTOP 17452 15 OPOP
17454 Is ODPSH 17460 IS XOSCR 17462 Is YOSCR
17500 Is OREF 17502 IS 1REF 17504 Is 2REF 17506 Is 3REF
17600 Is CBCRG 20000 IS IMAGE
DECIMAL

121 LIST

READY AND PAUSE, CHT, 5-NOV—82)
OCTAL

GO 1 ICSR +1 ;
READY GO BEGIN ICSR C@ 200 AND END ;
PAUSE BEGIN ICSR C@ 20 AND 0= END ;
FMOPER READY ;
KEY—START CR 1 177560 1 ;
KEY-END (——— FLAG, 200 IF A KEY IS PUSHED.)

177560 @ 200 AND ;
KEY C ——— ASCII) 0 ‘S 1 EXPECT ;
EMIT C ASCII ———) ‘S 1 TYPE DROP ;
?TERMINAL KEY-END ;
SETUP XDEST 60 ERASE 3210 117510 1 ;

SETUP C INITIALIZE THE IMAGE PROCESSOR
DEC I MAL

122 LIST

PEEK AND POKE, CHT, 5—NOV—82)
OCTAL
101000 CONSTANT IBITS

PEEK ICSR @ ;
POKE PEEK IBITS OR ICSR 1 ;

DEC I MAL

EXIT
SOME EXAMPLES OF USING PEEK AND POKE:

PEEK
POKE
PEEK
PEEK U.

83

POKING AT THE IP REGISTERS

This is another example in manipulate the IP registers.

POKE—MEMPC Clear the upper 12 bits in the MEMPC register
and OR 13 into its lower 4 bits. The net visible
effect of this operation is to route the output
of Chs. 0, 1, and 3 through their respective
intensity transformation tables. If these tables
were previously written some intensity transforming
functions other than a normal linear function, the
effect of this command is to turn on these image
enhancement features.

THE CONTROL/STATUS REGISTER OF THE IMAGE PROCESSOR

This register at octal address 117426 is the most crucial
register in controlling the image processor from the LSI—l1.
Bit 0 when set will initiate a video array processor function.
Bits 1 to 8 either show the status of the image processor or
are used to enable interrupts. Functions of other bits are
even more profound.

The only bit which will show some demonstratable effects is
bit 13, which enables the annotation overlay. The two words
A-ON and A—OFF thus defined will toggle this bit without
affecting other bits. If the image processor was turned on
without any actions on the annotation memory, executing A—ON
will cause a screenful of random characters to appear on the
CRT. A—OFF will turn off this annotation.

SOME ASSEMBLY ROUTINES
ASHC This is a PDP—1l instruction only available in the

EIS (extended instruction set) as an option in the
LSI—ll computer. Since I had this chip in my LSI—1l,
I can include this instruction in the assembler.

ISHIFT Use the EIS machine code ASHC to shift a 16 bit
integer either left or right.

ISWAB Swap the two byte in the integer on top of the stack.
It simply makes the machine code SWB available in
high level.

ICOM Complement the top item on stack.

DEPOSIT Shift ICHAN 10 bits to the left and deposit it into
the UCLC (Upper Channel Lower Channel Register).

84

123 LIST

(MEMPC POKING, CHT, 5—NOV—82)
OCTAL
13 CONSTANT IBITS
177760 CONSTANT MASK

POKE-MEMPC MEMPC @ MASK AND
MEMPC I ;

DEC I MAL
EXIT

EXECUTION EXAMPLES:)

OCTAL
MEMPC ?
POKE-MEMPC
MEMPC ?
DEC I MAL

124 LIST

CONTROL ND STATUS REGISTER ICSR,
OCTAL

A—ON ICSR @ 20000 OR ICSR I
A—OFF ICSR @ 157777 AND ICSR I

DEC IMAL

125 L!ST

ISHIFT FUNCTION, CHT,
ASSEMBLER OCTAL
73000 BIN ASHC
CODE ISHIFT 0 CLR

2 0 ASHC
S) COM
S) SWB

CBCRG CONSTANT ICBCRG
ICBCRG 6 + CONSTANT IUCLC
10 CONSTANT ICHAN

DEPOSIT ICHAN 12 ISHIFT IUCLC I ;
DECIMAL
EXIT

IBITS OR

CHT, 5—NOV—82)

CODE ICOM
CODE ISWAB

2

5-NOV-82)

S)+MOV 1S)+MOV
S -) 1 MOV NEXT

NEXT
NEXT

85

WRITE INTO THE ANNOTATION MEMORY

The annotation memory is the best show piece to demonstrate

the control over the image processor. If one knows where the
annotation memory is in the LSI—ll memory map, he can put any

character anywhere on the CRT display.

FILL Fill a range of memory with a given byte. If this
byte is a displayable character and the memory range
is within the annotation memory, the characters will

appear immediately on the CRT display.

FILL—ANNOTATION Given a byte value on the stack, the whole
CRT screen will be filled with this character. If
you have a color monitor with the II’, you can
generate characters in different colors on several
background colors.

ZOOM AND SCROLL

The is also a good demonstration. You can scroll the image

across the CRT display with the joystick. You have also the

option of zooming and scrolling with zooming factors of 1, 2,

4, and 8. The image processor, after all, is a glorified video

game.

SCROLL Read the coordinates of cursor 1, scroll the image
so that the point specified is oriented at the lower

left corner of the CRT display.
ZOOM Given a zoom factor, move the magnified image

following the joystick movements.

lx, 2X, 4X, and 8X are simplified commands to zoom and

scroll the displayed image.

MORE FIREWORKS

SCROLL This command cause blackout on wrapearound regions.

CONTROL Interactive control on SCROLL.

SCALE Display a reference intensity scale at the bottom
of the Channel 3 image.

DISABLE Eliminate the reference scale.

There are 7 different cursor shapes. The cursors can also

blink at two different rates. The following command exercise
the optional features to display the cursors.

86

126 LIST

ANNOTATION MEMORY, CHT, 5-NOV—82)
FILL (ADDR COUNT BYTE

SWAP >R OVER C! DUP 1+
FILL-ANNOTATION (BYTE ———)

>R IAOVLY 2048 R> FILL ;

EXIT

R> 1- MOVE ;

32 FILL-ANNOTATION
65 FILL-ANNOTATION
0 FILL-ANNOTATION

127 LIST

X3SCR 17476 IS Y3SCR
MAG ---) Y1CUR @ + Y3SCR I
ZOOM-FACTOR

KEY-START BEGIN DUP SCROLL ?TERMINAL END DROP ;
0 ZOOM
2000 ZOOM ;
4000 lOOM ;
6000 ZOOM ;

DEC I MAL
EXIT
STORE DIFFERENT VALUES INTO X3SCR AND Y3SCR WOULD CONTROL THE

SCROLLING AND ZOOMING OF CHANNEL 3 IMAGE.

128 LIST

SCROLL
SCROLL

CONTROL

WITH WRAPEAROUND, CHT, 12-JAN-83)
X3SCR @ 7000 AND X1CUR @ 777 AND
Y3SCR @ 7000 AND Y1CUR @ 777 AND
KEY-START BEGIN SCROLL ?TERMINAL END ;

OCTAL
+ X3SCR I
+Y3SCR V

INTENSITY REFERENCE SCALE IN CH3 DISPLAY)
SCALE C SET CH3 REFERNECE SCALE) 0 3REF ! ;
DIBLE C ERASE CH3 SCALE) 4 3REF I

DEC IMAL

CURSOR CONTROLS
CURSORS (ENABLE CURSORS
BOX C CURSOR BOX
CROSS C CURSOR CROSSES
BLINK C SLOW BLINK
FAST (FAST BLINK

67 CURCTL ! ;
60 CURCTL I ;
62 CURCTL I ;
367 CURCTL 1 ;
377 CURCTL I

ZOOM AND SCROLL, CHT, 12—JAN—83)
OCTAL
17474 IS

SCROLL
ZOOM

1X
2X
4X
8X

X1CUR @ X3SCR 1 I

87

SPECIAL FUNCTION GENERATOR

Special function generator is an option in De A.nza IP. It
allows the user to scroll though the entire 1 MB image memory
organized as one huge 1024x1024 image. Only a 512x512 window
in this superilnage is visible on the CRT display.

DEMO Like CONTROL in the last screen, but scroll the
super image.

Modifying the JFILE, XSPLT, and YSPLT registers in the
special function generator add some interesting variations
to the DEMO command.

CONTOLLING THE DIGITAL VIDEO ARRAY PROCESSOR

Since we are going to do lots of register storing and
register fetching, it is more appealing to have some specialized
tools to facilitate the use of these functions.

R/W Defines registers which can be read and written. It
is simply the CONSTANT in FORTH.

R/O Defines read only registers. Invoking the register
name would return the register contents on the stack.

W/O Defines write—only registers. Invoking the register
will store a stack value into the register.

Using these defining words to define IP register eliminates
lots of @s and !1s, thus making the program much concise and
more readable. My earlier programs looked ugly with @‘s and
!‘s sprinkle all over the screens.

SYSTEM INITIATION

SETUP Initialize all the IP registers in a regular De ANza
IP—5500 without special function generator option.

3DUP Make 3 copies of the top stack item.
SFGINT Initialize all the relevant registers in the special

function generator.
SYSINT Setup command for IP with special function generator.

88

129 LIST

SPECIAL FUNCRION GENERATOR, CHT, 8—NOV—82)
OCTAL 17510 Is XSPLT 17512 Is YSPLT
17520 Is JFILE

DEMO KEY-START BEGIN 1XCUR @ 4000 OR XSPLT I
1YCUR @ 4000 OR YSPLT I KEY—END END ;

0 JFILE
0 JFILE 10 + I
3131 JFILE 2 + I
3131 JFILE 12 + I
606 JFILE 4 + 1
606 JFILE 14 + I
1303 JFILE 6 + I
723 JFILE 16 + I
4140 XSPLT 1
4600 YSPLT I
DEC I MAL

130 LIST

DIGITAL VIDEO PROCESSOR,
OCTAL

R/W YDEST
R/W BCNTR
W/O BBPM
w/O INPDP
w/O OPOP

SETUP ICSR @ >R
50120 OPOP

3DUP DUP 2DUP ;
SFGINT 4 3DUP OREF 21

0 3DUP 117510 21
504 3DUP 117520 21
706 3DUP 117530 21

SYSINT SETUP SFGINT ;

OREF 4 + 21
117510 4 + 2!
117520 4 + 21
117530 4 + 2! ;

ENABLE
DEC I MAL

1 ICSR +1 BEGIN ICSR C@ 200 AND END I

CHT, 8-NOV—82)

R/W CONSTANT ;
R/o CONSTANT DOES> @ @ ;
W/O CONSTANT DOES> @ ! ;

117420 R/W XDEST 117422
117434 R/W ACNTR 117436
117440 W/O ABPM 117442
117444 W/O CONST 117446
117450 W/O TSTOP 117452
117454 W/O ODPSH
DEC I MAL
EXIT

117424 W/O MEMPC

R/O DEFINES READ-ONLY REGISTERS, AND W/O DEFINES WRITE-ONLY
REGISTERS. THEY WILL SAVE PROGRAMMING SPACE IN HANDLING THE
DIGITAL VIDEO PROCESSOR FUNCTIONS.

131 LIST

SYSTEM INITIATION, CHT, 10—NOV—82)
OCTAL

XDEST 60 ERASE R> ICSR I
10 MEMPC 67 CURCTL

89

IMAGE MEMORY INITIATION AND COPYING
These are the most elementary image processing operations.

Four image channel are assigned dedicated functions in our
design of realtime radiographic applications. Channels 0 and 1
are used as a 16 bit deep image accumulator for processings
requiring extended precision. Ch. 3 is the display channel and
Ch. 2 is a temporary image storage area.
CLRMEN Clear Channel 3 memory by writing zero through the

video array processor. 3 TSTOP specifies 0 output,
and BBPM enables writing to Channel 3 memory.

SETMEM Write the byte value on stack to all memory in Ch. 3.
Generate an uniform image.

CPYMEM The source channel number and the write enable masks
are given on the stack. Source channel image is
copied to any or all other channels.

Other words are simple extensions of CPYMEM.

IMAGE INPUT AND DIGITIZATION

PICTURE Digitize one frame of image from the input video
camera and store it in Ch. 3 memory for displaying.

CAMERA Continuously input images from the video camera and
dispaly the live images in Ch. 3. The sequence can
be stopped by pushing any key on the keyboard. The
last frame will be frozen in Ch. 3.

IMAGE INTEGRATION

Realtime video images are noisy, especially under low
illumination. Image integration is the most effective way in
reducing this noise, assuming the scene is stationary.

CLEAR Zero Ch. 0 and 1, to be used as image accumulator.
INTEGR Given the number of frames to be integrated, add that

number of input video images to the image accumulator.
SHIFT The accumulated image has to be left—justified so that

it can be displayed with the identical grayscale as
that for the realtime images. The justification is
accomplished by shifting rather than division due to
SHIFT uses the Output—data—path—shifter in the video
array processor to shift the 16 bit accumulated image
for the bit position specified on stack.

90

132 LIST

CLRMEM, SETMEM, CPYMEM, CHT, 10—NOV—82)
OCTAL

CLRMEM SETUP 3 TSTOP 177400 BBPM ENABLE ;
SETMEM C N --—) SETUP CONST 4 INPDP 52 TSTOP

177400 BBPM ENABLE ;

CPYMEM C CH# ABPM BBPM
SETUP BBPM ABPM INPDP 52 TSTOP ENABLE ;

OCOPY 0 0 177400 CPYMEM ;
1COPY 1 0 177400 CPYMEM ;
2COPY 2 0 177400 CPYMEM ;
OSAVE 3 377 0 CPYMEM ;
1SAVE 3 177400 0 CPYMEM ;
2SAVE 3 0 377 CPYMEM ;

DEC IMAL

133 LIST

PICTURE, CAMERA, CHT, 10—NOV—82)
OCTAL

PICTURE (GRAB ONE FRAME INTO CE 3)
302 ODPSH 0 ABPM 177400 BBPM
100 INPDP 20 TSTOP ENABLE ;

CAMERA C SHOW PICTURES IN CU 3, UNTIL KEY STOKE
KEY—START BEGIN PICTURE ?TERMINAL END ;

DEC I MAL

134 LIST

CLEAR, INTEGR, SHIFT, CHT, 10—NOV—82)
OCTAL

CLEAR SETUP 3 TSTOP —1 ABPM ENABLE ;
INTEGR C FRAMES

10100 INPDP 31 TSTOP 50100 OPOP
5000 ODPSH —1 ABPM 0 BBPM
o DO 2000 XDEST +! ENABLE LOOP
CR .“ DONE.” ;

SHIFT (N———)
5030 OR ODPSH 10000 INPDP 52 TSTOP
50120 OPOP —1 ABPM 0 BBPM ENABLE ;

DEC I MAL

9].

EXTRACT EXPONENTS FROM NUMBERS

EXAMINE Divide top item on stack by 2 and increment the
second number by 1. If the top item is 0, leave
the stack numbers unmodified.

EXPON Reduce the top number on stack to the nearest
power of two and replace it with this power.

WHOLE Given n on the stack, replace it by 2**n.

EXPONENT A variable storing the 2’s power of the number of
frames to be integrated. It will be used to left
justify the integrated image by logical shifts.

FRAME Variable storing the number of frames to be integrated.
Number of frames must be 2’s power.

FRAMES Convert the stack number to the largest power of 2
smaller of equal to it and store the result in FRAME.
Also store the 2’s power in EXPONENT.

IMAGE INTEGRATION

1OCOPY Copy Gb. 0 to Ch. 1. The result of image integration
should end up left justified in Ch. 1. However, the
Output—Data--Path—Shifter in the video array processor
shift the image accumulator left 1 to 3 bits or shift
right 1 to 4 bits if the shift number is from 4 to 7.
When the justified image ends in Ch. 0, it must be
moved to Ch. 1 for output.

ADJUST If frame number is greater than 256, the accumulator
is shifted to right. Execute 1OCOPY in this case.

INTEGRATE Clear the image accumulator and add the number of
digitized frames to it as specified by FRAME. Shift
the accumulated image by EXPONENT bits and move the
left justified result into Ch. 3 for display.

TAKE A COLOR PICTURE --- TAKPXC

To get a color image, one has to digitize three realtime
images in the red, green, and blue spectral regions.

?READY Pause with a prompting message to allow th user to
put the appropriate filter in front the lens.

TAKPXC Take in three digitized images and store them into
Ch. 0, 1 and 2, which are then output to the red,
green, and blue channel of a color CRT monitor.

92

135 LIST

EXAMINE, EXPON, WHOLE, CHT, 10—NOV—82)
EXAMINE C EXPON N --- EXPON+1 N/2)

DUP IF 2/ SWAP 1+ SWAP THEN ;
EXPON (N ——— POWER—OF—2)

-1 SWAP BEGIN EXAMINE DUP 0 END DROP ;
WHOLE (N ——— 2**N

1SWAP 0D02*LOOP;
VARIABLE EXPONENT VARIABLE FRAME

FRAMES (N———)
EXPON DUP EXPONENT I WHOLE FRAME I ;

136 LIST

(TAKPIX, CHT, 10—NOV—82)
OCTAL

1OCOPY 0 177400 0 CPYMEM ;

ADJUST FRAME @ 200 < IF 1OCOPY THEN ;

INTEGRATE C USE THE FRAME$ DEFINED BY FRAMES AND INTEGRATE)
THAT MANY FRAMES. SHOW RESULT IN CH 3.)

CLEAR FRAME @ INTEGR 12 EXPONENT @ - SHIFT
ADJUST 1COPY ;

DEC I MAL

137 LIST

TAKPXC, CUT, 10—NOV—82)

?READY CR .“ TYPE A KEY WHEN YOU ARE READY.”
KEY DROP ;

TAKPXC ?READY PICTURE OSAVE
?READY PICTURE 1SAVE
?READY PICTURE 2SAVE
CR .“ COLOR IMAGE SNAPPED.” ;

93

A SCREEN EDITOR FOR IMAGE ANNOTATION
This screen editor allows the user to put messages with the

image anywhere on the CRT display. The displayed texts can be
save on disk for latter recall.

KPOINTER Screen cursor pointer containing the position of the
current cursor in terms of absolute memory address.

ANNOT Memory origin of the annotation memory page.
KREVERSE Display the current character in reverse video to

serve as a visible cursor.
KBEG From the cursor pointer on stack, return the pointer

to the beginning of the current line.
KNORMAL Reset the current character from reversed video to

normal video of white on black background.
KPtJT Store the address on stack into KPOINTER and display

that character in reverse video.

SCREEN EDITOR

KBACK, KUP, KLF, KHOME, KCR
Move the cursor back, up, down, home, or to a new line,
respectively, by manipulating KPOINTER and setting
modes for pointed characters.

KCLEAR Clear the entire annotation memory to zero.
KINSERT Insert the character on the stack to the current cursor

and move the cursor one place forward.
NGAIN, NOFFSET, FRAME, NDISTANCE

Variables to be display as default annotations.
SELECT Get an Ascii code from keyboard. If it is a function

code, do the specified function. Otherwise insert the
code into the screen. If the code is ESC, leave a true
flag on the stack.

SCREEN EDITOR

A—ON Turn on the annotation overlay.
A—OFF Turn off the annotation overlay.
TITLER Enter the screen editor to put texts on screen. Exit

by pressing the ESC key.
MESSAGE A super string. The substrings are extracted and put

on the screen as default annotations.
‘MESSAGE Return the address of a substring in MESSAGE.
TITLE Copy the MESSAGE substrings and arrange them on the

lefthand side of the screen.

94

138 LIST

SCREEN EDITOR, 5—22-80) OCTAL
VARIABLE KPOINTER 100120 CONSTANT ANNOT

KREVERSE KPOINTER @ DUP C@ DUP IF 200 + ELSE DROP 240 THEN
SWAP Cl 0

KBEG DtJP 3777 AND 120 /MOD DROP — 103777 AND ;
KNORMAL KPOINTER @ DUP C@ 77 AND SWAP C! ;
KPUT KNORMAL KPOINTER I KREVERSE ;
KBACK KNORMAL KPOINTER @ 1— KPUT ;
KUP KNORMAL KPOINTER @ 120 — KBEG KPUT ;
KLF KNORMAL KPOINTER @ 120 + KBEG KPUT ;
KHOME KNORMAL ANNOT KPUT ;
KCLEA.R ANNOT DUP 4000 ERASE KPUT ;
KINSERT KNORMAL KPOINTER @ C! 1 KPOINTER +1 KREVERSE ;
KCR KNORMAL KPOINTER @ DUP 120 + KBEG DUP ROT

DO 0 I Cl LOOP KPOINTER I KREVERSE ;
DEC IMAL

139 LIST

SCREEN EDITOR, CONT’D) OCTAL
VARIABLE NGAIN VARIABLE NOFFSET VARIABLE FRAME
VARIABLE NDISTANCE

SELECT C LEAVE FLAG, TRUE IF ESC, FALSE IF OTHER KEYS)
KEY DUP 33 = IF 1 KNORMAL ELSE

DtJP 0 = IF KHOME ELSE DUP 4 = IF KCLEAR
ELSE DUP 15 = IF KCR ELSE DUP 12 = IF KLF
ELSE DUP 177 = IF KBACK ELSE DUP 10 = IF KUP
ELSE DUP KINSERT

THEN THEN THEN THEN THEN THEN THEN SWAP DROP ;

A—ON 20000 ICSR I
A—OFF 0 ICSR ! ;
TITLER A-ON ANNOT KPOINTER 1 KREVERSE

BEGIN SELECT END ;
DEC I MAL

140 LIST

TITLE, 5—27—80) OCTAL
MASSAGE (A SUPER STRING TO BE ARRANGED ON CRT)

.“ R I P L DEMONSTRSYSTEM FRAMES GAIN OFFSET DISTANCE” ;
‘MASSAGE C -—— ADDR, THE BASE ADDRESS OF THE SUPER STRING)

[‘) MASSAGE 3 + ;
TITLE (ARRANGE STRINGS ON CRT.)

‘MASSAGE ANNOT OVER OVER 10 MOVE
OVER 10 + OVER 120 + 10 MOVE
OVER 20 ÷ OVER 240 + 10 MOVE
OVER 30 + OVER 2400 + 10 MOVE
OVER 40 + OVER 2640 ÷ 10 MOVE
OVER 50 ÷ OVER 3100 + 10 MOVE
SWAP 60 + SWAP 3340 + 10 MOVE ;

DEC I MAL

95

WRITE NUMBERS TO THE SCREEN

.CRT (addr n
Convert the number n into a string of 4 Ascii charac
ters and copy them to the addr in the annotation
memory.

.DATA Fill the appropriate fields on the screen with data
stored in the respective variables.

TITLE Redefine TITLE to include the numeric data.

DISPLAY THE SCREEN EDITOR MENUON SCREEN

SHOWMENU This is a demonstration of screen editor. It moves
the contents of block 144 and display them as 16 lines
of texts on the screen.

SAVE AND RETRIEVE ANNOTATION TEXTS TO/FROM DISK

SVPANX Given the block number on the stack, store the current
contents of the annotation memory in two consecutive
blocks on the disk.

SHPANX Given the block number on the stack, read two
consecutive blocks of texts and display then on the
screen.

96

141 LIST

WRITE NUMBERS TO CRT, CHT, 11—NOV—82)
OCTAL

.CRT 0 SWAP PAD 10 ERASE <# #S t> DROP SWAP 4 MOVE ;

.DATA ANNOT DUP 2520 + FRAME @ .CRT DUP 2760 + NGAIN @
.CRT DUP 3220 + NOFFSET @ .CRT 3460 + NDISTANCE @ .CRT ;
TITLE TITLE .DATA ;

DEC I MAL

142 LIST

SHOWMENU, CHT, 11—NOV—82)

SHOWMENU (MOVE CONTENTS OF BLOCK 144 TO ANNOTATION.)
KCL EAR
16 1 DO
144 BLOCK I 64 * + ANNOT I 80 * + 64 MOVE
LOOP ;

143 LIST

SVPANX, SHPANX, CHT, 11—NOV—82)
5VPANX C BLOCK -—— ,SAVE ANNOTATION ON 2 CONSECUTIVE BLOCKS.)

ANNOT OVER BLOCK 1024 MOVE UPDATE
1+ BLOCK ANNOT 1024 + SWAP 1024 MOVE
UPDATE FLUSH ;

SHPANX C BLOCK -——, SHOW ANNOTATION.)
DUP BLOCK ANNOT 1024 MOVE
1+ BLOCK ANNOT 1024 + 1024 MOVE

97

HISTOGRAM OF AN IMAGE

The De Anza II’ has a counter in the video array processor,

which can be incremented depending upon the ALtJ results. This

counter can be set up so that it will accumulate histograms.

MEMORY An double integer array to store a histogram.

SETUP—HIST Set up the IP registers to control the counter
incrementation.

HISTO Run through the counting loop 256 times and store the
histogram data in MEMORY. Note that the last bin of
gray level 255 has to be processed separately.

GTHIST Collect the histogram from the Ch. 3 image. Reset all
IP registers after the operation.

HDUMP Dump the contents of the MEMORY array to the console.

HISTOGRAM

HISTOGRAM Given the range of gray levels, print the histogram
data as double integers in this range. HDUMP in the
last screen prints data in 16 bit integers, which are
airight to the programmer but not quite appropriate
to the final user.

MEASURING DISTANCES BETWEEN TWO CURSORS

OSQRT Given the cursor coordinates on the stack, return the
square of the distance as a double integer.

1SQRT From the differences in x and y directions, calculate
the seed of square root as the larger distance plus
half of the shorter distance.

2SQRT, 3SQRT Apply Newton’s rule twice to get the square root.
The choice of seed assures the accuracy of the result.

DISTANCE Get the cursor coordinates from the cursor registers
and return the calculated distance on the stack.

RATI A variable containing the scale facter for the
value of distance to be displayed with the image.

RATIO Change the scale factor RATI to the stack value.

Q Measure the cursor distance and return the scaled
value.

98

147 LIST

HISTOGRAM UTILITIES, CHT, 11—NOV—82
OCTAL
VARIABLE MEMORY 2000 ALLOT

SETUP-fIST SETUP 32064 INPDP 100006 TSTOP
13026 OPOP

HISTO 400 377 0 DO
0 ACNTR I DUP CONST ENABLE
ACNTR 2@ SWAP I 2* 2* MEMORY + 21 401 +

LOOP DROP
170026 TSTOP 0 ACNTR 1 -1 CONST ENABLE
ACNTR 2@ SWAP MEMORY 1774 + 21 ;

GTHIST SETUP—fIST HISTO SETUP ;
HDUMP MEMORY 2000 DUMP ;

DEC I MAL

148 LIST

HISTOGRAM, 5—16—80
31 LOAD 37 LOAD C MATH FUNCTIONS
OCTAL

HISTOGRAM C INIT FINAL -—-)
PRINT HISTOGRAM VALUES BETWEEN LIMITS.)

1+ SWAP DO
I 10 /MOD DROP 0= IF CR I 5 .R THEN
MEMORY I 4 * + 2@ 10 D.R
LOOP ;

DEC I MAL

149 LIST

DISTANCE BETWEEN CURSORS, 5—16—80) OCTAL
OSQRT ABS SWAP ABS 2DUP 2DUP ROT M* 2SWAP M* D+ ;
1SQRT 2SWAP 2DUP MAX ROT ROT MIN 2/ + ;
2SQRT DUP 2OVER ROT M/ + 2/ DUP ;
3SQRT 2 SWAP ROT M/ + 2/ ;
SQRT OSQRT 1SQRT 2SQRT 3SQRT ;

OCTAL 117406 CONSTANT Xl 117410 CONSTANT Yl
117412 CONSTANT X2 117414 CONSTANT Y2 DECIMAL

DISTANCE Xl @ 511 AND X2 @ 511 AND — Yl @ 511 AND Y2 @
511 AND - 2DUP OR IF SQRT ELSE DROP DROP 0 THEN ;

SCALING THE DISTANCE)
VARIABLE RATI 1000 RATI I

RATIO RATI I
Q DISTANCE RATI @ 1000 */

99

ACCESSING IMAGE MEMORY

It is quite difficult to understand how the image memory

is accessed in the De Anza IP, inspite of the rather lengthy

discussions in the De Anza IP Programming Manual. Like most

technical manuals, you will have to understand the materials

before you read them. Otherwise, they offer little help.

The entire 1MB image memory is mapped through a 8 KB window

in the LSI—ll memory. There are 16 sets of Control and Base

Coordinate Registers, and each set defines a 512 btye block

in the image memory and maps it to a block of LSI—ll memory.

If it is that simple, there will be no problems. However,

there are 4 different modes to use these registers, and there

are three more bits in the ISCR register having no obvious

effects on these modes.

TRACING A PROFILE IN THE IMAGE

I will not try to explain the mess here. I can’t, even if I

wanted to. All I can do is to present some working examples and

hope that they will be useful to the reader.
CSR The Control/Status Register of the image processor.

CURSOR The first cursor coordinate registers.
CBCR The first Control and Base Coordinate Registers.

IMAGE The first image data window controlled by the above
CBCR.

ST—CBCR Four numbers on the stack are loaded into the first set

of CBCR’s.
ROW Define the first set of CBCR’s to access the nth row

of the image in Ch. 3. Mode 1, auto indexing in x,
zero upper byte on read, no indexing in y, both input

channels are set to Ch. 3, auto increment after reading

256 words, delta mode set in CSR. These bits in CBCR
and CSR allow me to read one line of 512 bytes of data
in Ch. 3, th row number is given on the stack as input.

R—ROW Using data mode, reading IMAGE will automatically
increment the image coordinate. Use the cursor to point
to the row I want to draw a profile, and this word will
grab 512 pixel data and pile them onto the data stack.

S—ROW Print the profile data from stack to console for
verification.

PROFILE Draw each point of the profile on Ch. 3 image at the

255th gray level showing a white trace. Each dot is

drawn by putting the coordinates directly into the
x/y CBCR registers.

PROFIL Draw the profile in black dot at the 0th gray level so

that the trace will be visible in the white image area

100

150 LIST

PROFILE, CHT,
117426 CONSTANT
117600 CONSTANT

ST-CBCR C N M
CBCR 4

:ROW (READ
100000

R-ROW (READ
CURSOR

S—ROW 1000 0
DRAW 1000 0

12—JAN—83) OCTAL
CSR 117406 CONSTANT CURSOR
CBCR 120000 CONSTANT IMAGE
K L ST-CBCR LOAD CBCR’S.)

+ 21 CBCR 21 ;
A ROW, MODE 1)
+ 42000 7777 377 ST—CBCR 20000 CSR 1 ;
ONE ROW TO STACK)
2+ @ 777 AND ROW 1000 0 DO IMAGE @ LOOP ;
DO 14 0 DO 6 U.R LOOP CR 14 +LOOP ;
DO 777 I — CBCR I CBCR 2+ 1 377 IMAGE I LOOP ;

PROFILE C GET ONE ROW AT CURSOR, DISPLAY PROFILE ON CRT
R-ROW DRAW

151 LIST

STORE IMAGE DATA) OCTAL
117426 CONSTANT CSR 117406 CONSTANT CURSOR
117600 CONSTANT CBCR 120000 CONSTANT IMAGE

ST—CBCR C N M K L ST—CBCR LOAD CBCR’S.)
CBCR 4 + 21 CBCR 21 ;

ROW C N ROW SELECT N’TH ROW OF IMAGE FOR READING.)
100000 + 42000 7777 377 ST—CBCR 20000 CSR I ;

R-RQW C READ ONE ROW TO STACK)
CURSOR 2+ @ 777 AND ROW 1000 0 DO

S-ROW 1000 0 DO 14 0 DO 6 U.R LOOP CR 14
PROFILE 1000 0 DO 777 I — CBCR ! CBCR 2+

PROFILE C GET ONE ROW AT CURSOR, DISPLAY
R-ROW PROFILE ;

PROFIL 1000 0 DO 777 I — CBCR 1 CBCR 2+ 1
PROFIL R’-ROW PROFIL ;

DEC I MAL

DEC I MAL

IMAGE @ LOOP ;
+LOOP ;
1 377 IMAGE I LOOP ;
PROFILE ON CRT

0 IMAGE I LOOP ;

101

IMAGE SUBTRACTION

This screen is from a very early program in which
the registers in the De Anza Image processor were
not named. It is very difficult to figure out what’s going on.

It was also wasteful because numbers were stored as literals.
SUB Subtract Ch. 1 from Ch. 2 and store result in Ch. 0.
OMOVE Subtracted image in Ch. 0 is in 2’s complement. It is

shifted up by 128 gray levels so that positive and
negative values can be displayed contiguously.
Result is moved into Ch. 3 to be displayed.

OCMOVE Same as OMOVE. Copy only the area bound by cursors.

SUBTRC Subtract Ch. 1 from Ch. 2 and display the shifted
result in Ch. 3.

CSUBTRC Same as SUBTRC. Display only the cursor bound area.
CCOPY Copy the cursor bound area from Ch. 0 to Ch. 3.

LOCAL AVERAGING OR SUBGROUP AVERAGING

X3SCR, Y3SCR The scroll registers for Ch. 3 image output.

SADD Add the Cl-i. 3 image to the image accumulator(Ch. 0&l)
through the scrolling circuitry. The displacement
is specified by the contents in X3SCR AND Y3SCR.

SUBGROUP Perform a 4x4 local averaging on the image in Ch. 3.
The result is copied back to Ch. 3. The original
images in Ch. 0, 1, and 3 are distroyed.

A, B, C, D, E, F are shorthand definitions for CAMERA, INTEGRATE
2SAVE, SUBTRC, 1COPY, arid 2COPY, which are the most
often used commands in a realtime image processor.
The operator really does not like to do much typing.

LOW AND HIGH PASS IMAGE FILTERING

Local averaging is a very effective way of removing the high
frequency noises in real time images. They serve well as low
pass image filters. Subtracting the local averaged image from
the original image, we can synthesize high pass image filter.

4HPASS Save Ch. 3 in Ch. 2, do a 4x4 local averaging on Ch. 3
subtract averaged image from the original, and display
the high pass filtered image in Ch. 3.

8SUBG Perform an 8x8 local averaging on Ch. 3 image.
8HPASS Using the 8x8 local average to get a high pass image.
16SUBG 16x16 local averaging.
16HPASS 16x16 high pass filtering.

102

153 LIST

IMAGE SUBSTRACTION StJBTRC) OCTAL
SUB 41 117446 1 6 117450 1 0 117454 1 377 117440 1

0 117442 1 FMOPER ;
OMOVE 4 117446 1 200 117444 1 31 117450 1 177400 117442 1

0 117440 1 FMOPER ;
CSUBTRC MOVES CURSOR BOUNDED IMAGE TO DISPLAY, 5—20—80)
OCMOVE 4 117446 1 200 117444 1 431 117450 1 177400 117442 1

0 117440 1 FMOPER ;
CSUBTRC SUB CLRMEM OCMOVE ;
StJBTRC SUB OMOVE ;
CCOPY 0 117446 ! 420 117450 1 0 117454 1 177400 117442 1

0 117440 1 FMOPER ;
DEC I MAL

154 LIST

SUBGROUG AVERAGING, CHT, 12—JAN—83) OCTAL
117474 W/O X3SCR 117476 W/O Y3SCR

SADD 10003 INPDP 31 TSTOP 50100 OPOP
5000 ODPSH ENABLE ;

SUBGROUP CLEAR 1003 777 DO I X3SCR
1003 777 DO I Y3SCR SADD LOOP LOOP

4 SHIFT CH1 ;
DEC I MAL

103

IMAGE ENHANCEMENTS

The image enroute to the D/A can be modified by an image
transformation table (ITS), adding enhancements to the image.
Transformation functions can be specified in the ITS, which
occupies a 256 byte block starting at octal 105400.
ITS—SHOW Route Ch. 3 image through the ITS table to CRT.

We use an S shaped 3 piece straight lines to represent the
intensity transformation curve. The central line is centered
about the gray level specified by the variable NOFFSET, which

will be transformed to level 128 as output. A straight line
is drawn through this point with a slope of 1 up to 128,
enhancing the levels about NOFFSET with a gain as specified by

NGAIN. This straight line is clipped to 255 at the high side
and to 0 at the low side, resulting in the S—shaped functions.

IMAGE ENHANCEMENTS
ITS—SHOW Route Ch. 3 image through the ITS table to CRT. The

displayed image is transformed according to ITS.
+!ITS Given a byte value and the offset from the beginning

address of ITS table, store that byte into the proper
location in the ITS table.

UNITY Write a straight line in ITS. The output image is
not modified.

HVALUE Fill the upper half of the ITS, starting at the point
specified by the offset parameter in NOFFSET.

LVALUE Fill the lower half of the ITS.
IP5ITS Draw the ITS curve as specified by NOFFSET and NGAIN,

route Ch. 3 image through it, and update the numeric
annotation to show the updated NOFFSET and NGAIN.

GAIN Set the gain to the value given on stack.
OFFSET Set the offset of ITS according to the value given.

INTERACTIVE CONTROL OF IMAGE ENHANCEMENTS

KK Decrement NOFFSET and update the ITS curve.
KJ Increment NOFFSET and update the ITS curve.
KR Increment NGAIN and update the ITS curve.
KL Devrement NGAIN and update the ITS curve.
KEY The standard keyboard input command.
KITS Keyboard—controlled ITS. It monitors the keyboard

and responds to the H, J, K, L, and RETURN keys.
H increases the gain, L decreases the gain, J
increases the offset thus darkens the image, and K
decreases the offset thus brightens the image.
RETURN terminates the loop. This command allows the
user to enhance the image interactive to the point
where he gets the visually most appealing enhancement,

104

156 LIST

INTENSITY TRANSFORM, CHT, 7-MAR-83)
105400 CONSTANT 3ITT
VARIABLE NGAIN VARIABLE NOFFSET

SHOW 10 MEMPC ;
IITT 3ITT + C! ;
UNITY 400 0 DO I DUP !ITT LOOP SHOW ;

HVALUE 200 NGAIN — 400 NOFFSET @
DO NGAIN @ + 377 MIN DUP I IITT LOOP DROP ;

LVALUE 200 0 NOFFSET @ DO
NGAIN @ - 0 MAX DUP I IITT —1 +LOOP DROP ;

TRANSFORM HVALUE LVALUE SHOW ;
GAIN NGAIN ! TRANSFORM ; : OFFSET NOFFSET I TRANSFORM ;

DEC IMAL

157 LIST

KEYBOARD CONTROL OF ITT)

NOFFSET @ 1— 0 MAX NOFFSET I TRANSFORM ;
NOFFSET @ 1+ 377 MIN NOFFSET ! TRANSFORM ;
NGAIN @ 1+ 100 MIN NGAIN I TRANSFORM ;
NGAIN @ 1- 1 MAX NGAIN ! TRANSFORM ;

BEGIN KEY
DUP 110
DtJP 112
DUP 113
DUP 114

15 = END

IF KH THEN
IF KJ THEN
IF KK THEN
IF KL THEN

158 LIST

OCTAL
KK
KJ
KH
KL

ENHANCE

DEC I MAL

105

SAVING IMAGE TO DISK

In addition to the accessing to image memory data, here we
will have to deal with the disk controller also. The disk used
here was FT—lOl made by Scientific Micro Systems, Inc. It can
read or write directly from or to memory upto 32KB a time.
What one has to do is set up a parameter packet in the memory,
specifying the exact nature of the next transaction, and then
give the address of the packet to the disk control/status
register. When the disk finishes the current transaction, kick
the disk controller by setting a bit in the control register.
The disk controller will use the DMA scheme to transfer data
either from the disk into memory or from memory to disk.

SETUP DISK CONTROLLER AND THE IP CBCR
CBCR The first set of Control and Base Coordinate Registers
SPAC The address of the command packet to disk controller.
R/W Wait till disk is not busy, point the packet address

to SPAC, and start the disk transaction.
OPRNDS Setup the SPAC parameters to transfer one track of

data, an 8 KB block.
SET—CBCR Setup CBCR for image memory access in mode 2, upper

and lower channels are both Ch. 3, autoincrementing
row address after transferring 512 bytes.

TRACKS Read or write 32 contiguous tracks from the track
specified by top stack item.

READ Read a frame of image or 256 KB of data from disk,
starting at the track number given on stack.

RITE Write a frame of image data from Ch. 3 to the disk.
FORMAT Format the diskette in the second disk drive.

IMAGE READ AND WRITE

CHOOSE A double density 8” diskette can hold 2 frames of
images. The user can choose to access either image
by giving a number on the stack. 1 will cause R/W
to start at track 35, otherwise start at track 0.

READ Read one image from disk to Ch. 3.

WRITE Write one image from Ch. 3 to disk.

Some examples are given here, showing how to use the read!
write commands.

106

SMS ARGUMENT PACKET FORMATION) OCTAL
117600 CONSTANT CBCR
CREATE SPAC 0 , 0 , 100000 , 17 , 160000 , 0 , 144120
16 ALLOT

R/W BEGIN 176020 @ 0< NOT END
0 176024 1 SPAC 176026 1

OPRNDS (TRACK
1000 + SPAC 2 + I
1 SPAC 16 + L

SET—CBCR 41000 117426 1
2000 CBCR 2+ I
66377 CBCR 6 + I

DEC I MAL

SMS
OCTAL

TRACKS (TRACK
40 OVER + SWAP DO

READ (TRACK
SET-CBCR

WRITE (TRACK
SET-CBCR 6000 SPAC

FORMAT (FORMAT DRIVE 1)
SET-CBCR 5217 SPAC
117001 SPAC 4 + I
R/W

DEC I MAL

IMAGE READ & WRITE
CHOOSE (N ——— TRACK

1= IF1 ELSE35
:READ (N—--—)

CHOOSE READ ;
:WRITE (N-——)

CHOOSE WRITE

I OPRNDS R/W LOOP

TRACKS ;

I TRACKS ;

I 1000SPAC2+!
117 SPAC 16 + I

156 LOAD 157 LOAD

THEN ;

EXIT
1 READ read the first image on drive 1 into channel 3.
2 READ read the second image on drive 1.
FORMAT format the diskkete in drive 1 to double density,

1024 bytes/sector, 8 sector/track format.
1 WRITE & 2 WRITE are the reverse of READ commands.

I

5000 176024 1

107001 SPAC 4 + I
20001 120000 SPAC 20 + 21

100000 CBCR I
—1 CBCR 4 + I

READ / WRITE)

5400 SPAC I

107

RUN LENGTH CODING OF A BINARY IMAGE
Run length coding is a very commonly used technique to

compress the image data. It is very effective for black/white
type of binary images.
220 LOAD Load in the IP register definitions and READY routine.

Several CBCR registers are defined in this block by
REG, which is identical to WIG for write—only register

LENGTH Variable holding the pixel length of the current
segment under processing.

ADDRESS Variable holding the address of the next available
location of the list of run length codes. New code
will be added to this address.

COLOR 0 or 1, the color of the current ..egment.
INIT Initialize the IP to access Ch. 3 image in delta mode,

row scanning mode 2. Initialize the run length code
list, starting at PAD.

ENCODING THE IMAGE

APPEND Append the run length of the segment just ended to
the list of run length codes. If the segment is
longer than 255 pixels, break out segments of 255
pixels and add pairs of 255 and 0 to the list of RLC.

LINE Process one row of image. Reduce the pixel length
from 512 to 256. The encoded image will be of the
256x256 format.

ENCODE Process 243 alternate rows in the Ch. 3 image.
Append at least two zeros to the end of the RLC list
as end of record mark.
The run length codes will be generated starting at
PAD and the ending address will be in ADDRESS.

DECODING THE RLC CODED IMAGE

RUN Given the length of the next segment on the stack,
plot a new segment in Ch. 3. The color of the segment
is determined by COLOR.

DECODE Decode the RLC list in PAD to recreate a 256x256
black and white image in Ch. 3.
The decoded image will only occupy a quarter of the
normal image display. It can be blown up to fill the
display by setting the zoom factor to 2 and scroll the
image to fill the display.

108

219 LIST

RUN LENGTH CODING, CUT, 27—JAN-83)
REG (ADDR --—) CREATE , DOES> @ ! ;

OCTAL
117600 REG XCBC 117602 REG YCBC 117604 REG BPMR
117606 REG tJCLC 120000 CONSTANT IMAGE
117426 REG CSR
VARIABLE LENGTH VARIABLE ADDRESS VARIABLE COLOR

INIT 1000 CSR 100000 XCBC 2000 YCBC —1 BPMR
66377 UCLC PAD ADDRESS ! 0 COLOR 1 0 LENGTH I ;

DEC IMAL
220 LOAD (ENCODE
221 LOAD (DECODE
222 LOAD (PUT TO DISK
223 LOAD C RETRIEVE
224 LOAD (PICTURE

220 LIST

APPEND, ENCODE, CUT, 27—JAN—83)
APPEND BEGIN LENGTH @ 255 > (LONG SEGMENT?

IF ADDRESS @ 255 OVER CI
0 OVER 1+ CI 2 + ADDRESS !
—255 LENGTH +1

AGAIN
LENGTH @ ADDRESS @ C! 1 ADDRESS +1
OLENGTH! ;

:LINE 2560D0
IMAGE @ 0= COLOR @ - C NEW SEGMENT?)
IF COLOR @ 0= COLOR I APPEND THEN
1 LENGTH +! LOOP ;

ENCODE INIT 485 0 DO I YCBC LINE 2 +LOOP C 256X256)
APPEND APPEND C END OF RECORD)
ADDRESS @ 1 AND IF APPEND THEN ; (EVEN BOUNDARY)

221 LIST

RUN, DECODE, CHT, 27-JAN—83)
OCTAL

RUN C BYTE
COLOR @ IF -1 ELSE 0 THEN SWAP
0 DO DUP IMAGE I LOOP DROP ;

DECODE C RUN THE LIST FROM ADDRESS UNTIL TWO ZEROS)
INIT 60177 UCLC 177400 BPMR C 256X256 FORMAT)
BEGIN ADDRESS @ C@ 1 ADDRESS +!

?DrJP IF RUN 0 ELSE ADDRESS @ C@ 0= THEN
COLOR @ 0= COLOR I

END ;
DEC I MAL

109

STORE THE RUN LENGTH CODES ON DISK

>BLOCK Given a memory address and a block number, copy 1024
bytes from the memory to this block and flush it to

the disk.

PUT Given a starting block number on the stack, copy the

entire run length code list to the disk. The starting

address of RLC is PAD and the ending address is in
ADDRESS.

RETRIEVE RUN LENGTH CODES FROM DISK

<BLOCK Given the memory address and a block number, copy the

block of data, 1024 bytes, to that memory.

RETRIEVE Given a block number and a block count, retrieve that

many blocks to the memory area starting at PAD.

After the RLC codes are read in from the disk, one can use

the DECODE command to regenerate the image in Ch. 3. However,

one has to know exactly where the RLC codes of a picture was

stored on the disk and the number of blocks they span. Since

the RLc codes are of variable lengths, depending upon the

complexity of the original image, I need some tools to manage

the picture library.

A LIBRARY OF PICTURES ON DISK

PICTURE A defining word which will create a named entry in the

dictionary associated with a picture store on disk.

When the name is invoked, the picture will be
retrieved from disk and displayed on Ch. 3 of the
image processor. When the picture word is defined,
two parameters are needed on the stack, the starting
block number and the number of blocks of RLC.

P Abbreviation of PICTURE.

The picture definitions are stored in several blocks, which

serve well as the library directory. These blocks are loaded

and all the picture names are available to be invoked in

recalling a picture to the IP display.

110

222 LIST

PUT CODE TO DISK, CHT, 28—3AN—83)
>BLOCK C ADDR BLK# ——)

BLOCK 1024 MOVE UPDATE ;
PUT (BLK* --- , FROM PAD TO ADDRESS MOVED TO DISK

ADDRESS @ -1+ PAD — (BYTE COUNT)
1024 / 1+ (BLK# BLK-COUNT)
PAD ROT ROT OVER + SWAP DO

DUP I >BLOCK 1024 + LOOP DROP
FLUSH ;

223 LIST

RETRIEVE, CHT, 28—JAN—83)
<BLOCK (ADDR BLK# -——)

BLOCK SWAP 1024 MOVE ;
RETRIEVE C BLK# BLK—COtJNT ——)

PAD ROT ROT C COPY DISK TO PAD
OVER + SWAP DO

DUP I <BLOCK 1024 +

LOOP DROP ;

224 LIST

RETRIEVING PICTURES, CHT, 28-JAN—83)
PICTURE CREATE , , C BLK# BLK—COUNT)

DOES> 2@ RETRIEVE
INIT DECODE ;

EXAMPLE: 10 2 PICTURE ANIMAL

111

CATALOG OF THE PICTURE LIBRARY

TICK Delay for the slow printer.
CATALOG Print the animal name that follows and also the block

number and block length where the encoded picture is
stored.

P Redefine P as CATALOG, so that when the loading block
of picture directory is loaded, the names and the
locations of the encoded pictures will be printed
as a well formated catalog.

P Redefine P to drop the block number and block length
from the stack so that the names of the animals can
be executed to display the pictures. This is a very
coding and decoding of black-white pictures.

A LIBRARY OF ANIMAL PICTURES

I collected about a hundred pictures of animal drawings and
compressed the image using the RLC method. They are stored on
a single piece of 8” single density single side diskette. Here
is part of the directory. The intended usage of this picture
library is educational. If the IP system is setup right, a
child of 1st grade can type in the name of a animal. If he
types the name correctly and if the animal is in the library,
he will see a picture of the animal appearing in the display.
Otherwise, he will get a ? on the console. This might help him
learn the names of many animals. (In this system, he only has
to type the first three characters correctly with enough
charaters to fill in the length.)

Well, I don’t think many school can afford an expensive
image processor for this purpose. However, with optical disks
comming along, this type of system might be a reality very soon.

112

225 LIST

CATALOG, CHT, 7—FEB—83)
TICK 10000 0 DO LOOP ;
CATALOG HERE 21 BLANK

CR 32 WORD 1+ 16 TYPE
5 U.R 5 U.R TICK ;

P CATALOG ;

(:P 2DROP;)

226 LIST

3 2 P AARDVARK 5 4 P ABALONE 9 3 P ADDAX 12 2 P ADDERS 14 2 P
AGOTJTI 16 2 P ALBATROSS 18 5 P ALPACA 23 2 P AMOEBA 25 3 P ANEMO
N 28 2 P ANHINGA 30 2 P ANDA 32 2 P ANTEATER 34 2 P ANTLION 36
3 P ARMADILLO 39 1 P ANK 40 1 P AVOCET 42 2 P BADGER 44 2 P
BARNACLE 46 3 P BASS 49 2 P BEE—EATER 51 3 P BIRD—PARADISE
54 2 P BITTEN 56 3 P BLACKBIRD 59 2 P BLACKSNAKE 61 3 P BOA
64 2 P BOAR 66 3 P BOBCAT 69 2 P BRISTLETAIL 71 2 P BUNTING
73 3 P BUZZARD 76 3 P CADDIS—FLY 79 2 P CANARY 81 2 P CARACARA
83 3 P CARDINAL 86 3 P CARIBOU 89 2 P CATBIRD 91 3 P CENTIPEDE
94 2 P CHAMALEON 96 2 P CHAMOIS 98 3 P CHEETAH 101 2 P CHIMPANZE
E 103 2 P CHIPMUNK 105 2 P CHITTON 107 2 P CLAM 109 3 P COBRA
112 2 P COCKATOO 114 2 P COCKLE 116 2 P CONCH 118 3 P CONDOR
121 2 P CONY 123 2 P COOT 125 2 P CORAL 127 2 P CORAL-SNAKE
129 2 P CORMORANT 131 3 P COUGAR 134 4 P CRAB 138 2 P CRANE
140 3 P CRAYFISH 143 4 P CREEPER 147 3 P CROCODILE
150 2 P CUCKOO 152 3 P DINGO 155 2 P DIPPER

227 LIST

157 3 P DODO 160 2 P DOVE 162 2 P DUCK 164 2 P EARWIG
166 2 P EGRET 168 2 P ELK 170 3 P EMBILD 173 4 P EMU
177 2 P FLAMINGO 179 2 P FLEA 181 2 P FOX 183 2 P FROGMOUTH
185 2 P GAR 187 2 P GAZELLE 189 3 P GIBBON 192 2 P GILA-MONSTER
195 3 P GMU 198 2 P GRACKLE 200 2 P GRASSHOPPER 202 2 P GROUSE
204 1 P HAGFISH 205 2 P HERON 207 2 P HERRING 209 2 P HYENA
211 2 P IBEX 213 3 P IGUANA 216 2 P JABIRU 218 3 P JACANA
221 2 P JACKAL 223 3 P JAGUAR 226 2 P JAY 228 3 P JELLFISH
231 2 P KINGFISHER 233 2 P KINJOU 235 1 P KIWI 236 2 P KOALA
238 2 P LAMPREY 240 2 P LARK 242 1 P LEECH 243 2 P LEMUR
245 4 P LLAMA

113

CONNECTIVITY ANALYSIS

Connectivity analysis is the technique in isolating and

characterizing connected areas in a binary image in which each

picture element (pixel) has either a value of 1 or 0. The
algorithm was developed by G . J. Agin at SRI International.
The original programs were written partly in assembly and

partly in BLISS. Rather than translating his programs from

these languages into FORTH, I found it more convenient to
implement directly from the algorithm itself. My objective
was simply implement the very minimum structure and leave most

of the embellishments out. They can be added when they are
needed.

TECHNICAL TERMS

Segment Descriptor: An array or a block of data that contains
at least two items: a column number and a component number.

Active Line: An ordered list of segment descriptors. The
current segment pointer points to a segment descriptor on
this list. The active segment is the segment descriptor
pointed to by the current segment pointer.

Blob Descriptor (Blob): An array or a block of data that
contains at least two items: a color which may be either 0 or

1. Additional items in a blob may be used for feature anaJ.y—

sis as well. A component number is an index or address
which identifies a blob.

TO PROCESS AN IMAGE:

Obtain a blob descriptor to represent the background. Set the
color word of the background blob to 0.

Initialize the active line to contain two segment descriptors.
The first segment descriptor should have a column number
smaller than zero, and a component number pointing to the
background blob. The column number of the second segment
descriptor should be a large positive number, a number
greater than the number of columns in the image. The
component number of the second descriptor is inunaterial.

Process each row of the image, as described later.

If the image has a fixed number of rows of data, finish by
processing an extra row consisting of all zeros.

115

TO PROCESS A ROW:

Initialize the current segment pointer to point to the first
segment descriptor in the active line.

Obtain the run—length representation of the row. The run—
length data should start with a negative number and end
with a large positive number.

For every pair of adjacent numbers in the run—length data, in
turn, call the segment—processing operation.

While the current segment pointer does not point to the last
segment in the active line, perform the deletion operation.
Repeat this step until the current segment pointer does
point to the last segment.

TO PROCESS A SEGMENT, given a starting column number and an
ending column number:

While the starting column number is greater than or equal to
the column number of the segment, desriptor after the current
segment in the active line, do the deletion operation.

If the ending column number is less than the column number of
the current segment, perform the insertion operation,
passing on the starting and ending numbers of the segment.

If feature extract is being done, do additional case 3
processing now.

Copy the starting column number to the column number of the
current segment.

Advance the current segment pointer to point to the next
segment descriptor in the active line.

INSERTION OPERATION, given starting and ending column numbers:

Obtain the component number of the segment descriptor
preceding the current segment. Call that component the
surrounding component.

Obtain a new blob descriptor. Call it the new component. Set
the color word of the new component to the opposite of
the color of the surrounding component.

Obtain two new segment descriptors and insert them in the
active line immediately before the current segment,
calling the first segment “A” and the second “B”.
Segment A receives the new component number and the
starting column number. Segment B receives the
surrounding component number, and the ending column numbers.

If feature extraction is being done, perform additional case 2
processing as required.

116

DELETION OPERATION:

Call the component number of the current segment the terminated
component. Call the component number of the segment preced
ing the current one the left component and the component
number of the segment following the current one the right
component. Call the left component the replacing component
and the right component the replaced component. If the right
component points to the background, then call it the replac
ing component and the left component the replaced component,
otherwise call the left component replacing and the right
component replaced.

If feature extraction is being performed, do additional case 1
processing as required.

DELETION OPERATION (Continued):

If the replacing component and the replaced component are
different, then find all instances of the replaced
component number in the active line, and change them to
the replacing number.

Delete the current component and the segment following the
current one from the active line. Let the current
segment pointer point to the first segment after the
deleted one.

Search for instances of the terminated component number in the
active line. If there are no remaining instances, call
application—dependent subroutines, as appropriate,
passing the address of the terminated component’s blob
descriptor.

117

— ---------

REGISTER DEFINITIONS AND INITIALIZATION
CSR Control—Status register of the De Anza Image Proc’r.
CBCR Image memory access control register.
IMAGE Base address of the image data memory.
ACTLINE Base address of the active line under analysis.
RUNCODE Starting address of the run—length codes of an image.
TBLOB Base address of the terminated blob descriptor table.
ABLOB Address of memory storing active blob descriptor.
ABLOBS Pointer to the active blob descriptor.
TBLOBS Pointer to the current terminated blob descriptor.
ACTSEG Pointer to the active segment in the active line.
RLC—INIT Initialize image processor to derve run—length codes

from an image stored in the image memory.
INIT—CONN Initialize image processor to do connectivity analysis
TEST Test the data moving mechanism of the image processor.

RUN—LENGTH CODES FROM IMAGE

ONE—LINE (row ———) Process one row of image data and
generate one line of run—length code, given the row
number on top of the stack.
Image data is accessed through IMAGE register and the
run—length codes are stored via RUNCODE register.

RUN-LENGTH-CODE
Scan through 485 lines of image and produce the same
number rows or run—length codes needed for
connectivity analysis.

CLEAR Clear the memory used to store run—length codes to
all zeros.

CONNECTIVITY ANALYSIS

INITIALIZE
Initialize all the image processor registers and
memory pointers for connectivity analysis. The
first active line is also initialized.

IMAGE—PROCESS
The highest level instruction to perform a complete
connectivity analysis.

118

60 LIST

CBCR INITIALIZATION, 2—3-81) OCTAL
IS CONSTANT ;

117426 IS CSR 117600 IS CBCR 120000 IS IMAGE
120000 IS ACTLINE 122000 IS RUNCODE 124000 IS TBLOB
130000 IS ABLOB
VARIABLE ABLOBS VARIABLE TBLOBS VARIABLE ACTSEG

CBCR+1 CBCR + 21 ;
RLC—INIT 0 100000 0 CBCR+! 66777 0 4 CBCR+1

0 100400 10 CBCR+1 66777 0 14 CBCR+1
o 100400 30 CBCR-i-1 20377 377 34 CBCR+1
100000 CSR 1 0 100000 20 CBCR+! 20377 377 24 CBCR+1 ;

INIT—CONN 20 0 DO 20377 —1 I 10 * 4 + CBCR+1
400 I + 40000 I 10 * CBCR-t-1 LOOP
0 40400 30 CBCR+1 100000 CSR I ;

TEST DO IMAGE I + @ RUNCODE I + I LOOP ;
DECIMAL

61 LIST

RUN LENGTH CODE, CHT, 2—2—81) OCTAL
ONE-LINE (Y -——)

DUP 100000 0 CBCR+! DUP 100400 10 CBCR+1
2/ DUP 100000 20 CBCR+! 100400 30 CBCR+!
Rt]NCODE 0 OVER 1 2+ 1 (RLC BACKGROUND-COLOR)
1777 4 DO

IMAGE I + @ 0= OVER — IF (TRANSITION)
NOT (TOGGLE COLOR) SWAP I 2/ 2/ OVER 1 2+ SWAP THEN

4 +LOOP
NOT IF C LAST COLOR NOT BKGD) 376 OVER 1 2+ THEN
377 SWAP I ;

DEC I MAL
RUN-LENGTH—CODE CLEAR RLC—INIT

485 0 DO I ONE-LINE 2 +LOOP ;

62 LIST

IMAGE PROCESSING, CHT, 2—4—81) OCTAL
INITIALIZE ABLOB ABLOBS 1 100000 ABLOBS @ I (BKGD COLO)

TBLOB TBLOBS I ACTLINE 0 OVER I ABLOB OVER 2+ 1
377 OVER 4 + 1 0 SWAP 6 + 1 100000 CSR I ;

DEC I MAL
IMAGE-PROCESS INIT—CONN INITIALIZE

243 0 DO CR I . I ROW—PROCESS LOOP ;

119

ROW PROCESSING

zz Delete all segments until the last column. This is
used at the end of the active line.

ROW—PROCESS (row --—)
Process one row of run—length codes whose row number
is given on the stack.

ROW Alias of ROW—PROCESS. Save lots of typing during
testing.

SEGMENT PROCESSING

SEGMENT-PROCESSING C start—column end—column ———)
With the starting column number of the current
segment and the starting column number of the next
segment on stack, compare the current segment with
the active segment in the active line. If the two
segments overlap, extend the current blob descriptor
to include the current segment. If the current
segment leads the active segment, create a new blob
descriptor. If the current segment lags behind the
active segment, terminate the current blob descriptor.

S Alias of SEGMENT—PROCESSING.

INSERTION

INSERTION (starting—column end—column ———

Insert the current segment into the active line.
Get the next blob descriptor and create a new
blob for this segment.

120

63 LIST

ROW PROCESSING, CHT, 2-4—81) OCTAL
ZZ BEGIN ACTSEG @ DUP @ 377 < SWAP 4 + @ 377 < AND

IF DELETION AGAIN ;
ROW-PROCESS (ROW# ——--)

ACTLINE ACTSEG 1 DUP CBCR 32 + 1 CBCR 22 + I (YCBCR)
RUNCODE (BASE ADDR OF CURRENT RLC)
BEGIN

DUP @ (START-COL) OVER 2+ @ C END—COL)
DUP IF (IF END OF SEGMENT, EXIT)

SEGMENT-PROCESS ING
2+ (INCREMENT RUNCODE)

AGAIN DROP 2DROP
RUNCODE 2+ @ 377 = IF ZZ THEN (BLANK LINE, CLOSE BLOB)

ROW ROW-PROCESS ;
DEC IMAL

64 LIST

SEGMENT PROCESSING, CHT, 2—4—81) OCTAL
SEGMENT-PROCESSING C RLC START-COLUMN END-COLUMN --- RLC’)

ACTSEG @ >R
I @ 377 — C ACTSEG=377 SKIP DELETION)
IF OVER I 4 + @ < NOT ELSE 0 THEN
IF DELETION 2DROP 2 - C RUNCODE MUST STAY THE SAME)
ELSE DUPI@ <

IF 2DUP INSERTION 2CASE 2DROP
ELSE EXTENSION DROP I 1
THEN
4 ACTSEG +1 C MOVE POINTER TO NEXT SEGMENT)

THEN R> DROP

S SEGMENT-PROCESSING ;
DEC I MAL

65 LIST

INSERTION, CHT,2—4—81) OCTAL
INSERTION (START-COLUMN END—COLUMN -)

ACTSEG @ 2 - @ C SURR—COMP)
SWAP OVER C@ (S-COL SUR—COMP E-COL CL)
NOT 100000 + NEXTBLOB I (SET COLOR)
ROT ABLOBS @ SWAP (SURR END NEW START
INSERT-SEGMENTS

IDE CI MAL

121

NEXTBLOB

NEXTBLOB C ——— addr, address of next blob descriptor)
Return the address of the next available blob
descriptor. Abort if the active blob area is
exhausted.

INSERT- SEGMENT

SEG Temporary storage space to hold the active segment
during the insertion operations.

INSERT-SEGMENT (surround-component end—column
new—component starting column

Insert the current segment into the active line and
update the active segment.

DELET ION

?DELETE (
Examine the current segment. If either the
starting—column or the end—column is 377 octal,
abort the connectivity analysis because it has
reached the last segment.

DELETION C -——)
Delete the current active segment from the active
line. Terminate the current active blob and move
its statistics to a new terminal blob if this
component does not appear in the rest of the active
line. In this case, a closed area is isolated and
its statistics are recorded in the TBLOB area.

122

66 LIST

NEXTBLOB, CHT, 2-3-81) OCTAL
NEXTBLOB (--- ABLOB-ADDR, FIND NEXT FREE ABLOB)

ABLOBS @ DUP
BEGIN

DUP 137760 < NOT C END OF FREE ABLOB SPACE?)
IF DROP 130000 ELSE 20 + THEN
2DUP = ABORT” ABLOB EXHAUSTED!”
DUP @ 0< NOT (BLOB NOT IN USE)

END
DUP ABLOBS 1 SWAP DROP

DEC I MAL

67 LIST

INSERT—SEGMENTS, CHT,2—3--81) OCTAL
VARIABLE SEG 10 ALLOT

INSERT-SEGMENTS C SURR-COMP END-COL NEW-COMP START-COL -)
ACTSEG @
BEGIN

>R
I SEG 10 MOVE (SAVE ACTIVE SEGMENTS)
I 21 I 4 + 2! (INSERT SEGMENTS)
SEG 4 + 2@ SEG 2@ (PUSH OLD SEGS TO STACK)
SEGDUP @377 =SWAP4 + @377 =OR
R> 10 + SWAP

END
DUP>R21 R>4+2! ;

DEC I MAL

68 LIST

DELETION, CHT, 2-3-81) OCTAL
?DELETE ACTSEG @ >R I @ DUP 0 SWAP 377 = OR

R>4+@DUP 0=SWAP377= OROR
IF CBCR 22 ÷ @ ABORT” DELETION ERROR “ THEN ;

DELETION C ———) ?DELETE
ACTSEG @ DUP 2+ @ SWAP C TERM—COMP ACTSEG)
DUP 2 — @ C LEFT—COMP) SWAP 6 + @ (RIGHT—COMP)
DUP ABLOB = C BKGD BLOB?) IF SWAP THEN

TERM-COMP REPLACING—COMP REPLACED—COMP)
1CASE
REPLACE-COMPONENTS
DELETE-TWO-SEGMENTS
TERMINATE

DECIMAL

123

CASE 3, EXTEND BLOB

3CASE C start—column end—column ——— start—col end—col
Extend the current blob descriptor to incide the
statistics of the current segment.

EXTENSION Alias of 3CASE.

CASE 2, INSERT BLOB

2CASE (start—col end—col ——— start—col end—col
Initialize the newly created blob descriptor with
the statistics of the current active segment.

1CASE

1CASE (
Store the current row number, which is available in
one of the CBCR registers, into the current active
blob descriptor.

MERGE C left—component right-component
left-component right—component

Merge the statistic of the right segment into the
blob descriptor of the left component.

124

69 LIST

CASE 3, EXTEND BLOB, CHT, 2—3--81)
3CASE C START-COL END-COL)

ACTSEG @ 2+ @ >R C COMP)
2DUP SWAP — I 2+ +! (AREA)
OVER I 4 + DUP >R @ MIN R> I (X-MIN)

DtJP R> 6 + DtJP >R @ MAX R> I C X-Z4AX)

EXTENSION 3CASE ;

70 LIST

CASE 2, INSERT BLOB, CHT, 2—3—81) OCTAL
2CASE C START-COL END—COL)

ACTSEG @ 2+ @ >R C COMP)
2DUP SWAP — I 2+ 1 (AREA)
OVER I 4 + ! (X—MIN)
DUPI 6 + I C X—MAX)
CBCR 22 + @ R> 10 + I (Y—MIN)

DEC I MAL

71 LIST

CASE 1, DELETE BLOB, CHT, 2—3—81) OCTAL

1CASE C ———)
CBCR 22 + @ C Y—MAX)
ACTSEG @ 2+ @ 12 + I

MERGE C REPLACING-COMP REPLACEDCOMP)
>R
I 2+ @ OVER 2+ +1 (AREA)
I 4 + @ OVER 4 + DUP @ ROT MIN SWAP I C X-MIN)

I 6 + @ OVER 6 + DUP @ ROT MAX SWAP I C X-MAX)

I 10 + @ OVER 10 ÷ DUP @ ROT MIN SWAP I (Y-MIN)

I 12 ÷ @ OVER 12 + DUP @ ROT MAX SWAP I
I 20 ERASE

R>
DEC I MAL

125

REPLACE-COMPONENTS

REPLACE—COMPONENTS (replacing—comp replaced—comp ———)
Merge the statistics of the replaced component to
that of the replacing component. Search through
the active line for the replaced component riubrners
and substitute them with the replacing component
number.

DELETE TWO SEGMENTS

DELETE-TWO—SEGMENTS (
Delete the active segments in the active line.
Move the rest of the segments to fill up the gap.

TERMINATE

TERMINATE (terminal—component ———)
Terminate a blob descriptor. Move the blob statistics
in ABLOB to TBLOB for storage.

126

72 LIST

REPLACE-COMPONENTS, CHT, 2—3—81)
REPLACE-COMPONENTS C REPLACING—COMP REPLACED-COMP)

2DUP - IF (NOT THE SANE COMP)
MERGE
ACTL INE
BEGIN (REPLACING)

2+ DUP @ C COMP) DUP
IF C EXIT IF COMP=0)

>R OVER R> = IF (COMP=REPLACED-COMP)
>R OVER I I R> THEN

2+ (UPDATE ACTLINE)
AGA IN
DROP

THEN
2DROP

73 LIST

DELETE-TWO—SEGMENTS, CHT, 2—3-91) OCTAL
DELETE-TWO—SEGMENTS (———)

ACTSEG @
BEGIN

DUP 10 + OVER 10 MOVE
DUP @ 377 = OVER 4 + @ 377 OR (ANY ZERO COMP?)
SWAP 10 + SWAP

END
DROP ;

DECIMAL

74 LIST

TERMINATE, CHT, 2-3-81) OCTAL
TERMINATE C TERM-COMP ---)

>R 0 (END OF LINE FLAG) ACTLINE
BEGIN DUP @ 377 - IF (EXIT AT LAST SEGMENT

2+ DUP @ (FLAG COMP—PTR COMP)
I = ROT + (UPDATE END FLAG)
SWAP 2+ C FLAG PTR

AGAIN DROP
NOT (FLAG IS ZERO IF NO TERM—COMP REMAINS IN ACTLINE)
IF TBLOBS @ ABLOB > ABORT” TBLOB EXHAUSTED!”

I TBLOBS @ 20 MOVE (SAVE ABLOB TO TBLOB)
TBLOBS @ 14 DUMP I 20 ERASE
20 TBLOBS +! (FREE SPACE FOR TERMINATED BLOBS)

THEN
R DROP

DECIMAL
127

78 LIST

SOME DEBUGGING TOOLS, CHT, 2—11—81)
DELAY 2000 DO LOOP ;
TDUMP DO I 16 * TBLOB + 16 DUMP DELAY LOOP ;

79 LIST

TEST RUN LENGTH CODES, CHT, 2-5-81) OCTAL
RLC C CODES—IN-REVERSE-ORDER N Y

100000 20 CBCR+!
0 DO RUNCODE I 2* + ! LOOP ;

Y C Y ———) DUP CBCR 22 + I CBCR 32 + I ;
DEC I MAL

TEST-IMAGE
255 7 4 0 4 0 RLC
25585310 61RLC
2559764320 82RLC
25598620 63RLC
25598520 64RLC
2559764320 85RLC
25585320 66RLC
255760 47RLC
2550 28RLC ;

80 LIST

CONNECTIVITY ANALYSIS LOAD BLOCK, CHT, 2-4-81)
THRU 1+ SWAP DO I LOAD LOOP ;
CLEAR ;

60 61 THRU
69 74 THRU
66 68 THRU
65 LOAD C INSERTION)
64 LOAD (SEGMENT)
63 LOAD (ROW)
62 LOAD C IMAGE)
79 LOAD C TEST RLC)
: INIT INIT—CONN INITIALIZE 0 CBCR 18 + I

TEST INIT TEST-IMAGE INIT ;
INIT

.RLC DO CR I CR I Y RUNCODE 100 DUMP LOOP

128

A SIMPLE GRAPHICS SYSTEM

This simple graphics system is a very good demonstration

unit if you have a dot addressable graphic display in your

computer. It has commands to draw lines, rectangles, circles

and arrows on the CRT monitor. It can be easily expanded into

a full graphics system for entertainment or serious purposes.

Block 123 is the load block with three demonstration words:

CIRCLES Draw a set of concentric circles.

LINES Draw a set of straight lines going through the

center of CRT.
RECTS Draw a set of rectangles.

8* , 8/ , 64* , 64/ Multiply or divide by shifting.

PAINT The only machine dependent code. It takes the x,y

coordinate pair and paint a white dot on CRT screen.

It assumes a 512x512 display.

CALU C xl yl x2 y2 ——— 64*slope x2 xl)

Given coordinates of two points, leave on the stack

(y2—yl), 64*yl, x2, and xl. They will be used by XVEC

XVEC C xl yl x2 y2 ———) Draw a line between two points

along the x axis. x2 must be greater than xl.

YCALU C xl yl x2 y2 ——— 64/slope y2 yl)

Similar to CALU. Leave parameters used in YVEC.

YVEC (xl yl x2 y2 ———) Draw a line between two points

incrementing along the y axis.

MODE Specify point addressing mode to the graphic system

hardware.

XPREV, YPREV Variables containing position of the last plotted

position.
?RANGE (xl yl x2 y2 ——— xl yl x2 y2) Check the ranges of

all coordinates, Abort if any one exceeds 511.

VECTOR C xl yl x2 y2) Draw a line between two points.

It does range checking and draws a densely spaced line

SIDES C xl yl x2 y2 ———) Draw two opposing sided of a

rectangle.
RECTANGLE (xl yl x2 y2 ———) Draw a complete rectangle.

MOVE C x y ———) Store the x,y pair in XPREV, YPREV.

LINE C x y ———) Continue aline from previous point.

TEST Test the line drawing words.

130

81 LIST

GRAPHICS DEMONSTRATIONS, 1—13—81, CHT)
EMPTY 201 LOAD 87 LOAD
82 LOAD 83 LOAD 84 LOAD 85 LOAD 86 LOAD

CIRCLES 256 256 25 0 DO 2DUP I 10 * CIRCLE LOOP ;
LINES 255 255 511 0 DO 2DUP 0 I VECTOR 2DUP I 0 VECTOR

511 I 2OVER VECTOR I 511 2OVER VECTOR 10 +LOOP 2DROP ;
RECTS 256 0 DO I I 511 I — DUP RECTANGLE 10 +LOOP ;
PATTERNS 0 8 1 DO 8 1 DO I 64 * OVER J 64 * SWAP BULLEYE

1+ 15 AND LOOP LOOP DROP ;

82 LIST

GRAPHICS, 1—11—81, CHT)
CODE 8* S) ASL S) ASL S) ASL NEXT
CODE 8/ S) ASR S) ASR S) ASR NEXT

64* 8* 8* ; : 64/ 8/ 8/ ; (X Y PAINT ———)
CODE PAINT CBCR 2+ S)+ MOV CBCR S)+ MOV IMAGE -1 * MOV NEXT
: CALU (X,Y -- 64H Yl X12) SWAP >R ROT I OVER - SWAP >R >R

64* 0 ROT 64* 0 2OVER 2OVER D- R> M/ >R
2SWAP 2DROP DROP R> SWAP R> R> SWAP ;

XVEC C Xl Yl X2 Y2 -— , X2 > Xl) 2DUP PAINT CALU DO
I OVER 64/ PAINT OVER + LOOP DROP DROP ;

YCALU C X,Y--64H Xl Y12) >R SWAP I OVER - SWAP >R >R
64* >R 64* 0 R> 0 2OVER D— R> MI
SWAP DROP SWAP R> R> SWAP ;

YVEC C Xl Yl X2 Y2 —— , Y2 > Yl) 2DUP PAINT
YCALU DO DUP 64/ I PAINT OVER + LOOP DROP DROP ;

MODE 0 CSR ! —256 CBCR 4 + 1 24576 CBCR 6 + 1 ;

83 LIST

VECTOR, LINE, RECTANGLE, 1—11—81, CHT)
VARIABLE XPREV VARIABLE YPREV

?RANGE 2OVER 2OVER 4 0 DO 511 > ABORT” ?RANGE” LOOP ;
VECTOR (Xl Yl X2 Y2 -——) ?RANGE

>R SWAP >R C Xl X2 -—) OVER OVER - ABS R> DUP I — ABS
SWAP >R > IF C DX > DY, USE XVEC)

OVER OVER > IF SWAP R> R> ROT ROT ELSE R> SWAP R>
THEN XVEC

ELSE R> DUP I > IF SWAP R> 2SWAP ELSE SWAP R>
THEN YVEC THEN ;

SIDES 2OVER 2OVER DROP OVER VECTOR
2OVER 2OVER >R DROP OVER R> VECTOR ;

RECTANGLE SIDES 2SWAP SIDES ;
MOVE C X Y -—) YPREV I XPREV I ;
LINE (X Y -—) 2DUP XPREV @ YPREV @ VECTOR MOVE ;
TEST 512 0 DO 0 I 511 I VECTOR LOOP

131

ROOT Calculate the square root of the double number using
the seed also provided on the stack.

SEGMENT Given two sides of a right triangle, return the length
of the third side or the cord length.

CORNERS Paint the corners of a rectangle, given the center of
the rectangle and the half values of its sides.

CIRCLE Draw a full circle with its center and radius of the
circle. Eight points on the circle are generated
and plotted at once.

XSLOPE Leave the slope of the line between two points on the
stack.

YSLOPE Leave the inverse of the slope between two points.
XARROW Draw a line between two point, incrementing in the

x direction. Both ends are decorated with arrow
heads pointing outwards.

YARROW Similar to XARROW but incrementing in the y—direction.

ARROW Smart arrow drawing routine. It checks ranges and
also select the denser drawing paths.

BULLEYE A demonstration word to draw several common shapes
needed in engineering drawings.

132

84 LIST

CIRCLE, ROOT, SEGMENT, CORNERS. 1—13—81, CHT)

ROOT (0 Ni —— N2, D: SQUARE, Ni: SEED, N2: ROOT)

3 0 DO >R 2DUP I M/ R> + 2/ LOOP >R 2DROP R> ;
SEGMENT (Ni N2 —— N3 , N3SQUARE_ROOTIN1**2_N2**21)

2DtJP = IF 2DROP 0
ELSE 2DUP SWAP 2/ < (IF N2 < N1/2, SEED=Ni

IF 2DUP 2/ 2/ —

ELSE 2DUP — 2* (N2>N1/2, SEED=’N1_N2’*2

THEN >R DUP M* ROT DUP M* 2SWAP D- R> ROOT
THEN ;

CORNERS (DX DY X Y -—)
2OVER 2OVER D+ PAINT 2OVER 2OVER 2SWAP D- PAINT
2OVER MINUS 2OVER 0+ PAINT 2SWAP MINUS D- PAINT ;

CIRCLE C X Y R ——) DUP 3 4 *1 1+ 0 DO DUP I SEGMENT
2OVER 2OVER SWAP DROP I 2DUP >R >R 2OVER CORNERS
R> R> SWAP 2SWAP CORNERS DROP LOOP 2DROP DROP ;

85 LIST

ARROWS, 1—12—81, CHT)
XSLOPE (Xi Yl X2 Y2 —— SLOPE*64)
YSLOPE (Xl Yi X2 Y2 —— YSLOPE*64)
XARROW (X1Y1X2Y2-— ,X2>X1)

2OVER 2OVER XSLOPE DUP 20 + 8/ >R
OVER 8 - OVER I - 2OVER VECTOR
2OVER OVER 8 + OVER R> + VECTOR
OVER 8 - OVER I - VECTOR
OVER 8 + OVER R> + VECTOR ;

YARROW C Xl Yl X2 Y2 —— , Y2 > Yl
2OVER 2OVER YSLOPE DUP 20 + 8/ >R
OVER I - OVER 8 - 2OVER VECTOR
2OVER OVER R> + OVER 8 + VECTOR
OVER I - OVER 8 - VECTOR
OVER R> + OVER 8 + VECTOR ;

86 LIST

CALU 2DROP DROP
YCALU 2DROP DROP

20 — 8/ >R

20 — 8/ >R

(XYR——) >R
I - I 2/ 2/ — OVER MOVE
I 2/ 2/ - OVER MOVE
I 2/ + OVER MOVE
I — I 2/ 2/ — MOVE
I 2/ 2/ — MOVE
I 2/ + MOVE

ARROW, BULLEYE, 1—12—81, CHT)
ARROW C Xl Yl X2 Y2 ———) ?RANGE

>R SWAP >R (Xl X2 --) OVER OVER - ABS R> DUP I — ABS

SWAP >R > IF C DX > DY, USE XVEC)
OVER OVER > IF SWAP R> R> ROT ROT ELSE R> SWAP R>

THEN 2OVER 2OVER XARROW XVEC
ELSE R> DUP I > IF SWAP R> 2SWAP ELSE SWAP R>

THEN 2OVER 2OVER YARROW YVEC
THEN ;

BULLEYE
OVER
OVER
OVER
2DUP
2DUP
2 DU P

OVER I 2/ - OVER LINE
OVER I 2/ 2/ + OVER LINE
OVER I + I 2/ 2/ + OVER LINE
2DUP I 2/ — LINE
2DUP I 2/ 2/ + LINE

2DUP I + I 2/ 2/ + LINE R> CIRCLE ;
133

ACCURACY IN LINE DRAWING
The line drawing routine is limited in it accuracy due to

the scaling factor of 64. A line drawn across the screen may
accumulate a error up to 7 pixels at the end. The advantage
was that points are calculated using only additions. If speed
must be traded for accuracy, points must be calculated using
intrapolation with multiplications and divisions.
SLOPE Given two point coordinates on the stack, return the

slope in two numbers, the numerator and the denomi
nator. Ratios can thus be calculated more precisely.

OFFSET Given a pair of coordinate and a pair of slope ratio,
return the intersect between this line and the Y
axis.

COEFFICIENTS From the coordinates on stack, calculate the
slope and offset and store them in memory for later
uses.

REVISED LINE DRAWING ROUTINE

The line drawing rouitnes in the graphic package can be
rewritten to use the interapolation rouitne. The accuracy
should be in the order of 1 pixel. However, the speed of
drawing is slowed down considerably. The intrapolation
routine can be optimized further to reduce some of the memory
shufflings, but one *1 per point will still be a significant
factor in the computations.

134

LINEAR INTRAPOLATIOI4, 29—JUL—83, CaT)

SLOPE (Xl Yl. X2 Y2 --— NUMERATOR DENOMINATOR)

ROT - >R SWAP - R> SWAP ;

OFFSET (Yl Xl NUMERATOR DENOMINATOR OFFSET
*/_

COEFFICIENTS (Xl Yl X2 Y2 ADDR

>R 2OVER SLOPE 2SWAP SWAP 2OVER OFFSET

I 4 + 1 R> 21
: COMPUTE C X ADDR -—- Y)

>R 12@*/ R>4+@+

LINE DRAWING, 29—JUL—83, CaT)

VARIABLE COEF 4 ALLOT
CALU C Xl Yl X2 Y2 ———) COEF COEFFICIENTS ;

XVEC C Xl Yl X2 Y2 ——— , X2 > Xl)

2OVER 2OVER CALU DROP SWAP DROP SWAP DO

I DUP COEF COMPUTE PAINT LOOP ;

YCALU C Xl X2 Yl Y2 -——) SWAP 2SWAP SWAP 2SWAP

COEF COEFFICIENTS ;
YVEC (Xl Yl X2 Y2 ——— , Y2 > YJ.)

2OVER 2OVER YCALU SWAP DROP ROT DROP SWAP DO

I COEF COMPUTE I PAINT LOOP ;

GRAPHICS DEMONSTRATIONS, 1-13—81, CaT)

EMPTY 201 LOAD 87 LOAD
82 LOAD 442 LOAD 443 LOAD
83 LOAD 84 LOAD 85 LOAD 86 LOAD

CIRCLES 256 256 25 0 DO 2DUP I 10 * CIRCLE LOOP ;

LINES 255 255 511 0 DO 2DUP 0 I VECTOR 2DUP I 0 VECTOR

511 I 2OVER VECTOR I 511 2OVER VECTOR 10 +L.OOP 2DROP ;

RECTS 256 0 DO I I 511 I — DUP RECTANGLE 10 +LOOP ;

PATTERNS 0 8 1 DO 8 1 DO I 64 * OVER J 64 * SWAP BIJLLEYE

1+ 15 AND LOOP LOOP DROP ;

135

